PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (963631)

Clipboard (0)
None

Related Articles

1.  THE IMPACT OF MICROSOMAL PROSTAGLANDIN E SYNTHASE 1 (mPGES1) ON BLOOD PRESSURE IS DETERMINED BY GENETIC BACKGROUND 
Hypertension  2010;55(2):531-538.
Prostaglandin (PG) E2 has multiple actions that may affect blood pressure. It is synthesized from arachidonic acid by the sequential actions of phospholipases, cyclooxygenases, and PGE synthases. While microsomal PGE synthase 1 (mPGES1) is the only genetically-verified PGE synthase, results of previous studies examining the consequences of mPGES1-deficiency on blood pressure (BP) are conflicting. To determine whether genetic background modifies the impact of mPGES1 on BP, we generated mPGES1−/− mice on two distinct inbred backgrounds, DBA/1lacJ and 129/SvEv. On the DBA/1 background, baseline BP was similar between wild-type (WT) and mPGES1−/− mice. By contrast, on the 129 background, baseline BPs were significantly higher in mPGES1−/− animals than WT controls. During angiotensin II infusion, the DBA/1 mPGES1−/− and WT mice developed mild hypertension of similar magnitude, while 129-mPGES1−/− mice developed more severe hypertension than WT controls. DBA/1 animals developed only minimal albuminuria in response to angiotensin II infusion. By contrast, WT 129 mice had significantly higher levels of albumin excretion than WT DBA/1 and the extent of albuminuria was further augmented in 129 mPGES1−/− animals. In WT mice of both strains, the increase in urinary excretion of PGE2 with angiotensin II was attenuated in mPGES1−/− animals. Urinary excretion of thromboxane was unaffected by angiotensin II in the DBA/1 lines but increased more than 4-fold in 129 mPGES1−/− mice. These data indicate that genetic background significantly modifies the BP response to mPGES1 deficiency. Exaggerated production of thromboxane may contribute to the robust hypertension and albuminuria in 129 mPGES1-deficient mice.
doi:10.1161/HYPERTENSIONAHA.109.145631
PMCID: PMC2836731  PMID: 20065147
prostanoids; PGE synthase; blood pressure; strain; hypertension
2.  Increased renal vasodilator prostanoids prevent hypertension in mice lacking the angiotensin subtype-2 receptor 
Journal of Clinical Investigation  1999;104(2):181-188.
The angiotensin subtype-1 (AT1) receptor mediates renal prostaglandin E2 (PGE2) production, and pharmacological blockade of the angiotensin subtype-2 (AT2) receptor potentiates the action of angiotensin II (Ang II) to increase PGE2 levels. We investigated the role of the AT2 receptor in prostaglandin metabolism in mice with targeted deletion of the AT2 receptor gene. Mice lacking the AT2 receptor (AT2-null) had normal blood pressure that was slightly elevated compared with that of wild-type (WT) control mice. AT2-null mice had higher renal interstitial fluid (RIF) 6-keto-PGF1α (a stable hydrolysis product of prostacyclin [PGI2]) and PGE2 levels than did WT mice, and had similar increases in PGE2 and 6-keto-PGF1α in response to dietary sodium restriction and Ang II infusion. In contrast, AT2-null mice had lower PGF2α levels compared with WT mice during basal conditions and in response to dietary sodium restriction or infusion of Ang II. RIF cAMP was markedly higher in AT2-null mice than in WT mice, both during basal conditions and during sodium restriction or Ang II infusion. AT1 receptor blockade with losartan decreased PGE2, PGI2, and cAMP to levels observed in WT mice. To determine whether increased vasodilator prostanoids prevented hypertension in AT2-null mice, we treated AT2-null and WT mice with indomethacin for 14 days. PGI2, PGE2, and cAMP were markedly decreased in both WT and AT2-null mice. Blood pressure increased to hypertensive levels in AT2-null mice but was unchanged in WT. These results demonstrate that in the absence of the AT2 receptor, increased vasodilator prostanoids protect against the development of hypertension.
PMCID: PMC408474  PMID: 10411547
3.  Reproductive failure and reduced blood pressure in mice lacking the EP2 prostaglandin E2 receptor 
Journal of Clinical Investigation  1999;103(11):1539-1545.
Prostaglandins (PGs) are bioactive lipids that modulate a broad spectrum of biologic processes including reproduction and circulatory homeostasis. Although reproductive functions of mammals are influenced by PGs at numerous levels, including ovulation, fertilization, implantation, and decidualization, it is not clear which PGs are involved and whether a single mechanism affects all reproductive functions. Using mice deficient in 1 of 4 prostaglandin E2 (PGE2) receptors — specifically, the EP2 receptor — we show that Ep2–/– females are infertile secondary to failure of the released ovum to become fertilized in vivo. Ep2–/– ova could be fertilized in vitro, suggesting that in addition to previously defined roles, PGs may contribute to the microenvironment in which fertilization takes place. In addition to its effects on reproduction, PGE2 regulates regional blood flow in various vascular beds. However, its role in systemic blood pressure homeostasis is not clear. Mice deficient in the EP2 PGE2 receptor displayed resting systolic blood pressure that was significantly lower than in wild-type controls. Blood pressure increased in these animals when they were placed on a high-salt diet, suggesting that the EP2 receptor may be involved in sodium handling by the kidney. These studies demonstrate that PGE2, acting through the EP2 receptor, exerts potent regulatory effects on two major physiologic processes: blood pressure homeostasis and in vivo fertilization of the ovum.
PMCID: PMC408376  PMID: 10359563
4.  Selective Activation of the Prostaglandin E2 Circuit in Chronic Injury-Induced Pathologic Angiogenesis 
The prostaglandin E2 (PGE2) circuit has injury-specific roles in the cornea. Chronic injury selectively upregulates PGE2 formation, receptor and biosynthetic enzyme expression and induces PGE2 actions that amplify inflammatory neovascularization.
Purpose.
