Search tips
Search criteria

Results 1-25 (620136)

Clipboard (0)

Related Articles

1.  In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma 
Although dendritic cells (DCs) play an important role in sensitization to inhaled allergens, their function in ongoing T helper (Th)2 cell–mediated eosinophilic airway inflammation underlying bronchial asthma is currently unknown. Here, we show in an ovalbumin (OVA)-driven murine asthma model that airway DCs acquire a mature phenotype and interact with CD4+ T cells within sites of peribronchial and perivascular inflammation. To study whether DCs contributed to inflammation, we depleted DCs from the airways of CD11c-diphtheria toxin (DT) receptor transgenic mice during the OVA aerosol challenge. Airway administration of DT depleted CD11c+ DCs and alveolar macrophages and abolished the characteristic features of asthma, including eosinophilic inflammation, goblet cell hyperplasia, and bronchial hyperreactivity. In the absence of CD11c+ cells, endogenous or adoptively transferred CD4+ Th2 cells did not produce interleukin (IL)-4, IL-5, and IL-13 in response to OVA aerosol. In CD11c-depleted mice, eosinophilic inflammation and Th2 cytokine secretion were restored by adoptive transfer of CD11c+ DCs, but not alveolar macrophages. These findings identify lung DCs as key proinflammatory cells that are necessary and sufficient for Th2 cell stimulation during ongoing airway inflammation.
PMCID: PMC2213109  PMID: 15781587
2.  GM-CSF transgene expression in the airway allows aerosolized ovalbumin to induce allergic sensitization in mice. 
Journal of Clinical Investigation  1998;102(9):1704-1714.
The purpose of this study was to explore whether repeated exposure to aerosolized ovalbumin (OVA) in the context of local expression of GM-CSF can initiate a Th2-driven, eosinophilic inflammation in the airways. On day -1, Balb/c mice were infected intranasally with an adenovirus construct expressing GM-CSF (Ad/GM-CSF). From day 0 to day 9 mice were exposed daily to an OVA aerosol. Mice exposed to OVA alone did not show any evidence of airway inflammation. Mice receiving both Ad/GM-CSF and aerosolized OVA exhibited marked airway inflammation characterized by eosinophilia and goblet cell hyperplasia. Migration of eosinophils into the airway was preceded by a rise in IL-5 and IL-4. Both IL-5 and class II MHC were critically required to generate airway eosinophilia. After resolution, airway eosinophilia was reconstituted after a single OVA exposure. Flow cytometric analysis of dispersed lung cells revealed an increase in macrophages and dendritic cells expressing B7.1 and B7.2, and expansion of activated (CD69-expressing) CD4 and CD8 T cells in mice exposed to OVA and Ad/GM-CSF. Our data indicate that expression of GM-CSF in the airway compartment increases local antigen presentation capacity, and concomitantly facilitates the development of an antigen-specific, eosinophilic inflammatory response to an otherwise innocuous antigen.
PMCID: PMC509118  PMID: 9802884
3.  Syk Activation in Dendritic Cells Is Essential for Airway Hyperresponsiveness and Inflammation 
We evaluated the role of Syk, using an inhibitor, on allergen-induced airway hyperresponsiveness (AHR) and airway inflammation in a system shown to be B cell– and mast cell–independent. Sensitization of BALB/c mice with ovalbumin (OVA) and alum after three consecutive OVA challenges resulted in AHR to inhaled methacholine and airway inflammation. The Syk inhibitor R406 (30 mg/kg, administered orally, twice daily) prevented the development of AHR, increases in eosinophils and lymphocytes and IL-13 levels in bronchoalveolar lavage (BAL) fluid, and goblet cell metaplasia when administered after sensitization and before challenge with OVA. Levels of IL-4, IL-5, and IFN-γ in BAL fluid and allergen-specific antibody levels in serum were not affected by treatment. Because many of these responses may be influenced by dendritic cell function, we investigated the effect of R406 on bone marrow–derived dendritic cell (BMDC) function. Co-culture of BMDC with immune complexes of OVA and IgG anti-OVA together with OVA-sensitized spleen mononuclear cells resulted in increases in IL-13 production. IL-13 production was inhibited if the BMDCs were pretreated with the Syk inhibitor. Intratracheal transfer of immune complex-pulsed BMDCs (but not nonpulsed BMDCs) to naive mice before airway allergen challenge induced the development of AHR and increases in BAL eosinophils and lymphocytes. All of these responses were inhibited if the transferred BMDCs were pretreated with R406. These results demonstrate that Syk inhibition prevents allergen-induced AHR and airway inflammation after systemic sensitization and challenge, at least in part through alteration of DC function.
