Search tips
Search criteria

Results 1-25 (1063786)

Clipboard (0)

Related Articles

1.  Elimination of rheumatoid synovium in situ using a Fas ligand 'gene scalpel' 
Arthritis Research & Therapy  2005;7(6):R1235-R1243.
Surgical synovectomy to remove the inflammatory synovium can temporarily ameliorate rheumatoid inflammation and delay the progress of joint destruction. An efficient medically induced programmed cell death (apoptosis) in the rheumatoid synovium might play a role similar to synovectomy but without surgical tissue damage. Gene transfer of Fas ligand (FasL) has increased the frequency of apoptotic cells in mouse and rabbit arthritic synovium. In this study, we investigated whether repeated FasL gene transfer could remove human inflammatory synovial tissue in situ and function as a molecular synovectomy. Briefly, specimens of human synovium from joint replacement surgeries and synovectomies of rheumatoid arthritis (RA) patients were grafted subcutaneously into male C.B-17 severe combined immunodeficiency (SCID) mice. Injections of a recombinant FasL adenovirus (Ad-FasL) into the grafted synovial tissue at the dosage of 1011 particles per mouse were performed every two weeks. Three days after the fifth virus injection, the mice were euthanized by CO2 inhalation and the human synovial tissues were collected, weighed and further examined. Compared to the control adenovirus-LacZ (Ad-LacZ) and phosphate buffered saline (PBS) injected RA synovium, the Ad-FasL injected RA synovium was dramatically reduced in size and weight (P < 0.005). The number of both synoviocytes & mononuclear cells was significantly reduced. Interestingly, an approximate 15-fold increased frequency of apoptotic cells was observed in RA synovium three days after Ad-FasL injection, compared with control tissues. In summary, our in vivo investigation of gene transfer to human synovium in SCID mice suggests that repeated intra-articular gene transfer of an apoptosis inducer, such as FasL, may function as a 'gene scalpel' for molecular synovectomy to arrest inflammatory synovium at an early stage of RA.
PMCID: PMC1297566  PMID: 16277676
2.  Targeted delivery of cytokine therapy to rheumatoid tissue by a synovial targeting peptide 
Annals of the Rheumatic Diseases  2012;72(1):129-135.
The synovial endothelium targeting peptide (SyETP) CKSTHDRLC has been identified previously and was shown to preferentially localise to synovial xenografts in the human/severe combined immunodeficient (SCID) mouse chimera model of rheumatoid arthritis (RA). The objective of the current work was to generate SyETP-anti-inflammatory-cytokine fusion proteins that would deliver bioactive cytokines specifically to human synovial tissue.
Fusion proteins consisting of human interleukin (IL)-4 linked via a matrix metalloproteinase (MMP)-cleavable sequence to multiple copies of either SyETP or scrambled control peptide were expressed in insect cells, purified by Ni-chelate chromatography and bioactivity tested in vitro. The ability of SyETP to retain bioactive cytokine in synovial but not control skin xenografts in SCID mice was determined by in vivo imaging using nano-single-photon emission computed tomography-computed tomography (nano-SPECT-CT) and measuring signal transducer and activator of transcription 6 (STAT6) phosphorylation in synovial grafts following intravenous administration of the fusion protein.
In vitro assays confirmed that IL-4 and the MMP-cleavable sequence were functional. IL-4-SyETP augmented production of IL-1 receptor antagonist (IL-1ra) by fibroblast-like synoviocytes (FLS) stimulated with IL-1β  in a dose-dependent manner. In vivo imaging showed that IL-4-SyETP was retained in synovial but not in skin tissue grafts and the period of retention was significantly enhanced through increasing the number of SyETP copies from one to three. Finally, retention correlated with increased bioactivity of the cytokine as quantified by STAT6 phosphorylation in synovial grafts.
The present work demonstrates that SyETP specifically delivers fused IL-4 to human rheumatoid synovium transplanted into SCID mice, thus providing a proof of concept for peptide-targeted tissue-specific immunotherapy in RA. This technology is potentially applicable to other biological treatments providing enhanced potency to inflammatory sites and reducing systemic toxicity.
PMCID: PMC3551226  PMID: 22843486
3.  IL-17 induces monocyte migration in rheumatoid arthritis 
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease which is in part mediated by the migration of monocytes from blood to RA synovial tissue, where they differentiate into macrophages and secrete inflammatory cytokines and chemokines. The T cell cytokine IL-17 is expressed in the RA synovial tissue and synovial fluid. In order to better understand the mechanism by which IL-17 might promote inflammation, its role in monocyte trafficking was examined. In vivo, IL-17 mediates monocyte migration into sponges implanted into severe combined immunodeficient (SCID) mice. In vitro, IL-17 was chemotactic, not chemokinetic, for monocytes at the concentrations detected in the RA synovial fluid. Further, IL-17-induced monocyte migration was mediated by ligation to IL-17 receptor (R) A and C expressed on monocytes and was mediated through p38MAPK signaling. Finally, neutralization of IL-17 in RA synovial fluid or its receptors on monocytes significantly reduced monocyte migration mediated by RA synovial fluid. These observations suggest that IL-17 may be important in recruiting monocytes into the joints of patients with RA, supporting IL-17 as a therapeutic target in RA.
PMCID: PMC2811490  PMID: 19265168
IL-17; monocyte; migration; rheumatoid arthritis
4.  Capacity for epithelial differentiation in synovial sarcoma: analysis of a new human cell line 
Journal of Clinical Pathology  2000;53(7):525-531.
Aim—To analyse the capacity for epithelial differentiation in synovial sarcoma using a new human cell line.
