PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (484701)

Clipboard (0)
None

Related Articles

1.  Retinal Pigment Epithelium Defects Accelerate Photoreceptor Degeneration in Cell Type–Specific Knockout Mouse Models of Choroideremia 
In this study, the authors provide insight into the pathogenesis of choroideremia, which is caused by the disruption of intracellular vesicular transport. They also touch on other issues, such as the photoreceptor-RPE relationship and aging of the RPE.
Purpose.
Choroideremia (CHM) is a progressive X-linked degeneration of three ocular layers (photoreceptors, retinal pigment epithelium, and choroid), with a complex and still largely unclear pathogenesis. To investigate the pathophysiology of CHM, the authors engineered mice with a cell type–specific Chm/Rep1 knockout (KO).
Methods.
A mouse line carrying a conditional allele ChmFlox was crossed with the transgenic line IRBP-Cre to achieve Chm KO, specifically in the photoreceptor layer, and Tyr-Cre to produce Chm KO, specifically in the retinal pigment epithelial and other pigmented cells. ChmFlox, Tyr-Cre+ and ChmFlox, IRBP-Cre+ mice were mated to produce mice with Chm KO in both layers. All mouse lines were studied by histology, electron microscopy, electroretinography (ERG), scanning laser ophthalmoscopy (SLO), and biochemical methods.
Results.
In ChmFlox, IRBP-Cre+ mice the authors observed the progressive degeneration of photoreceptors in the presence of normal retinal pigment epithelium (RPE). ChmFlox, Tyr-Cre+ mice exhibited coat color dilution and pigment abnormalities of the RPE in the presence of an intact outer nuclear layer. In 6- to 8-month-old ChmFlox, Tyr-Cre+, IRBP-Cre+ mice, the degeneration of photoreceptors was accelerated compared with ChmFlox, IRBP-Cre+ mice but became leveled with age, such that it was comparable at 12 to 14 months. Detailed ERG and SLO analysis supported the histopathologic findings.
Conclusions.
Defects in photoreceptors and RPE can arise because of intrinsic defects caused cell autonomously by the Chm KO. However, when both photoreceptors and RPE are diseased, the dynamics of the degenerative process are altered. Photoreceptor functional deficit and cell death manifest much earlier, suggesting that the diseased RPE accelerates photoreceptor degeneration.
doi:10.1167/iovs.09-4892
PMCID: PMC3066613  PMID: 20445111
2.  Silencing of the CHM Gene Alters Phagocytic and Secretory Pathways in the Retinal Pigment Epithelium 
The pathogenesis of choroideremia (CHM), an X-linked retinopathy, remains poorly defined. Silencing of the CHM gene in the retinal pigment epithelium in vitro alters phagocytic and secretory pathways and may indicate how the disorder leads to retinal degeneration.
Purpose.
Choroideremia (CHM) is an X-linked progressive degeneration of the retinal pigment epithelium (RPE), photoreceptors, and choroid caused by mutations in the CHM gene, which encodes Rab escort-protein-1 (REP-1). REP-1 enables posttranslational isoprenyl modification of Rab GTPases, proteins that control vesicle formation, movement, docking, and fusion. The aim of this study was to determine the effect of REP-1 depletion on vesicular trafficking in phagocytic and secretory pathways of human RPE.
Methods.
In vitro, REP-1 expression was inhibited in human fetal RPE (hfRPE) cells by siRNA knockdown and its effects measured on the uptake of bovine photoreceptor outer segments (POS), proteolysis of POS rhodopsin, phagosomal pH, phagosome fusion with early and late endosomes/lysosomes, and polarized secretion of cytokines.
Results.
Depletion of REP-1 in human RPE cells did not affect POS internalization but reduced phagosomal acidification and delayed POS protein clearance. REP-1 depletion also caused a decrease in the association of POS-containing phagosomes with late endosomal markers (Rab7, LAMP-1) and increases in the secretion of monocyte chemotactic protein (MCP-1) and interleukin (IL)-8 by hfRPE cells.
Conclusions.
Lack of REP-1 protein expression in hfRPE cells leads to reduced degradation of POS most likely because of the inhibition of phagosome-lysosome fusion events and increased constitutive secretion of MCP-1 and IL-8. These observations may explain the accumulation of unprocessed outer segments within the phagolysosomes of RPE cells and the presence of inflammatory cells in the choroid of patients with CHM.
doi:10.1167/iovs.09-4117
PMCID: PMC2868448  PMID: 19741243
3.  Conditional Ablation of the Choroideremia Gene Causes Age-Related Changes in Mouse Retinal Pigment Epithelium 
PLoS ONE  2013;8(2):e57769.
The retinal pigment epithelium (RPE) is a pigmented monolayer of cells lying between the photoreceptors and a layer of fenestrated capillaries, the choriocapillaris. Choroideremia (CHM) is an X-linked progressive degeneration of these three layers caused by the loss of function of Rab Escort protein-1 (REP1). REP1 is involved in the prenylation of Rab proteins, key regulators of membrane trafficking. To study the pathological consequences of chronic disruption of membrane traffic in the RPE we used a cell type-specific knock-out mouse model of the disease, where the Chm/Rep1 gene is deleted only in pigmented cells (ChmFlox, Tyr-Cre+). Transmission electron microscopy (TEM) was used to quantitate the melanosome distribution in the RPE and immunofluorescent staining of rhodopsin was used to quantitate phagocytosed rod outer segments in retinal sections. The ultrastructure of the RPE and Bruch’s membrane at different ages was characterised by TEM to analyse age-related changes occurring as a result of defects in membrane traffic pathways. Chm/Rep1 gene knockout in RPE cells resulted in reduced numbers of melanosomes in the apical processes and delayed phagosome degradation. In addition, the RPE accumulated pathological changes at 5–6 months of age similar to those observed in 2-year old controls. These included the intracellular accumulation of lipofuscin-containing deposits, disorganised basal infoldings and the extracellular accumulation of basal laminar and basal linear deposits. The phenotype of the ChmFlox, Tyr-Cre+ mice suggests that loss of the Chm/Rep1 gene causes premature accumulation of features of aging in the RPE. Furthermore, the striking similarities between the present observations and some of the phenotypes reported in age-related macular degeneration (AMD) suggest that membrane traffic defects may contribute to the pathogenesis of AMD.
