Search tips
Search criteria

Results 1-25 (717162)

Clipboard (0)

Related Articles

1.  Regulation of human mast cell and basophil function by anaphylatoxins C3a and C5a 
Immunology letters  2009;128(1):36.
Allergic diseases such as asthma result from inappropriate immunologic responses to common environmental allergens in genetically susceptible individuals. Following allergen exposure, interaction of dendritic cells (DC) with CD4+ T cells leads to the production of Th2 cytokines, which induce B cells to synthesize IgE molecules (sensitization phase). These IgE molecules bind to their high affinity receptors (FcεRI) on the surface of mast cells and basophils and their subsequent cross-linking by allergen results in the release of preformed and newly synthesized mediators, which cause bronchoconstriction, lung inflammation and airway hyperresponsiveness (AHR) in asthma (effector phase). The complement components C3a and C5a levels are increased in the lungs of patients with asthma and are likely generated via the actions of both allergen and mast cell proteases. In vivo studies with rodents have shown that while C3a facilitates allergen sensitization in some models C5a inhibits this response. Despite this difference, both anaphylatoxins promote lung inflammation and AHR in vivo indicating that cells other than DC and T cells likely mediate the functional effects of C3a and C5a in asthma. This review focuses on the contribution of C3a and C5a in the pathogenesis of asthma with a particular emphasis on mast cells and basophils. It discusses the mechanisms by which anaphylatoxins activate mast cells and basophils and the associated signaling pathways via which their receptors are regulated by priming and desensitization.
PMCID: PMC2815128  PMID: 19895849
Complement; Anaphylatoxin; C3a; C5a; Mast cell; Basophil; G protein; Priming; Desensitization; Signal Transduction; Asthma
2.  Complement Component 3C3 and C3a Receptor Are Required in Chitin-Dependent Allergic Sensitization to Aspergillus fumigatus but Dispensable in Chitin-Induced Innate Allergic Inflammation 
mBio  2013;4(2):e00162-13.
Levels of the anaphylatoxin C3a are increased in patients with asthma compared with those in nonasthmatics and increase further still during asthma exacerbations. However, the role of C3a during sensitization to allergen is poorly understood. Sensitization to fungal allergens, such as Aspergillus fumigatus, is a strong risk factor for the development of asthma. Exposure to chitin, a structural polysaccharide of the fungal cell wall, induces innate allergic inflammation and may promote sensitization to fungal allergens. Here, we found that coincubation of chitin with serum or intratracheal administration of chitin in mice resulted in the generation of C3a. We established a model of chitin-dependent sensitization to soluble Aspergillus antigens to test the contribution of complement to these events. C3−/− and C3aR−/− mice were protected from chitin-dependent sensitization to Aspergillus and had reduced lung eosinophilia and type 2 cytokines and serum IgE. In contrast, complement-deficient mice were not protected against chitin-induced innate allergic inflammation. In sensitized mice, plasmacytoid dendritic cells from complement-deficient animals acquired a tolerogenic profile associated with enhanced regulatory T cell responses and suppressed Th2 and Th17 responses specific for Aspergillus. Thus, chitin induces the generation of C3a in the lung, and chitin-dependent allergic sensitization to Aspergillus requires C3aR signaling, which suppresses regulatory dendritic cells and T cells and induces allergy-promoting T cells.
Asthma is one of the fastest growing chronic illnesses worldwide. Chitin, a ubiquitous polymer in our environment and a key component in the cell wall of fungal spores and the exoskeletons of insects, parasites, and crustaceans, triggers innate allergic inflammation. However, there is little understanding of how chitin is initially recognized by mammals and how early recognition of chitin affects sensitization to environmental allergens and development of allergic asthma. The complement system is evolutionarily one of the oldest facets of the early or innate warning systems in mammals. We studied whether and how complement components influence the recognition of chitin and shape the downstream sensitization toward fungal allergens. We show here that complement recognition of chitin plays a critical role in shaping the behavior of dendritic cells, which in turn regulate the function of T cells that mediate allergic responses to fungi.
PMCID: PMC3622928  PMID: 23549917
3.  Alveolar Macrophages Play a Key Role in Cockroach-Induced Allergic Inflammation via TNF-α Pathway 
PLoS ONE  2012;7(10):e47971.
The activity of the serine protease in the German cockroach allergen is important to the development of allergic disease. The protease-activated receptor (PAR)-2, which is expressed in numerous cell types in lung tissue, is known to mediate the cellular events caused by inhaled serine protease. Alveolar macrophages express PAR-2 and produce considerable amounts of tumor necrosis factor (TNF)-α. We determined whether the serine protease in German cockroach extract (GCE) enhances TNF-α production by alveolar macrophages through the PAR-2 pathway and whether the TNF-α production affects GCE-induced pulmonary inflammation. Effects of GCE on alveolar macrophages and TNF-α production were evaluated using in vitro MH-S and RAW264.6 cells and in vivo GCE-induced asthma models of BALB/c mice. GCE contained a large amount of serine protease. In the MH-S and RAW264.7 cells, GCE activated PAR-2 and thereby produced TNF-α. In the GCE-induced asthma model, intranasal administration of GCE increased airway hyperresponsiveness (AHR), inflammatory cell infiltration, productions of serum immunoglobulin E, interleukin (IL)-5, IL-13 and TNF-α production in alveolar macrophages. Blockade of serine proteases prevented the development of GCE induced allergic pathologies. TNF-α blockade also prevented the development of such asthma-like lesions. Depletion of alveolar macrophages reduced AHR and intracellular TNF-α level in pulmonary cell populations in the GCE-induced asthma model. These results suggest that serine protease from GCE affects asthma through an alveolar macrophage and TNF-α dependent manner, reflecting the close relation of innate and adaptive immune response in allergic asthma model.