PMCID: PMC2644204  PMID: 16339999
AHR; dendritic cells; eosinophils; mice; Syk
4.  Influenza Virus–induced Dendritic Cell Maturation Is Associated with the Induction of Strong T Cell Immunity to a Coadministered, Normally Nonimmunogenic Protein 
We evaluated the proposal that during microbial infection, dendritic cells (DCs) undergo maturation and present a mixture of peptides derived from the microbe as well as harmless environmental antigens. Mice were exposed to an aerosol of endotoxin free ovalbumin (OVA) in the absence or presence of influenza virus. In its absence, OVA failed to induce B and T cell responses and even tolerized, but with influenza, OVA-specific antibodies and CD8+ cytolytic T lymphocytes developed. With or without infection, OVA was presented selectively in the draining mediastinal lymph nodes, as assessed by the comparable proliferation of infused, CD8+ and CD4+, TCR transgenic T cells. In the absence of influenza, these OVA-specific T cells produced little IL-2, IL-4, IL-10, and IFN-γ, but with infection, both CD4+ and CD8+ T cells made high levels of IL-2 and IFN-γ. The OVA plus influenza-treated mice also showed accelerated recovery to a challenge with recombinant vaccinia OVA virus. CD11c+ DCs from the mediastinal lymph nodes of infected mice selectively stimulated both OVA- and influenza-specific T cells and underwent maturation, with higher levels of MHC class II, CD80, and CD86 molecules. The relatively slow (2–3 d) kinetics of maturation correlated closely to the time at which OVA inhalation elicited specific antibodies. Therefore respiratory infection can induce DC maturation and simultaneously B and T cell immunity to an innocuous antigen inhaled concurrently.
PMCID: PMC2196079  PMID: 12847140
influenza virus; dendritic cell; maturation; endotoxin free ovalbumin; airway
5.  Abrogation of Bronchial Eosinophilic Inflammation and Airway Hyperreactivity in Signal Transducers and Activators of Transcription (STAT)6-deficient Mice  
The Journal of Experimental Medicine  1998;187(9):1537-1542.
Signal transducers and activators of transcription 6 (STAT6) is essential for interleukin 4–mediated responses, including class switching to IgE and induction of type 2 T helper cells. To investigate the role of STAT6 in allergic asthma in vivo, we developed a murine model of allergen-induced airway inflammation. Repeated exposure of actively immunized C57BL/6 mice to ovalbumin (OVA) aerosol increased the level of serum IgE, the number of eosinophils in bronchoalveolar lavage (BAL) fluid, and airway reactivity. Histological analysis revealed peribronchial inflammation with pulmonary eosinophilia in OVA-treated mice. In STAT6-deficient (STAT6−/−) C57BL/6 mice treated in the same fashion, there were no eosinophilia in BAL and significantly less peribronchial inflammation than in wild-type mice. Moreover STAT6−/− mice had much less airway reactivity than wild-type mice. These findings suggest that STAT6 plays a crucial role in the pathogenesis of allergen-induced airway inflammation.
PMCID: PMC2212260  PMID: 9565645
6.  Importance of Myeloid Dendritic Cells in Persistent Airway Disease after Repeated Allergen Exposure 
Rationale: There is conflicting information about the development and resolution of airway inflammation and airway hyperresponsiveness (AHR) after repeated airway exposure to allergen in sensitized mice.
Methods: Sensitized BALB/c and C57BL/6 mice were exposed to repeated allergen challenge on 3, 7, or 11 occasions. Airway function in response to inhaled methacholine was monitored; bronchoalveolar lavage fluid inflammatory cells were counted; and goblet cell metaplasia, peribronchial fibrosis, and smooth muscle hypertrophy were quantitated on tissue sections. Bone marrow–derived dendritic cells were generated after differentiation of bone marrow cells in the presence of growth factors.
Results: Sensitization to ovalbumin (OVA) in alum, followed by three airway exposures to OVA, induced lung eosinophilia, goblet cell metaplasia, mild peribronchial fibrosis, and peribronchial smooth muscle hypertrophy; increased levels of interleukin (IL)-4, IL-5, IL-13, granulocyte-macrophage colony–stimulating factor, transforming growth factor-β1, eotaxin-1, RANTES (regulated on activation, normal T-cell expressed and secreted), and OVA-specific IgG1 and IgE; and resulted in AHR. After seven airway challenges, development of AHR was markedly decreased as was the production of IL-4, IL-5, and IL-13. Levels of IL-10 in both strains and the level of IL-12 in BALB/c mice increased. After 11 challenges, airway eosinophilia and peribronchial fibrosis further declined and the cytokine and chemokine profiles continued to change. At this time point, the number of myeloid dendritic cells and expression of CD80 and CD86 in lungs were decreased compared with three challenges. After 11 challenges, intratracheal instillation of bone marrow–derived dendritic cells restored AHR and airway eosinophilia.
Conclusions: These data suggest that repeated allergen exposure leads to progressive decreases in AHR and allergic inflammation, through decreases in myeloid dendritic cell numbers.
