PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1298851)

Clipboard (0)
None

Related Articles

1.  Deep sedation during gastrointestinal endoscopy: Propofol-fentanyl and midazolam-fentanyl regimens 
AIM: To compare deep sedation with propofol-fentanyl and midazolam-fentanyl regimens during upper gastrointestinal endoscopy.
METHODS: After obtaining approval of the research ethics committee and informed consent, 200 patients were evaluated and referred for upper gastrointestinal endoscopy. Patients were randomized to receive propofol-fentanyl or midazolam-fentanyl (n = 100/group). We assessed the level of sedation using the observer’s assessment of alertness/sedation (OAA/S) score and bispectral index (BIS). We evaluated patient and physician satisfaction, as well as the recovery time and complication rates. The statistical analysis was performed using SPSS statistical software and included the Mann-Whitney test, χ2 test, measurement of analysis of variance, and the κ statistic.
RESULTS: The times to induction of sedation, recovery, and discharge were shorter in the propofol-fentanyl group than the midazolam-fentanyl group. According to the OAA/S score, deep sedation events occurred in 25% of the propofol-fentanyl group and 11% of the midazolam-fentanyl group (P = 0.014). Additionally, deep sedation events occurred in 19% of the propofol-fentanyl group and 7% of the midazolam-fentanyl group according to the BIS scale (P = 0.039). There was good concordance between the OAA/S score and BIS for both groups (κ = 0.71 and κ = 0.63, respectively). Oxygen supplementation was required in 42% of the propofol-fentanyl group and 26% of the midazolam-fentanyl group (P = 0.025). The mean time to recovery was 28.82 and 44.13 min in the propofol-fentanyl and midazolam-fentanyl groups, respectively (P < 0.001). There were no severe complications in either group. Although patients were equally satisfied with both drug combinations, physicians were more satisfied with the propofol-fentanyl combination.
CONCLUSION: Deep sedation occurred with propofol-fentanyl and midazolam-fentanyl, but was more frequent in the former. Recovery was faster in the propofol-fentanyl group.
doi:10.3748/wjg.v19.i22.3439
PMCID: PMC3683682  PMID: 23801836
Endoscopy; Deep sedation; Anesthetic administration; Anesthetic dose; Adverse effects
2.  A Comparison of Fospropofol to Midazolam for Moderate Sedation During Outpatient Dental Procedures 
Anesthesia Progress  2013;60(4):162-177.
Moderate intravenous (IV) sedation combined with local anesthesia is common for outpatient oral surgery procedures. An ideal sedative agent must be safe and well tolerated by patients and practitioners. This study evaluated fospropofol, a relatively new sedative/hypnotic, in comparison to midazolam, a commonly used benzodiazepine, for IV moderate sedation during oral and maxillofacial surgery. Sixty patients were randomly assigned to either the fospropofol or the midazolam group. Each participant received 1 μg/kg of fentanyl prior to administration of the selected sedative. Those in the fospropofol group received an initial dose of 6.5 mg/kg, with 1.6 mg/kg supplemental doses as needed. Those in the midazolam group received initial doses of 0.05 mg/kg, followed by 0.02 mg/kg supplemental doses. The quality of sedation in each patient was evaluated with regard to (a) onset of sedation, maintenance, and recovery profile; (b) patient and surgeon satisfaction; and (c) hemodynamic stability and adverse effects. The fospropofol group demonstrated shorter physical recovery times than midazolam patients, taking a mean of 11.6 minutes versus 18.4 minutes for physical recovery (P = .007). Cognitive recovery comparison did not find any difference with a mean of 7.5 minutes versus 8.8 minutes between the 2 drug groups (P = .123). The fospropofol group had a higher rate of local anesthetic injection recall (90.5 vs 44.4%, P = .004). Other parameters of recall were comparable. Two adverse effects demonstrated significance, with more patients in the midazolam group experiencing tachycardia (48.2 vs 9.4%, P = .001), and more patients in the fospropofol group experiencing perineal discomfort (40.6 vs 0, P < .001). No significant difference was found in any other measures of sedation safety, maintenance, or satisfaction. Fospropofol, when administered intravenously by a dentist anesthesiologist at the indicated dose in this study, appears to be a safe, well-tolerated alternative to midazolam for intravenous moderate sedation during minor oral surgery procedures.
doi:10.2344/0003-3006-60.4.162
PMCID: PMC3891457  PMID: 24423419
Fospropofol; Midazolam; Moderate sedation; Outpatient surgery; IV conscious sedation; Benzodiazepine; Propofol
3.  Sedation in gastrointestinal endoscopy: Current issues 
Diagnostic and therapeutic endoscopy can successfully be performed by applying moderate (conscious) sedation. Moderate sedation, using midazolam and an opioid, is the standard method of sedation, although propofol is increasingly being used in many countries because the satisfaction of endoscopists with propofol sedation is greater compared with their satisfaction with conventional sedation. Moreover, the use of propofol is currently preferred for the endoscopic sedation of patients with advanced liver disease due to its short biologic half-life and, consequently, its low risk of inducing hepatic encephalopathy. In the future, propofol could become the preferred sedation agent, especially for routine colonoscopy. Midazolam is the benzodiazepine of choice because of its shorter duration of action and better pharmacokinetic profile compared with diazepam. Among opioids, pethidine and fentanyl are the most popular. A number of other substances have been tested in several clinical trials with promising results. Among them, newer opioids, such as remifentanil, enable a faster recovery. The controversy regarding the administration of sedation by an endoscopist or an experienced nurse, as well as the optimal staffing of endoscopy units, continues to be a matter of discussion. Safe sedation in special clinical circumstances, such as in the cases of obese, pregnant, and elderly individuals, as well as patients with chronic lung, renal or liver disease, requires modification of the dose of the drugs used for sedation. In the great majority of patients, sedation under the supervision of a properly trained endoscopist remains the standard practice worldwide. In this review, an overview of the current knowledge concerning sedation during digestive endoscopy will be provided based on the data in the current literature.
doi:10.3748/wjg.v19.i4.463
PMCID: PMC3558570  PMID: 23382625
Gastrointestinal endoscopy; Endoscopy; Sedation; Analgesia; Digestive system
4.  A prospective randomized double-blind study comparing dexmedetomidine vs. combination of midazolam-fentanyl for tympanoplasty surgery under monitored anesthesia care 
Background:
Analgesia and sedation are usually required for the comfort of the patient and surgeon during tympanoplasty surgery done under local anesthesia. In this study, satisfaction scores and effectiveness of sedation and analgesia with dexmedetomidine were compared with a combination of midazolam-fentanyl.