doi:10.1371/journal.pone.0057769
PMCID: PMC3584022  PMID: 23460904
4.  Functional expression of Rab escort protein 1 following AAV2-mediated gene delivery in the retina of choroideremia mice and human cells ex vivo 
Choroideremia (CHM) is an X-linked retinal degeneration of photoreceptors, the retinal pigment epithelium (RPE) and choroid caused by loss of function mutations in the CHM/REP1 gene that encodes Rab escort protein 1. As a slowly progressing monogenic retinal degeneration with a clearly identifiable phenotype and a reliable diagnosis, CHM is an ideal candidate for gene therapy. We developed a serotype 2 adeno-associated viral vector AAV2/2-CBA-REP1, which expresses REP1 under control of CMV-enhanced chicken β-actin promoter (CBA) augmented by a Woodchuck hepatitis virus post-transcriptional regulatory element. We show that the AAV2/2-CBA-REP1 vector provides strong and functional transgene expression in the D17 dog osteosarcoma cell line, CHM patient fibroblasts and CHM mouse RPE cells in vitro and in vivo. The ability to transduce human photoreceptors highly effectively with this expression cassette was confirmed in AAV2/2-CBA-GFP transduced human retinal explants ex vivo. Electroretinogram (ERG) analysis of AAV2/2-CBA-REP1 and AAV2/2-CBA-GFP-injected wild-type mouse eyes did not show toxic effects resulting from REP1 overexpression. Subretinal injections of AAV2/2-CBA-REP1 into CHM mouse retinas led to a significant increase in a- and b-wave of ERG responses in comparison to sham-injected eyes confirming that AAV2/2-CBA-REP1 is a promising vector suitable for choroideremia gene therapy in human clinical trials.
Electronic supplementary material
The online version of this article (doi:10.1007/s00109-013-1006-4) contains supplementary material, which is available to authorized users.
doi:10.1007/s00109-013-1006-4
PMCID: PMC3695676  PMID: 23756766
Rab escort protein 1; Gene therapy; Choroideremia; Rab GTPase; Retinitis pigmentosa; AAV
5.  The functional effect of pathogenic mutations in Rab escort protein 1 
Mutation research  2009;665(1-2):44-50.
Choroideremia (CHM) is a chorioretinal degeneration with an X-linked pattern of inheritance. Affected males experience progressive atrophy of the choroid, retinal pigment epithelium and retina leading to eventual blindness. The CHM gene encodes Rab escort protein 1 (REP-1). REP-1 is involved in trafficking of Rab proteins in the cell. To date, the majority of reported mutations in the CHM gene cause a complete loss of REP-1 function. Here we report pathogenic mutations: a novel missense mutation, L550P; a truncation c.1542T>A, STOP; and two deletions (c.525_526delAG, c.1646delC) in the CHM gene and their phenotypic effect. To analyze the effect of mutations, the 3D structure of human REP-1 and the proteins associated with REP-1 function were modeled using sequence homology with rat proteins. In silico analysis of the missense mutation L550P suggests that the proline residue at position 550 destabilizes the β-structural elements, and the REP-1 tertiary structure. Truncation and deletion mutants are associated with a partial or total loss of the REP-1 essential activity and protein-protein interactions as predicted by the analysis of the structure and stability of these protein products. The presumptive loss of protein was confirmed by Western Blot analysis of protein from mononuclear cells and fibroblasts (FB) from CHM patients.
doi:10.1016/j.mrfmmm.2009.02.01
PMCID: PMC2680797  PMID: 19427510
Choroideremia; Rab escort protein 1; missense mutation; structural mechanism; protein destabilization
6.  Molecular Basis for Rab Prenylation 
The Journal of Cell Biology  2000;150(1):89-104.
Rab escort proteins (REP) 1 and 2 are closely related mammalian proteins required for prenylation of newly synthesized Rab GTPases by the cytosolic heterodimeric Rab geranylgeranyl transferase II complex (RabGG transferase). REP1 in mammalian cells is the product of the choroideremia gene (CHM). CHM/REP1 deficiency in inherited disease leads to degeneration of retinal pigmented epithelium and loss of vision. We now show that amino acid residues required for Rab recognition are critical for function of the yeast REP homologue Mrs6p, an essential protein that shows 50% homology to mammalian REPs. Mutant Mrs6p unable to bind Rabs failed to complement growth of a mrs6Δ null strain and were found to be dominant inhibitors of growth in a wild-type MRS6 strain. Mutants were identified that did not affect Rab binding, yet prevented prenylation in vitro and failed to support growth of the mrs6Δ null strain. These results suggest that in the absence of Rab binding, REP interaction with RabGG transferase is maintained through Rab-independent binding sites, providing a molecular explanation for the kinetic properties of Rab prenylation in vitro. Analysis of the effects of thermoreversible temperature-sensitive (mrs6ts) mutants on vesicular traffic in vivo showed prenylation activity is only transiently required to maintain normal growth, a result promising for therapeutic approaches to disease.
PMCID: PMC2185574  PMID: 10893259
choroideremia; REP1; CHM; vesicle traffic; MRS6
7.  Choroideremia: New Findings from Ocular Pathology and Review of Recent Literature 
Survey of ophthalmology  2009;54(3):401-407.