PMCID: PMC3477122  PMID: 23094102
4.  Skin-Derived TSLP Triggers Progression from Epidermal-Barrier Defects to Asthma 
PLoS Biology  2009;7(5):e1000067.
A skin-derived cytokine with high systemic availability provides a mechanistic explanation for atopic march and highlights a potential therapeutic target for preventing the development of asthma among people with atopic dermatitis.
Asthma is a common allergic lung disease frequently affecting individuals with a prior history of eczema/atopic dermatitis (AD); however, the mechanism underlying the progression from AD to asthma (the so-called “atopic march”) is unclear. Here we show that, like humans with AD, mice with skin-barrier defects develop AD-like skin inflammation and are susceptible to allergic asthma. Furthermore, we show that thymic stromal lymphopoietin (TSLP), overexpressed by skin keratinocytes, is the systemic driver of this bronchial hyper-responsiveness. As an AD-like model, we used mice with keratinocyte-specific deletion of RBP-j that sustained high systemic levels of TSLP. Antigen-induced allergic challenge to the lung airways of RBP-j–deficient animals resulted in a severe asthmatic phenotype not seen in similarly treated wild-type littermates. Elimination of TSLP signaling in these animals blocked the atopic march, demonstrating that high serum TSLP levels were required to sensitize the lung to allergic inflammation. Furthermore, we analyzed outbred K14-TSLPtg mice that maintained high systemic levels of TSLP without developing any skin pathology. Importantly, epidermal-derived TSLP was sufficient to trigger the atopic march, sensitizing the lung airways to inhaled allergens in the absence of epicutaneous sensitization. Based on these findings, we propose that in addition to early treatment of the primary skin-barrier defects, selective inhibition of systemic TSLP may be the key to blocking the development of asthma in AD patients.
Author Summary
Eczema (atopic dermatitis) is a common allergic skin inflammation that has a particularly high prevalence among children. Importantly, a large proportion of people suffering from eczema go on to develop asthma later in life. Although the susceptibility of eczema patients to asthma is well documented, the mechanism that mediates “atopic march”—the progression from eczema to asthma—is unclear. We used genetic engineering to generate mice with chronic skin-barrier defects and a subsequent eczema-like disorder. With these mice, we were able to investigate how skin-specific defects predisposed the lungs to allergic asthma. We identified thymic stromal lymphopoietin (TSLP), a cytokine that is secreted by barrier-defective skin into the systemic circulation, as the agent sensitizing the lung to allergens. We demonstrated that high systemic levels of skin-derived TSLP were both required and sufficient to render lung airways hypersensitive to allergens. Thus, these data suggest that early treatment of skin-barrier defects to prevent TSLP overexpression, and systemic inhibition of TSLP, may be crucial in preventing the progression from eczema to asthma.
PMCID: PMC2700555  PMID: 19557146
5.  The H1 histamine receptor regulates allergic lung responses 
Journal of Clinical Investigation  2006;116(6):1624-1632.
Histamine, signaling via the type 1 receptor (H1R), has been shown to suppress Th2 cytokine production by in vitro cultured T cells. We examined the role of H1R in allergic inflammation in vivo using a murine asthma model. Allergen-stimulated splenic T cells from sensitized H1R–/– mice exhibited enhanced Th2 cytokine production. Despite this Th2 bias, allergen-challenged H1R–/– mice exhibited diminished lung Th2 cytokine mRNA levels, airway inflammation, goblet cell metaplasia, and airway hyperresponsiveness (AHR). Restoration of pulmonary Th2 cytokines in H1R–/– mice by intranasal IL-4 or IL-13 restored inflammatory lung responses and AHR. Further investigation revealed that histamine acts as a T cell chemotactic factor and defective T cell trafficking was responsible for the absence of lung inflammation. Cultured T cells migrated in response to histamine in vitro, but this was ablated by blockade of H1R but not H2R. In vivo, allergen-specific WT but not H1R–/– CD4+ T cells were recruited to the lungs of naive recipients following inhaled allergen challenge. H1R–/– T cells failed to confer airway inflammation or AHR observed after transfer of WT T cells. Our data establish a role for histamine and H1R in promoting the migration of Th2 cells into sites of allergen exposure.
PMCID: PMC1448167  PMID: 16680192
6.  Crude Extracts of Caenorhabditis elegans Suppress Airway Inflammation in a Murine Model of Allergic Asthma 
PLoS ONE  2012;7(4):e35447.
Epidemiological studies suggest an inverse relationship between helminth infections and allergic disease, and several helminth-derived products have been shown to suppress allergic responses in animals. This study was undertaken to evaluate the effect of a crude extract of Caenorhabditis elegans on allergic airway inflammation in a murine model of asthma. Allergic airway inflammation was induced in BALB/c mice by sensitization with ovalbumin. The effect of the C. elegans crude extract on the development of asthma and on established asthma was evaluated by analyzing airway hyperresponsiveness, serum antibody titers, lung histology and cell counts and cytokine levels in the bronchoalveolar lavage fluid. The role of IFN-γ in the suppression of asthma by the C. elegans crude extract was investigated in IFN-γ knockout and wild-type mice. When mice were sensitized with ovalbumin together with the crude extract of C. elegans, cellular infiltration into the lung was dramatically reduced in comparison with the ovalbumin-treated group. Treatment of mice with the C. elegans crude extract significantly decreased methacholine-induced airway hyperresponsiveness and the total cell counts and levels of IL-4, IL-5 and IL-13 in the bronchoalveolar lavage fluid but increased the levels of IFN-γ and IL-12. Sensitization with the C. elegans crude extract significantly diminished the IgE and IgG1 responses but provoked elevated IgG2a levels. However, the suppressive effect of the C. elegans crude extract was abolished in IFN-γ knockout mice, and the Th2 responses in these mice were as strong as those in wild-type mice sensitized with ovalbumin. The crude extract of C. elegans also suppressed the airway inflammation associated with established asthma. This study provides new insights into immune modulation by the C. elegans crude extract, which suppressed airway inflammation in mice not only during the development of asthma but also after its establishment by skewing allergen-induced Th2 responses to Th1 responses.