Materials and Methods:
Ninety patients undergoing tympanoplasty under local anesthesia randomly received either IV dexmedetomidine 1 μg kg-1 over 10 min followed by 0.2 μg kg-1h-1 infusion (Group D) or IV midazolam 0.06 mg kg-1 plus IV fentanyl 1 μg kg-1 over 10 min (Group MF) followed by normal saline infusion at 0.2 ml kg-1h-1. Sedation was titrated to Ramsay sedation score (RSS) of three. Vital parameters, rescue analgesics (fentanyl 1 μg kg-1) and sedatives (midazolam 0.01 mg kg-1), patient and surgeon satisfaction scores were recorded.
Results:
Patient and surgeon satisfaction score was better in Group D than Group MF (median interquartile range (IQR) 9 (8-10) vs. 8 (6.5-9.5) and 9 (8.5-9.5) vs. 8 (6.75-9.25), P = 0.0001 for both). Intraoperative heart rate and mean arterial pressure in Group D were lower than the baseline values and the corresponding values in Group MF (P < 0.05). Percentage of patients requiring rescue fentanyl was higher in Group MF than Group D (40% vs. 11.1%, P = 0.01). One patient in Group D while four in Group MF (8.8%) required rescue sedation with midazolam (P > 0.17). Seven patients in Group D had dry mouth vs. none in Group MF (P = 0.006). One patient in Group D had bradycardia with hypotension which was effectively treated.
Conclusion:
Dexmedetomidine is comparable to midazolam-fentanyl for sedation and analgesia in tympanoplasty with better surgeon and patient satisfaction. Hemodynamics need to be closely monitored.
doi:10.4103/0970-9185.111671
PMCID: PMC3713662  PMID: 23878436
Dexmedetomidine; sedation; midazolam fentanyl sedation; monitored anesthesia care; satisfaction scores; surgery; otological
5.  The effect of flumazenil on the recovery time of dental patients sedated with diazepam. 
Anesthesia Progress  1989;36(2):46-51.
Flumazenil is an imidazobenzodiazepine that binds specifically to the central benzodiazepine receptor and antagonizes the actions of diazepam and other benzodiazepines. Previous studies in Europe have shown flumazenil at doses of 2 to 30 mg IV to reverse sedation in patients sedated with flunitrazepam, midazolam, and diazepam when evaluated by subjective criteria. The purpose of this study was to determine if flumazenil at 0.015 mg/kg IV was efficacious in shortening the recovery time of young, healthy dental patients sedated with diazepam (0.15 mg/kg IV) and restoring their psychomotor function to presedation levels. A total of 21 patients were randomized to placebo or flumazenil, sedated with diazepam, underwent a restorative dental procedure, and were then administered the test drug. Evaluations of psychomotor function by the Trieger test, Digit-Symbol Substitution test, Romberg test, and nurse questioning were carried out before sedation and at 10-minute intervals after test drug. Observations by the patients and nurses were not significantly different before versus after test drug. The investigator, however, found that flumazenil resulted in more rapid awakening. Patients treated with placebo exhibited significantly greater deficits in the number of dots missed and sum of deviations on the Trieger test than flumazenil-treated patients. Similar time-related deficits were recorded for the Digit-Symbol Substitution test. Flumazenil, at a dose of 0.015 mg/kg, was found to be efficacious in reducing the recovery time after diazepam sedation in dental patients.
PMCID: PMC2148636  PMID: 2513741
6.  Safety of midazolam for sedation of HIV-positive patients undergoing colonoscopy 
HIV medicine  2013;14(6):379-384.
Summary
Concerns regarding possible interactions between midazolam and antiretroviral medicines have caused clinicians to use second-line sedatives, such as diazepam, instead. We demonstrated that patients who received midazolam during colonoscopy had similar clinical outcomes as those who received diazepam.
Background
Because of concerns regarding interactions between midazolam and antiretroviral therapy (ART), alternative sedatives are sometimes used during procedural sedation. Our objective was to compare outcomes in patients on ART who received intravenous (IV) midazolam versus IV diazepam, a second-line agent, during colonoscopy.
Methods
We conducted a retrospective analysis of adult HIV-infected patients who underwent colonoscopy over a 3.5-year period. Primary outcomes were sedation duration, nadir systolic blood pressure, nadir oxygen saturation, abnormal cardiac rhythm, and change in level of consciousness using a standardized scale. We calculated rates of adverse events according to benzodiazepine use and identified risk factors for complications using univariate and multivariate analyses.
Results
We identified 136 patients for this analysis: 70 received midazolam-based sedation and 66 received a diazepam-based regimen. There were no significant differences between the two groups with respect to sedation duration (48 versus 45.7 minutes, P = 0.68), nadir systolic blood pressure (97 versus 101.6 mmHg, P = 0.06), nadir oxygen saturation (94.6 versus 94.8%, P = 0.72), or rate of abnormal cardiac rhythm (11.4 versus 19.7%, P = 0.18). More patients in the midazolam group experienced a depressed level of consciousness (91 versus 74%, P = 0.0075), but no patient required reversal of sedation or became unresponsive.
Conclusions
Although IV midazolam interacts with ART, we did not find evidence that patients who received this agent for procedural sedation had clinical outcomes statistically different from those who received diazepam. These findings should be confirmed in prospective studies or in a randomized controlled trial.
doi:10.1111/hiv.12014
PMCID: PMC4120820  PMID: 23332038
Midazolam; HIV; antiretrovirals; colonoscopy; sedation
7.  Sedative Efficacy of Propofol in Patients Intubated/Ventilated after Coronary Artery Bypass Graft Surgery 
Background:
Sedation after open heart surgery is important in preventing stress on the heart. The unique sedative features of propofol prompted us to evaluate its potential clinical role in the sedation of post-CABG patients.
Objectives:
To compare propofol-based sedation to midazolam-based sedation after coronary artery bypass graft (CABG) surgery in the intensive care unit (ICU).
Patients and Methods:
Fifty patients who were admitted to the ICU after CABG surgery was randomized into two groups to receive sedation with either midazolam or propofol infusions; and additional analgesia was administered if required. Inclusion criteria were as follows: patients 40-60 years old, hemodynamic stability, ejection fraction (EF) more than 40%; exclusion criteria included patients who required intra-aortic balloon pump or inotropic drugs post-bypass. The same protocol of anesthetic medications was used in both groups. Depth of sedation was monitored using the Ramsay sedation score (RSS). Invasive mean arterial pressure (MAP) and heart rate (HR), arterial blood gas (ABG) and ventilatory parameters were monitored continuously after the start of study drug and until the patients were extubated.