Histopathology of young individuals affected by choroideremia is rarely available to allow correlation with the clinical presentation. A 30-year-old male with choroideremia died in a motor vehicle accident and one eye was subjected to histopathological examination. Immunoblot analysis of protein derived from white blood cells of a living brother, also affected with choroideremia, confirmed the absence of Rab escort protein-1, the normal CHM gene product. Direct sequencing of the coding region and adjacent splice sites of the CHM gene was undertaken on genomic DNA from the living brother and revealed a transition mutation, C to T, in exon 6 (R253X) which resulted in a stop codon and was predicted to truncate the protein product. Histopathological examination of the eye of the deceased brother showed relative independent degeneration of choriocapillaris, retinal pigment epithelium and retina, similar to observations in the mouse model of choroideremia. In addition, mild T-lymphocytic infiltration was found within the choroid. The ophthalmic features and the pathology of choroideremia are discussed in light of new findings in the current case.
doi:10.1016/j.survophthal.2009.02.008
PMCID: PMC2679958  PMID: 19422966
choroideremia; histopathology; mutation analysis; retinal degeneration
8.  Rapid degradation of dominant-negative Rab27 proteins in vivo precludes their use in transgenic mouse models 
BMC Cell Biology  2002;3:26.
Background
Transgenic mice have proven to be a powerful system to study normal and pathological gene functions. Here we describe an attempt to generate a transgenic mouse model for choroideremia (CHM), a slow-onset X-linked retinal degeneration caused by mutations in the Rab Escort Protein-1 (REP1) gene. REP1 is part of the Rab geranylgeranylation machinery, a modification that is essential for Rab function in membrane traffic. The loss of REP1 in CHM patients may trigger retinal degeneration through its effects on Rab proteins. We have previously reported that Rab27a is the Rab most affected in CHM lymphoblasts and hypothesised that the selective dysfunction of Rab27a (and possibly a few other Rab GTPases) plays an essential role in the retinal degenerative process.
Results
To investigate this hypothesis, we generated several lines of dominant-negative, constitutively-active and wild-type Rab27a (and Rab27b) transgenic mice whose expression was driven either by the pigment cell-specific tyrosinase promoter or the ubiquitous β-actin promoter. High levels of mRNA and protein were observed in transgenic lines expressing wild-type or constitutively active Rab27a and Rab27b. However, only modest levels of transgenic protein were expressed. Pulse-chase experiments suggest that the dominant-negative proteins, but not the constitutively-active or wild type proteins, are rapidly degraded. Consistently, no significant phenotype was observed in our transgenic lines. Coat-colour was normal, indicating normal Rab27a activity. Retinal function as determined by fundoscopy, angiography, electroretinography and histology was also normal.
Conclusions
We suggest that the instability of the dominant-negative mutant Rab27 proteins in vivo precludes the use of this approach to generate mouse models of disease caused by Rab27 GTPases.
doi:10.1186/1471-2121-3-26
PMCID: PMC137576  PMID: 12401133
9.  AAV-Mediated Gene Therapy for Choroideremia: Preclinical Studies in Personalized Models 
PLoS ONE  2013;8(5):e61396.
Choroideremia (CHM) is an X- linked retinal degeneration that is symptomatic in the 1st or 2nd decade of life causing nyctalopia and loss of peripheral vision. The disease progresses through mid-life, when most patients become blind. CHM is a favorable target for gene augmentation therapy, as the disease is due to loss of function of a protein necessary for retinal cell health, Rab Escort Protein 1 (REP1).The CHM cDNA can be packaged in recombinant adeno-associated virus (rAAV), which has an established track record in human gene therapy studies, and, in addition, there are sensitive and quantitative assays to document REP1 activity. An animal model that accurately reflects the human condition is not available. In this study, we tested the ability to restore REP1 function in personalized in vitro models of CHM: lymphoblasts and induced pluripotent stems cells (iPSCs) from human patients. The initial step of evaluating safety of the treatment was carried out by evaluating for acute retinal histopathologic effects in normal-sighted mice and no obvious toxicity was identified. Delivery of the CHM cDNA to affected cells restores REP1 enzymatic activity and also restores proper protein trafficking. The gene transfer is efficient and the preliminary safety data are encouraging. These studies pave the way for a human clinical trial of gene therapy for CHM.
doi:10.1371/journal.pone.0061396
PMCID: PMC3646845  PMID: 23667438
10.  Loss-of-Function Mutations in Rab Escort Protein 1 (REP-1) Affect Intracellular Transport in Fibroblasts and Monocytes of Choroideremia Patients 
PLoS ONE  2009;4(12):e8402.
Background
Choroideremia (CHM) is a progressive X-linked retinopathy caused by mutations in the CHM gene, which encodes Rab escort protein-1 (REP-1), an escort protein involved in the prenylation of Rabs. Under-prenylation of certain Rabs, as a result of loss of function mutations in REP-1, could affect vesicular trafficking, exocytosis and secretion in peripheral cells of CHM patients.
Methodology/Principal Findings
To evaluate this hypothesis, intracellular vesicle transport, lysosomal acidification and rates of proteolytic degradation were studied in monocytes (CD14+ fraction) and primary skin fibroblasts from the nine age-matched controls and thirteen CHM patients carrying 10 different loss-of-function mutations. With the use of pHrodo™ BioParticles® conjugated with E. coli, collagen I coated FluoSpheres beads and fluorescent DQ™ ovalbumin with BODYPY FL dye, we demonstrated for the first time that lysosomal pH was increased in monocytes of CHM patients and, as a consequence, the rates of proteolytic degradation were slowed. Microarray analysis of gene expression revealed that some genes involved in the immune response, small GTPase regulation, transcription, cell adhesion and the regulation of exocytosis were significantly up and down regulated in cells from CHM patients compared to controls. Finally, CHM fibroblasts secreted significantly lower levels of cytokine/growth factors such as macrophage chemoattractant protein-1 (MCP-1), pigment epithelial derived factor (PEDF), tumor necrosis factor (TNF) alpha, fibroblast growth factor (FGF) beta and interleukin (lL)-8.
