Search tips
Search criteria

Results 1-25 (764500)

Clipboard (0)

Related Articles

1.  Extracorporeal Lung Support Technologies – Bridge to Recovery and Bridge to Lung Transplantation in Adult Patients 
Executive Summary
For cases of acute respiratory distress syndrome (ARDS) and progressive chronic respiratory failure, the first choice or treatment is mechanical ventilation. For decades, this method has been used to support critically ill patients in respiratory failure. Despite its life-saving potential, however, several experimental and clinical studies have suggested that ventilator-induced lung injury can adversely affect the lungs and patient outcomes. Current opinion is that by reducing the pressure and volume of gas delivered to the lungs during mechanical ventilation, the stress applied to the lungs is eased, enabling them to rest and recover. In addition, mechanical ventilation may fail to provide adequate gas exchange, thus patients may suffer from severe hypoxia and hypercapnea. For these reasons, extracorporeal lung support technologies may play an important role in the clinical management of patients with lung failure, allowing not only the transfer of oxygen and carbon dioxide (CO2) but also buying the lungs the time needed to rest and heal.
The objective of this analysis was to assess the effectiveness, safety, and cost-effectiveness of extracorporeal lung support technologies in the improvement of pulmonary gas exchange and the survival of adult patients with acute pulmonary failure and those with end-stage chronic progressive lung disease as a bridge to lung transplantation (LTx). The application of these technologies in primary graft dysfunction (PGD) after LTx is beyond the scope of this review and is not discussed.
Clinical Applications of Extracorporeal Lung Support
Extracorporeal lung support technologies [i.e., Interventional Lung Assist (ILA) and extracorporeal membrane oxygenation (ECMO)] have been advocated for use in the treatment of patients with respiratory failure. These techniques do not treat the underlying lung condition; rather, they improve gas exchange while enabling the implantation of a protective ventilation strategy to prevent further damage to the lung tissues imposed by the ventilator. As such, extracorporeal lung support technologies have been used in three major lung failure case types:
As a bridge to recovery in acute lung failure – for patients with injured or diseased lungs to give their lungs time to heal and regain normal physiologic function.
As a bridge to LTx – for patients with irreversible end stage lung disease requiring LTx.
As a bridge to recovery after LTx – used as lung support for patients with PGD or severe hypoxemia.
Ex-Vivo Lung Perfusion and Assessment
Recently, the evaluation and reconditioning of donor lungs ex-vivo has been introduced into clinical practice as a method of improving the rate of donor lung utilization. Generally, about 15% to 20% of donor lungs are suitable for LTx, but these figures may increase with the use of ex-vivo lung perfusion. The ex-vivo evaluation and reconditioning of donor lungs is currently performed at the Toronto General Hospital (TGH) and preliminary results have been encouraging (Personal communication, clinical expert, December 17, 2009). If its effectiveness is confirmed, the use of the technique could lead to further expansion of donor organ pools and improvements in post-LTx outcomes.
Extracorporeal Lung support Technologies
The ECMO system consists of a centrifugal pump, a membrane oxygenator, inlet and outlet cannulas, and tubing. The exchange of oxygen and CO2 then takes place in the oxygenator, which delivers the reoxygenated blood back into one of the patient’s veins or arteries. Additional ports may be added for haemodialysis or ultrafiltration.
Two different techniques may be used to introduce ECMO: venoarterial and venovenous. In the venoarterial technique, cannulation is through either the femoral artery and the femoral vein, or through the carotid artery and the internal jugular vein. In the venovenous technique cannulation is through both femoral veins or a femoral vein and internal jugular vein; one cannula acts as inflow or arterial line, and the other as an outflow or venous line. Venovenous ECMO will not provide adequate support if a patient has pulmonary hypertension or right heart failure. Problems associated with cannulation during the procedure include bleeding around the cannulation site and limb ischemia distal to the cannulation site.
Interventional Lung Assist (ILA) is used to remove excess CO2 from the blood of patients in respiratory failure. The system is characterized by a novel, low-resistance gas exchange device with a diffusion membrane composed of polymethylpentene (PMP) fibres. These fibres are woven into a complex configuration that maximizes the exchange of oxygen and CO2 by simple diffusion. The system is also designed to operate without the help of an external pump, though one can be added if higher blood flow is required. The device is then applied across an arteriovenous shunt between the femoral artery and femoral vein. Depending on the size of the arterial cannula used and the mean systemic arterial pressure, a blood flow of up to 2.5 L/min can be achieved (up to 5.5 L/min with an external pump). The cannulation is performed after intravenous administration of heparin.
Recently, the first commercially available extracorporeal membrane ventilator (NovaLung GmbH, Hechingen, Germany) was approved for clinical use by Health Canada for patients in respiratory failure. The system has been used in more than 2,000 patients with various indications in Europe, and was used for the first time in North America at the Toronto General Hospital in 2006.
Evidence-Based Analysis
The research questions addressed in this report are:
Does ILA/ECMO facilitate gas exchange in the lungs of patients with severe respiratory failure?
Does ILA/ECMO improve the survival rate of patients with respiratory failure caused by a range of underlying conditions including patients awaiting LTx?
What are the possible serious adverse events associated with ILA/ECMO therapy?
To address these questions, a systematic literature search was performed on September 28, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2005 to September 28, 2008. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. Articles with an unknown eligibility were reviewed with a second clinical epidemiologist and then a group of epidemiologists until consensus was established.
Inclusion Criteria
Studies in which ILA/ECMO was used as a bridge to recovery or bridge to LTx
Studies containing information relevant to the effectiveness and safety of the procedure
Studies including at least five patients
Exclusion Criteria
Studies reporting the use of ILA/ECMO for inter-hospital transfers of critically ill patients
Studies reporting the use of ILA/ECMO in patients during or after LTx
Animal or laboratory studies
Case reports
Outcomes of Interest
Reduction in partial pressure of CO2
Correction of respiratory acidosis
Improvement in partial pressure of oxygen
Improvement in patient survival
Frequency and severity of adverse events
The search yielded 107 citations in Medline and 107 citations in EMBASE. After reviewing the information provided in the titles and abstracts, eight citations were found to meet the study inclusion criteria. One study was then excluded because of an overlap in the study population with a previous study. Reference checking did not produce any additional studies for inclusion. Seven case series studies, all conducted in Germany, were thus included in this review (see Table 1).
Also included is the recently published CESAR trial, a multicentre RCT in the UK in which ECMO was compared with conventional intensive care management. The results of the CESAR trial were published when this review was initiated. In the absence of any other recent RCT on ECMO, the results of this trial were considered for this assessment and no further searches were conducted. A literature search was then conducted for application of ECMO as bridge to LTx patients (January, 1, 2005 to current). A total of 127 citations on this topic were identified and reviewed but none were found to have examined the use of ECMO as bridge to LTx.
Quality of Evidence
To grade the quality of evidence, the grading system formulated by the GRADE working group and adopted by MAS was applied. The GRADE system classifies the quality of a body of evidence as high, moderate, low, or very low according to four key elements: study design, study quality, consistency across studies, and directness.
Trials on ILA
Of the seven studies identified, six involved patients with ARDS caused by a range of underlying conditions; the seventh included only patients awaiting LTx. All studies reported the rate of gas exchange and respiratory mechanics before ILA and for up to 7 days of ILA therapy. Four studies reported the means and standard deviations of blood gas transfer and arterial blood pH, which were used for meta-analysis.
Fischer et al. reported their first experience on the use of ILA as a bridge to LTx. In their study, 12 patients at high urgency status for LTx, who also had severe ventilation refractory hypercapnea and respiratory acidosis, were connected to ILA prior to LTx. Seven patients had a systemic infection or sepsis prior to ILA insertion. Six hours after initiation of ILA, the partial pressure of CO2 in arterial blood significantly decreased (P < .05) and arterial blood pH significantly improved (P < .05) and remained stable for one week (last time point reported). The partial pressure of oxygen in arterial blood improved from 71 mmHg to 83 mmHg 6 hours after insertion of ILA. The ratio of PaO2/FiO2 improved from 135 at baseline to 168 at 24 hours after insertion of ILA but returned to baseline values in the following week.
Trials on ECMO
The UK-based CESAR trial was conducted to assess the effectiveness and cost of ECMO therapy for severe, acute respiratory failure. The trial protocol were published in 2006 and details of the methods used for the economic evaluation were published in 2008. The study itself was a pragmatic trial (similar to a UK trial of neonatal ECMO), in which best standard practice was compared with an ECMO protocol. The trial involved 180 patients with acute but potentially reversible respiratory failure, with each also having a Murray score of ≥ 3.0 or uncompensated hypercapnea at a pH of < 7.2. Enrolled patients were randomized in a 1:1 ratio to receive either conventional ventilation treatment or ECMO while on ventilator. Conventional management included intermittent positive pressure ventilation, high frequency oscillatory ventilation, or both. As a pragmatic trial, a specific management protocol was not followed; rather the treatment centres were advised to follow a low volume low pressure ventilation strategy. A tidal volume of 4 to 8 mL/kg body weight and a plateau pressure of < 30 cm H2O were recommended.
Bridge to recovery
No RCTs or observational studies compared ILA to other treatment modalities.
Case series have shown that ILA therapy results in significant CO2 removal from arterial blood and correction of respiratory acidosis, as well as an improvement in oxygen transfer.
ILA therapy enabled a lowering of respiratory settings to protect the lungs without causing a negative impact on arterial blood CO2 and arterial blood pH.
The impact of ILA on patient long-term survival cannot be determined through the studies reviewed.
In-hospital mortality across studies ranged from 20% to 65%.
Ischemic complications were the most frequent adverse events following ILA therapy.
Leg amputation is a rare but possible outcome of ILA therapy, having occurred in about 0.9% of patients in these case series. New techniques involving the insertion of additional cannula into the femoral artery to perfuse the leg may lower this rate.
Bridge to LTx
The results of one case series (n=12) showed that ILA effectively removes CO2 from arterial blood and corrects respiratory acidosis in patients with ventilation refractory hypercapnea awaiting a LTx
Eight of the 12 patients (67%) awaiting a LTx were successfully transplanted and one-year survival for those transplanted was 80%
Since all studies are case series, the grade of the evidence for these observations is classified as “LOW”.
Bridge to recovery
Based on the results of a pragmatic trial and an intention to treat analysis, referral of patient to an ECMO based centre significantly improves patient survival without disability compared to conventional ventilation. The results of CESAR trial showed that:
For patients with information about disability, survival without severe disability was significantly higher in ECMO arm
Assuming that the three patients in the conventional ventilation arm who did not have information about severe disability were all disabled, the results were also significant.