PMCID: PMC3338843  PMID: 22558152
7.  TIM-1 deficiency eliminates airway hyperreactivity triggered by the recognition of airway cell death 
Studies of asthma have been limited by a poor understanding of how non-allergic environmental exposures such as air pollution and infection are translated in the lung into inflammation and wheezing.
Our goal was to understand the mechanism of non-allergic asthma that lead to airway hyperreactivity (AHR), a cardinal feature of asthma independent of adaptive immunity.
We examined mouse models of experimental asthma, in which AHR was induced by Respiratory Syncytial Virus (RSV) infection or ozone exposure, using mice deficient in TIM1/HAVCR1, an important asthma susceptibility gene.
TIM1−/− mice failed to develop airways disease when infected with RSV or when repeatedly exposed to ozone, a major component of air pollution. On the other hand, the TIM1−/− mice developed allergen-induced experimental asthma, as previously shown. The RSV- and ozone-induced pathways were blocked by treatment with caspase inhibitors, indicating an absolute requirement for programmed cell death and apoptosis. TIM-1-expressing, but not TIM-1-deficient, natural killer T (NKT) cells responded to apoptotic airway epithelial cells by secreting cytokines, which mediated the development of airway hyperreactivity.
We defined a novel pathway in which TIM-1, a receptor for phosphatidylserine expressed by apoptotic cells, drives the development of asthma by sensing and responding to injured and apoptotic airway epithelial cells.
PMCID: PMC3732546  PMID: 23672783
TIM-1; NKT; apoptosis; asthma
8.  Anaphylatoxin C3a receptors in asthma 
Respiratory Research  2005;6(1):19.
The complement system forms the central core of innate immunity but also mediates a variety of inflammatory responses. Anaphylatoxin C3a, which is generated as a byproduct of complement activation, has long been known to activate mast cells, basophils and eosinophils and to cause smooth muscle contraction. However, the role of C3a in the pathogenesis of allergic asthma remains unclear. In this review, we examine the role of C3a in promoting asthma. Following allergen challenge, C3a is generated in the lung of subjects with asthma but not healthy subjects. Furthermore, deficiency in C3a generation or in G protein coupled receptor for C3a abrogates allergen-induced responses in murine models of pulmonary inflammation and airway hyperresponsiveness. In addition, inhibition of complement activation or administration of small molecule inhibitors of C3a receptor after sensitization but before allergen challenge inhibits airway responses. At a cellular level, C3a stimulates robust mast cell degranulation that is greatly enhanced following cell-cell contact with airway smooth muscle (ASM) cells. Therefore, C3a likely plays an important role in asthma primarily by regulating mast cell-ASM cell interaction.
PMCID: PMC551592  PMID: 15723703
9.  ISO-1, a Macrophage Migration Inhibitory Factor Antagonist, Inhibits Airway Remodeling in a Murine Model of Chronic Asthma 
Molecular Medicine  2010;16(9-10):400-408.
Airway remodeling is the process of airway structural change that occurs in patients with asthma in response to persistent inflammation and leads to increasing disease severity. Drugs that decrease this persistent inflammation play a crucial role in managing asthma episodes. Mice sensitized (by intraperitoneal administration) and then challenged (by inhalation) with ovalbumin (OVA) develop an extensive eosinophilic inflammatory response, goblet cell hyperplasia, collagen deposition, airway smooth muscle thickening, and airway wall area increase, similar to pathologies observed in human asthma. We used OVA-sensitized/challenged mice as a murine model of chronic allergic airway inflammation with subepithelial fibrosis (i.e., asthma). In this OVA mouse model, mRNA and protein of macrophage migration inhibitory factor (MIF) are upregulated, a response similar to what has been observed in the pathogenesis of acute inflammation in human asthma. We hypothesized that MIF induces transforming growth factor-β1 (TGF-β1) synthesis, which has been shown to play an important role in asthma and airway remodeling. To explore the role of MIF in the development of airway remodeling, we evaluated the effects of an MIF small-molecule antagonist, (S,R)3-(4-hy-droxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1), on pathologies associated with the airway-remodeling process in the OVA mouse model. We found that administration of ISO-1 significantly mitigated all symptoms caused by OVA treatment. In addition, the treatment of OVA-sensitized mice with the MIF antagonist ISO-1 significantly reduced TGF-β1 mRNA levels in pulmonary tissue and its protein level in bronchial alveolar lavage fluid supernatants. We believe the repression of MIF in the ISO-1 treatment group led to the significant suppression observed in the inflammatory responses associated with the allergen-induced lung inflammation and fibrosis in our murine asthma (OVA) model. Our results implicate a possible function of MIF in the pathogenesis of chronic asthma and suggest that MIF might be an important therapeutic target for airway remodeling.
PMCID: PMC2935952  PMID: 20485865
10.  GITR signaling potentiates airway hyperresponsiveness by enhancing Th2 cell activity in a mouse model of asthma 
Respiratory Research  2009;10(1):93.
Allergic asthma is characterized by airway hyperresponsiveness (AHR) and allergic inflammation of the airways, driven by allergen-specific Th2 cells. The asthma phenotypes and especially AHR are sensitive to the presence and activity of regulatory T (Treg) cells in the lung. Glucocorticoid-induced tumor necrosis factor receptor (GITR) is known to have a co-stimulatory function on effector CD4+ T cells, rendering these cells insensitive to Treg suppression. However, the effects of GITR signaling on polarized Th1 and Th2 cell effector functions are not well-established. We sought to evaluate the effect of GITR signaling on fully differentiated Th1 and Th2 cells and to determine the effects of GITR activation at the time of allergen provocation on AHR and airway inflammation in a Th2-driven mouse model of asthma.