PMCID: PMC2662981  PMID: 16192450
airway hyperresponsiveness; chronic asthma; cytokine; dendritic cells; eosinophil
7.  Differential Effects of Dendritic Cell Transfer on Airway Hyperresponsiveness and Inflammation 
Dendritic cells (DCs) are considered to be the most efficient antigen-presenting cells. Intratracheal administration of allergen-pulsed bone marrow–derived dendritic cells (BMDCs) before allergen challenge induces airway hyperresponsiveness (AHR) and inflammation. Ovalbumin (OVA)-pulsed BMDCs from wild-type (WT) mice were transferred into naive WT, CD4−/−, CD8−/−, or IL-13−/− mice. Two days (short protocol) or 10 days (long protocol) after BMDC transfer, mice were challenged with 1% OVA for 3 days and assayed 2 days later. Transfer of OVA-primed BMDCs into BALB/c or C57BL/6 mice elicited AHR in both protocols. Airway eosinophilia, Th2 cytokines, or goblet cell metaplasia were increased in the long but not short protocol. Lung T cells from both protocols produced Th2 cytokines in response to OVA in vitro. Carboxyfluorescein diacetate succinimidylester–labeled BMDCs were observed in bronchoalveolar lavage (BAL) fluid and lung parenchyma at early time points, and were detected in draining lymph nodes 48 hours after transfer. CD8−/− mice developed AHR comparable to WT mice in the short protocol, but decreased levels of AHR, airway eosinophilia, Th2 cytokines in BAL fluid, and goblet cell metaplasia compared with WT mice in the long protocol. CD4−/− or IL-13−/− mice did not develop AHR or airway inflammation in either protocol. These data suggest that allergen-pulsed BMDCs initiate development of AHR that is dependent initially on CD4+ T cells, and at later time periods on CD8+ T cells and IL-13. Thus, the timing of allergen challenge after transfer of allergen-pulsed BMDC affects the development of AHR and airway inflammation.
PMCID: PMC2742748  PMID: 19151321
dendritic cells; CD8+ T cells; airway hyperresponsiveness
8.  Modulation of Naive CD4+ T-Cell Responses to an Airway Antigen during Pulmonary Mycobacterial Infection▿  
Infection and Immunity  2007;75(5):2260-2268.
During pulmonary mycobacterial infection, there is increased trafficking of dendritic cells from the lungs to the draining lymph nodes. We hypothesized that ongoing mycobacterial infection would modulate recruitment and activation of antigen-specific naive CD4+ T cells after airway antigen challenge. BALB/c mice were infected by aerosol with Mycobacterium bovis BCG. At peak bacterial burden in the lungs (4 to 6 weeks postinfection), carboxy-fluorescein diacetate succinimidyl ester-labeled naive ovalbumin-specific DO11.10 T cells were adoptively transferred into infected and uninfected mice. Recipient mice were challenged intranasally with soluble ovalbumin (OVA), and OVA-specific T-cell responses were measured in the lungs, draining mediastinal lymph nodes (MLN), and spleens. OVA challenge resulted in increased activation and proliferation of OVA-specific T cells in the draining MLN of both infected and uninfected mice. However, only BCG-infected mice had prominent OVA-specific T-cell activation, proliferation, and Th1 differentiation in the lungs. BCG infection caused greater distribution of airway OVA to pulmonary dendritic cells and enhanced presentation of OVA peptide by lung CD11c+ cells. Together, these data suggest that an existing pulmonary mycobacterial infection alters the phenotype of lung dendritic cells so that they can activate antigen-specific naive CD4+ T cells in the lungs in response to airway antigen challenge.
PMCID: PMC1865791  PMID: 17296758
9.  Cooperation between Th1 and Th2 cells in a murine model of eosinophilic airway inflammation 
Journal of Clinical Investigation  1999;104(8):1021-1029.
We have studied the actions of helper T lymphocyte-1 and -2 (Th1 and Th2) cells in an acute model of eosinophilic airway inflammation by infusing chicken ovalbumin-specific (OVA-specific) Th1 cells, Th2 cells, or both into unsensitized mice and challenging the mice with an OVA aerosol. OVA challenge after infusion of Th1 cells alone resulted in airway inflammation with lymphocytes and monocytes. Challenge after the infusion of Th2 cells alone resulted in minimal inflammation. In contrast, when Th1 and Th2 cells were transferred together, they cooperated to promote a robust eosinophil-predominant inflammatory response. Th1 cells alone were readily recruited to the airways after challenge, but in the absence of Th1 cells, Th2 cells did not accumulate in the airways. When transferred together, both Th1 and Th2 cells, as well as endogenous eosinophils, were effectively recruited. This recruitment was correlated with increased VCAM-1 expression in the medium- and large-sized vessels of the lung and could be inhibited by treating the mice with neutralizing antibodies to TNF-α or VCAM-1. These data indicate that Th2 cells require signals in addition to antigen for their effective recruitment to the airways. Th1 cells can provide these signals.
PMCID: PMC408580  PMID: 10525040
10.  Dietary Acacetin Reduces Airway Hyperresponsiveness and Eosinophil Infiltration by Modulating Eotaxin-1 and Th2 Cytokines in a Mouse Model of Asthma 
A previous study found that eosinophil infiltration and Th2 cell recruitment are important causes of chronic lung inflammation in asthma. The plant flavonoid acacetin is known to have an anti-inflammatory effect in vitro. This study aims to investigate the anti-inflammatory effect of orally administered acacetin in ovalbumin- (OVA-) sensitized asthmatic mice and its underlying molecular mechanism. BALB/c mice were sensitized by intraperitoneal OVA injection. OVA-sensitized mice were fed acacetin from days 21 to 27. Acacetin treatment attenuated airway hyperresponsiveness and reduced eosinophil infiltration and goblet cell hyperplasia in lung tissue. Additionally, eotaxin-1- and Th2-associated cytokines were inhibited in bronchoalveolar lavage fluid and suppressed the level of OVA-IgE in serum. Human bronchial epithelial (BEAS-2B) cells were used to examine the effect of acacetin on proinflammatory cytokines, chemokines, and cell adhesion molecule production in vitro. At the molecular level, acacetin significantly reduced IL-6, IL-8, intercellular adhesion molecule-1, and eotaxin-1 in activated BEAS-2B cells. Acacetin also significantly suppressed the ability of eosinophils to adhere to inflammatory BEAS-2B cells. These results suggest that dietary acacetin may improve asthma symptoms in OVA-sensitized mice.