Assuming that none of these patients were disabled, the results were at borderline significance
A greater, though not statistically significant, proportion of patients in ECMO arm survived.
The rate of serious adverse events was higher among patients in ECMO group
The grade of evidence for the above observations is classified as “HIGH”.
Bridge to LTx
No studies fitting the inclusion criteria were identified.
There is no accurate data on the use of ECMO in patients awaiting LTx.
Economic Analysis
The objective of the economic analysis was to determine the costs associated with extracorporeal lung support technologies for bridge to LTx in adults. A literature search was conducted for which the target population was adults eligible for extracorporeal lung support. The primary analytic perspective was that of the Ministry of Health and Long-Term Care (MOHLTC). Articles published in English and fitting the following inclusion criteria were reviewed:
Full economic evaluations including cost-effectiveness analyses (CEA), cost-utility analyses (CUA), cost-benefit analyses (CBA);
Economic evaluations reporting incremental cost-effectiveness ratios (ICER) i.e. cost per quality adjusted life year (QALY), life years gained (LYG), or cost per event avoided; and
Studies in patients eligible for lung support technologies for to lung transplantation.
The search yielded no articles reporting comparative economic analyses.
Resource Use and Costs
Costs associated with both ILA and ECMO (outlined in Table ES-1) were obtained from the University Health Network (UHN) case costing initiative (personal communication, UHN, January 2010). Consultation with a clinical expert in the field was also conducted to verify resource utilization. The consultant was situated at the UHN in Toronto. The UHN has one ECMO machine, which cost approximately $100,000. The system is 18 years old and is used an average of 3 to 4 times a year with 35 procedures being performed over the last 9 years. The disposable cost per patient associated with ECMO is, on average, $2,200. There is a maintenance cost associated with the machine (not reported by the UHN), which is currently absorbed by the hospital’s biomedical engineering department.
The average capital cost of an ILA device is $7,100 per device, per patient, while the average cost of the reusable pump $65,000. The UHN has performed 16 of these procedures over the last 2.5 years. Similarly, there is a maintenance cost not that was reported by UHN but is absorbed by the hospital’s biomedical engineering department.
Resources Associated with Extracorporeal Lung Support Technologies
Hospital costs associated with ILA were based on the average cost incurred by the hospital for 11 cases performed in the FY 07/08 (personal communication, UHN, January 2010). The resources incurred with this hospital procedure included:
Device and disposables
OR transplant
Surgical ICU
Laboratory work
Medical imaging
Clinical nutrition
Occupational therapy
Speech and language pathology
Social work
The average length of stay in hospital was 61 days for ILA (range: 5 to 164 days) and the average direct cost was $186,000 per case (range: $19,000 to $552,000). This procedure has a high staffing requirement to monitor patients in hospital, driving up the average cost per case.
PMCID: PMC3415698  PMID: 23074408
2.  Economics of membrane occupancy and respiro-fermentation 
The authors propose that prokaryotic metabolism is fundamentally constrained by the cytoplasmic membrane surface area available for protein expression, and show that this constraint can explain previously puzzling physiological phenomena, including respiro-fermentation.
We propose that prokaryotic cellular metabolism is fundamentally constrained by the finite cytoplasmic membrane surface area available for protein expression.A metabolic model of Escherichia coli updated to include a cytoplasmic membrane constraint is capable of predicting a variety of puzzling phenomena in this organism, including the respiro-fermentation phenomenon.Because the surface area to volume ratio is directly related to the morphology of the cell, this constraint provides a direct link between prokaryotic morphology and physiology.The potential relevance of this constraint to eukaryotes is discussed.
Many heterotrophs can produce ATP through both respiratory and fermentative pathways, allowing them to survive with or without oxygen. Since the molar ATP yield (molar ATP yield: mole of ATP produced/mole of substrate consumed) from respiration is about 15-fold higher than that from fermentation, ATP production via respiration is more efficient. Surprisingly, at high catabolic rate, many facultative aerobic organisms employ fermentative pathways simultaneously with respiration, even in the presence of abundant oxygen to produce ATP (Pfeiffer et al, 2001; Vemuri et al, 2006; Molenaar et al, 2009). This leads to an observable tradeoff between the ATP yield and the catabolic rate (Pfeiffer et al, 2001; Vemuri et al, 2006). This respiro-fermentation physiology is commonly observed in microorganisms, including Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae (Molenaar et al, 2009), as well as cancer cells (Vander Heiden et al, 2009). Despite extensive research, existing theories (Majewski and Domach, 1990; Varma and Palsson, 1994; Pfeiffer et al, 2001; Vazquez et al, 2008; Molenaar et al, 2009) cannot fully explain the respiro-fermentation phenomenon.
The membrane economics theory
We propose the hypothesis that the prokaryotic metabolism is fundamentally constrained by the finite cytoplasmic surface area available for protein expression—in order to maximize fitness, prokaryotic organisms such as E. coli must economically manage the expression of membrane proteins based on the membrane cost and the fitness benefit of the proteins. This hypothesis is proposed based on theoretical considerations (in this work), numerical analysis (Phillips and Milo, 2009), and experimental observation that the overexpression of non-respiratory membrane protein significantly reduces the oxygen consumption rate and induces aerobic fermentation (Wagner et al, 2007). Such a constraint on transmembrane protein expression may have significant physiological consequences in prokaryotes, such as E. coli, at higher catabolic rates. First, since both substrate transporters and respiratory enzymes are localized on the cytoplasmic membrane in prokaryotes, increased substrate uptake rates necessitates a decrease in the respiratory rate. This decrease in the respiratory rate, forces prokaryotes to process the additional substrate through the fermentative pathways, which are not catalyzed by transmembrane proteins, for continued ATP production. Furthermore, since the membrane requirement of an enzyme is inversely related to its turnover rate (see Materials and methods section in the manuscript), the faster and inefficient respiratory enzymes (such as Cyd-I and Cyd-II in E. coli) might be preferred over the slower and efficient enzymes (such as Cyo in E. coli), leading to an altered respiratory stoichiometry at higher catabolic rates. Finally, the absence of the respiratory enzymes under anaerobic conditions explains why the maximum glucose uptake rate (GUR) of E. coli is much higher.
Applying membrane economics theory to E. coli
To illustrate that the ‘membrane economics' theory could satisfactorily explain the physiological changes associated with the respiro-fermentation phenomenon in E. coli, we modified the genome-scale metabolic model of E. coli (Feist et al, 2007) to include a cytoplasmic membrane occupancy constraint. Using ‘relative membrane costs' calculated from experimental data, the new modeling framework—FBA with membrane economics (FBAME)—predicted that wild-type E. coli has a GUR of 10.7 mmol/gdw/h, an oxygen uptake rate (OUR) of 15.8 mmol/gdw/h, and a specific growth rate of 0.69 per hour during aerobic growth with excess glucose. FBAME also predicted that under the same growth condition, an E. coli knockout strain with no cytochromes has a GUR of 18 mmol/gdw/h and growth rate of 0.42. These values agree very well with the reported experimental values for E. coli grown in batch cultures (Vemuri et al, 2006; Portnoy et al, 2008), which supports our hypothesis that the higher GUR of E. coli during glucose-excess anaerobiosis than under aerobic conditions is due to the absence of the respiratory enzymes. We also simulated the aerobic growth of E. coli in glucose-limited chemostat using both conventional FBA and FBAME. FBAME successfully predicted the growth rate and yield changes with respect to increasing GUR (Figure 2A and B), as well as the aerobic production of acetate (Figure 2C) and concomitant repression of oxygen uptake (Figure 2D). On the other hand, traditional FBA significantly overestimated the growth rate and yield at higher GURs (this overestimation cannot be explained by varying the growth-associated maintenance (GAM) energy parameter; Figure 2A), and failed to predict the decrease in yield independent of acetate overflow and reduction in oxygen uptake at higher GURs (Figure 2). In addition, FBAME was able to predict the reduction of the TCA cycle activities at higher uptake rates (Figure 3C and D) as well as the selective expression of Cyo and Cyd-II at lower uptake rates (Figure 3A and B), whereas conventional FBA cannot predict the expression of inefficient Cyd-II. These predictions agree with the gene expression data from glucose-limited chemostat (Figure 3). Given the simplicity of the constraint we imposed, our model predictions agree surprisingly well with experimental observations, lending strong credibility to the membrane economics hypothesis.
Concluding remarks
Although it has been long suggested that cellular evolution are governed by non-adjustable mechanistic constraints (Palsson, 2000; Papin et al, 2005; Novak et al, 2006), to date, most metabolic models rely on empirically derived parameters such as glucose and OUR. In this article, we showed that complex phenomena, such as the respiro-fermentation in E. coli, could be satisfactorily explained and accurately predicted by using constraint-based optimization by introducing a simple mechanistic constraint on membrane enzyme occupancy. Given that the cytoplasmic membrane occupancy constraint is directly related to the surface area to volume (S/V) ratio of the cell, it is possible that this constraint resulted in the evolution of mitochondria in eukaryotes as mitochondria allows for a significantly increased S/V ratio. Further efforts to elucidate such fundamental cellular constraints as well as the underlying design principles could significantly improve our understanding of the regulation and evolution of metabolism.
The simultaneous utilization of efficient respiration and inefficient fermentation even in the presence of abundant oxygen is a puzzling phenomenon commonly observed in bacteria, yeasts, and cancer cells. Despite extensive research, the biochemical basis for this phenomenon remains obscure. We hypothesize that the outcome of a competition for membrane space between glucose transporters and respiratory chain (which we refer to as economics of membrane occupancy) proteins influences respiration and fermentation. By incorporating a sole constraint based on this concept in the genome-scale metabolic model of Escherichia coli, we were able to simulate respiro-fermentation. Further analysis of the impact of this constraint revealed differential utilization of the cytochromes and faster glucose uptake under anaerobic conditions than under aerobic conditions. Based on these simulations, we propose that bacterial cells manage the composition of their cytoplasmic membrane to maintain optimal ATP production by switching between oxidative and substrate-level phosphorylation. These results suggest that the membrane occupancy constraint may be a fundamental governing constraint of cellular metabolism and physiology, and establishes a direct link between cell morphology and physiology.