CD4+CD25- cells were polarized in vitro into Th1 and Th2 effector cells, and re-stimulated in the presence of GITR agonistic antibodies to assess the effect on IFNγ and IL-4 production. To evaluate the effects of GITR stimulation on AHR and allergic inflammation in a mouse asthma model, BALB/c mice were sensitized to OVA followed by airway challenges in the presence or absence of GITR agonist antibodies.
GITR engagement potentiated cytokine release from CD3/CD28-stimulated Th2 but not Th1 cells in vitro. In the mouse asthma model, GITR triggering at the time of challenge induced enhanced airway hyperresponsiveness, serum IgE and ex vivo Th2 cytokine release, but did not increase BAL eosinophilia.
GITR exerts a differential effect on cytokine release of fully differentiated Th1 and Th2 cells in vitro, potentiating Th2 but not Th1 cytokine production. This effect on Th2 effector functions was also observed in vivo in our mouse model of asthma, resulting in enhanced AHR, serum IgE responses and Th2 cytokine production. This is the first report showing the effects of GITR activation on cytokine production by polarized primary Th1 and Th2 populations and the relevance of this pathway for AHR in mouse models for asthma. Our data provides crucial information on the mode of action of the GITR signaling, a pathway which is currently being considered for therapeutic intervention.
PMCID: PMC2767348  PMID: 19811658
11.  Maternal exposure to secondhand cigarette smoke primes the lung for induction of phosphodiesterase4D5 isozyme and exacerbated Th2 responses; rolipram attenuates the airway hyperreactivity and muscarinic receptor expression but not lung inflammation and atopy 
Airway hyperreactivity (AHR), lung inflammation, and atopy are clinical signs of allergic asthma. Gestational exposure to cigarette smoke (CS) markedly increases the risk for childhood allergic asthma. Muscarinic receptors regulate airway smooth muscle tone, and asthmatics exhibit increased AHR to muscarinic agonists. We have previously reported that in a murine model of bronchopulmonary aspergillosis maternal exposure to mainstream CS increases AHR after acute intratracheal administration of Aspergillus fumigatus extract (Af). However, the mechanism by which gestational CS induces allergic asthma is unclear. We now show for the first time that, compared to controls, mice exposed prenatally to secondhand CS exhibit increased lung inflammation (predominant infiltration by eosinophils and polymorphs), atopy, and airway resistance, and produce proinflammatory cytokines (IL-4, IL-5, IL-6, and IL-13, but not IL-2 or IFN-γ). These changes, which occur only after an allergen (Af) treatment, are correlated with marked upregulated lung expression of M1, M2, and M3 muscarinic receptors and phosphodiesterase-4D5 (PDE4D5) isozyme. Interestingly, the PDE4-selective inhibitor rolipram attenuates the increase in AHR, muscarinic receptors, and PDE4D5, but fails to downregulate lung inflammation, Th2 cytokines, or serum IgE levels. Thus, the fetus is extraordinarily sensitive to CS, inducing allergic asthma after postnatal exposure to allergens. While the increased AHR might reflect increased PDE4D5 and muscarinic receptor expression, the mechanisms underlying atopy and lung inflammation are unrelated to the PDE4 activity. Thus, PDE4 inhibitors might ease AHR, but are unlikely to attenuate lung inflammation and atopy associated with childhood allergic asthma.
PMCID: PMC3191864  PMID: 19596983
12.  TLR-2 Activation Induces Regulatory T Cells and Long-Term Suppression of Asthma Manifestations in Mice 
PLoS ONE  2013;8(2):e55307.
Asthma is a chronic inflammatory disease of the airways characterized by variable airway obstruction and airway hyperresponsiveness (AHR). The T regulatory (Treg) cell subset is critically important for the regulation of immune responses. Adoptive transfer of Treg cells has been shown to be sufficient for the suppression of airway inflammation in experimental allergic asthma. Intervention strategies aimed at expanding the Treg cell population locally in the airways of sensitized individuals are therefore of high interest as a potential therapeutic treatment for allergic airway disease. Here, we aim to test whether long-term suppression of asthma manifestations can be achieved by locally expanding the Treg cell subset via intranasal administration of a TLR-2 agonist. To model therapeutic intervention aimed at expanding the endogenous Treg population in a sensitized host, we challenged OVA-sensitized mice by OVA inhalation with concomitant intranasal instillation of the TLR-2 agonist Pam3Cys, followed by an additional series of OVA challenges. Pam3Cys treatment induced an acute but transient aggravation of asthma manifestations, followed by a reduction or loss of AHR to methacholine, depending on the time between Pam3Cys treatment and OVA challenges. In addition, Pam3Cys-treatment induced significant reductions of eosinophils and increased numbers of Treg cells in the lung infiltrates. Our data show that, despite having adverse acute effects, TLR2 agonist treatment as a therapeutic intervention induces an expansion of the Treg cell population in the lungs and results in long-term protection against manifestation of allergic asthma upon subsequent allergen provocation. Our data indicate that local expansion of Tregs in allergic airway disease is an interesting therapeutic approach that warrants further investigation.
PMCID: PMC3564817  PMID: 23393567
13.  IgG transmitted from allergic mothers decreases allergic sensitization in breastfed offspring 
The mechanism(s) responsible for the reduced risk of allergic disease in breastfed infants are not fully understood. Using an established murine model of asthma, we demonstrated previously that resistance to allergic airway disease transmitted from allergic mothers to breastfed offspring requires maternal B cell-derived factors.
The aim of this study was to investigate the role of offspring neonatal Fc receptor for IgG uptake by intestinal epithelial cells (FcRn) in this breast milk transferred protection from allergy.