Methods—A new human cell line, KU-SS-1, was established from a monophasic, spindle cell type of synovial sarcoma by grafting those cells on to severe combined immunodeficient (SCID) mice and then transferring them to in vitro culture systems. The KU-SS-1 cells were characterised by light and electron microscopy, and by immunohistochemical, flow cytometric, and cytogenetic analysis.
Results—Primary tumour and cultured cells at passage 20 showed a positive reaction for vimentin, which is a mesenchymal marker. After 40 passages, subcultured cells were injected into SCID mice to induce further tumours. These advanced subcultured cells and the tumour cells that they induced were positive for cytokeratin, an epithelial marker, and exhibited epithelial ultrastructural features such as intermediate junctions. Furthermore, two colour immunofluorescent analysis for proliferating nuclear cell antigen (PCNA) and intermediate filaments showed that a large number of PCNA expressing cells were positive for vimentin, and that part of this fraction also expressed cytokeratin. The existence of cells with reactivity for these three markers indicated that, in this cell line, a fraction with high proliferating capacity had both mesenchymal and epithelial markers. In addition, cytogenetically, this cell line expressed the SYT–SSX chimaeric transcript as a result of the t(X;18)(p11;q11) translocation.
Conclusions—A human synovial sarcoma cell line was established and stably maintained in cell culture for more than 70 passages. In addition, this cell line showed epithelial differentiation, which supports the hypothesis that synovial sarcoma is a carcinosarcoma like tumour with true epithelial differentiation. This cell line will be a useful tool for investigating the nature of this tumour and will contribute to clinical studies.
Key Words: synovial sarcoma • cell line • carcinosarcoma • differentiation
PMCID: PMC1731235  PMID: 10961176
5.  Generation of biliary lesions after transfer of human lymphocytes into severe combined immunodeficient (SCID) mice 
The Journal of Experimental Medicine  1989;170(6):1919-1930.
Human PBL have been reported to reconstitute B and T cells as well as human serum Ig in mice with severe combined immunodeficiency disease (SCID). To confirm these observations and attempt the transfer of an autoimmune disease to the immunodeficient animals, groups of SCID mice received an injection of PBL from patients with primary biliary cirrhosis (PBC) or from normal volunteers. By 8 wk after the injection of 10-42 x 10(6) PBL into the mice, human lymphoid cells were detected in the spleen of approximately half of the animals and all had detectable serum levels of human IgG. Moreover, the sera of SCID mice that received cells from patients with PBC contained human antimitochondrial antibodies (AMA) to dihydrolipoamide acetyltransferase, the major mitochondrial autoantigen of PBC. Histologically, a human mononuclear cell infiltrate was present around the portal areas of the liver and inflammation, bile duct atypica, and necrosis of bile duct cells were observed. While the biliary lesions in the SCID recipients of PBC cells were more severe, a mononuclear infiltrate was clearly evident in mice that received cells from normal donors, suggesting the presence of a graft-vs.-host-like disease. While these data are the first to describe an animal model with both the humoral and cellular characteristics of PBC, they also raise an interesting question regarding the preferential localization of lymphoid cells to the biliary system.
PMCID: PMC2189538  PMID: 2584930
6.  Spontaneous production of fibroblast-activating factor(s) by synovial inflammatory cells. A potential mechanism for enhanced tissue destruction 
A characteristic feature of rheumatoid arthritis is hyperplasia of the synovial lining cells and fibroblasts, the source of tissue-degrading mediators, in association with the appearance and persistence of lymphocytes in affected joints. Diseased synovial tissue obtained at arthroscopy from 10 of 12 rheumatoid arthritis patients was found to release a factor(s) that could stimulate quiescent fibroblasts to proliferate in vitro. Mononuclear cells isolated from this synovial tissue and from the synovial fluid spontaneously produced fibroblast- activating factor(s) (FAF). In contrast, synovial tissue from patients with noninflammatory joint disease did not release FAF. By gel filtration, FAF was detected in two peaks (40,000 and 15,000 mol wt) that were consistent with the previously described peripheral blood T lymphocyte- and monocyte-derived factors with identical activity. The mononuclear cells were predominantly OKT3+/Leu-1+ T lymphocytes and OKM1+ cells of monocyte/macrophage lineage that expressed HLA-DR antigens, suggesting prior activation of these cells. Mononuclear cells isolated from the peripheral blood of these patients did not spontaneously secrete FAF. Lymphocytes and monocytes from the site of synovial inflammation appear to be activated in situ to produce factors that may contribute to the hyperplasia and overgrowth of the synovial membrane in rheumatoid arthritis.
PMCID: PMC2187543  PMID: 3968518
7.  Inflammatory synovial tissue mononuclear cells release leucocyte migration inhibition factor in antigen- and mitogen-free cultures. 
Annals of the Rheumatic Diseases  1981;40(4):388-395.
The presence of leucocyte migration inhibition factor (LIF) in supernatants from apparently antigen- and mitogen-free cultures of mononuclear cells (MNC) was studied. MNC were eluted from inflamed synovial tissue or isolated from blood. Untreated supernatants, supernatants in which any LIF had been inactivated, and culture medium were compared in their ability to affect the migration of homologous polymorphonuclear leucocytes. LIF was released by synovial tissue MNC from all of the 9 patients studied, consisting of 5 patients with rheumatoid arthritis, 2 with psoriatic arthropathy, and 2 with juvenile rheumatoid arthritis. Blood MNC of the patients and of 8 healthy blood donors did not release LIF. When synovial tissue MNC supernatants from 2 patients were examined, LIF activity increased as time of incubation was extended. In at least 2 synovial tissue MNC supernatants in which LIF had been inactivated a migration enhancement activity was revealed.