Conclusions/Significance
We demonstrated for the first time that peripheral cells of CHM patients had increased pH levels in lysosomes, reduced rates of proteolytic degradation and altered secretion of cytokines. Peripheral cells from CHM patients expose characteristics that were not previously recognized and could used as an alternative models to study the effects of different mutations in the REP-1 gene on mechanism of CHM development in human population.
doi:10.1371/journal.pone.0008402
PMCID: PMC2793004  PMID: 20027300
11.  Amino- and carboxy-terminal domains of the yeast Rab escort protein are both required for binding of Ypt small G proteins. 
Molecular Biology of the Cell  1996;7(10):1521-1533.
The Rab escort protein (REP) is an essential component of the heterotrimeric enzyme Rab geranylgeranyl transferase that modifies the carboxy-terminal cysteines of the Ras-like small G proteins belonging to the Rab/Ypt family. Deletions in the human CHM locus, encoding one of the two REPs known in humans, result in a retinal degenerative syndrome called choroideremia. The only known yeast homologue of the choroideremia gene product is encoded by an essential gene called MRS6. Besides three structurally conserved regions (SCRs) previously detected in the amino-terminal half of REPs and RabGDIs, three other regions in the carboxy-terminal domain (RCR 1-3) are here identified as being characteristic of REPs alone. We have performed the first mutational analysis of a REP protein to experimentally define the regions functionally important for Rab/Ypt protein binding, making use of the genetic system of the yeast Saccharomyces cerevisiae. This analysis has shown that the SCRs are necessary but not sufficient for Ypt1p binding by the yeast REP, the carboxy-terminal region also being required.
Images
PMCID: PMC276003  PMID: 8898359
12.  Transition Zones between Healthy and Diseased Retina in Choroideremia (CHM) and Stargardt Disease (STGD) as Compared to Retinitis Pigmentosa (RP) 
The transition zone between healthy and severely affected regions of the retina differ in structural abnormalities in patients with choroideremia, Stargardt disease, or retinitis pigmentosa.
Purpose.
To describe the structural changes across the transition zone (TZ) in choroideremia (CHM) and Stargardt disease (STGD) and to compare these to the TZ in retinitis pigmentosa (RP).
Methods.
Frequency-domain (Fd)OCT line scans were obtained from seven patients with CHM, 20 with STGD, and 12 with RP and compared with those of 30 previously studied controls. A computer-aided manual segmentation procedure was used to determine the thicknesses of the outer segment (OS) layer, the outer nuclear layer plus outer plexiform layer (ONL+), the retinal pigment epithelium plus Bruch's membrane (RPE+BM), and the outer retina (OR).
Results.
The TZ, while consistent within patient groups, showed differences across disease groups. In particular, (1) OS loss occurred before ONL+ loss in CHM and RP, whereas ONL+ loss occurred before OS loss in STGD; (2) ONL+ was preserved over a wider region of the retina in CHM than in RP; (3) RPE+BM remained normal across the RP TZ, but was typically thinned in CHM. In some CHM patients, it was abnormally thin in regions with normal OS and ONL+ thickness. In STGD, RPE+BM was thinned by the end of the TZ; and (4) the disappearances of the IS/OS and OLM were more abrupt in CHM and STGD than in RP.
Conclusions.
On fdOCT scans, patients with RP, CHM, and STGD all have a TZ between relatively healthy and severely affected retina. The patterns of changes in the receptor layers are similar within a disease category, but different across categories. The findings suggest that the pattern of progression of each disease is distinct and may offer clues for strategies in the development of future therapies.
doi:10.1167/iovs.11-8554
PMCID: PMC3341121  PMID: 22076985
13.  Genetic and phenotypic characteristics of three Mainland Chinese families with choroideremia 
Molecular Vision  2012;18:309-316.
Purpose
To describe the phenotype and genotype of three Mainland Chinese families affected by choroideremia (CHM).
Methods
Complete ophthalmic examinations were conducted in three unrelated Chinese families with CHM. Peripheral blood samples were collected from the families for genetic and immunoblot analysis. All exons and flanking intronic regions of the gene encoding Rab escort protein-1 (Rep-1) were amplified with PCR and screened for mutations with Sanger sequencing. The three-dimensional structure of mutated Rep-1 was modeled using sequence homology with rat proteins to analyze the effect of the mutation detected in one family.
Results
All affected males had characteristic signs and symptoms of CHM; however, central visual acuity impairment occurred earlier than expected. All female carriers older than 45 years had pigmentary changes, and one female carrier was symptomatic with vision loss. Three different mutations in Rep-1, c.1801–1G>A, c.1130 T>A, and c.612delAG, were detected in the three families.
Conclusions
In Mainland Chinese families, the central visual acuity of male patients with CHM can be affected at an early age (second decade), whereas female CHM carriers may manifest signs and symptoms at a later age (≥45 years). One previously reported and two novel Rep-1 mutations were detected in three Chinese patients with CHM.
PMCID: PMC3283217  PMID: 22355242
14.  Choroideremia: Analysis of the retina from a Female Symptomatic Carrier 
Ophthalmic genetics  2008;29(3):99-110.
Purpose
To define the retinal pathology in a 91 year-old affected matriarch of a three-generation choroideremia family with multiple manifesting carriers.
Methods
Tissue from three different retinal areas was processed for immunohistochemistry. The macular area was processed for transmission electron microscopy. Cryosections were studied by indirect immunofluorescence, using well-characterized antibodies to cone cytoplasm, rhodopsin and cone opsins. The affected donor eyes were compared to a postmortem matched normal eye.