Allergic airway disease was induced during pregnancy in C57BL/6 female mice. These allergic mothers foster nursed naive FcRn+/- or FcRn-/- progeny born to FcRn+/- females that were mated to C57BL/6J-FcRn-/- male mice. In offspring deficient in FcRn, we expected reduced levels of systemic allergen-specific IgG1, a consequence of decreased absorption of maternal IgG from the lumen of the neonatal gastrointestinal tract. Using this model, we were able to investigate how breast milk IgG affected offspring responses to allergic sensitization.
Levels of maternal antibodies absorbed from the breast milk of allergic foster mothers were determined in weanling FcRn-sufficient or -deficient mice. Maternal transmission of allergen-specific IgG1 to breastfed FcRn-/- offspring was at levels 103-104 lower than observed in FcRn+/- or FcRn+/+ mice. Five weeks after weaning, when offspring were 8 wk old, mice were sensitized and challenged to evaluate their susceptibility to develop allergic airway disease. Protection, indicated by reduced parameters of disease (allergen-specific IgE in serum, eosinophilic inflammation in the airways and lung) were evident in FcRn-sufficient mice nursed as neonates by allergic mothers. In contrast, FcRn-deficient mice breastfed by the same mothers acquired limited, if any, protection from development of allergen-specific IgE and associated pathology.
FcRn expression was a major factor in determining how breastfed offspring of allergic mothers acquired levels of systemic allergen-specific IgG1 sufficient to inhibit allergic sensitization in this model.
PMCID: PMC2914046  PMID: 20626874
14.  Compartmentalized chemokine-dependent regulatory T cell inhibition of allergic pulmonary inflammation 
Induction of endogenous regulatory T cells (Tregs) represents an exciting new potential modality for treating allergic diseases such as asthma. Tregs have been implicated in the regulation of asthma but the anatomic location where they exert their regulatory function, and the mechanisms controlling their migration necessary for their suppressive function in asthma are not known. Understanding these aspects of Treg biology will be important for harnessing their power in the clinic.
To determine the anatomic location where Tregs exert their regulatory function in the sensitization and effector phases of allergic asthma, and to determine the chemokine receptors that control the migration of Tregs to these sites in vivo in mice and in humans.
The clinical efficacy and the anatomic location of adoptively transferred chemokine receptor-deficient CD4+CD25+ Foxp3+ Tregs was determined in the sensitization and effector phases of allergic airway inflammation in mice. The chemokine receptor expression profile was determined on Tregs recruited into the human airway following bronchoscopic segmental allergen challenge of subjects with asthma.
We show that CCR7, but not CCR4, is required on Tregs to suppress allergic airway inflammation during the sensitization phase. In contrast, CCR4, but not CCR7, is required on Tregs to suppress allergic airway inflammation during the effector phase. Consistent with our murine studies, humans with allergic asthma had an increase in CCR4 expressing functional Tregs in the lung following segmental allergen challenge.
The location of Treg function differs during allergic sensitization and during allergen-induced recall responses in the lung, and that this differential localization is critically dependent on differential chemokine function.
PMCID: PMC3703653  PMID: 23632297
Asthma; regulatory T cells; chemokines; CCR4; CCR7; segmental allergen challenge
15.  Reversal of Allergen-induced Airway Remodeling by CysLT1 Receptor Blockade 
Rationale: Airway inflammation in asthma is accompanied by structural changes, including goblet cell metaplasia, smooth muscle cell layer thickening, and subepithelial fibrosis. This allergen-induced airway remodeling can be replicated in a mouse asthma model.
Objectives: The study goal was to determine whether established airway remodeling in a mouse asthma model is reversible by administration of the cysteinyl leukotriene (CysLT)1 receptor antagonist montelukast, the corticosteroid dexamethasone, or the combination montelukast + dexamethasone.
Methods: BALB/c mice, sensitized by intraperitoneal ovalbumin (OVA) as allergen, received intranasal OVA periodically Days 14–73 and montelukast or dexamethasone or placebo from Days 73–163.
Measurements and Main Results: Allergen-induced trafficking of eosinophils into the bronchoalveolar lavage fluid and lung interstitium and airway goblet cell metaplasia, smooth muscle cell layer thickening, and subepithelial fibrosis present on Day 73 persisted at Day 163, 3 mo after the last allergen challenge. Airway hyperreactivity to methacholine observed on Day 73 in OVA-treated mice was absent on Day 163. In OVA-treated mice, airway eosinophil infiltration and goblet cell metaplasia were reduced by either montelukast or dexamethasone alone. Montelukast, but not dexamethasone, reversed the established increase in airway smooth muscle mass and subepithelial collagen deposition. By immunocytochemistry, CysLT1 receptor expression was significantly increased in airway smooth muscle cells in allergen-treated mice compared with saline-treated controls and was reduced by montelukast, but not dexamethasone, administration.
Conclusions: These data indicate that established airway smooth muscle cell layer thickening and subepithelial fibrosis, key allergen-induced airway structural changes not modulated by corticosteroids, are reversible by CysLT1 receptor blockade therapy.
PMCID: PMC2662952  PMID: 16387808
eosinophils; fibrosis; mucus; smooth muscle
16.  A regulatory role for the C5a anaphylatoxin in type 2 immunity in asthma 
Journal of Clinical Investigation  2006;116(3):783-796.
Complement component 5 (C5) has been described as either promoting or protecting against airway hyperresponsiveness (AHR) in experimental allergic asthma, suggesting pleomorphic effects of C5. Here we report that local pharmacological targeting of the C5a receptor (C5aR) prior to initial allergen sensitization in murine models of inhalation tolerance or allergic asthma resulted in either induction or marked enhancement of Th2-polarized immune responses, airway inflammation, and AHR. Importantly, C5aR-deficient mice exhibited a similar, increased allergic phenotype. Pulmonary allergen exposure in C5aR-targeted mice resulted in increased sensitization and accumulation of CD4+CD69+ T cells associated with a marked increase in pulmonary myeloid, but not plasmacytoid, DC numbers. Pulmonary DCs from C5aR-targeted mice produced large amounts of CC chemokine ligand 17 (CCL17) and CCL22 ex vivo, suggesting a negative impact of C5aR signaling on pulmonary homing of Th2 cells. In contrast, C5aR targeting in sensitized mice led to suppressed airway inflammation and AHR but was still associated with enhanced production of Th2 effector cytokines. These data suggest a dual role for C5a in allergic asthma, i.e., protection from the development of maladaptive type 2 immune responses during allergen sensitization at the DC/T cell interface but enhancement of airway inflammation and AHR in an established inflammatory environment.