PMCID: PMC1000734  PMID: 7020614
8.  Production of angiotensin converting enzyme by rheumatoid synovial membrane. 
Annals of the Rheumatic Diseases  1992;51(4):476-480.
Vascular proliferation and mononuclear cell infiltration are prominent changes observed in synovium from actively inflamed joints of patients with rheumatoid arthritis. Angiotensin converting enzyme (ACE) is a halide activated peptidase produced mainly by endothelial cells and by activated monocytes. It has been proposed that levels of ACE activity in synovial fluid might reflect changes in membrane vascularity, the degree of monocyte infiltration, or the thickness of the lining layer. In this study, ACE activity in serum and synovial fluid samples from 18 patients with inflammatory arthritis was measured and compared with levels in 12 control subjects with non-inflammatory arthritis. Although serum levels were similar in the two groups, ACE activity in synovial fluid was significantly increased in the group with inflammatory arthritis compared with controls (mean (SE) 37 (5) v 19 (3)). Staining of synovial membranes from patients with rheumatoid arthritis with a monoclonal antibody to ACE localised ACE to the endothelium and to mononuclear cells of macrophage origin. ACE activity was then measured in supernatants of synovial membrane from patients with rheumatoid arthritis after one and seven days of culture. A significant increase in ACE activity was observed after seven days of culture (mean (SE) day 1, 17 (5) v day 7, 25 (3)). Levels of ACE activity, however, did not correlate with the lining layer thickness, with the number of macrophages per square millimetre, nor with the number of blood vessels per square millimetre of synovial tissue. No correlation was observed either between levels of ACE in the supernatant of synovial membrane and levels of interleukin 1 or interleukin 6. In conclusion, ACE is produced by the synovial membrane of patients with rheumatoid arthritis and is localised to monocytes and endothelial cells. Levels of activity do not directly reflect membrane vascularity, monocyte or macrophage number, or the thickness of the lining layer.
PMCID: PMC1004695  PMID: 1316742
9.  Binding immunoglobulin protein resolves rheumatoid synovitis: a xenogeneic study using rheumatoid arthritis synovial membrane transplants in SCID mice 
Arthritis Research & Therapy  2011;13(5):R149.
Binding immunoglobulin protein (BiP) has previously shown powerful anti-inflammatory properties in the collagen-induced arthritis (CIA) model, where a single dose of BiP has proved to be both a long-term prophylactic and therapeutic. In both CIA and human in vitro studies, BiP induced regulatory T cells. The present investigation looked at the anti-inflammatory effect of BiP on inflamed human synovial tissue transplanted into severe combined immunodeficient mice (SCID), a chimaeric in vivo model previously used to test the efficacy of biologic therapies.
Rheumatoid arthritis synovial membrane (RASM) was engrafted into SCID mice. Following successful engraftment, mice were intravenously injected with BiP or human serum albumin in the presence or absence of anti-IL-10 mAb. Twelve days later the grafts were removed for analysis and human cytokines in the sera were quantified by ELISA. The extent of residual inflammatory cellular infiltrate in the synovial explants was determined by weight of the explants.
The RASM transplants from mice treated with BiP showed visual reduction in cellular infiltrate and downregulation of all quantifiable features of inflammation as assessed by the Koizumi or Rooney histological criteria. Also downregulated were HLA-DR, CD86, IL-6 and TNFα expression as assessed by immunohistology. ELISA detected significantly less human IL-6 circulating in the BiP-treated mouse serum. After removal of transplanted tissue 12 days post administration of BiP, the RASM explants from the BiP-treated SCID mice weighed significantly less, indicating a suppression of tissue inflammation. Mice given concomitant neutralising anti-IL-10 antibody and BiP showed no such suppression.
BiP has anti-inflammatory properties partially dependent on the downregulation of HLA-DR and co-stimulatory molecules and the predominant production of IL-10.
PMCID: PMC3308077  PMID: 21914218
10.  Intramuscular gold decreases cytokine expression and macrophage numbers in the rheumatoid synovial membrane. 
Annals of the Rheumatic Diseases  1994;53(5):315-322.
OBJECTIVES--Cytokines, released from mononuclear cells (MNC) are mediators of joint destruction in rheumatoid arthritis (RA). The mechanisms of action of gold salts used in the treatment of RA are unknown. The aim of this study was to investigate cytokine expression and intensity of MNC infiltrate in the RA synovial membrane (SM) following treatment with sodium aurothiomalate (SAT). METHODS--Sequential blind needle biopsies were obtained at entry into the study and at two and 12 weeks after the start of SAT therapy in 10 patients with active RA. SMs were stained with a panel of monoclonal antibodies to assess cytokine expression (IL-1 alpha, IL-1 beta, TNF-alpha, IL-6, and GM-CSF). RESULTS--There was a significant decrease in IL-1 alpha, IL-1 beta, IL-6 and TNF-alpha expression 12 weeks after treatment (p < 0.004, p < 0.002, p < 0.009 and p < 0.004 respectively). This was noted in the lining layer, the perivascular aggregates and the connective tissue areas. Detailed examination of the MNC infiltrate showed a significant reduction in inflammatory monocytes (MONO) in the lining layer at two weeks (p < 0.03). A decrease in the number of CD68+ macrophages (MAC) was noted in the perivascular and connective tissue areas at 12 weeks. No significant changes were observed in the number of T and B cells and blood vessels. CONCLUSION--The results suggest that gold may suppress RA disease activity by diminishing MONO and MAC numbers and consequently monokine production in the SM.
PMCID: PMC1005330  PMID: 8017985
11.  Activation of synovial fibroblasts in rheumatoid arthritis: lack of expression of the tumour suppressor PTEN at sites of invasive growth and destruction 
Arthritis Research  1999;2(1):59-64.