Results:
The depth of sedation was almost the same in the two groups (RSS=4.5 in midazolam group vs 4.7 in propofol group; P = 0.259) but the total dose of fentanyl in the midazolam group was significantly more than the propofol group (12.5 mg/hr vs 4 mg/hr) (P = 0.0039). No significant differences were found in MAP (P = 0.51) and HR (P = 0.41) between the groups. The mean extubation time in patients sedated with propofol was shorter than those sedated with midazolam (102 ± 27 min vs 245 ± 42 min, respectively; P < 0.05) but the ICU discharge time was not shorter (47.5 hr vs 36.3 hr, respectively; P = 0.24).
Conclusions:
Propofol provided a safe and acceptable sedation for post-CABG surgical patients, significantly reduced the requirement for analgesics, and allowed for more rapid tracheal extubation than midazolam but did not result in earlier ICU discharge.
doi:10.5812/aapm.17109
PMCID: PMC3961039  PMID: 24660162
Propofol; Analgesics; Coronary Artery Bypass; Deep Sedation; Midazolam; Airway Extubation; Length of Stay
8.  The Effect of Sedation During Upper Gastrointestinal Endoscopy 
Background/Aim:
We aimed to study whether sedation reduces discomfort during endoscopy and a comparison of longer-acting diazepam with shorter-acting midazolam.
Patients and Methods:
A prospective, randomized, single-blinded study was conducted at the Department of Medicine at Government Medical College and Hospital, Chandigarh, and was completed over a period of 6 months. The patients were randomized to receive either placebo or sedation with midazolam or diazepam before endoscopy. The endoscopist and the observer recording patient’s/physician’s responses were blinded to the drugs administered. Two hundred and fifty two consecutive patients undergoing diagnostic or therapeutic upper gastrointestinal endoscopy were recruited. The patient’s discomfort and the physician’s comfort during the procedure were recorded on a visual analogue scale rated from 1-10 with-in 10 minutes of the procedure by an independent observer. The Patient’s discomfort ratings were further divided into 3 groups, comfortable (score, 1-3), satisfactory (score, 4-7) and uncomfortable (a score of >7). Similarly the physician’s ease of performing the procedure was also recorded on the same scale. This was again divided into 3 groups: easy (score, 1-3), satisfactory (score, 4-7) and difficult (a score of >7).
Results:
Out of the total of 252 patients, 82 patients received no sedation (group I), 85 received diazepam (group II) and 85 received midazolam (group III). There was no statistical difference in the discomfort experienced by the patients during endoscopy when sedation was used (P=0.0754). Out of 252 patients, 49 underwent endoscopic procedures. Nineteen patients were included in group I, 18 in group II and 12 in group III. Only 10 (20%) patients undergoing endoscopic procedures complained of significant discomfort, but there was no difference in the ones undergoing interventions with or without sedation (P=0.854). The physicians were more comfortable in performing endoscopic procedure in sedated patients, however, the difference between patients in group II and group III was not statistically significant (P=0.0461). Both diazepam and midazolam fared equally well in increasing physician’s comfort (P=0.617).
Conclusion:
There was no difference in the patient’s discomfort with regard to the sedative used (midazolam or diazepam). Although endoscopy was easy or satisfactory in the majority of patients in the unsedated as well as the sedated groups, more often the endoscopist found it difficult to do endoscopy on the unsedated patients.
doi:10.4103/1319-3767.70616
PMCID: PMC2995098  PMID: 20871194
Endoscopic procedures; gastrointestinal endoscopy; patient’s perception; sedation
9.  Carbon dioxide accumulation during analgosedated colonoscopy: Comparison of propofol and midazolam 
AIM: To characterize the profiles of alveolar hypoventilation during colonoscopies performed under sedoanalgesia with a combination of alfentanil and either midazolam or propofol.
METHODS: Consecutive patients undergoing routine colonoscopy were randomly assigned to sedation with either propofol or midazolam in an open-labeled design using a titration scheme. All patients received 4 μg/kg per body weight alfentanil for analgesia and 3 L of supplemental oxygen. Oxygen saturation (SpO2) was measured by pulse oximetry (POX), and capnography (PcCO2) was continuously measured using a combined dedicated sensor at the ear lobe. Instances of apnea resulting in measures such as stimulation of the patient, a chin lift, a mask maneuver, or withholding of sedation were recorded. PcCO2 values (as a parameter of sedation-induced hypoventilation) were compared between groups at the following distinct time points: baseline, maximal rise, termination of the procedure and 5 min after termination of the procedure. The number of patients in both study groups who regained baseline PcCO2 values (± 1.5 mmHg) five minutes after the procedure was determined.
RESULTS: A total of 97 patients entered this study. The data from 14 patients were subsequently excluded for clinical procedure-related reasons or for technical problems. Therefore, 83 patients (mean age 62 ± 13 years) were successfully randomized to receive propofol (n = 42) or midazolam (n = 41) for sedation. Most of the patients were classified as American Society of Anesthesiologists (ASA) II [16 (38%) in the midazolam group and 15 (32%) in the propofol group] and ASA III [14 (33%) and 13 (32%) in the midazolam and propofol groups, respectively]. A mean dose of 5 (4-7) mg of IV midazolam and 131 (70-260) mg of IV propofol was used during the procedure in the corresponding study arms. The mean SpO2 at baseline (%) was 99 ± 1 for the midazolam group and 99 ± 1 for the propofol group. No cases of hypoxemia (SpO2 < 85%) or apnea were recorded. However, an increase in PcCO2 that indicated alveolar hypoventilation occurred in both groups after administration of the first drug and was not detected with pulse oximetry alone. The mean interval between the initiation of sedation and the time when the PcCO2 value increased to more than 2 mmHg was 2.8 ± 1.3 min for midazolam and 2.8 ± 1.1 min for propofol. The mean maximal rise was similar for both drugs: 8.6 ± 3.7 mmHg for midazolam and 7.4 ± 3.2 mmHg for propofol. Five minutes after the end of the procedure, the mean difference from the baseline values was significantly lower for the propofol treatment compared with midazolam (0.9 ± 3.0 mmHg vs 4.3 ± 3.7 mmHg, P = 0.0000169), and significantly more patients in the propofol group had regained their baseline value ± 1.5 mmHg (32 of 41 vs 12 of 42, P = 0.0004).