Results
The retina displayed areas of severe degeneration, with no photoreceptor outer segments, photoreceptor nuclear atrophy, and atrophy of the inner retina. Other retinal areas were near to normal. The RPE was severely degenerated, with thinning, pigment clumping and sub-epithelial debris deposition in all the areas examined. The choroid displayed depigmentation. Labeling with cone opsin antibodies revealed that cones were drastically affected: blue opsin was almost completely absent, while red/green opsins were distributed along the entire plasma membrane of the cell. Rhodopsin was also distributed along the entire rod plasma membrane. Ultrastructural analysis of the affected macula revealed the absence of RPE apical microvilli and basal infoldings. Instead, RPE’s basal surface and choroid displayed the presence of banded fibers composed of clumps of wide-spacing collagen. Bruch’s membrane was filled with vesicular structures, some smooth and others with bristle-like projections.
Conclusions
The histological data suggests that the clinical manifestation in this donor is related to degenerative changes in the retina, RPE and choroid.
doi:10.1080/13816810802206499
PMCID: PMC3652314  PMID: 18766988
Choroideremia; carrier state; immunohistochemistry; cone opsins; rhodopsin
15.  Photoreceptor avascular privilege is shielded by soluble VEGF receptor-1 
eLife  2013;2:e00324.
Optimal phototransduction requires separation of the avascular photoreceptor layer from the adjacent vascularized inner retina and choroid. Breakdown of peri-photoreceptor vascular demarcation leads to retinal angiomatous proliferation or choroidal neovascularization, two variants of vascular invasion of the photoreceptor layer in age-related macular degeneration (AMD), the leading cause of irreversible blindness in industrialized nations. Here we show that sFLT-1, an endogenous inhibitor of vascular endothelial growth factor A (VEGF-A), is synthesized by photoreceptors and retinal pigment epithelium (RPE), and is decreased in human AMD. Suppression of sFLT-1 by antibodies, adeno-associated virus-mediated RNA interference, or Cre/lox-mediated gene ablation either in the photoreceptor layer or RPE frees VEGF-A and abolishes photoreceptor avascularity. These findings help explain the vascular zoning of the retina, which is critical for vision, and advance two transgenic murine models of AMD with spontaneous vascular invasion early in life.
DOI: http://dx.doi.org/10.7554/eLife.00324.001
eLife digest
The inner surface of the vertebrate eye is lined with a multilayered structure known as the retina. The bottom layer of the retina is composed of rods and cones—neurons that are directly sensitive to light—and is called the photoreceptor layer. Rods function primarily in dim light and provide black-and-white vision, while cones support daytime vision and are responsible for colour perception. Unlike the upper layers of the retina, the photoreceptor layer does not contain blood vessels: oxygen and nutrients are instead provided by a structure just underneath the retina called the choroid.
The eye relies on the rods and cones converting light into electrical signals, and the photoreceptor layer must remain free of blood vessels for this process to work properly. If blood vessels extend into the photoreceptor layer from rest of the retina (which is above it) or the choroid (below), they can disrupt the retina and give rise to a condition called age-related macular degeneration, which is a leading cause of irreversible blindness in adults.
Within the eye, the development of new blood vessels from pre-existing vessels is stimulated by a protein known as vascular endothelial growth factor A (VEGF-A), while an inhibitor protein called sFLT-1 prevents the growth of new blood vessels in the other tissues of the eye like the cornea. However, it has not been clear what keeps the photoreceptor layer (and also the cells that support the photoreceptor layer) free of blood vessels, and what happens to disrupt this process of vascular demarcation in age-related macular degeneration.
Now, Luo et al. reveal that cells in the photoreceptor layer produce sFLT-1, and that the levels of this protein are indeed reduced in people with age-related macular degeneration. Using genetic and pharmacological methods, they show that a reduction in sFLT-1 triggers blood vessels to grow into the photoreceptor layer from above or below. Luo et al. also report two new genetic mouse models in which blood vessels form spontaneously in the photoreceptor layer at an early age, which should prove useful for further research into age-related macular degeneration.
DOI: http://dx.doi.org/10.7554/eLife.00324.002
doi:10.7554/eLife.00324
PMCID: PMC3687373  PMID: 23795287
age-related macular degeneration; photoreceptor metabolism; retinal vasculature; soluble VEGF receptor-1; vascular demarcation; transgenic model; Human; Mouse
16.  Lentiviral Gene Transfer of Rpe65 Rescues Survival and Function of Cones in a Mouse Model of Leber Congenital Amaurosis 
PLoS Medicine  2006;3(10):e347.
Background
RPE65 is specifically expressed in the retinal pigment epithelium and is essential for the recycling of 11-cis-retinal, the chromophore of rod and cone opsins. In humans, mutations in RPE65 lead to Leber congenital amaurosis or early-onset retinal dystrophy, a severe form of retinitis pigmentosa. The proof of feasibility of gene therapy for RPE65 deficiency has already been established in a dog model of Leber congenital amaurosis, but rescue of the cone function, although crucial for human high-acuity vision, has never been strictly proven. In Rpe65 knockout mice, photoreceptors show a drastically reduced light sensitivity and are subject to degeneration, the cone photoreceptors being lost at early stages of the disease. In the present study, we address the question of whether application of a lentiviral vector expressing the Rpe65 mouse cDNA prevents cone degeneration and restores cone function in Rpe65 knockout mice.
Methods and Findings
Subretinal injection of the vector in Rpe65-deficient mice led to sustained expression of Rpe65 in the retinal pigment epithelium. Electroretinogram recordings showed that Rpe65 gene transfer restored retinal function to a near-normal pattern. We performed histological analyses using cone-specific markers and demonstrated that Rpe65 gene transfer completely prevented cone degeneration until at least four months, an age at which almost all cones have degenerated in the untreated Rpe65-deficient mouse. We established an algorithm that allows prediction of the cone-rescue area as a function of transgene expression, which should be a useful tool for future clinical trials. Finally, in mice deficient for both RPE65 and rod transducin, Rpe65 gene transfer restored cone function when applied at an early stage of the disease.