PMCID: PMC3159977  PMID: 21694717
constraint-based modeling; flux balance analysis; membrane occupancy; overflow metabolism; respiro-fermentation
3.  Physiological aspects of the determination of comprehensive arterial inflows in the lower abdomen assessed by Doppler ultrasound 
Non-invasive measurement of splanchnic hemodynamics has been utilized in the clinical setting for diagnosis of gastro-intestinal disease, and for determining reserve blood flow (BF) distribution. However, previous studies that measured BF in a "single vessel with small size volume", such as the superior mesenteric and coeliac arteries, were concerned solely with the target organ in the gastrointestinal area, and therefore evaluation of alterations in these single arterial BFs under various states was sometimes limited to "small blood volumes", even though there was a relatively large change in flow. BF in the lower abdomen (BFAb) is potentially a useful indicator of the influence of comprehensive BF redistribution in cardiovascular and hepato-gastrointestinal disease, in the postprandial period, and in relation to physical exercise. BFAb can be determined theoretically using Doppler ultrasound by subtracting BF in the bilateral proximal femoral arteries (FAs) from BF in the upper abdominal aorta (Ao) above the coeliac trunk. Prior to acceptance of this method of determining a true BFAb value, it is necessary to obtain validated normal physiological data that represent the hemodynamic relationship between the three arteries. In determining BFAb, relative reliability was acceptably high (range in intra-class correlation coefficient: 0.85-0.97) for three arterial hemodynamic parameters (blood velocity, vessel diameter, and BF) in three repeated measurements obtained over three different days. Bland-Altman analysis of the three repeated measurements revealed that day-to-day physiological variation (potentially including measurement error) was within the acceptable minimum range (95% of confidence interval), calculated as the difference in hemodynamics between two measurements. Mean BF (ml/min) was 2951 ± 767 in Ao, 316 ± 97 in left FA, 313 ± 83 in right FA, and 2323 ± 703 in BFAb, which is in agreement with a previous study that measured the sum of BF in the major part of the coeliac, mesenteric, and renal arteries. This review presents the methodological concept that underlies BFAb, and aspects of its day-to-day relative reliability in terms of the hemodynamics of the three target arteries, relationship with body surface area, respiratory effects, and potential clinical usefulness and application, in relation to data previously reported in original dedicated research.
PMCID: PMC3366871  PMID: 22443486
Lower abdominal inflows; splanchnic blood flow; Doppler ultrasound
4.  Increased Cerebral Blood Flow Velocity in Children with Mild Sleep-Disordered Breathing 
Pediatrics  2006;118(4):e1100-e1108.
Sleep-disordered breathing describes a spectrum of upper airway obstruction in sleep from simple primary snoring, estimated to affect 10% of preschool children, to the syndrome of obstructive sleep apnea. Emerging evidence has challenged previous assumptions that primary snoring is benign. A recent report identified reduced attention and higher levels of social problems and anxiety/depressive symptoms in snoring children compared with controls. Uncertainty persists regarding clinical thresholds for medical or surgical intervention in sleep-disordered breathing, underlining the need to better understand the pathophysiology of this condition. Adults with sleep-disordered breathing have an increased risk of cerebrovascular disease independent of atherosclerotic risk factors. There has been little focus on cerebrovascular function in children with sleep-disordered breathing, although this would seem an important line of investigation, because studies have identified abnormalities of the systemic vasculature. Raised cerebral blood flow velocities on transcranial Doppler, compatible with raised blood flow and/or vascular narrowing, are associated with neuropsychological deficits in children with sickle cell disease, a condition in which sleep-disordered breathing is common. We hypothesized that there would be cerebral blood flow velocity differences in sleep-disordered breathing children without sickle cell disease that might contribute to the association with neuropsychological deficits.
Thirty-one snoring children aged 3 to 7 years were recruited from adenotonsillectomy waiting lists, and 17 control children were identified through a local Sunday school or as siblings of cases. Children with craniofacial abnormalities, neuromuscular disorders, moderate or severe learning disabilities, chronic respiratory/cardiac conditions, or allergic rhinitis were excluded. Severity of sleep-disordered breathing in snoring children was categorized by attended polysomnography. Weight, height, and head circumference were measured in all of the children. BMI and occipitofrontal circumference z scores were computed. Resting systolic and diastolic blood pressure were obtained. Both sleep-disordered breathing children and the age- and BMI-similar controls were assessed using the Behavior Rating Inventory of Executive Function (BRIEF), Neuropsychological Test Battery for Children (NEPSY) visual attention and visuomotor integration, and IQ assessment (Wechsler Preschool and Primary Scale of Intelligence Version III). Transcranial Doppler was performed using a TL2-64b 2-MHz pulsed Doppler device between 2 PM and 7 PM in all of the patients and the majority of controls while awake. Time-averaged mean of the maximal cerebral blood flow velocities was measured in the left and right middle cerebral artery and the higher used for analysis.
Twenty-one snoring children had an apnea/hypopnea index <5, consistent with mild sleep-disordered breathing below the conventional threshold for surgical intervention. Compared with 17 nonsnoring controls, these children had significantly raised middle cerebral artery blood flow velocities. There was no correlation between cerebral blood flow velocities and BMI or systolic or diastolic blood pressure indices. Exploratory analyses did not reveal any significant associations with apnea/hypopnea index, apnea index, hypopnea index, mean pulse oxygen saturation, lowest pulse oxygen saturation, accumulated time at pulse oxygen saturation <90%, or respiratory arousals when examined in separate bivariate correlations or in aggregate when entered simultaneously. Similarly, there was no significant association between cerebral blood flow velocities and parental estimation of child’s exposure to sleep-disordered breathing. However, it is important to note that whereas the sleep-disordered breathing group did not exhibit significant hypoxia at the time of study, it was unclear to what extent this may have been a feature of their sleep-disordered breathing in the past. IQ measures were in the average range and comparable between groups. Measures of processing speed and visual attention were significantly lower in sleep-disordered breathing children compared with controls, although within the average range. There were similar group differences in parental-reported executive function behavior. Although there were no direct correlations, adjusting for cerebral blood flow velocities eliminated significant group differences between processing speed and visual attention and decreased the significance of differences in Behavior Rating Inventory of Executive Function scores, suggesting that cerebral hemodynamic factors contribute to the relationship between mild sleep-disordered breathing and these outcome measures.
Cerebral blood flow velocities measured by noninvasive transcranial Doppler provide evidence for increased cerebral blood flow and/or vascular narrowing in childhood sleep-disordered breathing; the relationship with neuropsychological deficits requires further exploration. A number of physiologic changes might alter cerebral blood flow and/or vessel diameter and, therefore, affect cerebral blood flow velocities. We were able to explore potential confounding influences of obesity and hypertension, neither of which explained our findings. Second, although cerebral blood flow velocities increase with increasing partial pressure of carbon dioxide and hypoxia, it is unlikely that the observed differences could be accounted for by arterial blood gas tensions, because all of the children in the study were healthy, with no cardiorespiratory disease, other than sleep-disordered breathing in the snoring group. Although arterial partial pressure of oxygen and partial pressure of carbon dioxide were not monitored during cerebral blood flow velocity measurement, assessment was undertaken during the afternoon/early evening when the child was awake, and all of the sleep-disordered breathing children had normal resting oxyhemoglobin saturation at the outset of their subsequent sleep studies that day. Finally, there is an inverse linear relationship between cerebral blood flow and hematocrit in adults, and it is known that iron-deficient erythropoiesis is associated with chronic infection, such as recurrent tonsillitis, a clinical feature of many of the snoring children in the study. Preoperative full blood counts were not performed routinely in these children, and, therefore, it was not possible to exclude anemia as a cause of increased cerebral blood flow velocity in the sleep-disordered breathing group. However, hemoglobin levels were obtained in 4 children, 2 of whom had borderline low levels (10.9 and 10.2 g/dL). Although there was no apparent relationship with cerebral blood flow velocity in these children (cerebral blood flow velocity values of 131 and 130 cm/second compared with 130 and 137 cm/second in the 2 children with normal hemoglobin levels), this requires verification. It is of particular interest that our data suggest a relationship among snoring, increased cerebral blood flow velocities and indices of cognition (processing speed and visual attention) and perhaps behavioral (Behavior Rating Inventory of Executive Function) function. This finding is preliminary: a causal relationship is not established, and the physiologic mechanisms underlying such a relationship are not clear. Prospective studies that quantify cumulative exposure to the physiologic consequences of sleep-disordered breathing, such as hypoxia, would be informative.
PMCID: PMC1995426  PMID: 17015501
sleep disordered breathing; cerebral blood flow; transcranial Doppler; executive function; neuropsychological function
5.  Sleep hypoxia in myotonic dystrophy and its correlation with awake respiratory function. 
Thorax  1994;49(1):66-70.
BACKGROUND--Tiredness and daytime respiratory failure occur frequently in myotonic dystrophy. Sleep hypoxaemia was studied in 12 patients with myotonic dystrophy and correlations were sought with their daytime lung and respiratory muscle function. METHODS--All patients underwent overnight sleep studies, clinical assessment, measurement of flow-volume loops and carbon monoxide transfer factor, arterial blood gas analysis, and physiological assessment of both thoracic muscle function and upper airways obstruction. RESULTS--The mean nadir of oxygen saturation during sleep was 75% (95% confidence interval 69% to 81%). A mean of 3.4% of total sleep duration was spent at an oxygen saturation level below 85%. Five of the 12 patients had an apnoea index of > 5, the group mean apnoea/hypopnoea index being 15.8 events/sleep hour. The mean awake arterial oxygen tension (PaO2) was 10.7 kPa. There was a trend to hypercapnoea with a mean awake arterial carbon dioxide tension of 6.1 kPa; carbon dioxide retention worsened during sleep. Respiratory muscle dysfunction was mainly evident as a low maximum expiratory mouth pressure. Upper airway obstruction assessed by physiological criteria was found in four of the 12 patients. The proportion of total sleep duration with oxygen saturation levels below 85% was directly related to body mass index (weight/height2) and inversely related to the awake PaO2. Body mass index was inversely related to the overnight nadir of oxygen saturation. CONCLUSIONS--Patients with myotonic dystrophy are often hypoxic during sleep and the subgroup that are obese, or have symptoms of sleep apnoea, or both, are particularly at risk. Sleep studies should be considered in this subgroup of patients with myotonic dystrophy.
PMCID: PMC474096  PMID: 8153943
6.  Carotid artery stiffness, high-density lipoprotein cholesterol and inflammation in men with pre-hypertension 
Journal of human hypertension  2009;23(9):590-596.
Low circulating levels of high density lipoprotein cholesterol (HDL-C) are associated with increased risk for cardiovascular events. HDL-C has a variety of poorly understood atheroprotective effects, including altering lipid metabolism and reducing inflammation. Increased arterial stiffness is an important predictor of subsequent cardiovascular risk. Therefore, in the current study, we sought to determine whether HDL-C levels are associated with carotid arterial stiffness. In addition we examined potential correlates of this association such as inflammatory factors, cardio-respiratory fitness and body fat percentage.