In the present study, we searched for mutant PTEN transcripts in aggressive rheumatoid arthritis synovial fibroblasts (RA-SF) and studied the expression of PTEN in RA. By automated sequencing, no evidence for the presence of mutant PTEN transcripts was found. However, in situ hybridization on RA synovium revealed a distinct expression pattern of PTEN, with negligible staining in the lining layer but abundant expression in the sublining. Normal synovial tissue exhibited homogeneous staining for PTEN. In cultured RA-SF, only 40% expressed PTEN. Co-implantation of RA-SF and normal human cartilage into severe combined immunodeficiency (SCID) mice showed only limited expression of PTEN, with no staining in those cells aggressively invading the cartilage. Although PTEN is not genetically altered in RA, these findings suggest that a lack of PTEN expression may constitute a characteristic feature of activated RA-SF in the lining, and may thereby contribute to the invasive behaviour of RA-SF by maintaining their aggressive phenotype at sites of cartilage destruction.
PTEN is a novel tumour suppressor which exhibits tyrosine phosphatase activity as well as homology to the cytoskeletal proteins tensin and auxilin. Mutations of PTEN have been described in several human cancers and associated with their invasiveness and metastatic properties. Although not malignant, rheumatoid arthritis synovial fibroblasts (RA-SF) exhibit certain tumour-like features such as attachment to cartilage and invasive growth. In the present study, we analyzed whether mutant transcripts of PTEN were present in RA-SF. In addition, we used in situ hybridization to study the expression of PTEN messenger (m)RNA in tissue samples of RA and normal individuals as well as in cultured RA-SF and in the severe combined immunodeficiency (SCID) mouse model of RA.
Synovial tissue specimens were obtained from seven patients with RA and from two nonarthritic individuals. Total RNA was isolated from synovial fibroblasts and after first strand complementary (c)DNA synthesis, polymerase chain reaction (PCR) was performed to amplify a 1063 base pair PTEN fragment that encompassed the coding sequence of PTEN including the phosphatase domain and all mutation sites described so far. The PCR products were subcloned in Escherichia coli, and up to four clones were picked from each plate for automated sequencing. For in situ hybridization, digoxigenin-labelled PTEN-specific RNA probes were generated by in vitro transcription. For control in situ hybridization, a matrix metalloproteinase (MMP)-2-specific probe was prepared. To investigate the expression of PTEN in the absence of human macrophage or lymphocyte derived factors, we implanted RA-SF from three patients together with normal human cartilage under the renal capsule of SCID mice. After 60 days, mice were sacrificed, the implants removed and embedded into paraffin.
PCR revealed the presence of the expected 1063 base pair PTEN fragment in all (9/9) cell cultures (Fig. 1). No additional bands that could account for mutant PTEN variants were detected. Sequence analysis revealed 100% homology of all RA-derived PTEN fragments to those from normal SF as well as to the published GenBank sequence (accession number U93051). However, in situ hybridization demonstrated considerable differences in the expression of PTEN mRNA within the lining and the sublining layers of RA synovial membranes. As shown in Figure 2a, no staining was observed within the lining layer which has been demonstrated to mediate degradation of cartilage and bone in RA. In contrast, abundant expression of PTEN mRNA was found in the sublining of all RA synovial tissues (Figs 2a and b). Normal synovial specimens showed homogeneous staining for PTEN within the thin synovial membrane (Fig. 2c). In situ hybridization using the sense probe gave no specific staining (Fig. 2d). We also performed in situ hybridization on four of the seven cultured RA-SF and followed one cell line from the first to the sixth passage. Interestingly, only 40% of cultured RA-SF expressed PTEN mRNA (Fig. 3a), and the proportion of PTEN expressing cells did not change throughout the passages. In contrast, control experiments using a specific RNA probe for MMP-2 revealed mRNA expression by nearly all cultured cells (Fig. 3b). As seen before, implantation of RA-SF into the SCID mice showed considerable cartilage degradation. Interestingly, only negligible PTEN expression was found in those RA-SF aggressively invading the cartilage (Fig. 3c). In situ hybridization for MMP-2 showed abundant staining in these cells (Fig. 3d).
Although this study found no evidence for mutations of PTEN in RA synovium, the observation that PTEN expression is lacking in the lining layer of RA synovium as well as in more than half of cultured RA-SF is of interest. It suggests that loss of PTEN function may not exclusively be caused by genetic alterations, yet at the same time links the low expression of PTEN to a phenotype of cells that have been shown to invade cartilage aggressively.
It has been proposed that the tyrosine phosphatase activity of PTEN is responsible for its tumour suppressor activity by counteracting the actions of protein tyrosine kinases. As some studies have demonstrated an upregulation of tyrosine kinase activity in RA synovial cells, it might be speculated that the lack of PTEN expression in aggressive RA-SF contributes to the imbalance of tyrosine kinases and phosphatases in this disease. However, the extensive amino-terminal homology of the predicted protein to the cytoskeletal proteins tensin and auxilin suggests a complex regulatory function involving cellular adhesion molecules and phosphatase-mediated signalling. The tyrosine phosphatase TEP1 has been shown to be identical to the protein encoded by PTEN, and gene transcription of TEP1 has been demonstrated to be downregulated by transforming growth factor (TGF)-β. Therefore, it could be hypothesized that TGF-β might be responsible for the downregulation of PTEN. However, the expression of TGF-β is not restricted to the lining but found throughout the synovial tissue in RA. Moreover, in our study the percentage of PTEN expressing RA-SF remained stable for six passages in culture, whereas molecules that are cytokine-regulated in vivo frequently change their expression levels when cultured over several passages. Also, cultured RA-SF that were implanted into SCID mice and deeply invaded the cartilage did not show significant expression of PTEN after 60 days. The drop in the percentage of PTEN expressing cells from the original cell cultures to the SCID mouse implants is of interest as this observation goes along with data from previous studies that have shown the prominent expression of activation-related molecules in the SCID mice implants that in vivo are found predominantly in the lining layer. Therefore, our data point to endogenous mechanisms rather than to the influence of exogenous human cytokines or factors in the downregulation of PTEN. Low expression of PTEN may belong to the features that distinguish between the activated phenotype of RA-SF and the sublining, proliferating but nondestructive cells.