PMCID: PMC3462452  PMID: 23049614
This study detailed the sequence of recurring inflammatory events associated with episodic allergen exposures of mice resulting in airway hyperreactivity, sustained inflammation, goblet cell hyperplasia, and fibrogenesis that characterize a lung with chronic asthma. Ovalbumin (OVA)-sensitized female Balb/c mice were exposed to saline-control or OVA aerosols for 1hr per day for episodes of 3 days every week for up to 8 weeks. Lung inflammation was assessed by inflammatory cell recoveries using bronchoalveolar lavages (BAL) and tissue collagenase dispersions. Cell accumulations were observed within airway submucosal and associated perivascular spaces using immunohistochemical and tinctorial staining methods. Airway responsiveness to methacholine aerosols were elevated after 2 weeks and further enhanced to a sustained level after the 4th and 8th weeks. Although by the 8th week, diminished OVA-induced accumulations of eosinophils, neutrophils and monocyte-macrophages were observed, suggesting diminished responsiveness, the BAL recovery of lymphocytes remained elevated. Airway but not perivascular lesions persisted with a proliferating cell population, epithelial goblet cell hyperplasia and evidence of enhanced collagen deposition. Examination of lung inflammatory cell content before the onset of the 1st, 2nd and 4th OVA exposure episodes demonstrated enhancements in residual BAL lymphocyte and BAL and tissue eosinophil recoveries with each exposure episode. Although tissue monocyte-macrophage numbers returned to baseline prior to each exposure episode, the greatest level of accumulation was observed after the 4th week. These results provide the basis for establishing the inflammatory and exposure criteria by which episodic environmental exposures to allergen might result in the development of a remodeled lung in asthma.
PMCID: PMC3558838  PMID: 23356647
ovalbumin; airway reactivity; eosinophils; neutrophils; lymphocytes; macrophages
12.  ISO-1, a Macrophage Migration Inhibitory Factor Antagonist, Inhibits Airway Remodeling in a Murine Model of Chronic Asthma 
Molecular Medicine  2010;16(9-10):400-408.
Airway remodeling is the process of airway structural change that occurs in patients with asthma in response to persistent inflammation and leads to increasing disease severity. Drugs that decrease this persistent inflammation play a crucial role in managing asthma episodes. Mice sensitized (by intraperitoneal administration) and then challenged (by inhalation) with ovalbumin (OVA) develop an extensive eosinophilic inflammatory response, goblet cell hyperplasia, collagen deposition, airway smooth muscle thickening, and airway wall area increase, similar to pathologies observed in human asthma. We used OVA-sensitized/challenged mice as a murine model of chronic allergic airway inflammation with subepithelial fibrosis (i.e., asthma). In this OVA mouse model, mRNA and protein of macrophage migration inhibitory factor (MIF) are upregulated, a response similar to what has been observed in the pathogenesis of acute inflammation in human asthma. We hypothesized that MIF induces transforming growth factor-β1 (TGF-β1) synthesis, which has been shown to play an important role in asthma and airway remodeling. To explore the role of MIF in the development of airway remodeling, we evaluated the effects of an MIF small-molecule antagonist, (S,R)3-(4-hy-droxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1), on pathologies associated with the airway-remodeling process in the OVA mouse model. We found that administration of ISO-1 significantly mitigated all symptoms caused by OVA treatment. In addition, the treatment of OVA-sensitized mice with the MIF antagonist ISO-1 significantly reduced TGF-β1 mRNA levels in pulmonary tissue and its protein level in bronchial alveolar lavage fluid supernatants. We believe the repression of MIF in the ISO-1 treatment group led to the significant suppression observed in the inflammatory responses associated with the allergen-induced lung inflammation and fibrosis in our murine asthma (OVA) model. Our results implicate a possible function of MIF in the pathogenesis of chronic asthma and suggest that MIF might be an important therapeutic target for airway remodeling.
PMCID: PMC2935952  PMID: 20485865
13.  Plasminogen Is an Important Regulator in the Pathogenesis of a Murine Model of Asthma 
Rationale: Asthma is a syndrome whose common pathogenic expression is inflammation of the airways. Plasminogen plays an important role in cell migration and is also implicated in tissue remodeling, but its role in asthma has not been defined.
Objectives: To test whether plasminogen is a critical component in the development of asthma.
Methods: We used a mouse model of ovalbumin-induced pulmonary inflammation in Plg+/+, Plg+/−, and Plg−/− mice.