PMCID: PMC1386108  PMID: 16511606
17.  Complement C3a Regulates Muc5ac Expression by Airway Clara Cells Independently of Th2 Responses 
Rationale: The factors that control the secretion of epithelial mucins are essential to understanding obstructive airway diseases such as asthma. Although the complement anaphylatoxin C3a and its receptor have been shown to promote many features of allergic lung inflammation, the contribution to mucin expression has not been elucidated.
Objectives: To determine if the C3a receptor with its ligand regulates airway epithelial mucin production.
Methods: Mice deficient in the C3a receptor were examined in a model of allergic airway disease for the presence of goblet cells and the gel-forming secreted mucin Muc5ac.
Measurements and Main Results: Lungs from antigen-challenged C3a receptor–deficient mice revealed a dramatic decrease in goblet cells and Muc5ac compared with challenged wild-type control animals. These differences were dependent on C3a binding to its receptor since intranasal challenge with C3a induced the formation of goblet cells only in wild-type but not C3a receptor–deficient mice. Increased numbers of goblet cells were also found in C3a-stimulated RAG-1–deficient mice demonstrating a mechanism independent of T lymphocytes and Th2 cytokines, mediators which have been shown to regulate mucin expression. A direct physiological role for C3a in these models was further demonstrated in cultures of airway epithelial Clara cells, which not only express the C3a receptor but also produce Muc5ac in response to C3a.
Conclusions: These studies identify a novel C3a receptor–dependent mechanism in the development of airway epithelial goblet cells and regulation of Muc5ac production and implicate C3a as a mediator of airway obstruction in asthma.
PMCID: PMC2176092  PMID: 17400733
T cells; allergy; lung; inflammation
18.  Mucosal sensitization to German cockroach involves protease-activated receptor-2 
Respiratory Research  2010;11(1):62.
Allergic asthma is on the rise in developed countries. A common characteristic of allergens is that they contain intrinsic protease activity, and many have been shown to activate protease-activated receptor (PAR)-2 in vitro. The role for PAR-2 in mediating allergic airway inflammation has not been assessed using a real world allergen.
Mice (wild type or PAR-2-deficient) were sensitized to German cockroach (GC) feces (frass) or protease-depleted GC frass by either mucosal exposure or intraperitoneal injection and measurements of airway inflammation (IL-5, IL-13, IL-17A, and IFNγ levels in the lung, serum IgE levels, cellular infiltration, mucin production) and airway hyperresponsiveness were performed.
Following systemic sensitization, GC frass increased airway hyperresponsiveness, Th2 cytokine release, serum IgE levels, cellular infiltration and mucin production in wild type mice. Interestingly, PAR-2-deficient mice had similar responses as wild type mice. Since these data were in direct contrast to our finding that mucosal sensitization with GC frass proteases regulated airway hyperresponsiveness and mucin production in BALB/c mice (Page et. al. 2007 Resp Res 8:91), we backcrossed the PAR-2-deficient mice into the BALB/c strain. Sensitization to GC frass could now occur via the more physiologically relevant method of intratracheal inhalation. PAR-2-deficient mice had significantly reduced airway hyperresponsiveness, Th2 and Th17 cytokine release, serum IgE levels, and cellular infiltration compared to wild type mice when sensitization to GC frass occurred through the mucosa. To confirm the importance of mucosal exposure, mice were systemically sensitized to GC frass or protease-depleted GC frass via intraperitoneal injection. We found that removal of proteases from GC frass had no effect on airway inflammation when administered systemically.
We showed for the first time that allergen-derived proteases in GC frass elicit allergic airway inflammation via PAR-2, but only when allergen was administered through the mucosa. Importantly, our data suggest the importance of resident airway cells in the initiation of allergic airway disease, and could make allergen-derived proteases attractive therapeutic targets.
PMCID: PMC2889872  PMID: 20497568
19.  Detrimental effects of albuterol on airway responsiveness requires airway inflammation and is independent of β-receptor affinity in murine models of asthma 
Respiratory Research  2011;12(1):27.
Inhaled short acting β2-agonists (SABA), e.g. albuterol, are used for quick reversal of bronchoconstriction in asthmatics. While SABA are not recommended for maintenance therapy, it is not uncommon to find patients who frequently use SABA over a long period of time and there is a suspicion that long term exposure to SABA could be detrimental to lung function. To test this hypothesis we studied the effect of long-term inhaled albuterol stereoisomers on immediate allergic response (IAR) and airway hyperresponsiveness (AHR) in mouse models of asthma.
Balb/C mice were sensitized and challenged with ovalbumin (OVA) and then we studied the IAR to inhaled allergen and the AHR to inhaled methacholine. The mice were pretreated with nebulizations of either racemic (RS)-albuterol or the single isomers (S)- and (R)-albuterol twice daily over 7 days prior to harvest.
We found that all forms of albuterol produced a significant increase of IAR measured as respiratory elastance. Similarly, we found that AHR was elevated by albuterol. At the same time a mouse strain that is intrinsically hyperresponsive (A/J mouse) was not affected by the albuterol isomers nor was AHR induced by epithelial disruption with Poly-L-lysine affected by albuterol.