PMCID: PMC17804  PMID: 11219390
rheumatoid arthritis; synovial membrane; fibroblasts; PTEN tumour suppressor; severe combined immunodeficiency (SCID) mouse model; cartilage destruction; in situ hybridization
12.  Multiple mechanisms support oligoclonal T cell expansion in rheumatoid synovitis. 
Molecular Medicine  1997;3(7):452-465.
BACKGROUND: The synovial T cell infiltrate in rheumatoid arthritis (RA) is diverse but contains clonally expanded CD4+ populations. Recent reports have emphasized that RA patients have a tendency to develop CD4+ T cell oligoclonality which also manifests in the peripheral blood. Clonal dominance in the tissue may thus result from antigen specific stimulation in the synovial membrane or may reflect the infiltration of expanded clonotypes present throughout the lymphoid system. We have explored to what extent clonal populations amongst tissue CD4+ T cells display joint specificity as defined by their restriction to the joint, their persistence over time, and their expression of markers indicative for local activation. MATERIALS AND METHODS: Matched samples of peripheral blood and synovial fluid or synovial tissue were collected from 14 patients with active RA and CD4+ IL-2R+ and CD4+ IL-2R- T cells from both compartments were purified. Clonal populations of CD4+ T cells were detected by RT-PCR amplification of T cell receptor (TCR) transcripts with BV and BJ specific primers followed by size fractionation and direct sequencing of dominant size classes of TCR transcripts. RESULTS: Clonal CD4+ T cells were detected in the synovial fluid and synovial tissue of all patients. All patients carried synovial clonotypes that were undetectable in the blood but were present in independent joints or at several non-adjacent areas of the same joint. These joint restricted CD4+ clonotypes were generally small in size, were preferentially found in the IL-2R+ subpopulation, and persisted over time. A second type of clonogenic T cells in the synovial infiltrate had an unrestricted tissue distribution and was present at similar frequencies amongst activated and nonactivated T cells in the blood and affected joints. Ubiquitous clonotypes isolated from two different patients expressed sequence homologies of the TCR beta chain. CONCLUSIONS: Two types of expanded CD4+ clonotypes contribute to the T cell infiltrate in rheumatoid synovitis. Differences in the distribution pattern and in molecular features suggest that distinct mechanisms are supporting the clonal outgrowth of these two groups of clonotypes. Clonally expanded T cells restricted to the joint but present in several independent joints appear to respond to locally residing antigens. Clonogenic cells with an unrestricted distribution pattern and widespread activation in the blood and tissue may react to a different class of antigens which appear to be shared by multiple patients. T cell recognition in RA may be involved at several different levels and may be related to more than one pathomechanism.
PMCID: PMC2230222  PMID: 9260157
13.  CD4 T cells in the rheumatoid joint are oligoclonally activated and change during the course of disease. 
Annals of the Rheumatic Diseases  1995;54(4):314-317.
OBJECTIVE--To assess the nature of T cell receptor (TCR) utilisation by CD4 T cells in the rheumatoid joint. METHODS--Sequencing of the joining (NDJ) region of TCR beta chain mRNA isolated from synovial fluid CD4 T cells was performed in three patients in order to determine if oligoclonal expansion of particular sequences was present. Two patients were studied longitudinally to determine if these sequences changed over time. RESULTS--A number of dominant clonotypes were found within the TCR transcripts sequenced in each patient. In the two patients who were studied longitudinally, different dominant clonotypes were detected over time. No single clonotype was persistently dominant during the period of study. CONCLUSIONS--The pattern of TCR usage showed multiple oligoclonally expanded CD4 T cells within the rheumatoid joint. The change in clonotypes within the joint over time suggests that different antigens may be able to elicit synovial inflammation during the course of rheumatoid disease.
PMCID: PMC1005581  PMID: 7763112
14.  Amelioration of collagen-induced arthritis by CD95 (Apo-1/Fas)-ligand gene transfer. 
Journal of Clinical Investigation  1997;100(8):1951-1957.
Both rheumatoid arthritis and animal models of autoimmune arthritis are characterized by hyperactivation of synovial cells and hyperplasia of the synovial membrane. The activated synovial cells produce inflammatory cytokines and degradative enzymes that lead to destruction of cartilage and bones. Effective treatment of arthritis may require elimination of most or all activated synovial cells. The death factor Fas/Apo-1 and its ligand (FasL) play pivotal roles in maintaining self-tolerance and immune privilege. Fas is expressed constitutively in most tissues, and is dramatically upregulated at the site of inflammation. In both rheumatoid arthritis and animal models of autoimmune arthritis, high levels of Fas are expressed on activated synovial cells and infiltrating leukocytes in the inflamed joints. Unlike Fas, however, the levels of FasL expressed in the arthritic joints are extremely low, and most activated synovial cells survive despite high levels of Fas expression. To upregulate FasL expression in the arthritic joints, we have generated a recombinant replication-defective adenovirus carrying FasL gene; injection of the FasL virus into inflamed joints conferred high levels of FasL expression, induced apoptosis of synovial cells, and ameliorated collagen-induced arthritis in DBA/1 mice. The Fas-ligand virus also inhibited production of interferon-gamma by collagen-specific T cells. Coadministration of Fas-immunoglobulin fusion protein with the Fas-ligand virus prevented these effects, demonstrating the specificity of the Fas-ligand virus. Thus, FasL gene transfer at the site of inflammation effectively ameliorates autoimmune disease.