Measurements and Main Results: The host responses measured included lung morphometry, and inflammatory mediators and cell counts were assessed in bronchoalveolar lavage fluid. Bronchoalveolar lavage demonstrated a marked increase in eosinophils and lymphocytes in ovalbumin-treated Plg+/+ mice, which were reduced to phosphate-buffered saline–treated control levels in Plg+/− or Plg−/− mice. Lung histology revealed peribronchial and perivascular leukocytosis, mucus production, and increased collagen deposition in ovalbumin-treated Plg+/+ but not in Plg+/− or Plg−/− mice. IL-5, tumor necrosis factor-α, and gelatinases, known mediators of asthma, were detected in bronchoalveolar lavage fluid of ovalbumin-treated Plg+/+ mice, yet were reduced in Plg−/− mice. Administration of the plasminogen inhibitor, tranexamic acid, reduced eosinophil and lymphocyte numbers, mucus production, and collagen deposition in the lungs of ovalbumin-treated Plg+/+ mice.
Conclusions: The decreased inflammation in the lungs of Plg−/− mice and its blockade with a plasminogen inhibitor indicate that plasminogen plays an important role in orchestrating the asthmatic response and suggests that plasminogen may be a therapeutic target for the treatment of asthma.
PMCID: PMC1994216  PMID: 17541016
lung; knockout mice; pulmonary inflammation; fibrinolysis
14.  CD48 Is Critically Involved in Allergic Eosinophilic Airway Inflammation 
Rationale: Despite ongoing research, the molecular mechanisms controlling asthma are still elusive. CD48 is a glycosylphosphatidylinositol-anchored protein involved in lymphocyte adhesion, activation, and costimulation. Although CD48 is widely expressed on hematopoietic cells and commonly studied in the context of natural killer and cytotoxic T cell functions, its role in helper T cell type 2 settings has not been examined.
Objectives: To evaluate the expression and function of CD48, CD2, and 2B4 in a murine model of allergic eosinophilic airway inflammation.
Methods: Allergic eosinophilic airway inflammation was induced by ovalbumin (OVA)–alum sensitization and intranasal inoculation of OVA or, alternatively, by repeated intranasal inoculation of Aspergillus fumigatus antigen in wild-type, STAT (signal transducer and activator of transcription)-6–deficient, and IL-4/IL-13–deficient BALB/c mice. Gene profiling of whole lungs was performed, followed by Northern blot and flow cytometric analysis. Anti-CD48, -CD2, and -2B4 antibodies were administered before OVA challenge and cytokine expression and histology were assessed.
Measurements and Main Results: Microarray data analysis demonstrated upregulation of CD48 in the lungs of OVA-challenged mice. Allergen-induced CD48 expression was independent of STAT-6, IL-13, and IL-4. Neutralization of CD48 in allergen-challenged mice abrogated bronchoalveolar lavage fluid and lung inflammation. Neutralization of CD2 inhibited the inflammatory response to a lesser extent and neutralization of 2B4 had no effect.
Conclusions: Our results suggest that CD48 is critically involved in allergic eosinophilic airway inflammation. As such, CD48 may provide a new potential target for the suppression of asthma.
PMCID: PMC1899297  PMID: 17290046
asthma; CD48; CD2; 2B4
15.  Passive transfer of immediate hypersensitivity and airway hyperresponsiveness by allergen-specific immunoglobulin (Ig) E and IgG1 in mice. 
Journal of Clinical Investigation  1996;97(6):1398-1408.
In a proportion of atopic asthmatics, exposure to a relevant antigen is followed by chronic inflammation in the airways leading to altered airway responsiveness (AR). However, the mechanisms underlying the development of airway hyperresponsiveness still remain unclear. To elucidate the relationship between IgE-mediated reactions and airway hyperresponsiveness, a murine model of passive sensitization and airway challenge with ovalbumin (OVA) was developed using anti-OVA IgE and IgG antibodies from murine B cell hybridomas. Passive sensitization by intravenous injection of anti-OVA IgE resulted in immediate cutaneous hypersensitivity and, after airway challenge with OVA on two consecutive days, increased AR in BALB/c and SJL mice. Increased numbers of eosinophils were observed in bronchoalveolar lavage fluid, in cells extracted from the lungs, and in the peribronchial areas of BALB/c mice passively sensitized with IgE and challenged through the airways compared with nonsensitized mice. Eosinophil peroxidase activity was also elevated in lung tissue from these mice. Passive sensitization with anti-OVA IgG1 but not IgG2a or IgG3 was similarly associated with development of skin test reactivity and increased AR after airway challenge, accompanied by an increase in eosinophils in bronchoalveolar lavage fluid. These data suggest that IgE/IgG1-mediated reactions together with local challenge with antigen can result in allergic inflammation resulting in altered airway function.
PMCID: PMC507198  PMID: 8617871
16.  Modulation of the Effects of Lung Immune Response on Bone Marrow by Oral Antigen Exposure 
BioMed Research International  2013;2013:474132.