Cyclooxygenase (COX)-derived prostaglandin E2 (PGE2) is a prevalent and established mediator of inflammation and pain in numerous tissues and diseases. Distribution and expression of the four PGE2 receptors (EP1-EP4) can dictate whether PGE2 exerts an anti-inflammatory or a proinflammatory and/or a proangiogenic effect. The role and mechanism of endogenous PGE2 in the cornea, and the regulation of EP expression during a dynamic and complex inflammatory/reparative response remain to be clearly defined.
Methods.
Chronic or acute self-resolving inflammation was induced in mice by corneal suture or epithelial abrasion, respectively. Reepithelialization was monitored by fluorescein staining and neovascularization quantified by CD31/PECAM-1 immunofluorescence. PGE2 formation was analyzed by lipidomics and polymorphonuclear leukocyte (PMN) infiltration quantified by myeloperoxidase activity. Expression of EPs and inflammatory/angiogenic mediators was assessed by real-time PCR and immunohistochemistry. Mice eyes were treated with PGE2 (100 ng topically, three times a day) for up to 7 days.
Results.
COX-2, EP-2, and EP-4 expression was upregulated with chronic inflammation that correlated with increased corneal PGE2 formation and marked neovascularization. In contrast, acute abrasion injury did not alter PGE2 or EP levels. PGE2 treatment amplified PMN infiltration and the angiogenic response to chronic inflammation but did not affect wound healing or PMN infiltration after epithelial abrasion. Exacerbated inflammatory neovascularization with PGE2 treatment was independent of the VEGF circuit but was associated with a significant induction of the eotaxin-CCR3 axis.
Conclusions.
These findings place the corneal PGE2 circuit as an endogenous mediator of inflammatory neovascularization rather than general inflammation and demonstrate that chronic inflammation selectively regulates this circuit at the level of biosynthetic enzyme and receptor expression.
doi:10.1167/iovs.10-5455
PMCID: PMC3055757  PMID: 20610836
5.  Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins 
Molecular Pain  2005;1:3.
Prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2) are major inflammatory mediators that play important roles in pain sensation and hyperalgesia. The role of their receptors (EP and IP, respectively) in inflammation has been well documented, although the EP receptor subtypes involved in this process and the underlying cellular mechanisms remain to be elucidated. The capsaicin receptor TRPV1 is a nonselective cation channel expressed in sensory neurons and activated by various noxious stimuli. TRPV1 has been reported to be critical for inflammatory pain mediated through PKA- and PKC-dependent pathways. PGE2 or PGI2increased or sensitized TRPV1 responses through EP1 or IP receptors, respectively predominantly in a PKC-dependent manner in both HEK293 cells expressing TRPV1 and mouse DRG neurons. In the presence of PGE2 or PGI2, the temperature threshold for TRPV1 activation was reduced below 35°C, so that temperatures near body temperature are sufficient to activate TRPV1. A PKA-dependent pathway was also involved in the potentiation of TRPV1 through EP4 and IP receptors upon exposure to PGE2 and PGI2, respectively. Both PGE2-induced thermal hyperalgesia and inflammatory nociceptive responses were diminished in TRPV1-deficient mice and EP1-deficient mice. IP receptor involvement was also demonstrated using TRPV1-deficient mice and IP-deficient mice. Thus, the potentiation or sensitization of TRPV1 activity through EP1 or IP activation might be one important mechanism underlying the peripheral nociceptive actions of PGE2 or PGI2.
doi:10.1186/1744-8069-1-3
PMCID: PMC1074353  PMID: 15813989
6.  Inactivation of the EP3 receptor attenuates the Angiotensin II pressor response via decreasing arterial contractility 
Objective
The present studies aimed at elucidating the role of prostaglandin E2 (PGE2) receptor subtype 3 (EP3) in regulating blood pressure.
Methods and Results
Mice bearing a genetic disruption of the EP3 gene (EP3−/−) exhibited reduced baseline mean arterial pressure monitored by both tail-cuff and carotid arterial catheterization. The pressor responses induced by EP3 agonists M&B28767 and sulprostone were markedly attenuated in EP3−/− mice, while the reduction of BP induced by PGE2 was comparable in both genotypes. Vasopressor effect of acute or chronic infusion of angiotensin II (AngII) was attenuated in EP3−/− mice. AngII–induced vasoconstriction in mesenteric arteries decreased in EP3−/− group. In mesenteric arteries from wild type mice, AngII–induced vasoconstriction was inhibited by EP3 selective antagonist DG-041 or L798106. The expression of Arhgef-1 is attenuated in EP3 deficient mesenteric arteries. EP3 antagonist DG-041 diminished AngII-induced phosphorylation of MLC20 and MYPT1 in isolated mesenteric arteries. Furthermore, in vascular smooth muscle cells (VSMCs), AngII induced intracellular Ca2+ increase was potentiated by EP3 agonist sulprostone, while inhibited by DG-041.
Conclusions
Activation of the EP3 receptor raises baseline blood pressure and contributes to AngII-dependent hypertension at least partially via enhancing Ca2+ sensitivity and intracellular calcium concentration in VSMCs. Selective targeting of the EP3 receptor may represent a potential therapeutic target for the treatment of hypertension.
doi:10.1161/ATVBAHA.112.254052
PMCID: PMC3565847  PMID: 23065824
EP3; angiotensin II; hypertension; vasoconstriction; calcium
7.  Effects of EP1 Receptor on Cerebral Blood Flow in the Middle Cerebral Artery Occlusion Model of Stroke in Mice 
Journal of neuroscience research  2007;85(11):2433-2440.