PMCID: PMC508384  PMID: 9329958
15.  Arthritis induced by posttranslationally modified (citrullinated) fibrinogen in DR4-IE transgenic mice 
Rheumatoid arthritis (RA) is a common autoimmune disease that afflicts the synovium of diarthrodial joints. The pathogenic mechanisms inciting this disease are not fully characterized, but may involve the loss of tolerance to posttranslationally modified (citrullinated) antigens. We have demonstrated that this modification leads to a selective increase in antigenic peptide affinity for major histocompatibility complex (MHC) class II molecules that carry the RA-associated shared epitope, such as HLA-DRB1*0401 (DR4). We describe the induction of arthritis in DR4-IE transgenic (tg) mice with citrullinated fibrinogen, a protein commonly found in inflamed synovial tissue and a frequent target of autoantibodies in RA patients. The disease induced in these mice was characterized by synovial hyperplasia followed by ankylosis, but lacked a conspicuous polymorphonuclear cell infiltrate. Immunological analysis of these mice through T cell epitope scanning and antibody microarray analysis identified a unique profile of citrulline-specific reactivity that was not found in DR4-IE tg mice immunized with unmodified fibrinogen or in wild-type C57BL/6 mice immunized with citrullinated fibrinogen, two conditions where arthritis was not observed. These observations directly implicate citrullinated fibrinogen as arthritogenic in the context of RA-associated MHC class II molecules.
PMCID: PMC2292232  PMID: 18391064
16.  CDR3 sequence motifs shared by oligoclonal rheumatoid arthritis synovial T cells. Evidence for an antigen-driven response. 
Journal of Clinical Investigation  1994;94(6):2525-2531.
T lymphocytes reactive with as yet undefined joint-localized foreign or autoantigens may be important in the pathogenesis of RA. Molecular studies demonstrating skewed T cell antigen receptor (TCR) variable gene usage and selective expansion of particular T cell clones within the synovial compartment support this view. Based on our recent study documenting selective expansion of V beta 17+ T cells in RA, we have pursued the identification of T cells relevant to the disease process, in an informative patient, by combining molecular analysis of freshly explanted RA synovial tissue V beta 17 TCR transcripts with in vitro expansion of V beta 17+ synovial tissue T cell clones. Peripheral blood V beta 17 cDNA transcripts proved heterogeneous. In contrast, two closely related sequences, not found in the peripheral blood, dominated synovial tissue V beta 17 transcripts, suggesting selective localization and oligoclonal expansion at the site of pathology. CD4+, V beta 17+ synovial tissue-derived T cell clones, isolated and grown in vitro, were found to express TCR beta chain transcripts homologous to the dominant V beta 17 synovial tissue sequences. One clone shares with a dominant synovial tissue sequence a conserved cluster of 4/5 amino acids (IGQ-N) in the highly diverse antigen binding CDR3 region, suggesting that the T cells from which these transcripts derive may recognize the same antigen. These findings have permitted a complete characterization of the alpha/beta TCR expressed by putatively pathogenic T cell clones in RA. Functional analysis suggests that the conserved CDR3 sequence may confer specificity for, or restriction by, the MHC class II antigen, DR4.
PMCID: PMC330088  PMID: 7989613
17.  Eosinophil cationic protein in inflammatory synovial effusions as evidence of eosinophil involvement. 
Annals of the Rheumatic Diseases  1984;43(4):556-562.
Eosinophils are seldom noted in inflammatory synovial fluids but are reported to infiltrate the synovial tissue in inflammatory arthritides. To elucidate a possible role for eosinophils in inflammatory joint reactions the concentrations of eosinophil cationic protein (ECP)--a specific granule protein from eosinophils--were measured by radioimmunoassay in 90 synovial fluids from patients with various inflammatory arthritides (rheumatoid arthritis, reactive and crystal arthritides, Reiter's disease and psoriatic arthropathy). In the same specimens lactoferrin was measured as an indicator of neutrophil-involved inflammation. In comparison with the normal circulating levels of ECP and lactoferrin the measured synovial fluid concentrations of both proteins were considerably raised in all patient groups with inflammatory joint diseases in contrast to patients with non-inflammatory arthritides. There was a striking positive correlation between the ECP and lactoferrin synovial fluid concentrations. These data indicate that eosinophil activation is prominent in inflammatory joint reactions and is linked to the activation of neutrophils. The regulation of degranulation or secretion by eosinophils is unknown. Our in-vitro studies showed that peripheral blood isolated neutrophils as well as eosinophils degranulated when exposed to IgG complexes. However, eosinophil degranulation was modest compared with neutrophil degranulation. These data suggest that neutrophil phagocytosis of, for example, immune complexes may be one major mechanism in neutrophil degranulation but that other factors determine the appearance of eosinophil products in inflammatory synovial effusions. The possible modulatory or harmful role of eosinophils in inflammatory joint disease can at present only be speculated on.
PMCID: PMC1001407  PMID: 6236759
18.  Arthritogenic T cells drive the recovery of autoantibody-producing B cell homeostasis and the adoptive transfer of arthritis in SCID mice 
International Immunology  2012;24(8):507-517.