Allergic airway inflammation is attenuated by oral tolerization (oral exposure to allergen, followed by conventional sensitization and challenge with homologous antigen), which decreases airway allergen challenge-induced eosinophilic infiltration of the lungs and bone marrow eosinophilia. We examined its effects on bone marrow eosinophil and neutrophil production. Mice of wild type (BP-2, BALB/c, and C57BL/6) and mutant strains (lacking iNOS or CD95L) were given ovalbumin (OVA) or water (vehicle) orally and subsequently sensitized and challenged with OVA (OVA/OVA/OVA and H2O/OVA/OVA groups, resp.). Anti-OVA IgG and IgE, bone marrow eosinophil and neutrophil numbers, and eosinophil and neutrophil production ex vivo were evaluated. T lymphocytes from OVA/OVA/OVA or control H2O/OVA/OVA donors were transferred into naïve syngeneic recipients, which were subsequently sensitized/challenged with OVA. Alternatively, T lymphocytes were cocultured with bone marrow eosinophil precursors from histocompatible sensitized/challenged mice. OVA/OVA/OVA mice of the BP-2 and BALB/c strains showed, relative to H2O/OVA/OVA controls, significantly decreased bone marrow eosinophil counts and ex vivo eosinopoiesis/neutropoiesis. Full effectiveness in vivo required sequential oral/subcutaneous/intranasal exposures to the same allergen. Transfer of splenic T lymphocytes from OVA/OVA/OVA donors to naive recipients prevented bone marrow eosinophilia and eosinopoiesis in response to recipient sensitization/challenge and supressed eosinopoiesis upon coculture with syngeneic bone marrow precursors from sensitized/challenged donors.
PMCID: PMC3793322  PMID: 24171165
17.  A comparison between intratracheal and inhalation delivery of Aspergillus fumigatus conidia in the development of fungal allergic asthma in C57BL/6 mice 
Fungal biology  2010;115(1):21-29.
Allergic asthma is a debilitating disease of the airways characterized by airway hyperresponsiveness, eosinophilic inflammation, goblet cell metaplasia with associated mucus hypersecretion, and airway wall remodelling events, particularly subepithelial fibrosis and smooth muscle cell hyperplasia. Animal models that accurately mimic these hallmarks of allergic airways disease are critical for studying mechanisms associated with the cellular and structural changes that lead to disease pathogenesis. Aspergillus fumigatus, is a common aeroallergen of human asthmatics. The intratracheal (IT) delivery of A. fumigatus conidia into the airways of sensitized mice has been described as a model of allergic disease. Here, we compared the IT model with a newly developed inhalation (IH) challenge model. The IH model allowed multiple fungal exposures, which resulted in an exacerbation to the allergic asthma phenotype. Increased recruitment of eosinophils and lymphocytes, the hallmark leukocytes of asthma, were noted with the IH model as compared to the IT model in which macrophages and neutrophils were more prominent. Immunoglobulin E (IgE) production was significantly greater after IH challenge, while that of IgG2a was higher after IT challenge. Airway wall remodelling was pronounced in IH-treated mice, particularly after multiple allergen challenges. Although the IT model may be appropriate for the examination of the played by innate cells in the acute response to fungus, it fails to consistently reproduce the chronic remodelling hallmarks of allergic asthma. The ability of the IH challenge to mimic these characteristics recommends it as a model suited to study these important events.
PMCID: PMC3053007  PMID: 21215951
Aspergillus fumigatus; Allergic asthma; Inhalation challenge model
18.  Requirement for Chemokine Receptor 5 in the Development of Allergen-Induced Airway Hyperresponsiveness and Inflammation 
Chemokine receptor (CCR) 5 is expressed on dendritic cells, macrophages, CD8 cells, memory CD4 T cells, and stromal cells, and is frequently used as a marker of T helper type 1 cells. Interventions that abrogate CCR5 or interfere with its ligand binding have been shown to alter T helper type 2–induced inflammatory responses. The role of CCR5 on allergic airway responses is not defined. CCR5-deficient (CCR5−/−) and wild-type (CCR5+/+) mice were sensitized and challenged with ovalbumin (OVA) and allergic airway responses were monitored 48 hours after the last OVA challenge. Cytokine levels in lung cell culture supernatants were also assessed. CCR5−/− mice showed significantly lower airway hyperresponsiveness (AHR) and lower numbers of total cells, eosinophils, and lymphocytes in bronchoalveolar lavage (BAL) fluid compared with CCR5+/+ mice after sensitization and challenge. The levels of IL-4 and IL-13 in BAL fluid of CCR5−/− mice were lower than in CCR5+/+ mice. Decreased numbers of lung T cells were also detected in CCR5−/− mice after sensitization and challenge. Transfer of OVA-sensitized T cells from CCR5+/+, but not transfer of CCR5−/− cells, into CCR5−/− mice restored AHR and numbers of eosinophils in BAL fluid after OVA challenge. Accordingly, the numbers of airway-infiltrating donor T cells were significantly higher in the recipients of CCR5+/+ T cells. Taken together, these data suggest that CCR5 plays a pivotal role in allergen-induced AHR and airway inflammation, and that CCR5 expression on T cells is essential to the accumulation of these cells in the airways.
PMCID: PMC3262662  PMID: 21757680
rodent; T cells; cytokines; chemokines; lung
19.  Interleukin-5 Expression in the Lung Epithelium of Transgenic Mice Leads to Pulmonary Changes Pathognomonic of Asthma 
The Journal of Experimental Medicine  1997;185(12):2143-2156.
We have generated transgenic mice that constitutively express murine interleukin (IL)-5 in the lung epithelium. Airway expression of this cytokine resulted in a dramatic accumulation of peribronchial eosinophils and striking pathologic changes including the expansion of bronchusassociated lymphoid tissue (BALT), goblet cell hyperplasia, epithelial hypertrophy, and focal collagen deposition. These changes were also accompanied by eosinophil infiltration of the airway lumen. In addition, transgenic animals displayed airway hyperresponsiveness to methacholine in the absence of aerosolized antigen challenge. These findings demonstrate that lung-specific IL-5 expression can induce pathologic changes characteristic of asthma and may provide useful models to evaluate the efficacy of potential respiratory disease therapies or pharmaceuticals.