The lipid mediator prostaglandin E2 (PGE2) exhibits diverse biologic activity in a variety of tissues. Four PGE2 receptor subtypes (EP1−4) are involved in various physiologic and pathophysiologic conditions, but differ in tissue distribution, ligand-binding affinity, and coupling to intracellular signaling pathways. To characterize the role of the EP1 receptor, physiologic parameters (mean arterial blood pressure, pH, blood gases PaO2 and PaCO2, and body temperature), cerebral blood flow (CBF), and neuronal cell death were studied in a middle cerebral artery occlusion model of ischemic stroke in wild-type (WT) and EP1 knockout (EP1−/−) mice. The right middle cerebral artery was occluded for 60 min, and absolute CBF was measured by [14C] iodoantipyrine autoradiography. The effect of EP1 receptor on oxidative stress in neuronal cultures was investigated. Although no differences were observed in the physiologic parameters, CBF was significantly (P < 0.01) higher in EP1−/− mice than in WT mice, suggesting a role for this receptor in physiologic and pathophysiologic control of vascular tone. Similarly, neuronal cultures derived from EP1−/− mice were more resistant (90.6 ± 5.8% viability) to tert-butyl hydroperoxide-induced oxidative stress than neurons from WT mice (39.6 ± 17.2% viability). The EP1 receptor antagonist SC-51089 and calcium channel blocker verapamil each attenuated the neuronal cell death induced by PGE2. Thus, the prostanoid EP1 receptor plays a significant role in regulating CBF and neuronal cell death. These findings suggest that pharmacologic modulation of the EP1 receptor might be a means to improve CBF and neuronal survival during ischemic stroke.
doi:10.1002/jnr.21399
PMCID: PMC2291148  PMID: 17600836
brain ischemia; oxidative stress; neuroprotection; prostanoid; SC-51089
8.  Convergence of major physiological stimuli for renin release on the Gs-alpha/cyclic adenosine monophosphate signaling pathway 
Control of the renin system by physiological mechanisms such as the baroreceptor or the macula densa (MD) is characterized by asymmetry in that the capacity for renin secretion and expression to increase is much larger than the magnitude of the inhibitory response. The large stimulatory reserve of the renin–angiotensin system may be one of the causes for the remarkable salt-conserving power of the mammalian kidney. Physiological stimulation of renin secretion and expression relies on the activation of regulatory pathways that converge on the cyclic adenosine monophosphate/protein kinase A (cAMP/ PKA) pathway. Mice with selective Gs-alpha (Gsα) deficiency in juxtaglomerular granular cells show a marked reduction of basal renin secretion, and an almost complete unresponsiveness of renin release to furosemide, hydralazine, or isoproterenol. Cyclooxygenase-2 generating prostaglandin E2 (PGE2) and prostacyclin (PGI2) in MD and thick ascending limb cells is one of the main effector systems utilizing Gsα-coupled receptors to stimulate the renin–angiotensin system. In addition, β-adrenergic receptors are critical for the expression of high basal levels of renin and for its release response to lowering blood pressure or MD sodium chloride concentration. Nitric oxide generated by nitric oxide synthases in the MD and in endothelial cells enhances cAMP-dependent signaling by stabilizing cAMP through cyclic guanosine monophosphate-dependent inhibition of phosphodiesterase 3. The stimulation of renin secretion by drugs that inhibit angiotensin II formation or action results from the convergent activation of cAMP probably through indirect augmentation of the activity of PGE2 and PGI2 receptors, β-adrenergic receptors, and nitric oxide.
doi:10.1007/s10157-011-0494-1
PMCID: PMC3482793  PMID: 22124804
Cyclooxygenase; Nitric oxide synthase; Phosphodiesterase; Macula densa; Baroreceptor; ACE inhibition
9.  Role of the prostaglandin E2/E-prostanoid 2 receptor signalling pathway in TGFβ-induced mice mesangial cell damage 
Bioscience Reports  2014;34(6):e00159.
The prostaglandin E2 receptor, EP2 (E-prostanoid 2), plays an important role in mice glomerular MCs (mesangial cells) damage induced by TGFβ1 (transforming growth factor-β1); however, the molecular mechanisms for this remain unknown. The present study examined the role of the EP2 signalling pathway in TGFβ1-induced MCs proliferation, ECM (extracellular matrix) accumulation and expression of PGES (prostaglandin E2 synthase). We generated primary mice MCs. Results showed MCs proliferation promoted by TGFβ1 were increased; however, the production of cAMP and PGE2 (prostaglandin E2) was decreased. EP2 deficiency in these MCs augmented FN (fibronectin), Col I (collagen type I), COX2 (cyclooxygenase-2), mPGES-1 (membrane-associated prostaglandin E1), CTGF (connective tissue growth factor) and CyclinD1 expression stimulated by TGFβ1. Silencing of EP2 also strengthened TGFβ1-induced p38MAPK (mitogen-activated protein kinase), ERK1/2 (extracellular-signal-regulated kinase 1/2) and CREB1 (cAMP responsive element-binding protein 1) phosphorylation. In contrast, Adenovirus-mediated EP2 overexpression reversed the effects of EP2-siRNA (small interfering RNA). Collectively, the investigation indicates that EP2 may block p38MAPK, ERK1/2 and CREB1 phosphorylation via activation of cAMP production and stimulation of PGE2 through EP2 receptors which prevent TGFβ1-induced MCs damage. Our findings also suggest that pharmacological targeting of EP2 receptors may provide new inroads to antagonize the damage induced by TGFβ1.
doi:10.1042/BSR20140130
PMCID: PMC4266927  PMID: 25327961
adenovirus; EP2; ERK1/2; PGE2; siRNA; TGFβ1; BP, blood pressure; CCK, cholecystokinin; CKD, chronic kidney disease; Col I, collagen type I; COX2, cyclooxygenase-2; CRE, CREB, cAMP responsive element binding protein; CTGF, connective tissue growth factor; DMEM, Dulbecco’s modified Eagle’s medium; ECM, extracellular matrix; EP2, E-prostanoid 2; ERK, extracellular-signal-regulated kinase; FBS, fetal bovine serum; FN, fibronectin; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; MC, mesangial cell; MOI, multiplicity of infection; mPGES-1, membrane associated prostaglandin E1; PGE2, prostaglandin E2; PGES, prostaglandin E2 synthase; PKA, protein kinase A; RT–PCR, reverse transcription–PCR; siRNA, small interfering RNA; TGFβ1, transforming growth factor-β1
10.  A Maladaptive Role for EP4 Receptors in Mouse Mesangial Cells 
PLoS ONE  2014;9(8):e104091.