T cells orchestrate joint inflammation in rheumatoid arthritis (RA), but B cells/B cell-derived factors are also involved in disease pathogenesis. The goal of this study was to understand the role of antigen-specific T and B cells in the pathological events of arthritis, which is impossible to study in humans due to the small number of antigen-specific cells. To determine the significance of antigen-specific lymphocytes and antibodies in the development of an autoimmune mouse model of RA, we generated TCR transgenic (TCR-Tg) mice specific for the dominant arthritogenic epitope of cartilage proteoglycan (PG) and performed a series of combined transfers of T cells, B cells and autoantibodies into BALB/c.Scid mice. The adoptive transfer of highly purified T cells from naive TCR-Tg, arthritic TCR-Tg or arthritic wild-type mice induced arthritis in SCID recipients, but the onset and severity of the disease were dependent on the sequential events of the T cell-supported reconstitution of PG-specific B cells and autoantibodies. The presence of activated PG-specific T cells was critical for disease induction, establishing a unique milieu for the selective homeostasis of autoantibody-producing B cells. In this permissive environment, anti-PG autoantibodies bound to cartilage and induced activation of the complement cascade, leading to irreversible cartilage destruction in affected joints. These findings may lead to a better understanding of the complex molecular and cellular mechanisms of RA.
PMCID: PMC3406935  PMID: 22518822
adoptive transfer; arthritis; lymphocyte homeostasis
19.  High frequency of normal DJH joints in B cell progenitors in severe combined immunodeficiency mice 
The Journal of Experimental Medicine  1993;178(3):1007-1016.
The severe combined immunodeficiency (scid) mouse has a defective V(D)J recombinase activity that results in arrested lymphoid development at the pro-B cell stage in the B lineage. The defect is not absolute and scid mice do attempt gene rearrangement. Indeed, approximately 15% of all scid mice develop detectable levels of oligoclonal serum immunoglobulin and T cell activity. To gain more insight into the scid defect and its effect on V(D)J rearrangement, we analyzed DJH recombination in scid bone marrow. We determined that DJH structures are present in scid bone marrow and occur at a frequency only 10-100 times less than C.B-17+/+. The scid DJH repertoire is limited and resembles fetal liver DJH junctions, with few N insertions and predominant usage of reading frame 1. Moreover, 70% of the DJH structures were potentially productive, indicating that normal V(D)J recombinants should be arising continually.
PMCID: PMC2191179  PMID: 8350042
20.  Evidence for CXCL16 as a potent angiogenic mediator and endothelial progenitor cell chemotactic factor 
Arthritis and rheumatism  2013;65(7):1736-1746.
We examined the possibility that CXCL16 recruits endothelial cells (ECs) to developing neovasculature in rheumatoid arthritis (RA) synovium.
We utilized the RA synovial tissue (ST) severe combined immunodeficient (SCID) mouse chimera system to examine human dermal microvascular endothelial cell (HMVEC) and human endothelial progenitor cell (EPC) recruitment into engrafted human synovium injected intragraft with RA synovial fluid (SF) immunodepleted of CXCL16. CXCR6 deficient (CXCR6−/−) and wild-type (Wt) C57BL/6 mice were primed to develop K/BxN serum induced arthritis and evaluated for angiogenesis. HMVECs and EPCs from human cord blood were also examined for CXCR6 expression by immunofluorescence and signaling activity for CXCL16.
We found that CXCR6 is prominently expressed on human EPCs and HMVECs and can be upregulated by interleukin-1β (IL-1β). SCID mice injected intragraft with RA SF immunodepleted of CXCL16 showed a significant reduction in EPC recruitment. Using the K/BxN serum induced inflammatory arthritis model, CXCR6−/− mice showed profound reductions in hemoglobin (Hb) levels that correlated with reductions in monocyte and T-cell recruitment to arthritic joint tissue in CXCR6−/− compared to wildtype (Wt) mice. We also found that HMVECs and EPCs respond to CXCL16 stimulation but have unique signal transduction pathways and homing properties.
These results indicate that CXCL16 and its receptor CXCR6 may be a central ligand-receptor pair that can be highly correlated with EPC recruitment and blood vessel formation in the RA joint.
PMCID: PMC3701743  PMID: 23633118
CXCL16; CXCR6; endothelial progenitor cells; vasculogenesis; angiogenesis; rheumatoid arthritis; chemotaxis
21.  T cell receptor V beta gene bias in rheumatoid arthritis. 
Journal of Clinical Investigation  1993;92(6):2688-2701.
Polymerase chain reaction (PCR) technology was employed to examine peripheral blood and synovial T cells in patients with rheumatoid arthritis (RA) for biased utilization of T cell receptor (TCR) variable region (V) genes. Oligonucleotide primers specific for individual TCR V beta gene families were used to amplify TCR gene products in a semiquantitative assay of their relative utilization in unselected T cell populations. Mean V beta expression in 24 RA peripheral blood samples was very similar to that in a panel of 15 normal subjects, except for a slight decrease in V beta 13.2 expression. V beta utilization in 8 RA synovial tissue samples and 13 synovial fluid samples was compared to simultaneously obtained blood samples. Although heterogeneous patterns of skewed V beta utilization were observed, several significant trends emerged. By a number of approaches to data analysis, a statistically significant increase in expression of V beta 6 and V beta 15 in synovial T cells was documented. In addition, increased synovial expression of V beta 14 was found, but only in the synovial fluid samples. Reduced expression of V beta 1, V beta 4, V beta 5.1, V beta 10, V beta 16, and V beta 19 was also observed in synovial T cells. These results indicate that biased V beta gene utilization in different peripheral compartments of RA patients can be observed in unselected T cell populations, and are consistent with the conclusion that populations of T cells expressing these V beta gene products may be involved in the pathogenesis of the disease.
PMCID: PMC288467  PMID: 8254025
22.  The Roles of Interleukin-6 in the Pathogenesis of Rheumatoid Arthritis 
Arthritis  2011;2011:765624.