Carotid artery β stiffness was measured by ultrasound in 47 (23 yrs old) healthy pre-hypertensive men. Low HDL-C was defined as <1.0 mmol/L. Body fat was measured by air displacement plethysmograpy. Cardio-respiratory fitness was measured using a maximal exercise test with metabolic gas analysis and inflammatory markers consisted of C-reactive protein (CRP), white blood cell (WBC) count, and absolute neutrophil count.
Men with low HDL-C had significantly higher carotid artery stiffness, CRP, WBC count, neutrophil count, body fat, fasting glucose and lower cardio-respiratory fitness (p<0.05). Co-varying for cardio-respiratory fitness, % body fat, and glucose had no effect on group differences in carotid artery stiffness. Co-varying for inflammatory markers resulted in groups having similar carotid artery stiffness.
Pre-hypertensive men with low HDL-C have higher carotid artery stiffness when compared with those with higher HDL-C. The detrimental effects of low HDL-C on large artery stiffness in pre-hypertensive men may be mediated by inflammation and not by cardio-respiratory fitness or body fat levels.
PMCID: PMC2914456  PMID: 19225528
arterial stiffness; C-reactive protein; maximal oxygen consumption; body fat
7.  Respiratory effects of dexmedetomidine in the surgical patient requiring intensive care 
Critical Care  2000;4(5):302-308.
The respiratory effects of dexmedetomidine were retrospectively examined in 33 postsurgical patients involved in a randomised, placebo-controlled trial after extubation in the intensive care unit (ICU). Morphine requirements were reduced by over 50% in patients receiving dexmedetomidine. There were no differences in respiratory rates, oxygen saturations, arterial pH and arterial partial carbon dioxide tension (PaCO2) between the groups. Interestingly the arterial partial oxygen tension (PaO2) : fractional inspired oxygen (FIO2) ratios were statistically significantly higher in the dexmedetomidine group. Dexmedetomidine provides important postsurgical analgesia and appears to have no clinically important adverse effects on respiration in the surgical patient who requires intensive care.
The α2-agonist dexmedetomidine is a new class of sedative drug that is being investigated for use in ICU settings. It is an effective agent for the management of sedation and analgesia after cardiac, general, orthopaedic, head and neck, oncological and vascular surgery in the ICU [1]. Cardiovascular stability was demonstrated, with significant reductions in rate-pressure product during sedation and over the extubation period.
Dexmedetomidine possesses several properties that may additionally benefit those critically ill patients who require sedation. In spontaneously breathing volunteers, intravenous dexmedetomidine caused marked sedation with only mild reductions in resting ventilation at higher doses [2]. Dexmedetomidine reduces the haemodynamic response to intubation and extubation [3,4,5] and attenuates the stress response to surgery [6], as a result of the α2-mediated reduction in sympathetic tone. Therefore, it should be possible to continue sedation with dexmedetomidine over the stressful extubation period without concerns over respiratory depression, while ensuring that haemodynamic stability is preserved.
The present study is a retrospective analysis of the respiratory response to dexmedetomidine in 33 postsurgical patients (who were involved in a randomized, double-blind, placebo-controlled trial [1]) after extubation in the ICU.
Patients who participated in the present study were admitted after surgery to our general or cardiothoracic ICUs, and were expected to receive at least 6 h of postsurgical sedation and artificial ventilation.
On arrival in the ICU after surgery, patients were randomized to receive either dexmedetomidine or placebo (normal saline) with rescue sedation and analgesia being provided, only if clinically needed, with midazolam and morphine boluses, respectively. Sedation was titrated to maintain a Ramsay Sedation Score [7] of 3 or greater while the patients were intubated, and infusions of study drug were continued for a maximum of 6 h after extubation to achieve a Ramsay Sedation Score of 2 or greater.
The patients were intubated and ventilated with oxygen-enriched air to attain acceptable arterial blood gases, and extubation occurred when clinically indicated. All patients received supplemental oxygen after extubation, which was delivered by a fixed performance device. Assessment of pain was by direct communication with the patient.
Results are expressed as mean ± standard deviation unless otherwise stated. Patient characteristics, operative details and morphine usage were analyzed using the Mann-Whitney U-test. Statistical differences for respiratory measurements between the two groups were determined using analysis of variance for repeated measures, with the Bonferroni test for post hoc comparisons.
Of the 40 patients who participated in the study, seven patients could not be included in the analysis of respiratory function because they did not receive a study drug infusion after extubation. Consequently, data from 33 patients are used in the analysis of respiratory function; 16 received dexmedetomidine and 17 placebo. Inadequate arterial blood gas analysis was available in five patients (two from the dexmedetomidine group, and three from the placebo group). There were no significant differences in patient characteristics and operative details between the groups.
Requirements for morphine were reduced by more than 50% in patients receiving dexmedetomidine when compared with placebo after extubation (0.003 ± 0.004 vs 0.008 ± 0.006 mg/kg per h; P= 0.040).
There were no statistically significant differences between placebo and dexmedetomidine for oxygen saturations measured by pulse oximetry (P= 0.26), respiratory rate (P= 0.16; Fig. 1), arterial pH (P= 0.77) and PaCO2 (P= 0.75; Fig. 2) for the 6 h after extubation.
The dexmedetomidine group showed significantly higher PaO2: FIO2 ratios throughout the 6-h intubation (P= 0.036) and extubation (P= 0.037) periods (Fig. 3). There were no adverse respiratory events seen in either the dexmedetomidine or placebo group.
Respiratory rate for the 6-h periods before and after extubation. (Filled circle) Dexmedetomidine; (Empty circle) placebo. Values are expressed as mean ± standard deviation.
PaCO2 (PCO2) for the 6-h periods before and after extubation, and baseline values (B) on admission to ICU immediately after surgery. (Filled circle) Dexmedetomidine; (Empty circle) placebo. Values are expressed as mean ± standard deviation.
PaO2 : FIO2 ratio for the 6-h periods before and after extubation, and baseline values (B) on admission to ICU immediately after surgery. (Filled circle) Dexmedetomidine; (Empty circle) placebo. Values are expressed as mean ± standard deviation.
Lack of respiratory depression in patients sedated with α2-adrenoceptor agonists was first reported by Maxwell [8] in a study investigating the respiratory effects of clonidine. However, more recent data suggests that clonidine may cause mild respiratory depression in humans [9], and α2-adrenoceptor agonists are well known to produce profound intraoperative hypoxaemia in sheep [10,11]. The effects of dexmedetomidine on other ventilation parameters also appear to be species specific [12].
Belleville et al [2] investigated the ventilatory effects of a 2-min intravenous infusion of dexmedetomidine on human volunteers. According to those investigators, minute ventilation and arterial PaCO2 were mildly decreased and increased, respectively. There was a rightward shift and depression of the hypercapnic response with infusions of 1.0 and 2.0 μg/kg.
Previous studies that investigated the respiratory effects of dexmedetomidine have only been performed in healthy human volunteers, who have received either single intramuscular injections or short (= 10 min) intravenous infusions of dexmedetomidine. It is therefore reassuring that no deleterious clinical effects on respiration and gas exchange were seen in the patients we studied, who were receiving long-term infusions. However, there are important limitations to the present results. No dose/response curve for dexmedetomidine can be formulated from the data, and further investigation is probably ethically difficult to achieve in the spontaneously ventilating intensive care patient. We also have no data on the ventilatory responses to hypercapnia and hypoxia, which would also be difficult to examine practically and ethically. The placebo group received more than twice as much morphine as patients receiving dexmedetomidine infusions after extubation, but there were no differences in respiratory rate or PaCO2 between the groups. We can not therefore determine from this study whether dexmedetomidine has any benefits over morphine from a respiratory perspective.
There were no differences in oxygen saturations between the groups because the administered oxygen concentration was adjusted to maintain satisfactory gas exchange. Interestingly, however, there were statistically significant higher PaO2 : FIO2 ratios in the dexmedetomidine group. This ratio allows for the variation in administered oxygen to patients during the study period, and gives some clinical indication of alveolar gas exchange. However, this variable was not a primary outcome variable for the present study, and may represent a type 1 error, although post hoc analysis reveals that the data have 80% power to detect a significant difference (α value 0.05). Further studies are obviously required.
Sedation continued over the extubation period, has been shown to reduce haemodynamic disturbances and myocardial ischaemia [13]. We have previously shown [1] that dexmedetomidine provides cardiovascular stability, with a reduction in rate-pressure product over the extubation period. A sedative agent that has analgesic properties, minimal effects on respiration and offers ischaemia protection would have enormous potential in the ICU. Dexmedetomidine may fulfill all of these roles, but at present we can only conclude that dexmedetomidine has no deleterious clinical effects on respiration when used in doses that are sufficient to provide adequate sedation and effective analgesia in the surgical population requiring intensive care.
PMCID: PMC29047  PMID: 11056756
α2-Adrenoceptor agonist; analgesia; dexmedetomidine; intensive care; postoperative; respiratory; sedation
8.  Idiopathic scoliosis. Gas exchange and the age dependence of arterial blood gases. 
Journal of Clinical Investigation  1976;58(4):825-833.
The aims were to examine the gas exchange and arterial blood gas abnormalities among patients with scoliosis, and the correlation of these abnormalities with age and severity of deformity. Means among 51 patients were as follows: age 25.4 +/- 17.5 yr, angle of scoliosis 80.2 +/- 29.9 (SD), vital capacity 1.94 +/- 0.91 (SD) (i.e. 60.6 +/- 19.2% of predicted), PaO2 85.8 +/- 12.0 (SD), PaCO2 42.4 +/- 8.0, physiological dead space to tidal volume ratio 0.438 +/- 0.074 (SD), and alveolar-arterial oxygen difference breathing air 14.9 +/- 8.9 (SD). Statistically significant correlations were as follows: the PaCO2 and physiological dead space to tidal volume ratio increased with age, and the PaO2 and alveolar ventilation decreased with age. The PaO2, alveolar ventilation, and tidal volume were inversely related to the angle of scoliosis and directly related to the vital capacity, precent predicted vital capacity, and the compliance of the respiratory system. The physiological dead space to tidal volume ratio and the alveolar-arterial oxygen difference were inversely related to the vital capacity, percent predicted vital capacity, and the compliance of the respiratory system. PaCO2 was directly related to the elastance of the respiratory system. We conclude that ventilation-blood flow maldistribution as a result of deformity of the rib cage was the primary abnormality in gas exchange, and that with age there was progressive deterioration in gas exchange. The age-dependent increase in PaCO2 and decrease in alveolar ventilation were due to the increasing physiological dead space to tidal volume ratio and failure of a compensatory increase in ventilation.