We conclude that long term inhalation treatment with either isomer of albuterol is capable of precipitating IAR and AHR in allergically inflamed airways but not in intrinsically hyperresponsive mice or immunologically naïve mice. Because (S)-albuterol, which lacks affinity for the β2-receptor, did not differ from (R)-albuterol, we speculate that isomer-independent properties of the albuterol molecule, other than β2-agonism, are responsible for the effect on AHR.
PMCID: PMC3060863  PMID: 21385381
20.  Compartmental and Temporal Dynamics of Chronic Inflammation and Airway Remodelling in a Chronic Asthma Mouse Model 
PLoS ONE  2014;9(1):e85839.
Allergic asthma is associated with chronic airway inflammation and progressive airway remodelling. However, the dynamics of the development of these features and their spontaneous and pharmacological reversibility are still poorly understood. We have therefore investigated the dynamics of airway remodelling and repair in an experimental asthma model and studied how pharmacological intervention affects these processes.
Using BALB/c mice, the kinetics of chronic asthma progression and resolution were characterised in absence and presence of inhaled corticosteroid (ICS) treatment. Airway inflammation and remodelling was assessed by the analysis of bronchoalveolar and peribronichal inflammatory cell infiltrate, goblet cell hyperplasia, collagen deposition and smooth muscle thickening.
Chronic allergen exposure resulted in early (goblet cell hyperplasia) and late remodelling (collagen deposition and smooth muscle thickening). After four weeks of allergen cessation eosinophilic inflammation, goblet cell hyperplasia and collagen deposition were resolved, full resolution of lymphocyte inflammation and smooth muscle thickening was only observed after eight weeks. ICS therapy when started before the full establishment of chronic asthma reduced the development of lung inflammation, decreased goblet cell hyperplasia and collagen deposition, but did not affect smooth muscle thickening. These effects of ICS on airway remodelling were maintained for a further four weeks even when therapy was discontinued.
Utilising a chronic model of experimental asthma we have shown that repeated allergen exposure induces reversible airway remodelling and inflammation in mice. Therapeutic intervention with ICS was partially effective in inhibiting the transition from acute to chronic asthma by reducing airway inflammation and remodelling but was ineffective in preventing smooth muscle hypertrophy.
PMCID: PMC3897544  PMID: 24465740
21.  NO2 inhalation induces maturation of pulmonary CD11c+ cells that promote antigenspecific CD4+ T cell polarization 
Respiratory Research  2010;11(1):102.
Nitrogen dioxide (NO2) is an air pollutant associated with poor respiratory health, asthma exacerbation, and an increased likelihood of inhalational allergies. NO2 is also produced endogenously in the lung during acute inflammatory responses. NO2 can function as an adjuvant, allowing for allergic sensitization to an innocuous inhaled antigen and the generation of an antigen-specific Th2 immune response manifesting in an allergic asthma phenotype. As CD11c+ antigen presenting cells are considered critical for naïve T cell activation, we investigated the role of CD11c+ cells in NO2-promoted allergic sensitization.
We systemically depleted CD11c+ cells from transgenic mice expressing a simian diphtheria toxin (DT) receptor under of control of the CD11c promoter by administration of DT. Mice were then exposed to 15 ppm NO2 followed by aerosolized ovalbumin to promote allergic sensitization to ovalbumin and were studied after subsequent inhaled ovalbumin challenges for manifestation of allergic airway disease. In addition, pulmonary CD11c+ cells from wildtype mice were studied after exposure to NO2 and ovalbumin for cellular phenotype by flow cytometry and in vitro cytokine production.
Transient depletion of CD11c+ cells during sensitization attenuated airway eosinophilia during allergen challenge and reduced Th2 and Th17 cytokine production. Lung CD11c+ cells from wildtype mice exhibited a significant increase in MHCII, CD40, and OX40L expression 2 hours following NO2 exposure. By 48 hours, CD11c+MHCII+ DCs within the mediastinal lymph node (MLN) expressed maturation markers, including CD80, CD86, and OX40L. CD11c+CD11b- and CD11c+CD11b+ pulmonary cells exposed to NO2 in vivo increased uptake of antigen 2 hours post exposure, with increased ova-Alexa 647+ CD11c+MHCII+ DCs present in MLN from NO2-exposed mice by 48 hours. Co-cultures of ova-specific CD4+ T cells from naïve mice and CD11c+ pulmonary cells from NO2-exposed mice produced IL-1, IL-12p70, and IL-6 in vitro and augmented antigen-induced IL-5 production.
CD11c+ cells are critical for NO2-promoted allergic sensitization. NO2 exposure causes pulmonary CD11c+ cells to acquire a phenotype capable of increased antigen uptake, migration to the draining lymph node, expression of MHCII and co-stimulatory molecules required to activate naïve T cells, and secretion of polarizing cytokines to shape a Th2/Th17 response.
PMCID: PMC2918560  PMID: 20659336
22.  Lifetime-Dependent Effects of Bisphenol A on Asthma Development in an Experimental Mouse Model 
PLoS ONE  2014;9(6):e100468.
Environmental factors are thought to contribute significantly to the increase of asthma prevalence in the last two decades. Bisphenol A (BPA) is a xenoestrogen commonly used in consumer products and the plastic industry. There is evidence and an ongoing discussion that endocrine disruptors like BPA may affect human health and also exert alterations on in the immune system. The aim of this study was to investigate age-dependent effects of BPA on the asthma risk using a murine model to explain the controversial results reported till date.
BALB/c mice were exposed to BPA via the drinking water for different time periods including pregnancy and breastfeeding. To induce an asthma phenotype, mice were sensitized to ovalbumin (OVA), followed by an intrapulmonary allergen challenge.
BPA exposure during pregnancy and breastfeeding had no significant effect on asthma development in the offspring. In contrast, lifelong exposure from birth until the last antigen challenge clearly increased eosinophilic inflammation in the lung, airway hyperreactivity and antigen-specific serum IgE levels in OVA-sensitized adult mice compared to mice without BPA exposure. Surprisingly, BPA intake during the sensitization period significantly reduced the development of allergic asthma. This effect was reversed in the presence of a glucocorticoid receptor antagonist.
