Search tips
Search criteria

Results 1-25 (1168612)

Clipboard (0)

Related Articles

1.  Effect of Prostaglandin I2 Analogs on Cytokine Expression in Human Myeloid Dendritic Cells via Epigenetic Regulation 
Molecular Medicine  2011;18(1):433-444.
Prostaglandin I2 (PGI2) analog is regarded as a potential candidate for treating asthma. Human myeloid dendritic cells (mDCs) play a critical role in the pathogenesis of asthma. However, the effects of PGI2 analog on human mDCs are unknown. In the present study, circulating mDCs were isolated from six healthy subjects. The effects of PGI2 analogs iloprost and treprostinil on cytokine production, maturation and T-cell stimulatory function of human mDCs were investigated. Tumor necrosis factor (TNF)-α and interleukin (IL)-10 were measured by enzyme-linked immunosorbent assay. The expression of costimulatory molecules was investigated by flow cytometry. T-cell stimulatory function was investigated by measuring interferon (IFN)-γ, IL-13 and IL-10 production by T cells cocultured with iloprost-treated mDCs. Intracellular signaling was investigated by Western blot and chromatin immunoprecipitation. We found that iloprost and treprostinil induced IL-10, but suppressed TNF-α production in polyinosinic-polycytidylic acid (poly I:C)-stimulated mDCs. This effect was reversed by the I-prostanoid (IP), E-prostanoid (EP) receptor antagonists or intracellular free calcium (Ca2+) chelator. Forskolin, an adenyl cyclase activator, conferred a similar effect. Iloprost and treprostinil increased intracellular adenosine 3′,5′-cyclic monophosphate (cAMP) levels, and iloprost also increased intracellular Ca2+. Iloprost suppressed poly I:C-induced mitogen-activated protein kinase (MAPK) phospho-p38 and phospho–activating transcription factor (ATF)2 expression. Iloprost downregulated poly I:C-induced histone H3K4 trimethylation in the TNFA gene promoter region via suppressing translocation of histone 3 lysine 4 (H3K4)-specific methyltransferases MLL (mixed lineage leukemia) and WDR5 (WD repeat domain 5). Iloprost-treated mDCs inhibited IL-13, IFN-γ and IL-10 production by T cells. In conclusion, PGI2 analogs enhance IL-10 and suppress TNF-α expression through the IP/EP2/EP4 receptors–cAMP and EP1 receptor–Ca2+ pathway. Iloprost suppressed TNF-α expression via the MAPK-p38-ATF2 pathway and epigenetic regulation by downregulation of histone H3K4 trimethylation.
PMCID: PMC3356435  PMID: 22231731
2.  Review of inhaled iloprost for the control of pulmonary artery hypertension in children 
In the pediatric population, pulmonary hypertension may present as an acute event in the setting of lung or cardiac pathology or as a chronic disease, mainly as idiopathic pulmonary hypertension or associated with congenital heart disease. Recently, new pharmacologic approaches have demonstrated significant efficacy in the management of adults with pulmonary arterial hypertension; these include intravenous epoprostenol, prostacyclin analogs, endothelin receptor antagonists and phosphodiesterase type 5 inhibitors. The same treatment strategies are currently used in children. There are only few reports of the use of inhaled iloprost in pediatrics, only one of which reported the use of chronic inhaled iloprost in a significant number of children. This report showed that 1) the acute pulmonary vasodilator response to inhaled iloprost is equivalent to that of inhaled nitric oxide; 2) acute inhalation of iloprost can induce bronchoconstriction 3) the addition of inhaled iloprost can reduce the need for intravenous prostanoid therapy in some patients; 4) most children tolerated the combination of inhaled iloprost and endothelin receptor antagonist or phosphodiesterase inhibitors; 5) Several patients had clinical deterioration during chronic inhaled iloprost therapy and required rescue therapy with intravenous prostanoids. In this review we will discuss the role of inhaled iloprost in acute and chronic pulmonary hypertension in children.
PMCID: PMC2672461  PMID: 19436672
pulmonary hypertension; children; iloprost
3.  Short- and Long-Term Effects of Inhaled Iloprost Therapy in Children With Pulmonary Arterial Hypertension 
This study investigated the short- and long-term outcome of children with pulmonary arterial hypertension (PAH) treated with inhaled iloprost.
Inhaled iloprost has been approved for the treatment of adults with PAH, but little is known about the effects in children with PAH.
We evaluated the acute effects of inhaled iloprost on hemodynamic status and lung function and the response to long-term therapy in 22 children (range 4.5 to 17.7 years) with PAH (idiopathic, n = 12; congenital heart disease, n = 10). Cardiac catheterization, standard lung function testing before and after iloprost inhalation, 6-min walk test, World Health Organization functional class, and hemodynamic parameters were monitored.