PMCID: PMC333245  PMID: 965490
9.  Effect of Lactate Accumulation during Exercise-induced Muscle Fatigue on the Sensorimotor Cortex 
Journal of Physical Therapy Science  2014;25(12):1637-1642.
[Purpose] During exercise, skeletal muscle motor units are recruited based on afferent sensory input following peripheral metabolic by-product accumulation. The purpose of this study was to investigate whether lactate plays a role in conveying fatigue-related information to the brain. [Subjects] Eleven healthy adults participated in this study. [Methods] Subjects performed handgrip exercises at 10%, 30%, and 50% maximal voluntary contraction for 120 s. They were monitored for brachial artery blood pressure, respiratory quotient, muscle fatigue (integrated electromyogram, median power frequency), blood lactate levels, muscle blood flow, and brain activity. [Results] The handgrip exercise protocol caused significant muscle fatigue based on 28% and 37% reductions in median power frequency detected at 30% and 50% maximal voluntary contraction, respectively. Subjects exhibited intensity-dependent increases in blood pressure, respiratory quotient, muscle blood flow, and circulating lactate concentrations. Furthermore, brain activity increased at 30% and 50% maximal voluntary contraction. Multiple regression analysis identified muscle blood flow at 30% maximal voluntary contraction and lactate at 50% maximal voluntary contraction with standardized partial regression coefficients of −0.64 and 0.75, respectively. [Conclusion] These data suggest that blood lactate concentration and muscle blood flow, which reflect muscle metabolism, may convey load intensity information to the brain during muscle fatigue.
PMCID: PMC3885857  PMID: 24409038
Lactate; Fatigue; Brain blood flow
10.  Respiratory Changes During Spinal Anaesthesia for Gynaecological Laparoscopic Surgery 
It is currently presumed that spinal anaesthesia can compromise respiratory muscle function during carbon dioxide (CO2) pneumoperitoneum. This observational study was designed to delineate the respiratory effects of CO2 pneumoperitoneum under spinal anaesthesia.
Patients & Methods:
Forty one patients undergoing elective gynecological laparoscopy were administered spinal anaesthesia with 15 mg heavy bupivacaine and 50 mcg of fentanyl. Heart rare, blood pressure, tidal volume, respiratory rate and end tidal CO2 were serially recorded before, during and after the pneumoperitoneum. Arterial blood gas analysis was done before and 20 min after initiation of pneumoperitoneum.
The mean heart rate and blood pressure decreased by less than 20% of the preoperative value. The mean tidal volume decreased from 353 ± 81(Standard Deviation) to 299±95 ml, p = 0.032, over the first 9 min after the pneumoperitoneum with a complete recovery towards the base line, 340 ± 72 ml, within 30 min during the surgery. The maximal inspiratory capacity declined from 1308±324 ml to 1067±296 ml at 20 min and recovered to 1187±267 ml, 5min after decompression. There was no observed change in the respiratory rate. Similarly, increase in the end tidal CO2 from 31.68±4.13 to 37.62±4.21 mmHg, p = 0.000, reached a plateau around 15 min and declined after decompression. Arterial carbon dioxide showed a corresponding increase at 20 min without change in arterial to end tidal CO2 difference. All observed changes were within the physiological limits.
In a conscious patient undergoing laparoscopy with pneumoperitoneum, under spinal anaesthesia, the preserved inspiratory diaphragmatic activity maintains ventilation and, the gas exchange within physiological limits. Hence it is a safe alternative to general anaesthesia.
PMCID: PMC3087263  PMID: 21547173
Spinal; Pneumoperitonium; Respiratory changes
11.  Increased mean carotid intima media thickness in type 2 diabetes mellitus patients with non-blood pressure component metabolic syndrome: A preliminary report 
Patients with type-2 diabetes mellitus have greater carotid intima media thickness and they are at risk for generalized atherosclerosis. This study aimed to compare the thickness of carotid artery intima media in type-2 diabetes mellitus patients with and without nonblood pressure component metabolic syndrome.
This was a comparative observational study conducted in the Departments of Pharmacology and Physiology in the College of Medicine, Al-Mustansiriyia University in cooperation with Baghdad Teaching Hospital.
Forty-six diabetic patients of both sexes with systolic blood pressure < 130 mm Hg and diastolic blood pressure < 85 mm Hg were subjected to high resolution B-mode ultrasonography of the common and internal carotid arteries. Patients were grouped into those without metabolic syndrome (Group I) and with nonblood pressure component metabolic syndrome (Group II).
The two-tailed unpaired Student's t-test was used in this study.
Significantly high mean thickness was observed in the common carotid intima media (0.824 ± 0.155 mm) but not in the internal carotid arteries in group II patients compared to group I patients (0.708 ± 0.113 mm). Group II also had a significant number of patients with increased lesion intima media thickness (≥ 1.1 mm).
The greater carotid intima media thickness observed in type 2 diabetes mellitus patients is related to the metabolic syndrome even in the absence of the blood pressure component.
PMCID: PMC2802360  PMID: 20062559
Intima media thickness; metabolic syndrome; type 2 diabetes mellitus
12.  Raising the sauropod neck: it costs more to get less 
Biology Letters  2009;5(3):317-319.
The long necks of gigantic sauropod dinosaurs are commonly assumed to have been used for high browsing to obtain enough food. However, this analysis questions whether such a posture was reasonable from the standpoint of energetics. The energy cost of circulating the blood can be estimated accurately from two physiological axioms that relate metabolic rate, blood flow rate and arterial blood pressure: (i) metabolic rate is proportional to blood flow rate and (ii) cardiac work rate is proportional to the product of blood flow rate and blood pressure. The analysis shows that it would have required the animal to expend approximately half of its energy intake just to circulate the blood, primarily because a vertical neck would have required a high systemic arterial blood pressure. It is therefore energetically more feasible to have used a more or less horizontal neck to enable wide browsing while keeping blood pressure low.
PMCID: PMC2679936  PMID: 19364714
dinosaur; sauropod; blood pressure; circulation; neck; feeding height
In addition to the results brought out in the separate sections I wish to direct especial attention to the following conclusions: (1) In ten cases of Cheyne-Stokes respiration observed clinically, the alternate periods of respiratory activity and apnœa were associated with Traube-Hering waves of blood pressure. These cases may be separated into two groups characterized by the relation of the respiratory changes to the changes of blood pressure. In one group the period of respiratory activity was associated with a rise of blood pressure, the period of apnœa with a fall; in the other group, the reverse relations existed. The former group included two cases of Cheyne-Stokes respiration occurring with increased intracranial tension; the latter contained eight cases with cardiac and arterial disease. (2) By means of cerebral compression, periodic respirations may be produced experimentally, and the relation of the blood pressure changes to the respiratory variations are the same as in the clinical cases with increased intracranial tension, namely, a rise of pressure with each group of respirations and a fall with each period of apnœa. In the experiments, during each respiratory group, the blood pressure rises above the line of intracranial tension and with each period of apnœa it falls below this line. With the disappearance of this relation, the periodicity of the respirations likewise disappears. It is probable that the same relation between the blood pressure and intracranial pressure exists when Cheyne-Stokes respiration occurs clinically in association with increased intracranial tension. (3) Disappearance of the periodic respiratory activity in the clinical cases of both groups is accompanied by disappearance of the waves of blood pressure. (4) The waves of blood pressure cannot be regarded as a mechanical effect of the periodic respiratory activity; on the contrary the latter must be due to the changes of blood pressure, or both phenomena may be referable to a common cause. (5) Cheyne-Stokes respiration in states of increased intracranial tension, with blood pressure waves rising and falling above and below the line of intracranial tension, is due to periodic activity of the respiratory, vasomotor, and cardio-inhibitory centres, the underlying cause of which is an alternate anæmia and blood supply to the medullary centres. The vasomotor centre, as the result of periodic increase and decrease of the stimulus, shows periodic variations in its activity. It is stimulated to greater activity during the periods of anæmia, and partially relaxes with each period of blood supply. During the periods of anæmia, the respiratory centre loses its irritability for the acting stimulus, and is therefore apnœic. It is finally stimulated to activity, either as a result of an increase in its irritability from a preceding rise of blood pressure, or from a great increase in the respiratory stimulus. The cardio-inhibitory centre is stimulated by the periods of anæmia. This stimulation causes slowing of the pulse, which passes off to a considerable extent with the following period of blood supply. (6) Cheyne-Stokes respiration has heretofore been regarded as always the manifestation of the same conditions and capable of the same explanation; the results of this work, on the contrary, show that two distinct groups of cases may be recognized, depending upon the relation of the blood pressure changes to the periodic respiratory activity.19 (7) The medullary centres show great differences in their susceptibility to anæmia. The respiratory centre is very susceptible to a much reduced blood supply; its irritability is rapidly reduced or lost upon the occurrence of marked or complete anæmia, and is rapidly regained when the blood supply is renewed if the anæmia has not been maintained too long. The effect of a considerable anæmia upon this centre is entirely different from that of a normal or somewhat reduced supply of blood which is more venous than normal, that is, contains more carbon dioxide and less oxygen, such as occurs with ordinary asphyxia. The vasomotor and cardio-inhibitory centres are not nearly so susceptible to anæmia. The former centre may, and frequently does, respond when in a condition of complete anæmia. (8) I am able to confirm, as a result of my experiments upon cerebral compression, in all essential details the conclusions of Cushing, and the general law formulated by him, namely that "an increase of intracranial tension occasions a rise of blood pressure which tends to find a level slightly above that of the pressure exerted against the medulla."
PMCID: PMC2124640  PMID: 19867060
14.  Perfusion/ventilation mismatch during exercise in chronic heart failure: an investigation of circulatory determinants. 
British Heart Journal  1995;74(1):27-33.