PMCID: PMC2196351  PMID: 9182686
20.  Neutralization of TSLP Inhibits Airway Remodeling in a Murine Model of Allergic Asthma Induced by Chronic Exposure to House Dust Mite 
PLoS ONE  2013;8(1):e51268.
Chronic allergic asthma is characterized by Th2-typed inflammation, and contributes to airway remodeling and the deterioration of lung function. However, the initiating factor that links airway inflammation to remodeling is unknown. Thymic stromal lymphopoietin (TSLP), an epithelium-derived cytokine, can strongly activate lung dendritic cells (DCs) through the TSLP-TSLPR and OX40L-OX40 signaling pathways to promote Th2 differentiation. To determine whether TSLP is the underlying trigger of airway remodeling in chronic allergen-induced asthma, we induced allergic airway inflammation in mice by intranasal administration of house dust mite (HDM) extracts for up to 5 consecutive weeks. We showed that repeated respiratory exposure to HDM caused significant airway eosinophilic inflammation, peribronchial collagen deposition, goblet cell hyperplasia, and airway hyperreactivity (AHR) to methacholine. These effects were accompanied with a salient Th2 response that was characterized by the upregulation of Th2-typed cytokines, such as IL-4 and IL-13, as well as the transcription factor GATA-3. Moreover, the levels of TSLP and transforming growth factor beta 1 (TGF-β1) were also increased in the airway. We further demonstrated, using the chronic HDM-induced asthma model, that the inhibition of Th2 responses via neutralization of TSLP with an anti-TSLP mAb reversed airway inflammation, prevented structural alterations, and decreased AHR to methacholine and TGF-β1 level. These results suggest that TSLP plays a pivotal role in the initiation and persistence of airway inflammation and remodeling in the context of chronic allergic asthma.
PMCID: PMC3534685  PMID: 23300949
21.  CCR3 is essential for skin eosinophilia and airway hyperresponsiveness in a murine model of allergic skin inflammation 
The CC chemokine receptor 3 (CCR3) is expressed by eosinophils, mast cells, and Th2 cells. We used CCR3–/– mice to assess the role of CCR3 in a murine model of allergic skin inflammation induced by repeated epicutaneous sensitization with ovalbumin (OVA), and characterized by eosinophil skin infiltration, local expression of Th2 cytokines, and airway hyperresponsiveness (AHR) to inhaled antigen. Eosinophils and the eosinophil product major basic protein were absent from the skin of sham and OVA-sensitized CCR3–/– mice. Mast cell numbers and expression of IL-4 mRNA were normal in skin of CCR3–/– mice, suggesting that CCR3 is not important for infiltration of the skin by mast cells and Th2 cells. CCR3–/– mice produced normal levels of OVA-specific IgE, and their splenocytes secreted normal amounts of IL-4 and IL-5 following in vitro stimulation with OVA, indicating effective generation of systemic Th2 helper responses. Recruitment of eosinophils to lung parenchyma and bronchoalveolar lavage (BAL) fluid was severely impaired in CCR3–/– mice, which failed to develop AHR to methacholine following antigen inhalation. These results suggest that CCR3 plays an essential role in eosinophil recruitment to the skin and the lung and in the development of AHR.
PMCID: PMC150891  PMID: 11877470
22.  Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2–MyD88 signal pathway in dendritic cells and enhances Th2 immune responses 
Eosinophil-derived neurotoxin (EDN) is an eosinophil granule–derived secretory protein with ribonuclease and antiviral activity. We have previously shown that EDN can induce the migration and maturation of dendritic cells (DCs). Here, we report that EDN can activate myeloid DCs by triggering the Toll-like receptor (TLR)2–myeloid differentiation factor 88 signaling pathway, thus establishing EDN as an endogenous ligand of TLR2. EDN activates TLR2 independently of TLR1 or TLR6. When mice were immunized with ovalbumin (OVA) together with EDN or with EDN-treated OVA-loaded DCs, EDN enhanced OVA-specific T helper (Th)2-biased immune responses as indicated by predominant production of OVA-specific interleukin (IL)-5, IL-6, IL-10, and IL-13, as well as higher levels of immunoglobulin (Ig)G1 than IgG2a. Based on its ability to serve as a chemoattractant and activator of DCs, as well as the capacity to enhance antigen-specific immune responses, we consider EDN to have the properties of an endogenous alarmin that alerts the adaptive immune system for preferential enhancement of antigen-specific Th2 immune responses.
PMCID: PMC2234357  PMID: 18195069
23.  Inhibition of airway remodeling in IL-5–deficient mice 
Journal of Clinical Investigation  2004;113(4):551-560.