CONCLUSION: A significantly higher number of patients sedated with propofol had normalized PcCO2 values five minutes after sedation when compared with patients sedated with midazolam.
doi:10.3748/wjg.v18.i38.5389
PMCID: PMC3471107  PMID: 23082055
Colonoscopy; Deep sedation; Propofol; Hypoventilation; Blood gas monitoring; Transcutaneous
10.  A Comparison between Sedative Effect of Propofol-Fentanyl and Propofol-Midazolam Combinations in Microlaryngeal Surgeries 
Considering the growing trend of laryngeal surgeries and the need to protect the airway during and after surgery, among several therapeutic regimens to induce sedation, two regimens of propofol-fentanyl and propofol-midazolam were compared in microlaryngeal surgeries.
Forty ASA I-II class patients undergoing microlaryngeal surgeries and referring routinely for postoperative visits were randomly recruited into two groups. For all the patients, 0.5 mg/Kg of propofol was used as bolus and then, 50 mcg/Kg/min of the drug was infused intravenously. For one group, 0.03 mg/Kg bolus of midazolam and for the other group, 2 mcg/Kg bolus of fentanyl was administered in combination with propofol. Ramsay system was used in order to evaluate the effect of the two drugs in inducing sedation. The need for additional dose, blood pressure, heart rate, arterial blood oxygen saturation, and also recovery time and adverse effects such as nausea/vomiting and recalling intra-operative memories, were assessed.
The patients in the two groups were not statistically different regarding the number of patients, age, sex, preoperative vital signs, the need for additional doses of propofol, systolic blood pressure and mean systolic blood pressure during laryngoscopy. However, mean systolic blood pressure 1 min after removal of laryngoscope returned faster to the baseline in midazolam group (p < 0.01). Mean heart rate returned sooner to the baseline in fentanyl group following removal of stimulation. Besides, heart rate showed a more reduction following administration of fentanyl (p < 0.02). Mean arterial blood oxygen saturation during laryngoscopy significantly decreased in fentanyl group (p < 0.05) compared to the other group. The time it took to achieve a full consciousness was shorter in midazolam group (p < 0.01). Nausea/vomiting was significantly more prevalent in fentanyl group while the patients in midazolam group apparently experienced more of amnesia, comparatively (p < 0.01).
Inducing laryngeal block and local anesthesia using propofol-midazolam regimen is not only associated with a more rapid recovery and less recalling of unpleasant memories, but also better in preventing reduction of arterial oxygen saturation during laryngoscopy compared with propofol-fentanyl regimen.
PMCID: PMC3813093  PMID: 24250451
Sedation; Microlaryngeal surgery; Propofol; Midazolam; Fentanyl
11.  Arousal time from sedation during spinal anaesthesia for elective infraumbilical surgeries: Comparison between propofol and midazolam 
Indian Journal of Anaesthesia  2014;58(4):403-409.
Background and Aims:
Studies have already compared propofol and midazolam as sedatives during regional anaesthesia. A few studies have focused on recovery characteristics and very few have utilised both instrumental and clinical sedation monitoring for assessing recovery time. This study was designed primarily to compare arousal time from sedation using propofol with that of midazolam during spinal anaesthesia for infraumbilical surgeries, while depth of sedation was monitored continuously with bispectral index (BIS) monitor. The correlation between the BIS score and observer's assessment of awareness/sedation (OAA/S) score during recovery from sedation was also studied.
Methods:
A total of 110 patients were randomly assigned to receive either propofol (Group P, n = 55) or midazolam (Group M, n = 55). Patients in the Group P received bolus of propofol (1 mg/kg), followed by infusion at 3 mg/kg/h; Group M received bolus of midazolam (0.05 mg/kg), followed by infusion at 0.06 mg/kg/h and titration until BIS score 70 was achieved and maintained between 65 and 70. OAA/S score was noted at BIS 70 and again at BIS 90 during recovery. The time to achieve OAA/S score 5 was noted. Spearman's correlation was calculated between the arousal time from sedation and the time taken to reach an OAA/S score of 5 in both the study groups.
Results:
Arousal time from sedation was found lower for Group P compared to Group M (7.54 ± 3.70 vs. 15.54 ± 6.93 min, respectively, P = 0.000). The time taken to reach OAA/S score 5 was also found to be lower for Group P than Group M (6.81 ± 2.54 min vs. 13.51 ± 6.24 min, respectively, P = 0.000).
Conclusion:
A shorter arousal time from sedation during spinal anaesthesia can be achieved using propofol compared with midazolam, while depth of sedation was monitored with BIS monitor and OAA/S score. Both objective and clinical scoring correlate strongly during recovery from sedation.
doi:10.4103/0019-5049.138972
PMCID: PMC4155284  PMID: 25197107
Bispectral index monitoring; midazolam; propofol; sedation; spinal anaesthesia
12.  Dexmedetomidine use in the ICU: Are we there yet? 
Critical Care  2013;17(3):320.
Expanded abstract
Citation
Jakob SM, Ruokonen E, Grounds RM, Sarapohja T, Garratt C, Pocock SJ, Bratty JR, Takala J; Dexmedeto midine for Long-Term Sedation Investigators: Dexmedetomidine vesus midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. JAMA 2012, 307:1151-1160.
Background
Long-term sedation with midazolam or propofol in intensive care units (ICUs) has serious adverse effects. Dexmedetomidine, an alpha-2 agonist available for ICU sedation, may reduce the duration of mechanical ventilation and enhance patient comfort.
Methods
Objective
The objective was to determine the efficacy of dexmedetomidine versus midazolam or propofol (preferred usual care) in maintaining sedation, reducing duration of mechanical ventilation, and improving patients' interaction with nursing care.
Design
Two phase 3 multicenter, randomized, double-blind trials were conducted.
Setting
The MIDEX (Midazolam vs. Dexmedetomidine) trial compared midazolam with dexmedetomidine in ICUs of 44 centers in nine European countries. The PRODEX (Propofol vs. Dexmedetomidine) trial compared propofol with dexmedetomidine in 31 centers in six European countries and two centers in Russia.
Subjects
The subjects were adult ICU patients who were receiving mechanical ventilation and who needed light to moderate sedation for more than 24 hours.
Intervention
After enrollment, 251 and 249 subjects were randomly assigned midazolam and dexmedetomidine, respectively, in the MIDEX trial, and 247 and 251 subjects were randomly assigned propofol and dexmedetomidine, respectively, in the PRODEX trial. Sedation with dexmedetomidine, midazolam, or propofol; daily sedation stops; and spontaneous breathing trials were employed.