BACKGROUND--The ventilatory cost of carbon dioxide (CO2) elimination on exercise (VE/VCO2) is increased in chronic heart failure (CHF). This reflects increased physiological dead space ventilation secondary to mismatching between perfusion and ventilation during exercise. The objectives of this study were to investigate the relation of this increased VE/VCO2 slope to the syndrome of CHF or to limitation of the exercise related increase of pulmonary blood flow, or both. PATIENTS AND METHODS--Maximal treadmill exercise tests with respiratory gas analysis were performed in 45 patients with CHF (defined as resting left ventricular ejection fraction < 40% on radionuclide scan); 15 normal controls; 23 patients with coronary artery disease and normal resting left ventricular function; and 13 pacemaker dependent patients (six with and seven without CHF) directly comparing exercise responses in rate responsive and fixed rate mode. RESULTS--Patients with CHF had a steeper VE/VCO2 slope than normal controls: this was related inversely to peak VO2 below 20 mol/min/kg. In patients with coronary artery disease in whom peak VO2 (at respiratory exchange ratio > 1) was as limited as in the patients with CHF but resting left ventricular function was normal, the VE/VCO2 slope was normal. In pacemaker dependent patients fixed rate pacing resulted in lower exercise capacity and peak VO2 than rate responsive pacing; the VE/VCO2 slope was normal in patients without CHF but steeper than normal in patients with CHF; the VE/VCO2 slope was steeper during fixed rate than during rate responsive pacing in these patients with CHF. CONCLUSIONS--These findings suggest that the perfusion/ventilation mismatch during exercise in CHF is related to the chronic consequences of the syndrome and not directly to limitation of exercise related pulmonary flow. Only when the syndrome of CHF is present can matching between perfusion and ventilation be acutely influenced by changes in pulmonary flow.
PMCID: PMC483942  PMID: 7662449
15.  A Model Analysis of Arterial Oxygen Desaturation during Apnea in Preterm Infants 
PLoS Computational Biology  2009;5(12):e1000588.
Rapid arterial O2 desaturation during apnea in the preterm infant has obvious clinical implications but to date no adequate explanation for why it exists. Understanding the factors influencing the rate of arterial O2 desaturation during apnea () is complicated by the non-linear O2 dissociation curve, falling pulmonary O2 uptake, and by the fact that O2 desaturation is biphasic, exhibiting a rapid phase (stage 1) followed by a slower phase when severe desaturation develops (stage 2). Using a mathematical model incorporating pulmonary uptake dynamics, we found that elevated metabolic O2 consumption accelerates throughout the entire desaturation process. By contrast, the remaining factors have a restricted temporal influence: low pre-apneic alveolar causes an early onset of desaturation, but thereafter has little impact; reduced lung volume, hemoglobin content or cardiac output, accelerates during stage 1, and finally, total blood O2 capacity (blood volume and hemoglobin content) alone determines during stage 2. Preterm infants with elevated metabolic rate, respiratory depression, low lung volume, impaired cardiac reserve, anemia, or hypovolemia, are at risk for rapid and profound apneic hypoxemia. Our insights provide a basic physiological framework that may guide clinical interpretation and design of interventions for preventing sudden apneic hypoxemia.
Author Summary
When breathing stops, the flow of O2 into and the flow of CO2 out of the body cease. Such an event, termed an apnea, can be especially dangerous in preterm infants in whom it can lead to a rapid decline in arterial O2 saturation, reaching rates of 3–8% per second, rapidly reducing O2 to a level that could lead to neurological damage. Despite extensive experimental research, we have a poor mechanistic understanding of the causes of rapidly developing hypoxemia. We describe a new mathematical model that allows examination of the importance of the major cardiorespiratory factors that are likely to influence the speed at which arterial hypoxemia worsens during apnea. We found that high metabolic rate as well as reduced pre-apneic ventilation, lung volume, cardiac output, hemoglobin content, blood O2 affinity, and blood volume accelerate the development of hypoxemia during apnea. Importantly, the cardiorespiratory factors that contribute to rapid hypoxemia are all pertinent to the preterm infant during early postnatal development. Thus the newborn is highly susceptible to rapid and severe desaturation, potentially explaining the propensity of preterm infants, particularly those with apnea, to neurological impairment.
PMCID: PMC2778953  PMID: 19997495
16.  Blood-Informative Transcripts Define Nine Common Axes of Peripheral Blood Gene Expression 
PLoS Genetics  2013;9(3):e1003362.
We describe a novel approach to capturing the covariance structure of peripheral blood gene expression that relies on the identification of highly conserved Axes of variation. Starting with a comparison of microarray transcriptome profiles for a new dataset of 189 healthy adult participants in the Emory-Georgia Tech Center for Health Discovery and Well-Being (CHDWB) cohort, with a previously published study of 208 adult Moroccans, we identify nine Axes each with between 99 and 1,028 strongly co-regulated transcripts in common. Each axis is enriched for gene ontology categories related to sub-classes of blood and immune function, including T-cell and B-cell physiology and innate, adaptive, and anti-viral responses. Conservation of the Axes is demonstrated in each of five additional population-based gene expression profiling studies, one of which is robustly associated with Body Mass Index in the CHDWB as well as Finnish and Australian cohorts. Furthermore, ten tightly co-regulated genes can be used to define each Axis as “Blood Informative Transcripts” (BITs), generating scores that define an individual with respect to the represented immune activity and blood physiology. We show that environmental factors, including lifestyle differences in Morocco and infection leading to active or latent tuberculosis, significantly impact specific axes, but that there is also significant heritability for the Axis scores. In the context of personalized medicine, reanalysis of the longitudinal profile of one individual during and after infection with two respiratory viruses demonstrates that specific axes also characterize clinical incidents. This mode of analysis suggests the view that, rather than unique subsets of genes marking each class of disease, differential expression reflects movement along the major normal Axes in response to environmental and genetic stimuli.
Author Summary
Gene expression profiling of human tissues typically reveals a complex structure of co-regulation of gene expression that has yet to be explored with regard to the genetic and environmental sources of covariance or its implications for quantitative and clinical traits. Here we show that peripheral blood samples from multiple studies can be described by nine common axes of variation that collectively explain up to one half of all transcriptional variance in blood. Specific axes diverge according to environmental variables such as lifestyle and infectious disease exposure, but a strong genetic component to axis regulation is also inferred. As few as 10 “blood-informative transcripts” (BITs) can be used to define each axis and potentially classify individuals with respect to multiple aspects of their blood and immune function. The analysis of longitudinal profiles of one individual shows how these change relative to clinical shifts in metabolic profile following viral infection. The notion that gene expression diverges along genetic paths of least resistance defined by these axes has important implications for interpreting differential expression in case-control studies of disease.
PMCID: PMC3597511  PMID: 23516379
Experimental physiology  2011;97(3):311-318.
Accumulating evidence over the past 25 years depicts the healthy pulmonary system as a limiting factor of whole body endurance exercise performance. This brief overview emphasizes three respiratory system-related mechanisms which impair O2 transport to the locomotor musculature [arterial O2 content (CaO2) × leg blood flow (QL)], i.e. the key determinant of an individual’s aerobic capacity and ability to resist fatigue. First, the respiratory system often fails to prevent arterial desaturation substantially below resting values and thus compromises CaO2. Especially susceptible to this threat to convective O2 transport are well-trained endurance athletes characterized by high metabolic and ventilatory demands and, likely due to anatomical and morphologic gender differences, active females. Second, fatiguing respiratory muscle work (Wresp) associated with strenuous exercise elicits sympathetically-mediated vasoconstriction in limb-muscle vasculature which compromises QL. This impact on limb O2 transport is independent of fitness level and affects all individuals, however, only during sustained, high-intensity endurance exercise performed above ~85% VO2max. And third, excessive fluctuations in intrathoracic pressures accompanying Wresp can limit cardiac output and therefore QL. Exposure to altitude exacerbates the respiratory system limitations observed at sea level and further reduces CaO2 and substantially increases exercise-induced Wresp. Taken together, the intact pulmonary system of healthy endurance athletes impairs locomotor muscle O2 transport during strenuous exercise by failing to ensure optimal arterial oxygenation and compromising QL. This respiratory system-related impact exacerbates the exercise-induced development of fatigue and compromises endurance performance.
PMCID: PMC3934509  PMID: 22125308
pulmonary ventilation; blood flow distribution; gas exchange; exercise-induced arterial hypoxemia; arterial oxygen saturation; work of breathing
18.  Hemodynamic and Metabolic Correlates of Perinatal White Matter Injury Severity 
PLoS ONE  2013;8(12):e82940.
Background and Purpose
Although the spectrum of perinatal white matter injury (WMI) in preterm infants is shifting from cystic encephalomalacia to milder forms of WMI, the factors that contribute to this changing spectrum are unclear. We hypothesized that the variability in WMI quantified by immunohistochemical markers of inflammation could be correlated with the severity of impaired blood oxygen, glucose and lactate.
We employed a preterm fetal sheep model of in utero moderate hypoxemia and global severe but not complete cerebral ischemia that reproduces the spectrum of human WMI.
Since there is small but measurable residual brain blood flow during occlusion, we sought to determine if the metabolic state of the residual arterial blood was associated with severity of WMI. Near the conclusion of hypoxia-ischemia, we recorded cephalic arterial blood pressure, blood oxygen, glucose and lactate levels. To define the spectrum of WMI, an ordinal WMI rating scale was compared against an unbiased quantitative image analysis protocol that provided continuous histo-pathological outcome measures for astrogliosis and microgliosis derived from the entire white matter.
A spectrum of WMI was observed that ranged from diffuse non-necrotic lesions to more severe injury that comprised discrete foci of microscopic or macroscopic necrosis. Residual arterial pressure, oxygen content and blood glucose displayed a significant inverse association with WMI and lactate concentrations were directly related. Elevated glucose levels were the most significantly associated with less severe WMI.
Our results suggest that under conditions of hypoxemia and severe cephalic hypotension, WMI severity measured using unbiased immunohistochemical measurements correlated with several physiologic parameters, including glucose, which may be a useful marker of fetal response to hypoxia or provide protection against energy failure and more severe WMI.
PMCID: PMC3886849  PMID: 24416093
19.  Pulmonary heart disease: The heart-lung interaction and its impact on patient phenotypes 
Pulmonary Circulation  2013;3(1):5-19.