Conclusions
By demonstrating that lentivirus-mediated Rpe65 gene transfer protects and restores the function of cones in the Rpe65−/− mouse, this study reinforces the therapeutic value of gene therapy for RPE65 deficiencies, suggests a cone-preserving treatment for the retina, and evaluates a potentially effective viral vector for this purpose.
In theRpe65-/- mouse model of Leber congenital amaurosis, injection of a lentiviral vector expressing the Rpe65 mouse cDNA was able to prevent cone degeneration and restore cone function.
Editors' Summary
Background.
Leber congenital amaurosis (LCA) is the name of a group of hereditary diseases that cause blindness in infants and children. Changes in any one of a number of different genes can cause the blindness, which affects vision starting at birth or soon after. The condition was first described by a German doctor, Theodore Leber, in the 19th century, hence the first part of the name; “amaurosis” is another word for blindness. Mutations in one gene called retinal pigment epithelium-specific protein, 65 kDa (RPE65)—so called because it is expressed in the pigment epithelium, a cell layer adjacent to the light-sensitive cells, and is 65 kilodaltons in size—cause about 10% of cases of LCA. The product of this gene is essential for the recycling of a substance called 11-cis-retinal, which is necessary for the light-sensitive rods and cones of the retina to capture light. If the gene is abnormal, the sensitivity of the retina to light is drastically reduced, but it also leads to damage to the light-sensitive cells themselves.
Why Was This Study Done?
Potentially, eyes diseases such as this one could be treated by gene therapy, which works by replacing a defective gene with a normal functional one, usually by putting a copy of the normal gene into a harmless virus and injecting it into the affected tissue—in this case, the eye. The researchers here wanted to see whether expressing wild-type RPE65 using a particular type of gene vector that can carry large pieces of DNA transcript—a lentiviral vector—could prevent degeneration of cone cells and restore cone function in a mouse model of this type of LCA—mice who had had this Rpe65 gene genetically removed.
What Did the Researchers Do and Find?
Injection of the normal gene into the retina of Rpe65-deficient mice led to sustained expression of the protein RPE65 in the retinal pigment epithelium. Electrical recordings of the activity of the eyes in these mice showed that Rpe65 gene transfer restored retinal function to a near-normal level. In addition, Rpe65 gene transfer completely prevented cone degeneration until at least four months, an age at which almost all cones have degenerated in the untreated Rpe65-deficient mice.
What Do These Findings Mean?
These findings suggest that it is theoretically possible to treat this type of blindness by gene therapy. However, because this study was done in mice, many other steps need to be taken before it will be clear whether the treatment could work in humans. These steps include a demonstration that the virus is safe in humans, and experiments to determine what dose of virus would be needed and how long the effects of the treatment would last. Another question is whether it would be necessary (or even possible) to treat affected children during early childhood or when children start losing vision.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030347.
The Foundation for Retinal Research has detailed information on Leber's congenital amaurosis
Contact a Family is a UK organization that aims to put families of children with illnesses in touch with each other
The Foundation for Fighting Blindness funds research into, and provides information about many types of blindness, including Leber's congenital amaurosis
This Web site provides information on gene therapy clinical trials, including those dedicated to cure eye diseases
This foundation provides information on diseases leading to blindness, including Leber's congenital amaurosis
doi:10.1371/journal.pmed.0030347
PMCID: PMC1592340  PMID: 17032058
17.  Bax-Induced Apoptosis in Leber's Congenital Amaurosis: A Dual Role in Rod and Cone Degeneration 
PLoS ONE  2009;4(8):e6616.
Pathogenesis in the Rpe65−/− mouse model of Leber's congenital amaurosis (LCA) is characterized by a slow and progressive degeneration of the rod photoreceptors. On the opposite, cones degenerate rapidly at early ages. Retinal degeneration in Rpe65−/− mice, showing a null mutation in the gene encoding the retinal pigment epithelium 65-kDa protein (Rpe65), was previously reported to depend on continuous activation of a residual transduction cascade by unliganded opsin. However, the mechanisms of apoptotic signals triggered by abnormal phototransduction remain elusive. We previously reported that activation of a Bcl-2-dependent pathway was associated with apoptosis of rod photoreceptors in Rpe65−/− mice during the course of the disease. In this study we first assessed whether activation of Bcl-2-mediated apoptotic pathway was dependent on constitutive activation of the visual cascade through opsin apoprotein. We then challenged the direct role of pro-apoptotic Bax protein in triggering apoptosis of rod and cone photoreceptors.
Quantitative PCR analysis showed that increased expression of pro-apoptotic Bax and decreased level of anti-apoptotic Bcl-2 were restored in Rpe65−/−/Gnat1−/− mice lacking the Gnat1 gene encoding rod transducin. Moreover, photoreceptor apoptosis was prevented as assessed by TUNEL assay. These data indicate that abnormal activity of opsin apoprotein induces retinal cell apoptosis through the Bcl-2-mediated pathway. Following immunohistological and real-time PCR analyses, we further observed that decreased expression of rod genes in Rpe65-deficient mice was rescued in Rpe65−/−/Bax−/− mice. Histological and TUNEL studies confirmed that rod cell demise and apoptosis in diseased Rpe65−/− mice were dependent on Bax-induced pathway. Surprisingly, early loss of cones was not prevented in Rpe65−/−/Bax−/− mice, indicating that pro-apoptotic Bax was not involved in the pathogenesis of cone cell death in Rpe65-deficient mice.
This is the first report, to our knowledge, that a single genetic mutation can trigger two independent apoptotic pathways in rod and cone photoreceptors in Rpe65-dependent LCA disease. These results highlight the necessity to investigate and understand the specific death signaling pathways committed in rods and cones to develop effective therapeutic approaches to treat RP diseases.
doi:10.1371/journal.pone.0006616
PMCID: PMC2720534  PMID: 19672311
18.  Aberrant Metabolites in Mouse Models of Congenital Blinding Diseases: Formation and Storage of Retinyl Esters† 
Biochemistry  2006;45(13):4210-4219.