Roles of the prostaglandin E2 E-prostanoid 4 receptor (EP4) on extracellular matrix (ECM) accumulation induced by TGF-β1 in mouse glomerular mesangial cells (GMCs) remain unknown. Previously, we have identified that TGF-β1 stimulates the expression of FN and Col I in mouse GMCs. Here we asked whether stimulation of EP4 receptors would exacerbate renal fibrosis associated with enhanced glomerular ECM accumulation. We generated EP4Flox/Flox and EP4+/− mice, cultured primary WT, EP4Flox/Flox and EP4+/− GMCs, AD-EP4 transfected WT GMCs (EP4 overexpression) and AD-Cre transfected EP4Flox/Flox GMCs (EP4 deleted). We found that TGF-β1-induced cAMP and PGE2 synthesis decreased in EP4 deleted GMCs and increased in EP4 overexpressed GMCs. Elevated EP4 expression in GMCs augmented the coupling of TGF-β1 to FN, Col I expression and COX2/PGE2 signaling, while TGF-β1 induced FN, Col I expression and COX2/PGE2 signaling were down-regulated in EP4 deficiency GMCs. 8 weeks after 5/6 nephrectomy (Nx), WT and EP4+/− mice exhibited markedly increased accumulation of ECM compared with sham-operated controls. Albuminuria, blood urea nitrogen and creatinine (BUN and Cr) concentrations were significantly increased in WT mice as compared to those of EP4+/− mice. Urine osmotic pressure was dramatically decreased after 5/6 Nx surgery in WT mice as compared to EP4+/− mice. The pathological changes in kidney of EP4+/− mice was markedly alleviated compared with WT mice. Immunohistochemical analysis showed significant reductions of Col I and FN in the kidney of EP4+/− mice compared with WT mice. Collectively, this investigation established EP4 as a potent mediator of the pro-TGF-β1 activities elicited by COX2/PGE2 in mice GMCs. Our findings suggested that prostaglandin E2, acting via EP4 receptors contributed to accumulation of ECM in GMCs and promoted renal fibrosis.
doi:10.1371/journal.pone.0104091
PMCID: PMC4133176  PMID: 25122504
11.  Antihypertensive effects of selective prostaglandin E2 receptor subtype 1 targeting  
The Journal of Clinical Investigation  2007;117(9):2496-2505.
Clinical use of prostaglandin synthase–inhibiting NSAIDs is associated with the development of hypertension; however, the cardiovascular effects of antagonists for individual prostaglandin receptors remain uncharacterized. The present studies were aimed at elucidating the role of prostaglandin E2 (PGE2) E-prostanoid receptor subtype 1 (EP1) in regulating blood pressure. Oral administration of the EP1 receptor antagonist SC51322 reduced blood pressure in spontaneously hypertensive rats. To define whether this antihypertensive effect was caused by EP1 receptor inhibition, an EP1-null mouse was generated using a “hit-and-run” strategy that disrupted the gene encoding EP1 but spared expression of protein kinase N (PKN) encoded at the EP1 locus on the antiparallel DNA strand. Selective genetic disruption of the EP1 receptor blunted the acute pressor response to Ang II and reduced chronic Ang II–driven hypertension. SC51322 blunted the constricting effect of Ang II on in vitro–perfused preglomerular renal arterioles and mesenteric arteriolar rings. Similarly, the pressor response to EP1-selective agonists sulprostone and 17-phenyltrinor PGE2 were blunted by SC51322 and in EP1-null mice. These data support the possibility of targeting the EP1 receptor for antihypertensive therapy.
doi:10.1172/JCI29838
PMCID: PMC1940235  PMID: 17710229
12.  The involvement of prostaglandins in the contractile function of the aorta by aldosterone 
BMC Research Notes  2011;4:125.
Background
Aldosterone, one of the major culprits associated with the renin-angiotensin-aldosterone system (RAAS), is significantly elevated following high salt administration in Dahl rats. Since we have previously demonstrated that aldosterone (ALDO) upregulates cyclooxygenase (COX) expression in the kidney, the present study was design to assess whether prostaglandin release is involved in the effects of chronic aldosterone treatment on vascular function of the aorta from nonhypertensive Dahl salt-sensitive rats.
Findings
The effects of aldosterone on arachidonic acid metabolism and on the expression of cyclooxygenase (COX)-2 were evaluated in the Dahl salt sensitive (DS) rat aorta, renal, femoral and carotid arteries. DS rats on a low salt (0.3% NaCl) diet were treated with or without ALDO for four weeks. Indirect blood pressure (BP), the release of prostacyclin (PGI2) and prostaglandin E2, and the expression of COX-2 were measured to assess the vascular remodelling by aldosterone. Vascular function was also assessed by contractile responsiveness in the aorta to phenylephrine. ALDO increased BP (17 ± 1%) and inhibited the basal release of PGE2. ALDO enhanced vascular reactivity to phenylephrine and up regulated the expression of COX-2 in both aorta and renal vessels but reduced COX-2 expression in the femoral artery.
Conclusions
These data reveal that the effect of ALDO in the vasculature is tissue specific and may involve the inhibition of PGE2 release. Thus, suggesting a role for prostaglandins in the vasculopathic aspects of aldosterone.
doi:10.1186/1756-0500-4-125
PMCID: PMC3094371  PMID: 21492462
13.  Role of the cyclooxygenase pathway in chemotherapy-induced oral mucositis: a pilot study 
Goals
Oral mucositis can be a significant and dose-limiting complication of high-dose cancer therapy. Mucositis is a particularly severe problem in patients receiving myeloablative chemotherapy prior to bone marrow or hematopoetic stem cell transplant (HSCT). The cyclooxygenase (COX) pathway mediates tissue injury and pain through upregulation of pro-inflammatory prostaglandins, including prostaglandin E2 (PGE2) and prostacyclin (PGI2). The objective of this small (n=3) pilot study was to examine the role of the COX pathway in causing mucosal injury and pain in chemotherapy-induced oral mucositis.