Pulmonary heart disease (PHD) refers to altered structure or function of the right ventricle occurring in association with abnormal respiratory function. Although nearly always associated with some degree of PH, the degree, nature, severity, and causality of PH in relation to the PHD is not necessarily linear and direct. Abnormal gas exchange is a fundamental underpinning of PHD, affecting pulmonary vascular, cardiac, renal, and neurohormonal systems. Direct and indirect effects of chronic respiratory disease can disrupt the right ventricular-pulmonary arterial (RV-PA) interaction and, likewise, factors such as sympathetic nervous system activation, altered blood viscosity, and salt and water retention can function in a feedback loop to further influence RV-PA function. Left heart function may also be affected, especially in those with pre-existing left heart disease. Thus, the physiologic interactions between abnormal respiratory and cardiovascular function are complex, with PHD representing a heterogeneous end organ effect of an integrated multisystem process. In this review, we propose to separate PHD into two distinct entities, “Type I” and “Type II” PHD. Type I PHD is most common, and refers to subjects with chronic respiratory disease (CRD) where the perturbations in respiratory function dominate over more mild cardiac and circulatory disruptions. In contrast, Type II PHD refers to the smaller subset of patients with more severe pulmonary vascular and right heart dysfunction, whom often present in a fashion similar to patients with PAH. Phenotypic differences are not made by PA pressure alone, but instead by differences in the overall physiology and clinical syndrome. Thus, key differences can be seen in symptomatology, physical signs, cardiac imaging, hemodynamics, and the cardiovascular and gas exchange responses to exercise. Such key baseline differences in the overall physiologic phenotype are likely critical to predicting response to PH specific therapy. Recognizing PHD as distinct phenotypes assists in the necessary distinction of these patients, and may also provide a key clinical and pathophysiologic framework for improved patient selection for future studies investigating the role of pulmonary hypertension-specific therapies in PHD.
PMCID: PMC3641739  PMID: 23662171
pulmonary heart disease; cor pulmonale; pulmonary hypertension; group 3 pulmonary hypertension; pulmonary vascular disease; chronic respiratory disease; right ventricular function; exercise physiology; ventilatory inefficiency
20.  Early fiberoptic bronchoscopy during non-invasive ventilation in patients with decompensated chronic obstructive pulmonary disease due to community-acquired-pneumonia 
Critical Care  2010;14(2):R80.
Inefficient clearance of copious respiratory secretion is a cause of non-invasive positive pressure ventilation (NPPV) failure, especially in chronic respiratory patients with community-acquired-pneumonia (CAP) and impaired consciousness. We postulated that in such a clinical scenario, when intubation and conventional mechanical ventilation (CMV) are strongly recommended, the suction of secretions with fiberoptic bronchoscopy (FBO) may increase the chance of NPPV success. The objective of this pilot study was, firstly, to verify the safety and effectiveness of early FBO during NPPV and, secondly, to compare the hospital outcomes of this strategy versus a CMV-based strategy in patients with decompensated chronic obstructive pulmonary disease (COPD) due to CAP who are not appropriate candidates for NPPV because of inefficient mucous clearance and hypercapnic encephalopathy (HE).
This is a 12-month prospective matched case-control study performed in one respiratory semi-intensive care unit (RSICU) with expertise in NPPV and in one intensive care unit (ICU). Fifteen acutely decompensated COPD patients with copious secretion retention and HE due to CAP undergoing NPPV in RSICU, and 15 controls (matched for arterial blood gases, acute physiology and chronic health evaluation score III, Kelly-Matthay scale, pneumonia extension and severity) receiving CMV in the ICU were studied.
Two hours of NPPV significantly improved arterial blood gases, Kelly and cough efficiency scores without FBO-related complications. NPPV avoided intubation in 12/15 patients (80%). Improvement in arterial blood gases was similar in the two groups, except for a greater PaO2/fraction of inspired oxygen ratio with CMV. The rates of overall and septic complications, and of tracheostomy were lower in the NPPV group (20%, 20%, and 0%) versus the CMV group (80%, 60%, and 40%; P < 0.05). Hospital mortality, duration of hospitalisation and duration of ventilation were similar in the two groups.
In patients with decompensated COPD due to CAP who are candidates for CMV because of HE and inability to clear copious secretions, NPPV with early therapeutic FBO performed by an experienced team is a feasible, safe and effective alternative strategy.
PMCID: PMC2887203  PMID: 20429929
21.  Clinicopathological correlations in cor pulmonale. 
Thorax  1992;47(7):494-498.
BACKGROUND: The relation between pulmonary disease and physiological abnormality in patients with hypoxic cor pulmonale is controversial and the association between arterial hypoxaemia and right ventricular hypertrophy has been challenged. To address these problems matched patients treated with and without domiciliary oxygen were studied. METHODS: Necropsy data were obtained on 19 patients (14 male), 10 of whom had been treated with domiciliary oxygen. Pulmonary artery pressure and total pulmonary vascular resistance as well as blood gas tensions during the breathing of air and oxygen were available for the six months before death. Formalin fixed lung slices were assessed for panacinar and centriacinar emphysema. Right and left ventricular weights were measured and their ratio (LV&S/RV) was used as an index of right ventricular hypertrophy. Carotid body weights were available in 14 cases. RESULTS: Fourteen patients died of respiratory failure and antemortem thrombus was found in the pulmonary arteries of eight cases. Physiological measurements were unrelated to the degree of macroscopic emphysema, pulmonary hypertension, or daytime blood gas tensions. When allowance was made for the higher "ambient" arterial oxygen tension (PaO2) of those who had oxygen, PaO2 was correlated with LV&S/RV (r = 0.79), absolute right ventricular weight (r = -0.53), and carotid body weight (r = 0.68). CONCLUSIONS: These data show that in hypoxic cor pulmonale in vivo physiological disturbances are poor indicators of the underlying disease process. The relation of "ambient" PaO2 to right ventricular hypertrophy and carotid body weight suggests that domiciliary oxygen therapy might lead to regression of such established disease.
PMCID: PMC463856  PMID: 1412090
Although the results we have recorded merely serve to indicate the possibilities of this interesting field of investigation, we have sufficient data to enable us to draw certain general conclusions. In the first place it is evident that the bloods of the more highly developed marine invertebrates, such as the active Crustacia and the Cephalopods, are specially adapted for the carriage of carbon dioxide. The quantity of carbon dioxide taken up by the blood of Maia, Palinurus, or Octopus at any given tension of the gas is, in general, about twice or three times as great as that which is taken up by sea water under the same conditions. On the other hand, the blood of a slow, creeping form, such as Aplysia, or of a sessile animal such as the ascidian Phallusia shows no more adaptation for the carriage of carbon dioxide than does sea water. But our estimations of the CO2 content of the blood as it circulates in the bodies of these more active invertebrates show that the conditions of transport of this gas differ considerably in some respects from those which obtain in mammals. For the invertebrate blood in the body contains only a relatively small quantity of carbon dioxide, averaging in the forms we examined from 3 to 10 cc. per 100 cc. of blood. This forms a marked contrast with the condition found in mammals where even the arterial blood contains about 50 cc. of CO2 per 100 cc. of blood. The invertebrate, therefore, works at a very low CO2 tension. There is a twofold significance in this circumstance. In the first place, it means that only the first portion of the carbon dioxide dissociation curve is in use in the respiratory mechanism. Now an inspection of our curves will show that at these low carbon dioxide tensions the dissociation curves tend to be steeper than at higher tensions. As we intend to show in a later paper it can be proved mathematically that, other things being equal, a blood with a carbon dissociation curve of moderate steepness, i.e. one in which the carbon dioxide content of the blood increases fairly rapidly with increase of carbon dioxide tension, is a more efficient carrier of the gas from the tissues to a respiratory surface than a blood in which the dissociation curve is either steeper or flatter. It would seem as if the active invertebrates avoid the use of too flat a part of their CO2 dissociation curves by working over the initial steeper portion. Furthermore, it is seen that over the range of this initial steep portion of the curves the changes of reaction produced by the uptake of carbon dioxide are much smaller than at higher tensions of the gas; for these initial portions of the curves are more nearly parallel to the lines of constant reaction calculated for a temperature of 15°C. according to Hasselbalch's method (10) on the assumption that the whole of the combined CO2 is in the form of sodium bicarbonate. It is evident also that on this assumption the hydrogen ion concentration of the blood of invertebrates (with the exception of the tunicates) would appear to be practically the same as that of the warm-blooded vertebrates—a conclusion confirmed by the direct measurements of Quagliariello (9). On the other hand, our measurements do not lend support to the idea put forward by Collip (4) that in order to maintain an appropriate faintly alkaline reaction an invertebrate needs to retain carbon dioxide in its blood at a comparatively high tension. This idea was based on the observation that at comparatively high CO2 tensions the blood of invertebrates contains considerably more sodium bicarbonate than does sea water. But our curves show that this is no longer true at the lower values of carbon dioxide tension, the amount of sodium bicarbonate falling off more rapidly in the blood than in the sea water with diminution of the carbon dioxide tension so that in order to maintain an appropriate reaction in the blood only a comparatively small tension of CO2 is required. The largest amount of carbon dioxide that we found present in the circulating blood of any of the types examined was 9.7 cc. per 100 cc. of blood in the case of Maia, and in most cases the amount was considerably less. But even this lowest value corresponds to a tension of CO2 of only about 3 mm., so that the tension gradient across the gill membrane must be even less than this. We would emphasize rather the circumstances that as the portion of the dissociation curve over which the reaction is approximately constant is of but small extent, it is necessary that in an active form like Octopus the carbon dioxide produced should be removed rapidly lest an accumulation of it should cause the limits of normal reaction to be exceeded; and this need is correlated with the extreme efficiency of the respiratory apparatus in this animal. It is interesting to notice that the mammal which, in order to obtain an appropriate reaction in the blood, has to work at relatively high carbon dioxide tensions where the dissociation curve is comparatively flat, secures a steeper physiological CO2 dissociation curve in the body, and with it a more efficient carriage of carbon dioxide and a more constant reaction in the circulating fluid, in virtue of the effect of oxygenation on the carbon dioxide-combining power of its blood (3, 6). Returning now to the consideration of the actual form of the dissociation curves we have obtained—it is a significant fact that it is in those forms such as Maia, Palinurus, and Octopus whose bloods are rich in proteins—particularly hemocyanine—that the initial steep portion of the curve is observed. This suggests that in these forms the blood proteins act as weak acids and expel carbon dioxide from the blood at the low tensions which include the physiological range, just as in vertebrates the hemoglobin similarly displaces carbonic acid from its combination with alkali metal. On the other hand the cœlomic fluid of Aplysia contains no pigment and only 0.00672 per cent of protein nitrogen (Bottazzi (11)) and shows no initial rapidly ascending portion of the CO2 dissociation curve. This is supported by the observation of Quagliariello (9) that the acid-neutralising power of the blood of an invertebrate is roughly proportional to its protein content. It seems as if the proteins of invertebrate blood like the blood proteins of vertebrates, exist in the form of sodium salts which are capable of giving up sodium for the transport of carbon dioxide as sodium bicarbonate. That this is so in the case of hemocyanine follows from the fact that the isoelectric point of this pigment occurs at a hydrogen ion concentration of 2.12 x 10–5 N, i.e. at a pH of 4.67 (Quagliariello (12)) so that in the alkaline blood of the invertebrates possessing it, hemocyanine will act as a weak acid. It is probable that the initial steep portion of the carbon dioxide dissociation curves which we have found to be of such importance in the respiration physiology of Octopus, Palinurus, and Maia is produced by the competition of this acid with carbonic acid for the available sodium of the blood.