Regeneration of the visual chromophore, 11-cis-retinal, is a critical step in restoring photoreceptors to their dark-adapted conditions. This regeneration process, called the retinoid cycle, takes place in the photoreceptor outer segments and the retinal pigment epithelium (RPE). Disabling mutations in nearly all of the retinoid cycle genes are linked to human conditions that cause congenital or progressive defects in vision. Several mouse models with disrupted genes related to this cycle contain abnormal fatty acid retinyl ester levels in the RPE. To investigate the mechanisms of retinyl ester accumulation, we generated single or double knockout mice lacking retinoid cycle genes. All-trans-retinyl esters accumulated in mice lacking RPE65, but they are reduced in double knockout mice also lacking opsin, suggesting a connection between visual pigment regeneration and the retinoid cycle. Only Rdh5-deficient mice accumulate cis-retinyl esters, regardless of the simultaneous disruption of RPE65, opsin, and prRDH. 13-cis-Retinoids are produced at higher levels when the flow of retinoid through the cycle was increased, and these esters are stored in specific structures called retinosomes. Most importantly, retinylamine, a specific and effective inhibitor of the 11-cis-retinol formation, also inhibits the production of 13-cis-retinyl esters. The data presented here support the idea that 13-cis-retinyl esters are formed through an aberrant enzymatic isomerization process.
doi:10.1021/bi052382x
PMCID: PMC1560103  PMID: 16566595
19.  Otx2 Gene Deletion in Adult Mouse Retina Induces Rapid RPE Dystrophy and Slow Photoreceptor Degeneration 
PLoS ONE  2010;5(7):e11673.
Background
Many developmental genes are still active in specific tissues after development is completed. This is the case for the homeobox gene Otx2, an essential actor of forebrain and head development. In adult mouse, Otx2 is strongly expressed in the retina. Mutations of this gene in humans have been linked to severe ocular malformation and retinal diseases. It is, therefore, important to explore its post-developmental functions. In the mature retina, Otx2 is expressed in three cell types: bipolar and photoreceptor cells that belong to the neural retina and retinal pigment epithelium (RPE), a neighbour structure that forms a tightly interdependent functional unit together with photoreceptor cells.
Methodology/Principal Findings
Conditional self-knockout was used to address the late functions of Otx2 gene in adult mice. This strategy is based on the combination of a knock-in CreERT2 allele and a floxed allele at the Otx2 locus. Time-controlled injection of tamoxifen activates the recombinase only in Otx2 expressing cells, resulting in selective ablation of the gene in its entire domain of expression. In the adult retina, loss of Otx2 protein causes slow degeneration of photoreceptor cells. By contrast, dramatic changes of RPE activity rapidly occur, which may represent a primary cause of photoreceptor disease.
Conclusions
Our novel mouse model uncovers new Otx2 functions in adult retina. We show that this transcription factor is necessary for long-term maintenance of photoreceptors, likely through the control of specific activities of the RPE.
doi:10.1371/journal.pone.0011673
PMCID: PMC2908139  PMID: 20657788
20.  Temporal requirement of RPE-derived VEGF in the development of choroidal vasculature 
Journal of neurochemistry  2010;112(6):1584-1592.
Vascular endothelial growth factor (VEGF-A or VEGF) is a potent growth factor for the development of retinal and choroidal vasculatures. To define the temporal requirement of the retinal pigmented epithelium (RPE)-derived VEGF in choroidal vascular development, we generated conditional VEGF knockout mice using an inducible Cre/lox system. The loss of the RPE-derived VEGF was confirmed with immunoblotting and immunohistochemistry. Retinal function and structure were assessed with electroretinography and histology, respectively. Choroidal vascular density was analyzed with computer-assisted semi-quantitative assay using fluorescently labeled choroidal flat-mounts. Induction of RPE-specific VEGF disruption at embryonic day 10 (E10) or E13 for two days caused regulatable decreases in choroidal vascular density, photoreceptor function, and photoreceptor outer nuclear layer thickness. The loss of the RPE-produced VEGF after E15 did not cause detectable defects in choroidal vasculatures and photoreceptor function and morphology. These results suggest that the RPE-derived VEGF plays a critical role in choroidal vascular development during organogenesis before embryonic day 15.
doi:10.1111/j.1471-4159.2010.06573.x
PMCID: PMC2933813  PMID: 20067573
choroid; RPE; VEGF; inducible; Cre/lox
21.  X-Box Binding Protein 1 Is Essential for the Anti-Oxidant Defense and Cell Survival in the Retinal Pigment Epithelium 
PLoS ONE  2012;7(6):e38616.
Damage to the retinal pigment epithelium (RPE) is an early event in the pathogenesis of age-related macular degeneration (AMD). X-box binding protein 1 (XBP1) is a key transcription factor that regulates endoplasmic reticulum (ER) homeostasis and cell survival. This study aimed to delineate the role of endogenous XBP1 in the RPE. Our results show that in a rat model of light-induced retinal degeneration, XBP1 activation was suppressed in the RPE/choroid complex, accompanied by decreased anti-oxidant genes and increased oxidative stress. Knockdown of XBP1 by siRNA resulted in reduced expression of SOD1, SOD2, catalase, and glutathione synthase and sensitized RPE cells to oxidative damage. Using Cre/LoxP system, we generated a mouse line that lacks XBP1 only in RPE cells. Compared to wildtype littermates, RPE-XBP1 KO mice expressed less SOD1, SOD2, and catalase in the RPE, and had increased oxidative stress. At age 3 months and older, these mice exhibited apoptosis of RPE cells, decreased number of cone photoreceptors, shortened photoreceptor outer segment, reduced ONL thickness, and deficit in retinal function. Electron microscopy showed abnormal ultrastructure, Bruch's membrane thickening, and disrupted basal membrane infolding in XBP1-deficient RPE. These results indicate that XBP1 is an important gene involved in regulation of the anti-oxidant defense in the RPE, and that impaired activation of XBP1 may contribute to RPE dysfunction and cell death during retinal degeneration and AMD.
doi:10.1371/journal.pone.0038616
PMCID: PMC3371004  PMID: 22715395
22.  Hereditary retinal eye diseases in childhood and youth affecting the central retina 
Oman Journal of Ophthalmology  2013;6(Suppl 1):S18-S25.