Materials and methods
We collected blood, saliva, and oral mucosal biopsy specimens from three autologous HSCT patients at the following time-points before and after administration of conditioning chemotherapy: Day −10, +10, +28, and +100, where day 0 is day of transplant. RNA extracted from full-thickness tissue samples was measured by RT-PCR for the following: COX-1, COX-2, microsomal prostaglandin E synthase (mPGES), IL-1β, and TNF-α. Blood and saliva samples were measured by ELISA for PGE2 and PGI2, which are markers of COX activity. Severity of oral mucositis was determined using the Oral Mucositis Index. Severity of pain due to oral mucositis was measured using a Visual Analog Scale. Relationships between the different variables were examined using Spearman rank correlation coefficients.
Main results
Mean mucositis and pain scores increased significantly after administration of chemotherapy and then gradually declined. The correlation between changes in mucositis and pain scores was strong and statistically significant. The following additional correlations were statistically significant: between tissue COX-1 and pain; between tissue mPGES and pain; between salivary PGE1 and pain; between salivary PGI2 and pain. Other relationships were not statistically significant.
Conclusions
Our finding of significant associations of pain scores with tissue COX-1 and mPGES, as well as salivary prostaglandins, is suggestive of a role for the cyclooxygenase pathway in mucositis, possibly via upregulation of pro-inflammatory prostaglandins. However, our small sample size may have contributed to the lack of significant associations between COX-2 and other inflammatory mediators with mucosal injury and pain. Thus, additional studies with larger numbers of subjects are warranted to confirm the involvement of the cyclooxygenase pathway in chemotherapy-induced mucositis.
doi:10.1007/s00520-009-0635-1
PMCID: PMC3034109  PMID: 19404685
Mucositis; Chemotherapy; Hematopoetic stem cell transplant; Cyclooxygenase; Prostaglandin
14.  Microsomal Prostaglandin E Synthase-1 Inhibits PTEN and Promotes Experimental Cholangiocarcinogenesis and Tumor Progression 
Gastroenterology  2011;140(7):2084-2094.
Background & Aims
Microsomal prostaglandin E synthase-1 (mPGES-1) is a rate-limiting enzyme that is coupled with cyclooxygenase-2 (COX-2) in the synthesis of prostaglandin E2 (PGE2). Although COX-2 is involved in development and progression of various human cancers, the role of mPGES-1 in carcinogenesis has not been determined. We investigated the role of mPGES-1 in human cholangiocarcinoma growth.
Methods
We used immunohistochemical analyses to examine the expression of mPGES-1 in formalin-fixed, paraffin-embedded human cholangiocarcinoma tissues. The effects of mPGES-1 on human cholangiocarcinoma cells were determined in vitro and in SCID mice. Immunoblotting and immunoprecipitation assays were performed to determine the levels of PTEN and related signaling molecules in human cholangiocarcinoma cells with overexpression or knockdown of mPGES-1.
Results
mPGES-1 is overexpressed in human cholangiocarcinoma tissues. Overexpression of mPGES-1 in human cholangiocarcinoma cells increased tumor cell proliferation, migration, invasion, and colony formation; in contrast, RNAi knockdown of mPGES-1 inhibited tumor growth parameters. In SCID mice with tumor xenografts, mPGES-1 overexpression accelerated tumor formation and increased tumor weight (P<0.01), whereas mPGES-1 knockdown delayed tumor formation and reduced tumor weight (P<0.01). mPGES-1 inhibited the expression of PTEN, leading to activation of the EGFR–PI3K–AKT–mTOR signaling pathways in cholangiocarcinoma cells. mPGES-1–mediated inhibition of PTEN is regulated through blocking of EGR-1 sumoylation and binding to the 5′-UTR of the PTEN gene.
Conclusions
mPGES-1 promotes experimental cholangiocarcinogenesis and tumor progression by inhibiting PTEN.
doi:10.1053/j.gastro.2011.02.056
PMCID: PMC3109169  PMID: 21354147
cancer cell signaling; biliary tract cancer; bile duct; liver
15.  Activation of prostaglandin E2 EP1 receptor increases arteriolar tone and blood pressure in mice with type 2 diabetes 
Cardiovascular Research  2009;83(1):148-154.
Aims
Type 2 diabetes mellitus is frequently associated with hypertension, but the underlying mechanisms are not completely understood. We tested the hypothesis that activation of type 1 prostaglandin E2 (PGE2) receptor (EP1) increases skeletal muscle arteriolar tone and blood pressure in mice with type 2 diabetes.
Methods and results
In 12-week-old, male db/db mice (with homozygote mutation in leptin receptor), systolic blood pressure was significantly elevated, compared with control heterozygotes. Isolated, pressurized gracilis muscle arterioles (∼90 µm) of db/db mice exhibited an enhanced pressure- and angiotensin II (0.1–10 nM)-induced tone, which was reduced by the selective EP1 receptor antagonist, AH6809 (10 µM), to the level observed in arterioles of control mice. Exogenous application of PGE2 (10 pM–100 nM) or the selective agonist of the EP1 receptor, 17-phenyl-trinor-PGE2 (10 pM–100 nM), elicited arteriolar constrictions that were significantly enhanced in db/db mice (max: 31 ± 4 and 29 ± 5%), compared with controls (max: 20 ± 2 and 14 ± 3%, respectively). In the aorta of db/db mice, an increased protein expression of EP1, but not EP4, receptor was also detected by western immunoblotting. Moreover, we found that oral administration of the EP1 receptor antagonist, AH6809 (10 mg/kg/day, for 4 days), significantly reduced the systolic blood pressure in db/db, but not in control mice.
Conclusion
Activation of EP1 receptors increases arteriolar tone, which could contribute to the development of hypertension in the db/db mice.
doi:10.1093/cvr/cvp098
PMCID: PMC2695704  PMID: 19299433
Diabetes; Hypertension; Arteriole; Prostanoid; EP receptor
16.  Brain-Targeted (Pro)Renin Receptor Knockdown attenuates Angiotensin II-Dependent Hypertension 
Hypertension  2012;59(6):1188-1194.