To determine the role of IL-5 in airway remodeling, IL-5–deficient and WT mice were sensitized to OVA and challenged by repetitive administration of OVA for 3 months. IL-5–deficient mice had significantly less peribronchial fibrosis (total lung collagen content, peribronchial collagens III and V) and significantly less peribronchial smooth muscle (thickness of peribronchial smooth muscle layer, α-smooth muscle actin immunostaining) compared with WT mice challenged with OVA. WT mice had a significant increase in the number of peribronchial cells staining positive for major basic protein and TGF-β. In contrast, IL-5–deficient mice had a significant reduction in the number of peribronchial cells staining positive for major basic protein, which was paralleled by a similar reduction in the number of cells staining positive for TGF-β, suggesting that eosinophils are a significant source of TGF-β in the remodeled airway. OVA challenge induced significantly higher levels of airway epithelial αVβ6 integrin expression, as well as significantly higher levels of bioactive lung TGF-β in WT compared with IL-5–deficient mice. Increased airway epithelial expression of αVβ6 integrin may contribute to the increased activation of latent TGF-β. These results suggest an important role for IL-5, eosinophils, αVβ6, and TGF-β in airway remodeling.
PMCID: PMC338264  PMID: 14966564
24.  Aeroallergen-induced eosinophilic inflammation, lung damage, and airways hyperreactivity in mice can occur independently of IL-4 and allergen-specific immunoglobulins. 
Journal of Clinical Investigation  1997;99(6):1329-1339.
In this investigation we have used a mouse model containing certain phenotypic characteristics consistent with asthma and IL-4- and CD40-deficient mice to establish the role of this cytokine and allergen-specific immunoglobulins in the initiation of airways hyperreactivity and morphological changes to the airways in responses to aeroallergen challenge. Sensitization and aerosol challenge of mice with ovalbumin resulted in a severe airways inflammatory response which directly correlated with the induction of extensive airways damage and airways hyperreactivity to beta-methacholine. Inflammatory infiltrates were primarily characterized by the presence of CD4+ T cells and eosinophils. In IL-4-deficient mice, the recruitment of airways eosinophils was impaired, but not abolished in response to aeroallergen. Moreover, the characteristic airways damage and hyperreactivity normally resulting from allergen inhalation were not attenuated. Induction of these structural and functional changes to the airways occurred in the absence of ovalbumin-specific IgE and IgG1, but IgG2a and IgG3 were detected in the sera of IL-4-deficient mice. CD4+ T cells isolated from both wild-type and IL-4-deficient mice given ovalbumin produced significant levels of IL-5 after in vitro stimulation. Treatment of IL-4-deficient mice with anti-IL-5 mAb before aeroallergen challenge abolished blood and airways eosinophilia, lung damage, and airways hyperreactivity. These results indicate that IL-4 is not essential for the development of IL-5-producing CD4+ T cells or for the induction of eosinophilic inflammation and airways damage and hyperreactivity. In response to sensitization and aerosol challenge, CD40-deficient mice did not produce ovalbumin-specific IgE, IgG isotypes, or IgA, and airways inflammation and hyperreactivity were not attenuated. Our results suggest that allergic airways disease can occur via pathways which operate independently of IL-4 and allergen-specific immunoglobulins. Activation of these pathways is intimately associated with IL-5 and eosinophilic inflammation. Such pathways may play a substantive role in the etiology of asthma.
PMCID: PMC507949  PMID: 9077543
25.  Cbl-b Regulates Airway Mucosal Tolerance to Aeroallergen 
As an E3 ubiquitin ligase and a molecular adaptor, Cbl-b controls the activation threshold of the antigen receptor and negatively regulates CD28 co-stimulation, functioning as an intrinsic mediator of T cell anergy that maintains tolerance. However, the role of Cbl-b in the airway immune response to aeroallergens is unclear.
To determine the contribution of Cbl-b in tolerance to aeroallergens, we examined ovalbumin (OVA)-induced lung inflammation in Cbl-b deficient mice.
Cbl-b-/- mice and wildtype (WT) C57BL/6 mice were sensitized and challenged with OVA intranasally, a procedure normally tolerated by WT mice. We analyzed lung histology, BAL total cell counts and differential, cytokines and chemokines in the airway, and cytokine response by lymphocytes after re-stimulation by OVA antigen.
Compared with WT mice, OVA challenged Cbl-b-/- mice showed significantly increased neutrophilic and eosinophilic infiltration in the lung and mucus hyperplasia. The serum levels of IgG2a and IgG1, but not IgE, were increased. The levels of inflammatory mediators IFN-γ, IL-10, IL-12, IL-13, IP-10, MCP-1, MIP-1α, Eotaxin, and RANTES, but not IL-17A or IL-6, were elevated in the airway of Cbl-b-/- mice. Lymphocytes from Cbl-b-/-mice released increased amount of IFN-γ, IL-10, IL-13, and IP-10 in response to OVA re-stimulation. However, no significant changes were noted in the CD4+CD25+ Treg cell populations in the lung tissues after OVA stimulation and there was no difference between WT and Cbl-b-/- mice.
These results demonstrate that Cbl-b deficiency leads to a breakdown of tolerance to OVA allergen in the murine airways, probably through increased activation of T effector cells, indicating that Cbl-b is a critical factor in maintaining lung homeostasis upon environmental exposure to aeroallergens.
PMCID: PMC2994994  PMID: 20738317
Cbl-b; Ubiquitin E3 Ligase; Aeroallergen; Allergic inflammation; Asthma

Results 1-25 (620136)