Acute administration of inhaled iloprost lowered mean pulmonary artery pressure equivalent to the response to inhaled nitric oxide with oxygen. Acute iloprost inhalation reduced forced expiratory volume in 1 s and mid-volume forced expiratory flow by 5% and 10%, respectively, consistent with acute bronchoconstriction. At 6 months, functional class improved in 35%, decreased in 15%, and remained unchanged in 50% of children. Sixty-four percent of patients continued receiving long-term iloprost therapy, 36% stopped iloprost, due to lower airway reactivity, clinical deterioration, or death. In 9 patients on chronic intravenous prostanoids, 8 transitioned from intravenous prostanoids to inhaled iloprost, which continued during follow-up.
Inhaled iloprost caused sustained functional improvement in some children with PAH, although inhaled iloprost occasionally induced bronchoconstriction. Most patients tolerated the transition from intravenous to inhaled prostanoid therapy. Clinical deterioration, side effects, and poor compliance, owing to the frequency of treatments, could limit chronic treatment in children.
PMCID: PMC3125969  PMID: 18191742
4.  Prostacyclin Inhibits Non-Small Cell Lung Cancer Growth by a Frizzled 9-Dependent Pathway That Is Blocked by Secreted Frizzled-Related Protein 112 
Neoplasia (New York, N.Y.)  2010;12(3):244-253.
The goal of this study was to assess the ability of iloprost, an orally active prostacyclin analog, to inhibit transformed growth of human non-small cell lung cancer (NSCLC) and to define the mechanism of iloprost's tumor suppressive effects. In a panel of NSCLC cell lines, the ability of iloprost to inhibit transformed cell growth was not correlated with the expression of the cell surface receptor for prostacyclin, but instead was correlated with the presence of Frizzled 9 (Fzd 9) and the activation of peroxisome proliferator-activated receptor-γ (PPARγ). Silencing of Fzd 9 blocked PPARγ activation by iloprost, and expression of Fzd 9 in cells lacking the protein resulted in iloprost's activation of PPARγ and inhibition of transformed growth. Interestingly, soluble Frizzled-related protein-1, a well-known inhibitor of Wnt/Fzd signaling, also blocked the effects of iloprost and Fzd 9. Moreover, mice treated with iloprost had reduced lung tumors and increased Fzd 9 expression. These studies define a novel paradigm, linking the eicosanoid pathway and Wnt signaling. In addition, these data also suggest that prostacyclin analogs may represent a new class of therapeutic agents in the treatment of NSCLC where the restoration of noncanonical Wnt signaling maybe important for the inhibition of transformed cell growth.
PMCID: PMC2838442  PMID: 20234818
5.  Iloprost-induced desensitization of the prostacyclin receptor in isolated rabbit lungs 
Respiratory Research  2007;8(1):4.
The rapid desensitization of the human prostacyclin (IP) in response to agonist binding has been shown in cell culture. Phosphorylation of the IP receptor by protein kinase C (PKC) has been suggested to be involved in this process.
Methods and results
In this study we investigated the vasodilatory effects of iloprost, a stable prostacyclin analogue, in perfused rabbit lungs. Continuous infusion of the thromboxane mimetic U46619 was employed to establish stable pulmonary hypertension. A complete loss of the vasodilatory response to iloprost was observed in experiments with continuous iloprost perfusion, maintaining the intravascular concentration of this prostanoid over a 180 min period. When lungs under chronic iloprost infusion were acutely challenged with inhaled iloprost, a corresponding complete loss of vasoreactivity was observed. This desensitization was not dependent on upregulation of cAMP-specific phosphodiesterases or changes in adenylate cyclase activity, as suggested by unaltered dose-response curves to agents directly affecting these enzymes. Application of a prostaglandin E1 receptor antagonist 6-isopropoxy-9-oxoxanthene-2-carboxylic acid (AH 6809) or the PKC inhibitor bisindolylmaleimide I (BIM) enhanced the vasodilatory response to infused iloprost and partially prevented tachyphylaxis.
A three-hour infusion of iloprost in pulmonary hypertensive rabbit lungs results in complete loss of the lung vasodilatory response to this prostanoid. This rapid desensitization is apparently not linked to changes in adenylate cyclase and phosphodiesterase activation, but may involve PKC function and co-stimulation of the EP1 receptor in addition to the IP receptor by this prostacyclin analogue.