Several clinical studies have demonstrated that the humanized anti-interleukin-6 (IL-6) receptor antibody tocilizumab (TCZ) improves clinical symptoms and prevents progression of joint destruction in rheumatoid arthritis (RA). However, the precise mechanism by which IL-6 blockade leads to the improvement of RA is not well understood. IL-6 promotes synovitis by inducing neovascularization, infiltration of inflammatory cells, and synovial hyperplasia. IL-6 causes bone resorption by inducing osteoclast formation via the induction of RANKL in synovial cells, and cartilage degeneration by producing matrix metalloproteinases (MMPs) in synovial cells and chondrocytes. Moreover, IL-6 is involved in autoimmunity by altering the balance between Th17 cells and Treg. IL-6 also acts on changing lipid concentrations in blood and on inducing the production of hepcidin which causes iron-deficient anemia. In conclusion, IL-6 is a major player in the pathogenesis of RA, and current evidence indicates that the blockade of IL-6 is a beneficial therapy for RA patients.
PMCID: PMC3199948  PMID: 22046525
23.  Tumor Regression in Patients With Metastatic Synovial Cell Sarcoma and Melanoma Using Genetically Engineered Lymphocytes Reactive With NY-ESO-1 
Journal of Clinical Oncology  2011;29(7):917-924.
Adoptive immunotherapy using tumor-infiltrating lymphocytes represents an effective cancer treatment for patients with metastatic melanoma. The NY-ESO-1 cancer/testis antigen, which is expressed in 80% of patients with synovial cell sarcoma and approximately 25% of patients with melanoma and common epithelial tumors, represents an attractive target for immune-based therapies. The current trial was carried out to evaluate the ability of adoptively transferred autologous T cells transduced with a T-cell receptor (TCR) directed against NY-ESO-1 to mediate tumor regression in patients with metastatic melanoma and synovial cell sarcoma.
Patients and Methods
A clinical trial was performed in patients with metastatic melanoma or metastatic synovial cell sarcoma refractory to all standard treatments. Patients with NY-ESO-1–positive tumors were treated with autologous TCR-transduced T cells plus 720,000 iU/kg of interleukin-2 to tolerance after preparative chemotherapy. Objective clinical responses were evaluated using Response Evaluation Criteria in Solid Tumors (RECIST).
Objective clinical responses were observed in four of six patients with synovial cell sarcoma and five of 11 patients with melanoma bearing tumors expressing NY-ESO-1. Two of 11 patients with melanoma demonstrated complete regressions that persisted after 1 year. A partial response lasting 18 months was observed in one patient with synovial cell sarcoma.
These observations indicate that TCR-based gene therapies directed against NY-ESO-1 represent a new and effective therapeutic approach for patients with melanoma and synovial cell sarcoma. To our knowledge, this represents the first demonstration of the successful treatment of a nonmelanoma tumor using TCR-transduced T cells.
PMCID: PMC3068063  PMID: 21282551
24.  Hypoxanthine, xanthine, and urate in synovial fluid from patients with inflammatory arthritides. 
Annals of the Rheumatic Diseases  1991;50(10):669-672.
As nucleotide catabolism increases during tissue injury the appearance of purine metabolites in inflamed synovial fluid might be of value in understanding the joint damage in inflammatory arthritides. In this study, therefore, synovial and plasma concentrations of hypoxanthine, xanthine, and urate in 16 patients with rheumatoid arthritis (three with psoriatic arthropathy) were analysed. It was found that their plasma concentrations of hypoxanthine were greater than those of a reference group of healthy subjects. The synovial fluid concentrations of hypoxanthine, xanthine, and urate were higher than corresponding concentrations in plasma. Positive correlations were found between the respective plasma and synovial fluid values of xanthine and urate. These findings indicate a local enhanced purine metabolism in inflamed joint tissue and diffusion of oxypurines from joint cavity to plasma. No relation was found between measured metabolites and disease duration, radiological joint findings, or synovial fluid cells. Except for a weak correlation between plasma urate and serum haptoglobin, measured purine metabolites were not related to laboratory measures of systemic inflammation.
PMCID: PMC1004526  PMID: 1958086
25.  Macrophages in Synovial Inflammation 
Synovial macrophages are one of the resident cell types in synovial tissue and while they remain relatively quiescent in the healthy joint, they become activated in the inflamed joint and, along with infiltrating monocytes/macrophages, regulate secretion of pro-inflammatory cytokines and enzymes involved in driving the inflammatory response and joint destruction. Synovial macrophages are positioned throughout the sub-lining layer and lining layer at the cartilage–pannus junction and mediate articular destruction. Sub-lining macrophages are now also considered as the most reliable biomarker for disease severity and response to therapy in rheumatoid arthritis (RA). There is a growing understanding of the molecular drivers of inflammation and an appreciation that the resolution of inflammation is an active process rather than a passive return to homeostasis, and this has implications for our understanding of the role of macrophages in inflammation. Macrophage phenotype determines the cytokine secretion profile and tissue destruction capabilities of these cells. Whereas inflammatory synovial macrophages have not yet been classified into one phenotype or another it is widely known that TNFα and IL-l, characteristically released by M1 macrophages, are abundant in RA while IL-10 activity, characteristic of M2 macrophages, is somewhat diminished. Here we will briefly review our current understanding of macrophages and macrophage polarization in RA as well as the elements implicated in controlling polarization, such as cytokines and transcription factors like NFκB, IRFs and NR4A, and pro-resolving factors, such as LXA4 and other lipid mediators which may promote a non-inflammatory, pro-resolving phenotype, and may represent a novel therapeutic paradigm.
PMCID: PMC3342259  PMID: 22566842
macrophage; arthritis; inflammation

Results 1-25 (1063786)