Hereditary dystrophies affecting the central retina represent a heterogeneous group of diseases. Mutations in different genes may be responsible for changes of the choroid (choroideremia), of the retinal pigment epithelium [RPE] (Best's disease), of the photoreceptor outer segments (Stargardt's disease) and of the bipolar and Mueller cells (x-linked retinoschisis).
The correct diagnosis of hereditary retinal dystrophies is important, even though therapeutic options are limited at the moment, as every patient should get a diagnosis and be informed about the expected prognosis. Furthermore, specific gene therapy of a number of diseases such as Leber congenital amaurosis, choroideremia, Stargardt's disease, Usher Syndrome and achromatopsia is being evaluated at present.
Classic examinations for patients suffering from hereditary retinal dystrophies of the central retina are funduscopy - also using red-free light - visual-field tests, electrophysiologic tests as electro-retinogram [ERG] and multifocal ERG and tests evaluating color vision. Recently, new imaging modalities have been introduced into the clinical practice. The significance of these new methods such as high-resolution spectral-domain optic coherence tomography [SD-OCT] and fundus autofluorescence will be discussed as well as “next generation sequencing” as a new method for the analysis of genetic mutations in a larger number of patients.
doi:10.4103/0974-620X.122290
PMCID: PMC3872838  PMID: 24391367
Autofluorescence; Hereditary macular dystrophies; Macular dystrophy; Next generation sequencing; OCT
23.  Loss of the Metalloprotease ADAM9 Leads to Cone-Rod Dystrophy in Humans and Retinal Degeneration in Mice 
Cone-rod dystrophy (CRD) is an inherited progressive retinal dystrophy affecting the function of cone and rod photoreceptors. By autozygosity mapping, we identified null mutations in the ADAM metallopeptidase domain 9 (ADAM9) gene in four consanguineous families with recessively inherited early-onset CRD. We also found reduced photoreceptor responses in Adam9 knockout mice, previously reported to be asymptomatic. In 12-month-old knockout mice, photoreceptors appear normal, but the apical processes of the retinal pigment epithelium (RPE) cells are disorganized and contact between photoreceptor outer segments (POSs) and the RPE apical surface is compromised. In 20-month-old mice, there is clear evidence of progressive retinal degeneration with disorganized POS and thinning of the outer nuclear layer (ONL) in addition to the anomaly at the POS-RPE junction. RPE basal deposits and macrophages were also apparent in older mice. These findings therefore not only identify ADAM9 as a CRD gene but also identify a form of pathology wherein retinal disease first manifests at the POS-RPE junction.
doi:10.1016/j.ajhg.2009.04.005
PMCID: PMC2681008  PMID: 19409519
24.  Loss of the Metalloprotease ADAM9 Leads to Cone-Rod Dystrophy in Humans and Retinal Degeneration in Mice 
Cone-rod dystrophy (CRD) is an inherited progressive retinal dystrophy affecting the function of cone and rod photoreceptors. By autozygosity mapping, we identified null mutations in the ADAM metallopeptidase domain 9 (ADAM9) gene in four consanguineous families with recessively inherited early-onset CRD. We also found reduced photoreceptor responses in Adam9 knockout mice, previously reported to be asymptomatic. In 12-month-old knockout mice, photoreceptors appear normal, but the apical processes of the retinal pigment epithelium (RPE) cells are disorganized and contact between photoreceptor outer segments (POSs) and the RPE apical surface is compromised. In 20-month-old mice, there is clear evidence of progressive retinal degeneration with disorganized POS and thinning of the outer nuclear layer (ONL) in addition to the anomaly at the POS-RPE junction. RPE basal deposits and macrophages were also apparent in older mice. These findings therefore not only identify ADAM9 as a CRD gene but also identify a form of pathology wherein retinal disease first manifests at the POS-RPE junction.
doi:10.1016/j.ajhg.2009.04.005
PMCID: PMC2681008  PMID: 19409519
25.  Rab GTPase Prenylation Hierarchy and Its Potential Role in Choroideremia Disease 
PLoS ONE  2013;8(12):e81758.
Protein prenylation is a widespread post-translational modification in eukaryotes that plays a crucial role in membrane targeting and signal transduction. RabGTPases is the largest group of post-translationally C-terminally geranylgeranylated. All Rabs are processed by Rab geranylgeranyl-transferase and Rab escort protein (REP). Human genetic defects resulting in the loss one of two REP isoforms REP-1, lead to underprenylation of RabGTPases that manifests in retinal degradation and blindness known as choroideremia. In this study we used a combination of microinjections and chemo-enzymatic tagging to establish whether Rab GTPases are prenylated and delivered to their target cellular membranes with the same rate. We demonstrate that although all tested Rab GTPases display the same rate of membrane delivery, the extent of Rab prenylation in 5 hour time window vary by more than an order of magnitude. We found that Rab27a, Rab27b, Rab38 and Rab42 display the slowest prenylation in vivo and in the cell. Our work points to possible contribution of Rab38 to the emergence of choroideremia in addition to Rab27a and Rab27b.
doi:10.1371/journal.pone.0081758
PMCID: PMC3864799  PMID: 24358126

Results 1-25 (484701)