PMCID: PMC1802745  PMID: 17257398
6.  Iloprost improves endothelial barrier function in LPS-induced lung injury 
Protective effects of prostacyclin and its stable analog Iloprost are mediated by elevation of intracellular cAMP leading to enhancement of peripheral actin cytoskeleton and cell-cell adhesive structures. This study tested hypothesis that iloprost may exhibit protective effects against lung injury and endothelial barrier dysfunction induced by bacterial wall lypopolysacharide (LPS).
Endothelial barrier dysfunction was assessed by measurements of transendothelial permeability, morphologically, and analysis of LPS-activated inflammatory signaling. In vivo, C57BL/6J mice were challenged with LPS with or without iloprost or 8-bromoadenosine-3′,5′-cyclic monophosphate (Br-cAMP) treatment. Lung injury was monitored by measurements of bronchoalveolar lavage protein content, cell count, and Evans blue extravasation.
Iloprost and Br-cAMP attenuated disruption of endothelial monolayer and suppressed activation of p38 mitogen activated protein (MAP) kinase, NFκB pathway, Rho signaling, ICAM1 expression, and neutrophil migration after LPS challenge. In vivo, iloprost was effective against LPS-induced protein and neutrophil accumulation in bronchoalveolar lavage fluid and reduced myeloperoxidase activation, ICAM-1 expression, and Evans blue extravasation in the lungs. Inhibition of Rac activity abolished barrier protective and anti-inflammatory effects of iloprost and Br-cAMP.
Iloprost-induced elevation of intracellular cAMP triggers Rac signaling, which attenuates LPS-induced NFκB and p38 MAPK inflammatory pathways and Rho-dependent mechanism of endothelial permeability.
PMCID: PMC3661223  PMID: 22790920
cytoskeleton; endothelium; permeability; lung; inflammation
7.  Prostacyclin Suppresses Twist Expression in the Presence of Indomethacin in Bone Marrow-Derived Mesenchymal Stromal Cells 
Iloprost, a stable prostacyclin I2 analogue, seems to have an osteoblast-protective potential, whereas indomethacin suppresses new bone formation. The aim of this study was to investigate human bone marrow stromal cell (BMSC) proliferation and differentiation towards the osteoblastic lineage by administration of indomethacin and/or iloprost.
Human bone marrow cells were obtained from 3 different donors (A=26 yrs/m; B=25 yrs/f, C=35 yrs/m) via vacuum aspiration of the iliac crest followed by density gradient centrifugation and flow cytometry with defined antigens (CD105+/73+/45−/14−). The cells were seeded and incubated as follows: without additives (Group 0; donor A/B/C), with 10−7 M iloprost only (Group 0+ilo; A/B), with indomethacin only in concentrations of 10−6 M (Group 1, A), 10−5 M (Group 2, B), 10−4 M (Group 3, A/B), and together with 10−7 M iloprost (Groups 4–6, A/B/C). On Day 10 and 28, UV/Vis spectrometric and immunocytochemical assays (4 samples per group and donor) were performed to investigate cell proliferation (cell count measurement) and differentiation towards the osteoblastic lineage (CD34−, CD45−, CD105+, type 1 collagen (Col1), osteocalcin (OC), alkaline phosphatase (ALP), Runx2, Twist, specific ALP-activity).
Indomethacin alone suppressed BMSC differentiation towards the osteoblastic lineage by downregulation of Runx2, Col1, and ALP. In combination with indomethacin, iloprost increased cell proliferation and differentiation and it completely suppressed Twist expression at Day 10 and 28. Iloprost alone did not promote cell proliferation, but moderately enhanced Runx2 and Twist expression. However, the proliferative effects and the specific ALP-activity varied donor-dependently.
Iloprost partially antagonized the suppressing effects of indomethacin on BMSC differentiation towards the osteoblast lineage. It enhanced the expression of Runx2 and, only in the presence of indomethacin, it completely suppressed Twist. Thus, in the treatment of avascular osteonecrosis or painful bone marrow edema, the undesirable effects of indomethacin might be counterbalanced by iloprost.
PMCID: PMC4238757  PMID: 25382306
Cell Differentiation; Core Binding Factor Alpha 1 Subunit; Indomethacin; Mesenchymal Stromal Cells; Prostaglandins I; Twist Transcription Factor
8.  A prostacyclin analogue, iloprost, protects from bleomycin-induced pulmonary fibrosis in mice 
Respiratory Research  2010;11(1):34.
Metabolites of arachidonic acid such as prostacyclin (PGI2) have been shown to participate in the pathogenesis of pulmonary fibrosis by inhibiting the expression of pro-inflammatory and pro-fibrotic mediators. In this investigation, we examined whether iloprost, a stable PGI2 analogue, could prevent bleomycin-induced pulmonary inflammation and fibrosis in a mouse model.