PMCID: PMC2140628  PMID: 19872059
23.  Radius exponent in elastic and rigid arterial models optimized by the least energy principle 
Physiological Reports  2014;2(2):e00236.
It was analyzed in normal physiological arteries whether the least energy principle would suffice to account for the radius exponent x. The mammalian arterial system was modeled as two types, the elastic or the rigid, to which Bernoulli's and Hagen‐Poiseuille's equations were applied, respectively. We minimized the total energy function E, which was defined as the sum of kinetic, pressure, metabolic and thermal energies, and loss of each per unit time in a single artery transporting viscous incompressible blood. Assuming a scaling exponent α between the vessel radius (r) and length (l) to be 1.0, x resulted in 2.33 in the elastic model. The rigid model provided a continuously changing x from 2.33 to 3.0, which corresponded to Uylings’ and Murray's theories, respectively, through a function combining Reynolds number with a proportional coefficient of the l − r relationship. These results were expanded to an asymmetric arterial fractal tree with the blood flow preservation rule. While x in the optimal elastic model accounted for around 2.3 in proximal systemic (r >1 mm) and whole pulmonary arteries (r ≥0.004 mm), optimal x in the rigid model explained 2.7 in elastic‐muscular (0.1 < r ≤1 mm) and 3.0 in peripheral resistive systemic arteries (0.004 ≤ r ≤0.1 mm), in agreement with data obtained from angiographic, cast‐morphometric, and in vivo experimental studies in the literature. The least energy principle on the total energy basis provides an alternate concept of optimality relating to mammalian arterial fractal dimensions under α = 1.0.
The least energy principle explains the radius exponent x of each elastic and rigid arterial system. Assuming that a scaling exponent between l − r relationship is equal to 1.0, x in the optimal elastic arterial model resulted in 2.33. The optimal rigid arterial model provided a continuously changing x from 2.33 to 3.0, which corresponded to Uylings’ and Murray's theories, respectively, through a function combining Reynolds number with a proportional coefficient of the l − r relationship.
PMCID: PMC3966250  PMID: 24744905
Bernoulli's equation; Murray's law; optimality principle; Poiseuille's law; Reynolds number
24.  Acid base changes in arterial and central venous blood during cardiopulmonary resuscitation. 
Archives of Emergency Medicine  1992;9(2):169-176.
Twenty-seven patients in cardiopulmonary arrest had simultaneous measurements of arterial and central venous blood gases during cardiopulmonary resuscitation (CPR) with a pneumatic chest comparison and ventilation device. Mean central venous and arterial hydrogen ion concentrations, PCO2 and calculated bicarbonate concentrations were significantly different (P less than 0.01) at all sampling times (0, 10 and 20 min). Central venous blood samples predominantly showed a respiratory acidosis in contrast to a mixed disturbance in arterial samples inclined towards a metabolic acidosis. The mean difference between central venous PCO2 (pcv CO2) and arterial PCO2 (pa CO2) ranged from 5.18 to 5.83 kPa reflecting the low blood flow in patients undergoing CPR. Measurement of arterial Po2 indicated adequate oxygenation using the pneumatic device. Arterial blood gas analysis alone does not reflect tissue acid base status. Bicarbonate administration during CPR may have adverse effects and any decision as to its use should be based on central venous blood gas estimations.
PMCID: PMC1285855  PMID: 1326975
25.  HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology 
We present HepatoNet1, a manually curated large-scale metabolic network of the human hepatocyte that encompasses >2500 reactions in six intracellular and two extracellular compartments.Using constraint-based modeling techniques, the network has been validated to replicate numerous metabolic functions of hepatocytes corresponding to a reference set of diverse physiological liver functions.Taking the detoxification of ammonia and the formation of bile acids as examples, we show how these liver-specific metabolic objectives can be achieved by the variable interplay of various metabolic pathways under varying conditions of nutrients and oxygen availability.
The liver has a pivotal function in metabolic homeostasis of the human body. Hepatocytes are the principal site of the metabolic conversions that underlie diverse physiological functions of the liver. These functions include provision and homeostasis of carbohydrates, amino acids, lipids and lipoproteins in the systemic blood circulation, biotransformation, plasma protein synthesis and bile formation, to name a few. Accordingly, hepatocyte metabolism integrates a vast array of differentially regulated biochemical activities and is highly responsive to environmental perturbations such as changes in portal blood composition (Dardevet et al, 2006). The complexity of this metabolic network and the numerous physiological functions to be achieved within a highly variable physiological environment necessitate an integrated approach with the aim of understanding liver metabolism at a systems level. To this end, we present HepatoNet1, a stoichiometric network of human hepatocyte metabolism characterized by (i) comprehensive coverage of known biochemical activities of hepatocytes and (ii) due representation of the biochemical and physiological functions of hepatocytes as functional network states. The network comprises 777 metabolites in six intracellular (cytosol, endoplasmic reticulum and Golgi apparatus, lysosome, mitochondria, nucleus, and peroxisome) and two extracellular compartments (bile canaliculus and sinusoidal space) and 2539 reactions, including 1466 transport reactions. It is based on the manual evaluation of >1500 original scientific research publications to warrant a high-quality evidence-based model. The final network is the result of an iterative process of data compilation and rigorous computational testing of network functionality by means of constraint-based modeling techniques. We performed flux-balance analyses to validate whether for >300 different metabolic objectives a non-zero stationary flux distribution could be established in the network. Figure 1 shows one such functional flux mode associated with the synthesis of the bile acid glycochenodeoxycholate, one important hepatocyte-specific physiological liver function. Besides those pathways directly linked to the synthesis of the bile acid, the mevalonate pathway and the de novo synthesis of cholesterol, the flux mode comprises additional pathways such as gluconeogenesis, the pentose phosphate pathway or the ornithine cycle because the calculations were routinely performed on a minimal set of exchangeable metabolites, that is all reactants were forced to be balanced and all exportable intermediates had to be catabolized into non-degradable end products. This example shows how HepatoNet1 under the challenges of limited exchange across the network boundary can reveal numerous cross-links between metabolic pathways traditionally perceived as separate entities. For example, alanine is used as gluconeogenic substrate to form glucose-6-phosphate, which is used in the pentose phosphate pathway to generate NADPH. The glycine moiety for bile acid conjugation is derived from serine. Conversion of ammonia into non-toxic nitrogen compounds is one central homeostatic function of hepatocytes. Using the HepatoNet1 model, we investigated, as another example of a complex metabolic objective dependent on systemic physiological parameters, how the consumption of oxygen, glucose and palmitate is affected when an external nitrogen load is converted in varying proportions to the non-toxic nitrogen compounds: urea, glutamine and alanine. The results reveal strong dependencies between the available level of oxygen and the substrate demand of hepatocytes required for effective ammonia detoxification by the liver.
Oxygen demand is highest if nitrogen is exclusively transformed into urea. At lower fluxes into urea, an intriguing pattern for oxygen demand is predicted: oxygen demand attains a minimum if the nitrogen load is directed to urea, glutamine and alanine with relative fluxes of 0.17, 0.43 and 0.40, respectively (Figure 2A). Oxygen demand in this flux distribution is four times lower than for the maximum (100% urea) and still 77 and 33% lower than using alanine and glutamine as exclusive nitrogen compounds, respectively. This computationally predicted tendency is consistent with the notion that the zonation of ammonia detoxification, that is the preferential conversion of ammonia to urea in periportal hepatocytes and to glutamine in perivenous hepatocytes, is dictated by the availability of oxygen (Gebhardt, 1992; Jungermann and Kietzmann, 2000). The decreased oxygen demand in flux distributions using higher proportions of glutamine or alanine is accompanied by increased uptake of the substrates glucose and palmitate (Figure 2B). This is due to an increased demand of energy and carbon for the amidation and transamination of glutamate and pyruvate to discharge nitrogen in the form of glutamine and alanine, respectively. In terms of both scope and specificity, our model bridges the scale between models constructed specifically to examine distinct metabolic processes of the liver and modeling based on a global representation of human metabolism. The former include models for the interdependence of gluconeogenesis and fatty-acid catabolism (Chalhoub et al, 2007), impairment of glucose production in von Gierke's and Hers' diseases (Beard and Qian, 2005) and other processes (Calik and Akbay, 2000; Stucki and Urbanczik, 2005; Ohno et al, 2008). The hallmark of these models is that each of them focuses on a small number of reactions pertinent to the metabolic function of interest embedded in a customized representation of the principal pathways of central metabolism. HepatoNet1, currently, outperforms liver-specific models computationally predicted (Shlomi et al, 2008) on the basis of global reconstructions of human metabolism (Duarte et al, 2007; Ma and Goryanin, 2008). In contrast to either of the aforementioned modeling scales, HepatoNet1 provides the combination of a system-scale representation of metabolic activities and representation of the cell type-specific physical boundaries and their specific transport capacities. This allows for a highly versatile use of the model for the analysis of various liver-specific physiological functions. Conceptually, from a biological system perspective, this type of model offers a large degree of comprehensiveness, whereas retaining tissue specificity, a fundamental design principle of mammalian metabolism. HepatoNet1 is expected to provide a structural platform for computational studies on liver function. The results presented herein highlight how internal fluxes of hepatocyte metabolism and the interplay with systemic physiological parameters can be analyzed with constraint-based modeling techniques. At the same time, the framework may serve as a scaffold for complementation of kinetic and regulatory properties of enzymes and transporters for analysis of sub-networks with topological or kinetic modeling methods.
We present HepatoNet1, the first reconstruction of a comprehensive metabolic network of the human hepatocyte that is shown to accomplish a large canon of known metabolic liver functions. The network comprises 777 metabolites in six intracellular and two extracellular compartments and 2539 reactions, including 1466 transport reactions. It is based on the manual evaluation of >1500 original scientific research publications to warrant a high-quality evidence-based model. The final network is the result of an iterative process of data compilation and rigorous computational testing of network functionality by means of constraint-based modeling techniques. Taking the hepatic detoxification of ammonia as an example, we show how the availability of nutrients and oxygen may modulate the interplay of various metabolic pathways to allow an efficient response of the liver to perturbations of the homeostasis of blood compounds.
PMCID: PMC2964118  PMID: 20823849
computational biology; flux balance; liver; minimal flux

Results 1-25 (764500)