The (pro)renin receptor is a newly discovered member of the brain renin-angiotensin system. To investigate the role of brain (pro)renin receptor in hypertension, adeno-associated virus-mediated (pro)renin receptor shRNA was used to knockdown (pro)renin receptor expression in the brain of non-transgenic normotensive and human renin-angiotensinogen double transgenic hypertensive mice. Blood pressure was monitored using implanted telemetric probes in conscious animals. Real-time PCR and immunostaining were performed to determine (pro)renin receptor, angiotensin II type 1 receptor and vasopressin mRNA levels. Plasma vasopressin levels were determined by Enzyme-Linked Immuno Sorbent Assay. Double transgenic mice exhibited higher blood pressure, elevated cardiac and vascular sympathetic tone, and impaired spontaneous baroreflex sensitivity. Intracerebroventricular delivery of (pro)renin receptor shRNA significantly reduced blood pressure, cardiac and vasomotor sympathetic tone, and improved baroreflex sensitivity compared to the control virus treatment in double transgenic mice. (Pro)renin receptor knockdown significantly reduced angiotensin II type 1 receptor and vasopressin levels in double transgenic mice. These data indicate that (pro)renin receptor knockdown in the brain attenuates angiotensin II-dependent hypertension and is associated with a decrease insympathetic tone and an improvement of the baroreflex sensitivity. In addition, brain-targeted (pro)renin receptor knockdown is associated with down-regulation of angiotensin II type 1 receptor and vasopressin levels. We conclude that central (pro)renin receptor contributes to the pathogenesis of hypertension in human renin-angiotensinogen transgenic mice.
doi:10.1161/HYPERTENSIONAHA.111.190108
PMCID: PMC3375126  PMID: 22526255
hypertension; (pro)renin receptor; adeno-associated virus; renin angiotensin system; central nervous system
17.  Angiotensin-II-dependent Hypertension Requires Cyclooxygenase 1-derived Prostaglandin E2 and EP1 Receptor Signaling in the Subfornical Organ of the Brain 
Hypertension  2012;59(4):869-876.
Cyclooxygenase (COX)-derived prostanoids have long been implicated in blood pressure (BP) regulation. Recently prostaglandin E2 (PGE2) and its receptor EP1R have emerged as key players in angiotensin II (Ang-II)-dependent hypertension (HTN) and related end-organ damage. However, the enzymatic source of PGE2, ie COX-1 or COX-2, and its site(s) of action are not known. The subfornical organ (SFO) is a key forebrain region that mediates systemic Ang-II-dependent HTN via reactive oxygen species (ROS). We tested the hypothesis that cross-talk between PGE2/EP1R and ROS signaling in the SFO is required for Ang-II HTN. Radiotelemetric assessment of BP revealed that HTN induced by infusion of systemic “slow-pressor” doses of Ang-II was abolished in mice with null mutations in EP1R or COX-1 but not COX-2. Slow-pressor Ang-II-evoked HTN and ROS formation in the SFO were prevented when the EP1R antagonist SC-51089 was infused directly into brains of wild-type mice, and Ang-II-induced ROS production was blunted in cells dissociated from SFO of EP1R−/− and COX-1−/− but not COX-2−/− mice. In addition, slow-pressor Ang-II infusion caused a ~3-fold increase in PGE2 levels in the SFO but not in other brain regions. Finally, genetic reconstitution of EP1R selectively in the SFO of EP1R-null mice was sufficient to rescue slow-pressor AngII-elicited HTN and ROS formation in the SFO of this model. Thus, COX-1-derived PGE2 signaling through EP1R in the SFO is required for the ROS-mediated HTN induced by systemic infusion of Ang-II, and suggests that EP1R in the SFO may provide a novel target for antihypertensive therapy.
doi:10.1161/HYPERTENSIONAHA.111.182071
PMCID: PMC3307140  PMID: 22371360
Prostanoids; PGE2; COX; reactive oxygen species; blood pressure; central nervous system
18.  Cellular density-dependent down-regulation of EP4 prostanoid receptors via the up-regulation of hypoxia-inducible factor-1α in HCA-7 human colon cancer cells 
Increases in prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) levels are features of colon cancer. Among the different E-type prostanoid receptor subtypes, EP4 receptors are considered to play a crucial role in carcinogenesis by, for example, inducing COX-2 when stimulated with PGE2. However, EP4 receptor levels and PGE2-induced cellular responses are inconsistent among the cellular conditions. Therefore, the connections responsible for the expression of EP4 receptors were investigated in the present study by focusing on cell density-induced hypoxia-inducible factor-1α (HIF-1α). The expression of EP4 receptors was examined using immunoblot analysis, quantitative polymerase chain reaction, and reporter gene assays in HCA-7 human colon cancer cells with different cellular densities. The involvement of HIF-1α and its signaling pathways were also examined by immunoblot analysis, reporter gene assays, and with siRNA. We here demonstrated that EP4 receptors as well as EP4 receptor-mediated COX-2 expression levels decreased with an increase in cellular density. In contrast, HIF-1α levels increased in a cellular density-dependent manner. The knockdown of HIF-1α by siRNA restored the expression of EP4 receptors and EP4 receptor-mediated COX-2 in cells at a high density. Thus, the cellular density-dependent increase observed in HIF-1α expression levels reduced the expression of COX-2 by decreasing EP4 receptor levels. This novel regulation mechanism for the expression of EP4 receptors by HIF-1α may provide an explanation for the inconsistent actions of PGE2. The expression levels of EP4 receptors may vary depending on cellular density, which may lead to the differential activation of their signaling pathways by PGE2. Thus, cellular density-dependent PGE2-mediated signaling may determine the fate/stage of cancer cells, i.e., the surrounding environments could define the fate/stage of malignancies associated with colon cancer.
doi:10.1002/prp2.83
PMCID: PMC4317221
Cell density; COX-2; EP4 prostanoid receptor; GPCRs; HCA-7 cells; HIF-1α; human colon cancer; PGE 2
19.  Prostaglandin E2 Promotes UV Radiation-Induced Immune Suppression through DNA Hypermethylation1 
Neoplasia (New York, N.Y.)  2013;15(7):795-804.