Outcomes
For each trial, investigators tested whether dexmedetomidine was noninferior to control with respect to proportion of time at target sedation level (measured by Richmond Agitation Sedation Scale) and superior to control with respect to duration of mechanical ventilation. Secondary end points were the ability of the patient to communicate pain (measured by using a visual analogue scale [VAS]) and length of ICU stay. Time at target sedation was analyzed in per-protocol (midazolam, n = 233, versus dexmedetomidine, n = 227; propofol, n = 214, versus dexmedetomidine, n = 223) population.
Results
Dexmedetomidine/midazolam ratio in time at target sedation was 1.07 (95% confidence interval (CI) 0.97 to 1.18), and dexmedetomidine/propofol ratio in time at target sedation was 1.00 (95% CI 0.92 to 1.08). Median duration of mechanical ventilation appeared shorter with dexmedetomidine (123 hours, interquartile range (IQR) 67 to 337) versus midazolam (164 hours, IQR 92 to 380; P = 0.03) but not with dexmedetomidine (97 hours, IQR 45 to 257) versus propofol (118 hours, IQR 48 to 327; P = 0.24). Patient interaction (measured by using VAS) was improved with dexmedetomidine (estimated score difference versus midazolam 19.7, 95% CI 15.2 to 24.2; P <0.001; and versus propofol 11.2, 95% CI 6.4 to 15.9; P <0.001). Lengths of ICU and hospital stays and mortality rates were similar. Dexmedetomidine versus midazolam patients had more hypotension (51/247 [20.6%] versus 29/250 [11.6%]; P = 0.007) and bradycardia (35/247 [14.2%] versus 13/250 [5.2%]; P <0.001).
Conclusions
Among ICU patients receiving prolonged mechanical ventilation, dexmedetomidine was not inferior to midazolam and propofol in maintaining light to moderate sedation. Dexmedetomidine reduced duration of mechanical ventilation compared with midazolam and improved the ability of patients to communicate pain compared with midazolam and propofol. Greater numbers of adverse effects were associated with dexmedetomidine.
doi:10.1186/cc12707
PMCID: PMC3706806  PMID: 23731973
13.  Sedation in the intensive care unit with remifentanil/propofol versus midazolam/fentanyl: a randomised, open-label, pharmacoeconomic trial 
Critical Care  2006;10(3):R91.
Introduction
Remifentanil is an opioid with a unique pharmacokinetic profile. Its organ-independent elimination and short context-sensitive half time of 3 to 4 minutes lead to a highly predictable offset of action. We tested the hypothesis that with an analgesia-based sedation regimen with remifentanil and propofol, patients after cardiac surgery reach predefined criteria for discharge from the intensive care unit (ICU) sooner, resulting in shorter duration of time spent in the ICU, compared to a conventional regimen consisting of midazolam and fentanyl. In addition, the two regimens were compared regarding their costs.
Methods
In this prospective, open-label, randomised, single-centre study, a total of 80 patients (18 to 75 years old), who had undergone cardiac surgery, were postoperatively assigned to one of two treatment regimens for sedation in the ICU for 12 to 72 hours. Patients in the remifentanil/propofol group received remifentanil (6- max. 60 μg kg-1 h-1; dose exceeds recommended labelling). Propofol (0.5 to 4.0 mg kg-1 h-1) was supplemented only in the case of insufficient sedation at maximal remifentanil dose. Patients in the midazolam/fentanyl group received midazolam (0.02 to 0.2 mg kg-1 h-1) and fentanyl (1.0 to 7.0 μg kg-1 h-1). For treatment of pain after extubation, both groups received morphine and/or non-opioid analgesics.
Results
The time intervals (mean values ± standard deviation) from arrival at the ICU until extubation (20.7 ± 5.2 hours versus 24.2 h ± 7.0 hours) and from arrival until eligible discharge from the ICU (46.1 ± 22.0 hours versus 62.4 ± 27.2 hours) were significantly (p < 0.05) shorter in the remifentanil/propofol group. Overall costs of the ICU stay per patient were equal (approximately €1,700 on average).
Conclusion
Compared with midazolam/fentanyl, a remifentanil-based regimen for analgesia and sedation supplemented with propofol significantly reduced the time on mechanical ventilation and allowed earlier discharge from the ICU, at equal overall costs.
doi:10.1186/cc4939
PMCID: PMC1550941  PMID: 16780597
14.  Comparison between the recovery time of alfentanil and fentanyl in balanced propofol sedation for gastrointestinal and colonoscopy: a prospective, randomized study 
BMC Gastroenterology  2012;12:164.
Background
There is increasing interest in balanced propofol sedation (BPS) titrated to moderate sedation (conscious sedation) for endoscopic procedures. However, few controlled studies on BPS targeted to deep sedation for diagnostic endoscopy were found. Alfentanil, a rapid and short-acting synthetic analog of fentanyl, appears to offer clinically significant advantages over fentanyl during outpatient anesthesia.
It is reasonable to hypothesize that low dose of alfentanil used in BPS might also result in more rapid recovery as compared with fentanyl.
Methods
A prospective, randomized and double-blinded clinical trial of alfentanil, midazolam and propofol versus fentanyl, midazolam and propofol in 272 outpatients undergoing diagnostic esophagogastroduodenal endoscopy (EGD) and colonoscopy for health examination were enrolled. Randomization was achieved by using the computer-generated random sequence. Each combination regimen was titrated to deep sedation. The recovery time, patient satisfaction, safety and the efficacy and cost benefit between groups were compared.
Results
260 participants were analyzed, 129 in alfentanil group and 131 in fentanyl group. There is no significant difference in sex, age, body weight, BMI and ASA distribution between two groups. Also, there is no significant difference in recovery time, satisfaction score from patients, propofol consumption, awake time from sedation, and sedation-related cardiopulmonary complications between two groups. Though deep sedation was targeted, all cardiopulmonary complications were minor and transient (10.8%, 28/260). No serious adverse events including the use of flumazenil, assisted ventilation, permanent injury or death, and temporary or permanent interruption of procedure were found in both groups. However, fentanyl is New Taiwan Dollar (NT$) 103 (approximate US$ 4) cheaper than alfentanil, leading to a significant difference in total cost between two groups.
Conclusions
This randomized, double-blinded clinical trial showed that there is no significant difference in the recovery time, satisfaction score from patients, propofol consumption, awake time from sedation, and sedation-related cardiopulmonary complications between the two most common sedation regimens for EGD and colonoscopy in our hospital. However, fentanyl is NT$103 (US$ 4) cheaper than alfentanil in each case.