Our results demonstrate that the impact of BPA on asthma risk is strongly age-dependent and ranges from asthma-promoting to asthma-reducing effects. This could explain the diversity of results from previous studies regarding the observed health impact of BPA.
PMCID: PMC4065062  PMID: 24950052
23.  Atropine, sodium cromoglycate, and thymoxamine in PGF2 alpha-induced bronchoconstriction in extrinsic asthma. 
British Medical Journal  1975;2(5967):360-362.
In six patients with extrinsic bronchial asthma the inhalation of prostaglandin (PG) F2 alpha in a small dosage produced significant bronchoconstriction, whereas PGE2 produced bronchodilatation. In these patients cholinergic blockade with atropine partially inhibited the PGF2 alpha-induced bronchoconstriction, but the alpha-receptor-blocking drug thymoxamine and sodium cromoglycate did not. These results suggest that the effect of PGF2 alpha is mediated through cholinergic receptors in the airways, and this effect is grossly exaggerated in asthma. The failure to inhibit PGF2 alpha-induced bronchoconstriction with sodium cromoglycate and the observation of an inhibitory effect of sodium cromoglycate in both allergic and exercise asthma suggest that locally formed PGF2 alpha may not be the main factor in the pathogenesis of bronchial asthma.
PMCID: PMC1673183  PMID: 124195
24.  Low dose of Mycoplasma pneumoniae (Mp) infection enhances an established allergic inflammation in mice: Role of prostaglandin E2 (PGE2) pathway 
Over 40% of chronic stable asthma patients have evidence of respiratory Mycoplasma pneumoniae (Mp) infection as detected by polymerase chain reaction (PCR), but not by serology and culture, suggesting a low-level Mp involved in chronic asthma. However, the role of such a low-level Mp infection in regulation of allergic inflammation remains unknown.
To determine the impact of a low-level Mp infection in mice with established airway allergic inflammation on allergic responses such as eosinophilia and chemokine eotaxin-2, and the underlying mechanisms (i.e., prostaglandin E2 [PGE2] pathway) since PGE2 inhalation before allergen challenge suppressed eosinophil infiltration in human airways.
BALB/c mouse models of ovalbumin (OVA)-induced allergic asthma with an ensuing low-dose or high-dose Mp were used to assess IL-4 expression, BAL eosinophil, eotaxin-2 and PGE2 levels, and lung mRNA levels of microsomal prostaglandin E synthase-1 (mPGES-1). Primary alveolar macrophages (pAMs) from naïve BALB/c mice were cultured to determine if Mp-induced PGE2 or exogenous PGE2 down-regulates IL-4/IL-13-induced eotaxin-2.
Low-dose Mp in allergic mice significantly enhanced IL-4 and eotaxin-2, and moderately promoted lung eosinophilia, whereas high-dose Mp significantly reduced lung eosinophilia and tended to decrease IL-4 and eotaxin-2. Moreover, in both OVA-naïve and allergic mice, lung mPGES-1 mRNA and BAL PGE2 levels were elevated in mice infected with high-dose, but not low-dose Mp. In pAMs, IL-4/IL-13 significantly increased eotaxin-2, which was reduced by Mp infection accompanied by dose-dependent PGE2 induction. Exogenous PGE2 inhibited IL-4/IL-13-induced eotaxin-2 in a dose-dependent manner.
This study highlights a novel concept on how differing bacterial loads in the lung modify the established allergic airway inflammation, and thus interact with an allergen to further induce Th2 responses. That is: Unlike high-level Mp, low-level Mp fails to effectively induce PGE2 to down-regulate allergic responses (e.g., eotaxin-2), thus maintaining or even worsening allergic inflammation in asthmatic airways.
PMCID: PMC2784117  PMID: 19552640
asthma; Mycoplasma pneumoniae; eotaxin-2; PGE2; alveolar macrophages
25.  Inhibition of Pim1 Kinase Activation Attenuates Allergen-Induced Airway Hyperresponsiveness and Inflammation 
Pim kinases are a family of serine/threonine kinases whose activity can be induced by cytokines involved in allergy and asthma. These kinases play a role in cell survival and proliferation, but have not been examined, to the best of our knowledge, in the development of allergic disease. This study sought to determine the role of Pim1 kinase in the development of allergic airway responses. Mice were sensitized and challenged with antigen (primary challenge), or were sensitized, challenged, and rechallenged with allergen in a secondary model. To assess the role of Pim1 kinase, a small molecule inhibitor was administered orally after sensitization and during the challenge phase. Airway responsiveness to inhaled methacholine, airway and lung inflammation, cell composition, and cytokine concentrations were assessed. Lung Pim1 kinase concentrations were increased after ovalbumin sensitization and challenge. In the primary allergen challenge model, treatment with the Pim1 kinase inhibitor after sensitization and during airway challenges prevented the development of airway hyperresponsiveness, eosinophilic airway inflammation, and goblet cell metaplasia, and increased Th2 cytokine concentrations in bronchoalveolar fluid in a dose-dependent manner. These effects were also demonstrated after a secondary allergen challenge, where lung allergic disease was established before treatment. After treatment with the inhibitor, a significant reduction was evident in the number of CD4+ and CD8+ T cells and concentrations of cytokines in the airways. The inhibition of Pim1 kinase was effective in preventing the development of airway hyperresponsiveness, airway inflammation, and cytokine production in allergen-sensitized and allergen-challenged mice. These data identify the important role of Pim1 kinase in the full development of allergen-induced airway responses.
PMCID: PMC3359953  PMID: 22074702
airway hyperresponsiveness; inflammation; Pim1 kinase; T cells

Results 1-25 (717162)