Exposure of mice to UV radiation results in suppression of the contact hypersensitivity (CHS) response. Here, we report that the UV-induced suppression of CHS is associated with increases in the levels of cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and PGE2 receptors in the exposed skin. UV radiation-induced suppression of CHS was inhibited by topical treatment of the skin with celecoxib or indomethacin (inhibitors of COX-2) or AH6809 (an EP2 antagonist). Moreover, mice deficient in COX-2 were found to be resistant to UV-induced suppression of CHS. The exposure of wild-typemice to UVB radiation resulted in DNA hypermethylation, increased DNA methyltransferase (Dnmt) activity, and elevated levels of Dnmt1, Dnmt3a, and Dnmt3b proteins in the skin, and these responses were downregulated on topical treatment of the site of exposure after irradiation with indomethacin or EP2 antagonist. Topical treatment of UVB-exposed COX-2-deficient mice with PGE2 enhanced the UVB-induced suppression of CHS as well as global DNA methylation and elevated the levels of Dnmt activity and Dnmt proteins in the skin. Intraperitoneal injection of 5-aza-2′-deoxycytidine (5-Aza-dc), a DNA demethylating agent, restored the CHS response to 2,4-dinitrofluorobenzene in UVB-exposed skin and this was associated with the reduction in global DNA methylation and Dnmt activity and reduced levels of Dnmt proteins. Furthermore, treatment with 5-Aza-dc reversed the effect of PGE2 on UV-induced suppression of CHS in COX-2-deficient mice. These findings reveal a previously unrecognized role for PGE2 in the promotion of UVB-induced immunosuppression and indicate that it is mediated through PGE2 regulation of DNA methylation.
PMCID: PMC3689242  PMID: 23814491
20.  Enhanced pressor response to acute angiotensin II infusion in mice lacking membrane-associated prostaglandin E2 synthase-1 
Acta pharmacologica Sinica  2010;31(10):1284-1292.
Aim
COX-2-mPGES-1-derived prostaglandin E2 (PGE2) plays important roles in regulating vascular tone and renal sodium excretion; however, little is known about the role of mPGES-1 during acute blood pressure regulation. The present study was designed to examine the contribution of vascular mPGES-1 to acute blood pressure homeostasis.
Methods
Angiotensin II (AngII, 75 pmol/kg/min) was continuously infused via the jugular vein into wild-type and mPGES-1−/− mice for 30 min, and blood pressure was measured by carotid arterial catheterization. RT-PCR and immunohistochemistry were performed to detect the expression and localization of mPGES-1 in the mouse arterial vessels. Mesenteric arteries were dissected from mice of both genotypes to study vessel tension and measure vascular PGE2 levels.
Results
Wild-type and mPGES-1−/− mice showed similar blood pressure levels at baseline, and the acute intravenous infusion of AngII caused a greater increase in mean arterial pressure in the mPGES-1−/− group, with a similar diuretic and natriuretic response in both groups. mPGES-1 was constitutively expressed in the aortic and mesenteric arteries and vascular smooth muscle cells of wild-type mice. Strong staining was detected in the smooth muscle layer of arterial vessels. Ex vivo treatment of mesenteric arteries with AngII produced more vasodilatory PGE2 in wild-type than in mPGES-1−/− mice. In vitro tension assays further revealed that the mesenteric arteries of mPGES-1−/− mice exhibited a greater vasopressor response to AngII than those arteries of wild-type mice.
Conclusion
Vascular mPGES-1 acts as an important tonic vasodilator, contributing to acute blood pressure regulation.
doi:10.1038/aps.2010.99
PMCID: PMC3895497  PMID: 20871624
PGE2; mPGES-1; Angiotensin II; Blood pressure; Resistant vessel
21.  Prostaglandin E2 and T cells: friends or foes? 
Immunology and Cell Biology  2011;90(6):579-586.
Our understanding of the key players involved in the differential regulation of T-cell responses during inflammation, infection and auto-immunity is fundamental for designing efficient therapeutic strategies against immune diseases. With respect to this, the inhibitory role of the lipid mediator prostaglandin E2 (PGE2) in T-cell immunity has been documented since the 1970s. Studies that ensued investigating the underlying mechanisms substantiated the suppressive function of micromolar concentrations of PGE2 in T-cell activation, proliferation, differentiation and migration. However, the past decade has seen a revolution in this perspective, since nanomolar concentrations of PGE2 have been shown to potentiate Th1 and Th17 responses and aid in T-cell proliferation. The understanding of concentration-specific effects of PGE2 in other cell types, the development of mice deficient in each subtype of the PGE2 receptors (EP receptors) and the delineation of signalling pathways mediated by the EP receptors have enhanced our understanding of PGE2 as an immune-stimulator. PGE2 regulates a multitude of functions in T-cell activation and differentiation and these effects vary depending on the micro-environment of the cell, maturation and activation state of the cell, type of EP receptor involved, local concentration of PGE2 and whether it is a homeostatic or inflammatory scenario. In this review, we compartmentalize the various aspects of this complex relationship of PGE2 with T lymphocytes. Given the importance of this molecule in T-cell activation, we also address the possibility of using EP receptor antagonism as a potential therapeutic approach for some immune disorders.
doi:10.1038/icb.2011.75
PMCID: PMC3389798  PMID: 21946663
T cells; PGE2; EP receptors; immunosuppression; EP receptor antagonism; pro-inflammatory role
22.  Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system 
Journal of Clinical Investigation  2005;115(4):1092-1099.