Trial registration
Institutional Review Board of Buddhist Tzu Chi General Hospital (IRB097-18) and Chinese Clinical Trial Registry (ChiCTR-TRC-12002575)
doi:10.1186/1471-230X-12-164
PMCID: PMC3607964  PMID: 23170921
Balanced propofol sedation; Alfentanil; Fentanyl; Deep sedation; Diagnostic endoscopy; Cost benefit
15.  Role of Benzodiazepines in the management of agitation due to inappropriate use of naltrexone 
Background:
Agitation is an early symptom of the acute opioid withdrawal syndrome in addicts that may start by inappropriate use of naltrexone. The current drug interventions are not efficient or need critical care as well. This study compares the clinical role of midazolam and diazepam for the management of agitation due to inappropriate use of naltrexone.
Materials and Methods:
In this double-blind randomized controlled clinical trial, 44 agitated addicts, who did not use any type of benzodiazepine, not on systematic central nervous system depressant drugs, without any known hypersensitivity to diazepam, midazolam, or any other component of their formulation and had no evidence for the need of critical care, were enrolled. An i.v. stat dose of 0.1 mg/kg diazepam and 0.1 mg/kg stat dose of midazolam and a 0.1 mg/kg/h infusion of these drugs were administered for different groups of patients, respectively. Agitation scores were recorded at 30, 60, 120 min after the start of drug administration using Richmond Agitation Sedation Scale score.
Results:
A significant difference between the mean onset of agitation control in midazolam group (at 67 min) and diazepam group (at 81 min) was recorded. The difference of mean agitation score in the midazolam and diazepam group was only significant at 120 min. There was a negative correlation between agitation score and time elapsed from naltrexone administration to admission.
Conclusion:
Midazolam and diazepam may not be considered suitable and perfect pharmacologic agents for the initial controlling of agitation induced by naltrexone.
PMCID: PMC3703077  PMID: 23853649
Benzodiazepines; naltrexone; psychomotor agitation; substance withdrawal syndrome
16.  Preanesthetic medication in children: A comparison of intranasal dexmedetomidine versus oral midazolam 
Saudi Journal of Anaesthesia  2011;5(4):387-391.
Background:
Relieving preoperative anxiety is an important concern for the pediatric anesthesiologist. Midazolam has become the most frequently used premedication in children. However, new drugs such as the α2 -agonists have emerged as alternatives for premedication in pediatric anesthesia.
Methods:
One hundred and twenty children scheduled for adenotonsillectomy were enrolled in this prospective, double-blind, randomized study. The children were divided into two equal groups to receive either intranasal dexmedetomidine 1 μg/kg (group D), or oral midazolam 0.5 mg/kg (group M) at approximately 60 and 30 mins, respectively, before induction of anesthesia. Preoperative sedative effects, anxiety level changes, and the ease of child-parent separation were assessed. Also, the recovery profile and postoperative analgesic properties were assessed.
Results:
Children premedicated with intranasal dexmedetomidine achieved significantly lower sedation levels (P=0.042), lower anxiety levels (P=0.036), and easier child-parent separation (P=0.029) than children who received oral midazolam at the time of transferring the patients to the operating room. Postoperatively, the time to achieve an Aldrete score of 10 was similar in both the groups (P=0.067). Also, the number of children who required fentanyl as rescue analgesia medication was significantly less (P=0.027) in the dexmedetomidine group.
Conclusion:
Intranasal dexmedetomidine appears to be a better choice for preanesthetic medication than oral midazolam in our study. Dexmedetomidine was associated with lower sedation levels, lower anxiety levels, and easier child-parent separation at the time of transferring patients to the operating room than children who received oral midazolam. Moreover, intranasal dexmedetomidine has better analgesic property than oral midazolam with discharge time from postanesthetic care unit similar to oral midazolam.
doi:10.4103/1658-354X.87268
PMCID: PMC3227308  PMID: 22144926
Dexmedetomidine; midazolam; pediatric; sedation
17.  Comparison of intranasal midazolam with intravenous diazepam for treating febrile seizures in children: prospective randomised study 
BMJ : British Medical Journal  2000;321(7253):83-86.
Objective
To compare the safety and efficacy of midazolam given intranasally with diazepam given intravenously in the treatment of children with prolonged febrile seizures.
Design
Prospective randomised study.
Setting
Paediatric emergency department in a general hospital.
Subjects
47 children aged six months to five years with prolonged febrile seizure (at least 10 minutes) during a 12 month period.
Interventions
Intranasal midazolam (0.2 mg/kg) and intravenous diazepam (0.3 mg/kg).
Main outcome measures
Time from arrival at hospital to starting treatment and cessation of seizures.
Results
Intranasal midazolam and intravenous diazepam were equally effective. Overall, 23 of 26 seizures were controlled with midazolam and 24 out of 26 with diazepam. The mean time from arrival at hospital to starting treatment was significantly shorter in the midazolam group (3.5 (SD 1.8) minutes, 95% confidence interval 3.3 to 3.7) than the diazepam group (5.5 (2.0), 5.3 to 5.7). The mean time to control of seizures was significantly sooner (6.1 (3.6), 6.3 to 6.7) in the midazolam group than the diazepam group (8.0 (0.5), 7.9 to 8.3). No significant side effects were observed in either group.
Conclusion
Seizures were controlled more quickly with intravenous diazepam than with intranasal midazolam, although midazolam was as safe and effective as diazepam. The overall time to cessation of seizures after arrival at hospital was faster with intranasal midazolam than with intravenous diazepam. The intranasal route can possibly be used not only in medical centres but in general practice and, with appropriate instructions, by families of children with recurrent febrile seizures at home.
PMCID: PMC27427  PMID: 10884257
18.  The safety and efficacy of outpatient midazolam intravenous sedation for oral surgery with and without fentanyl. 
Anesthesia Progress  1993;40(3):57-62.
This study examined midazolam and midazolam plus fentanyl in a placebo-controlled, double-blind clinical trial. It tested the hypothesis that combined drug therapy results in significantly poorer safety but no difference in efficacy compared to the single drug approach. Subjects were among 207 mildly anxious young adults having their third molars removed. Fentanyl had a significant depressant effect on respiration. Fifty of 79 (63%) subjects who received a midazolam-fentanyl combination became apneic, while only two of 78 (3%) who received midazolam alone were apneic (Fisher's Exact Test, P < 0.001). Two subjects (2.5%) in the combination group and none in the midazolam alone group had oxygen saturations drop below 90%. About twice as many subjects in the combination group had end-tidal carbon dioxide (EtCO2) levels greater than 25% above baseline. While these results are consistent with those for apnea, contingency analyses of the oxygen saturation and EtCO2 results were not statistically significant. Subjects in the combination group were more than four times as likely to have excellent versus good, fair, or poor sedation at a given level of intraoperative pain, and behavioral (movement and verbalization) but not cognitive measures of anxiety were attenuated.