Angiotensin II, acting through type 1 angiotensin (AT1) receptors, has potent effects that alter renal excretory mechanisms. Control of sodium excretion by the kidney has been suggested to be the critical mechanism for blood pressure regulation by the renin-angiotensin system (RAS). However, since AT1 receptors are ubiquitously expressed, precisely dissecting their physiological actions in individual tissue compartments including the kidney with conventional pharmacological or gene targeting experiments has been difficult. Here, we used a cross-transplantation strategy and AT1A receptor–deficient mice to demonstrate distinct and virtually equivalent contributions of AT1 receptor actions in the kidney and in extrarenal tissues to determining the level of blood pressure. We demonstrate that regulation of blood pressure by extrarenal AT1A receptors cannot be explained by altered aldosterone generation, which suggests that AT1 receptor actions in systemic tissues such as the vascular and/or the central nervous systems make nonredundant contributions to blood pressure regulation. We also show that interruption of the AT1 receptor–mediated short-loop feedback in the kidney is not sufficient to explain the marked stimulation of renin production induced by global AT1 receptor deficiency or by receptor blockade. Instead, the renin response seems to be primarily determined by renal baroreceptor mechanisms triggered by reduced blood pressure. Thus, the regulation of blood pressure by the RAS is mediated by AT1 receptors both within and outside the kidney.
doi:10.1172/JCI200523378
PMCID: PMC1070417  PMID: 15841186
23.  Update on the Angiotensin Converting Enzyme 2-Angiotensin (1–7)-Mas Receptor Axis: Fetal Programing, Sex Differences, and Intracellular Pathways 
The renin-angiotensin-system (RAS) constitutes an important hormonal system in the physiological regulation of blood pressure. Indeed, dysregulation of the RAS may lead to the development of cardiovascular pathologies including kidney injury. Moreover, the blockade of this system by the inhibition of angiotensin converting enzyme (ACE) or antagonism of the angiotensin type 1 receptor (AT1R) constitutes an effective therapeutic regimen. It is now apparent with the identification of multiple components of the RAS that the system is comprised of different angiotensin peptides with diverse biological actions mediated by distinct receptor subtypes. The classic RAS can be defined as the ACE-Ang II-AT1R axis that promotes vasoconstriction, sodium retention, and other mechanisms to maintain blood pressure, as well as increased oxidative stress, fibrosis, cellular growth, and inflammation in pathological conditions. In contrast, the non-classical RAS composed of the ACE2-Ang-(1–7)-Mas receptor axis generally opposes the actions of a stimulated Ang II-AT1R axis through an increase in nitric oxide and prostaglandins and mediates vasodilation, natriuresis, diuresis, and oxidative stress. Thus, a reduced tone of the Ang-(1–7) system may contribute to these pathologies as well. Moreover, the non-classical RAS components may contribute to the effects of therapeutic blockade of the classical system to reduce blood pressure and attenuate various indices of renal injury. The review considers recent studies on the ACE2-Ang-(1–7)-Mas receptor axis regarding the precursor for Ang-(1–7), the intracellular expression and sex differences of this system, as well as an emerging role of the Ang1-(1–7) pathway in fetal programing events and cardiovascular dysfunction.
doi:10.3389/fendo.2013.00201
PMCID: PMC3886117  PMID: 24409169
Ang-(1–7); Ala1-Ang-(1–7); ACE2; ACE; Mas receptor; Mas-related receptor D; fetal programing
24.  Microsomal Prostaglandin E Synthase-2 Is Not Essential For In Vivo Prostaglandin E2 Biosynthesis 
Prostaglandin E2 (PGE2) plays an important role in the normal physiology of many organ systems. Increased levels of this lipid mediator are associated with many disease states, and it potently regulates inflammatory responses. Three enzymes capable of in vitro synthesis of PGE2 from the cyclooxygenase metabolite PGH2 have been described. Here, we examine the contribution of one of these enzymes to PGE2 production, mPges-2, which encodes microsomal prostaglandin synthase-2 (mPGES-2), by generating mice homozygous for the null allele of this gene. Loss of mPges-2 expression did not result in a measurable decrease in PGE2 levels in any tissue or cell type examined from healthy mice. Taken together, analysis of the mPGES-2 deficient mouse lines does not substantiate the contention that mPGES-2 is a PGE2 synthase.
doi:10.1016/j.prostaglandins.2008.10.003
PMCID: PMC3182462  PMID: 19010439
Microsomal Prostaglandin E2 Synthase-2; Prostaglandin E2
25.  PGE2 produced by the lung augments the effector phase of allergic inflammation 
Elevated PGE2 is a hallmark of most inflammatory lesions. This lipid mediator can induce the cardinal signs of inflammation, and the beneficial actions of non-steroidal anti-inflammatory drugs are attributed to inhibition of cyclooxygenase COX-1 and COX-2, enzymes essential in the biosynthesis of PGE2 from arachidonic acid. However, both clinical studies and rodent models suggest that, in the asthmatic lung, PGE2 acts to restrain the immune response and limit physiological change secondary to inflammation. To directly address the role of PGE2 in the lung, we examined the development of disease in mice lacking microsomal prostaglandin E synthase 1 (mPGES1), which converts COX-1/COX-2 derived PGH2 to PGE2. We show that mPGES1 determines PGE2 levels in the naïve lung and is required for increases in PGE2 after ovalbumin (OVA) induced allergy. While loss of either COX-1 or COX-2 increases the disease severity, surprisingly mPGES1 −/− mice show reduced inflammation. However, an increase in serum IgE is still observed in the mPGES1 −/− mice, suggesting that loss of PGE2 does not impair induction of a TH2 response. Furthermore, mPGES1 −/− mice expressing a transgenic OVA-specific T cell receptor are also protected, indicating that PGE2 acts primarily after challenge with inhaled antigen. PGE2 produced by the lung plays the critical role in this response, as loss of lung mPGES1 is sufficient to protect against disease. Together this supports a model in which mPGES1-dependent PGE2 produced by populations of cells native to the lung contributes to the effector phase of some allergic responses.
doi:10.4049/jimmunol.1101873
PMCID: PMC3324636  PMID: 22412193

Results 1-25 (963631)