PMCID: PMC2148741  PMID: 7645789
19.  Comparison between Midazolam Used Alone and in Combination with Propofol for Sedation during Endoscopic Retrograde Cholangiopancreatography 
Clinical Endoscopy  2014;47(1):94-100.
Background/Aims
Endoscopic retrograde cholangiopancreatography (ERCP) is an uncomfortable procedure that requires adequate sedation for its successful conduction. We investigated the efficacy and safety of the combined use of intravenous midazolam and propofol for sedation during ERCP.
Methods
A retrospective review of patient records from a single tertiary care hospital was performed. Ninety-four patients undergoing ERCP received one of the two medication regimens, which was administered by a nurse under the supervision of a gastroenterologist. Patients in the midazolam (M) group (n=44) received only intravenous midazolam, which was titrated to achieve deep sedation. Patients in the midazolam pulse propofol (MP) group (n=50) initially received an intravenous combination of midazolam and propofol, and then propofol was titrated to achieve deep sedation.
Results
The time to the initial sedation was shorter in the MP group than in the M group (1.13 minutes vs. 1.84 minutes, respectively; p<0.001). The recovery time was faster in the MP group than in the M group (p=0.031). There were no significant differences between the two groups with respect to frequency of adverse events, pain experienced by the patient, patient discomfort, degree of amnesia, and gag reflex. Patient cooperation, rated by the endoscopist as excellent, was greater in the MP group than in the M group (p=0.046).
Conclusions
The combined use of intravenous midazolam and propofol for sedation during ERCP is more effective than midazolam alone. There is no difference in the safety of the procedure.
doi:10.5946/ce.2014.47.1.94
PMCID: PMC3928499  PMID: 24570889
Propofol; Midazolam; Cholangiopancreatography, endoscopic retrograde; Conscious sedation
20.  Midazolam for upper gastrointestinal endoscopy. 
A water-soluble benzodiazepine, midazolam, was used in 400 patients undergoing upper gastrointestinal endoscopy, alone or in combination with pentazocine and compared with 68 patients given diazepam (Valium). In the last 200 patients the endoscopist used midazolam without the presence of an anaesthetist. The absence of injection pain was the most notable feature of midazolam. The degree of co-operation was similar in all groups but the operating conditions were significantly better when midazolam was combined with pentazocine. There was no significant difference in recovery times between the groups as assessed by the pegboard test. Midazolam is an acceptable alternative to diazepam for upper gastrointestinal endoscopy.
PMCID: PMC2492706  PMID: 6742743
21.  Decreased duration of mechanical ventilation when comparing analgesia-based sedation using remifentanil with standard hypnotic-based sedation for up to 10 days in intensive care unit patients: a randomised trial [ISRCTN47583497] 
Critical Care  2005;9(3):R200-R210.
Introduction
This randomised, open-label, multicentre study compared the safety and efficacy of an analgesia-based sedation regime using remifentanil with a conventional hypnotic-based sedation regime in critically ill patients requiring prolonged mechanical ventilation for up to 10 days.
Methods
One hundred and five randomised patients received either a remifentanil-based sedation regime (initial dose 6 to 9 μg kg-1 h-1 (0.1 to 0.15 μg kg-1 min-1) titrated to response before the addition of midazolam for further sedation (n = 57), or a midazolam-based sedation regime with fentanyl or morphine added for analgesia (n = 48). Patients were sedated to an optimal Sedation–Agitation Scale (SAS) score of 3 or 4 and a pain intensity (PI) score of 1 or 2.
Results
The remifentanil-based sedation regime significantly reduced the duration of mechanical ventilation by more than 2 days (53.5 hours, P = 0.033), and significantly reduced the time from the start of the weaning process to extubation by more than 1 day (26.6 hours, P < 0.001). There was a trend towards shortening the stay in the intensive care unit (ICU) by 1 day. The median time of optimal SAS and PI was the same in both groups. There was a significant difference in the median time to offset of pharmacodynamic effects when discontinuing study medication in patients not extubated at 10 days (remifentanil 0.250 hour, comparator 1.167 hours; P < 0.001). Of the patients treated with remifentanil, 26% did not receive any midazolam during the study. In those patients that did receive midazolam, the use of remifentanil considerably reduced the total dose of midazolam required. Between days 3 and 10 the weighted mean infusion rate of remifentanil remained constant with no evidence of accumulation or of a development of tolerance to remifentanil. There was no difference between the groups in SAS or PI score in the 24 hours after stopping the study medication. Remifentanil was well tolerated.
Conclusion
Analgesia-based sedation with remifentanil was well tolerated; it reduces the duration of mechanical ventilation and improves the weaning process compared with standard hypnotic-based sedation regimes in ICU patients requiring long-term ventilation for up to 10 days.
doi:10.1186/cc3495
PMCID: PMC1175879  PMID: 15987391
22.  A prospective study of high dose sedation for rapid tranquilisation of acute behavioural disturbance in an acute mental health unit 
BMC Psychiatry  2013;13:225.
Background
Acute behavioural disturbance (ABD) is a common problem in psychiatry and both physical restraint and involuntary parenteral sedation are often required to control patients. Although guidelines are available, clinical practice is often guided by experience and there is little agreement on which drugs should be first-line treatment for rapid tranquilisation. This study aimed to investigate sedation for ABD in an acute mental healthcare unit, including the effectiveness and safety of high dose sedation.
Methods
A prospective study of parenteral sedation for ABD in mental health patients was conducted from July 2010 to June 2011. Drug administration (type, dose, additional doses), time to sedation, vital signs and adverse effects were recorded. High dose parenteral sedation was defined as greater than the equivalent of 10 mg midazolam, droperidol or haloperidol (alone or in combination), compared to patients receiving 10 mg or less (normal dose). Effective sedation was defined as a fall in the sedation assessment tool score by two or a score of zero or less. Outcomes included frequency of adverse drug effects, time to sedation/tranquilisation and use of additional sedation.
Results
Parenteral sedation was given in 171 cases. A single drug was given in 96 (56%), including droperidol (74), midazolam (19) and haloperidol (3). Effective sedation occurred in 157 patients (92%), and the median time to sedation was 20 min (Range: 5 to 100 min). The median time to sedation for 93 patients receiving high dose sedation was 20 min (5-90 min) compared to 20 min (5-100 min; p = 0.92) for 78 patients receiving normal dose sedation. Adverse effects occurred in 16 patients (9%); hypotension (14), oxygen desaturation (1), hypotension and oxygen desaturation (1). There were more adverse effects in the high dose sedation group compared to the normal dose group [11/93 (12%) vs. 5/78 (6%); p = 0.3]. Additional sedation was given in 9 of 171 patients (5%), seven in the high dose and two in the normal dose groups.
Conclusions
Large initial doses of sedative drugs were used for ABD in just over half of cases and additional sedation was uncommon. High dose sedation did not result in more rapid or effective sedation but was associated with more adverse effects.
doi:10.1186/1471-244X-13-225
PMCID: PMC3848824  PMID: 24044673
Violence; Sedation; Acute psychiatric unit; Droperidol; Benzodiazepine; Antipsychotic
23.  Propofol versus Midazolam for Sedation during Esophagogastroduodenoscopy in Children 
Clinical Endoscopy  2013;46(4):368-372.
Background/Aims
To evaluate the efficacy and safety of propofol and midazolam for sedation during esophagogastroduodenoscopy (EGD) in children.
Methods
We retrospectively reviewed the hospital records of 62 children who underwent ambulatory diagnostic EGD during 1-year period. Data were collected from 34 consecutive patients receiving propofol alone. Twenty-eight consecutive patients who received sedation with midazolam served as a comparison group. Outcome variables were length of procedure, time to recovery and need for additional supportive measures.
Results
There were no statistically significant differences between the two groups in age, weight, sex, and the length of endoscopic procedure. The recovery time from sedation was markedly shorter in propofol group (30±16.41 minutes) compared with midazolam group (58.89±17.32 minutes; p<0.0001). During and after the procedure the mean heart rate was increased in midazolam group (133.04±19.92 and 97.82±16.7) compared with propofol group (110.26±20.14 and 83.26±12.33; p<0.0001). There was no localized pain during sedative administration in midazolam group, though six patients had localized pain during administration of propofol (p<0.028). There was no serious major complication associated with any of the 62 procedures.
Conclusions
Intravenous administered propofol provides faster recovery time and similarly safe sedation compared with midazolam in pediatric patients undergoing upper gastrointestinal endoscopy.
doi:10.5946/ce.2013.46.4.368
PMCID: PMC3746141  PMID: 23964333
Propofol; Midazolam; Endoscopy, digestive system; Child
24.  The effect of piperine on midazolam plasma concentration in healthy volunteers, a research on the CYP3A-involving metabolism 
Some studies showed that piperine (the alkaloid of piper nigrum) can change the activities of microsomal enzymes. Midazolam concentration is applied as a probe to determine the CYP3A enzyme activity. This study was done to determine piperine pretreatment role on midazolam plasma concentration.
Twenty healthy volunteers (14 men and 6 women) received oral dose of piperine (15 mg) or placebo for three days as pretreatment and midazolam (10 mg) on fourth day of study and the blood samples were taken at 0.5, 2.5 and 5 h after midazolam administration. The midazolam plasma levels were assayed using HPLC method (C18 analytical column, 75:25 methanol:water as mobile phase, UV detector at 242 nm wavelength and diazepam as internal standard). Data were fit in a “one-compartment PK model” using P-Pharm 1.5 software and analyzed under statistical tests.
The mean ±SD of the age and body mass index were 24.3 ± 1.83 years (range: 21–28 years) and 23.46± 2.85, respectively. The duration of sedation in piperine receiving group was greater that the placebo group (188±59 vs. 102±43 min, p<0.0001). Half-life and clearance of midazolam were higher in piperine pretreatment group compared to placebo [1.88±0.03 vs. 1.71± 0.04 h (p<0.0001) and 33.62 ± 0.4 vs. 37.09 ± 1.07 ml/min (p<0.0001), respectively].
According to the results, piperine can significantly increases half-life and decreases clearance of midazolam compared to placebo. It is suggested that piperine can demonstrate those effects by inhibition CYP3A4 enzyme activity in liver microsomal system.
doi:10.1186/2008-2231-22-8
PMCID: PMC3904487  PMID: 24398010
Piperine; Midazolam; CYP3A; Clearance; Half-life; Microsomal hepatic metabolism; HPLC
25.  Comparison of sedation effectiveness of remifentanil-dexmedetomidine and remifentanil-midazolam combinations and their effects on postoperative cognitive functions in cystoscopies: A randomized clinical trial 
Background:
The aim of the study is to compare the effects of remifentanil/dexmedetomidine and remifentanil/midazolam combinations in monitored anesthesia care (MAC) during cystoscopies.
Materials and Methods:
Forty patients who received remifentanil infusion of 0.05 μg kg-1 min-1 for cytoscopy procedure were randomized into two groups: Either dexmedetomidine 1 mg kg-1 (Group D) or midazolam 0.2 mg kg-1 h-1 (Group M) was administered intravenously for the first 10 min. Subsequently, anesthesia was maintained by using the bispectral index as a continuous infusion of dexmedetomidine (0.2-0.7 μg kg-1 h-1) or midazolam (0.05-0.15 μg kg-1 h-1). Heart rate, mean arterial pressure, mini-mental state examination findings, levels of sedation andanalgesia, and the patient's and surgeon's satisfaction were recorded.
Results:
Successful sedation and analgesia were achieved in all the patients. We were able to reach the target sedation level faster in Group D (P<0.0001). In Group D, the cognitive functions were less affected than in Group M (P<0.0001). Patient's and surgeon's satisfaction were significantly higher in Group D.
Conclusion:
The targeted sedation levels were achieved in a shorter period with dexmedetomidine-remifentanil compared to midazolam-remifentanil. The dexmedetomidine-remifentanil combination was observed to affect the cognitive functions less than midazolam-remifentanil did with shorter recovery times. Besides, patient's and surgeon's satisfaction rates were superior with dexmedetomidine-remifentanil. It was concluded that dexmedetomidine-remifentanil may be a combination of choice for monitored anesthesia care applications in outpatient surgical procedures of short duration.
PMCID: PMC3724369  PMID: 23914211
Dexmedetomidine; midazolam; remifentanil; monitored anesthesia care; mini mental state examination; cystoscopy

Results 1-25 (1298851)