Mice received a single intratracheal injection of bleomycin with or without intraperitoneal iloprost. Pulmonary inflammation and fibrosis were analysed by histological evaluation, cellular composition of bronchoalveolar lavage (BAL) fluid, and hydroxyproline content. Lung mechanics were measured. We also analysed the expression of inflammatory mediators in BAL fluid and lung tissue.
Administration of iloprost significantly improved survival rate and reduced weight loss in the mice induced by bleomycin. The severe inflammatory response and fibrotic changes were significantly attenuated in the mice treated with iloprost as shown by reduction in infiltration of inflammatory cells into the airways and pulmonary parenchyma, diminution in interstitial collagen deposition, and lung hydroxyproline content. Iloprost significantly improved lung static compliance and tissue elastance. It increased the expression of IFNγ and CXCL10 in lung tissue measured by RT-PCR and their levels in BAL fluid as measured by ELISA. Levels of TNFα, IL-6 and TGFβ1 were lowered by iloprost.
Iloprost prevents bleomycin-induced pulmonary fibrosis, possibly by upregulating antifibrotic mediators (IFNγ and CXCL10) and downregulating pro-inflammatory and pro-fibrotic cytokines (TNFα, IL-6, and TGFβ1). Prostacyclin may represent a novel pharmacological agent for treating pulmonary fibrotic diseases.
PMCID: PMC2848635  PMID: 20302663
9.  Lung endothelial barrier protection by iloprost in the two-hit models of VILI involves inhibition of Rho signaling 
Mechanical ventilation at high tidal volume may cause pulmonary capillary leakage and acute lung inflammation culminating in ventilator-induced lung injury. Iloprost is a stable synthetic analogue of prostaglandin I2 used for treatment of pulmonary hypertension, which also showed endothelium-dependent anti-edemagenic effects in the models of lung injury. To test the hypothesis that iloprost may attenuate lung inflammation and lung endothelial barrier disruption caused by pathologic lung distension and coagulation system component thrombin, we used cell and animal two-hit models of ventilator-induced lung injury. Mice received triple injection of iloprost (2 μg/kg, intravenous instillation) at 0, 40 and 80 min after onset of high tidal volume (HTV) mechanical ventilation (30 ml/kg, 4 hrs) combined with administration of thrombin receptor activating peptide 6 (TRAP6, 3 × 10−7 mol/mouse, intratracheal instillation). After 4 hrs of ventilation, bronchoalveolar lavage (BAL), histological analysis, and measurements of Evans blue accumulation in the lung tissue lung were performed. Effects of iloprost on endothelial barrier dysfunction were further assessed in pulmonary endothelial cells (EC) exposed to thrombin and pathologic (18%) cyclic stretch. Combination of HTV and TRAP6 enhanced accumulation of neutrophils in BAL fluid and lung parenchyma, increased BAL protein content and endothelial permeability judged by Evans blue extravasation in the lung tissue. These effects were markedly attenuated by iloprost. Application of 18% cyclic stretch to pulmonary EC enhanced thrombin-induced EC paracellular gap formation and Rho-GTPase-mediated phosphorylation of regulatory myosin light chains and myosin phosphatase. Iloprost markedly inhibited Rho-kinase mediated site-specific phosphorylation of myosin phosphatase, and prevented cyclic stretch- and thrombin-induced endothelial monolayer disruption. This study characterizes for the first time the protective effects of iloprost in the in vitro and in vivo two-hit models of VILI and supports consideration of iloprost as a new therapeutic treatment of VILI.
PMCID: PMC2814140  PMID: 20004361
ventilator-induced lung injury; vascular permeability; cyclic stretch; prostacyclin; thrombin; Rho
10.  Acute inhibition of superoxide formation and Rac1 activation by nitric oxide and iloprost in human vascular smooth muscle cells in response to the thromboxane A2 analogue, U46619 
The over-production of superoxide (O2⋅−) derived from NADPH oxidase (NOX) plays a central role in cardiovascular diseases. By contrast, nitric oxide (NO) and prostacyclin (PGI2) are vasculoprotective. The effect of the NO donor, NONOate and iloprost on O2⋅− formation, p47phox and Rac1 activation in human vascular smooth muscle cells (hVSMCs) was investigated.
hVSMCs were incubated with 10 nM thromboxane A2 analogue, U46619 for 16 h, and then with apocynin (a NOX inhibitor), NONOate or iloprost for 1 h and O2⋅− measured spectrophometrically. The role of cyclic AMP and cyclic GMP was examined by co-incubation of drugs with protein kinase (PK) A and G inhibitors listed above. Rac1 was studied using pull-down assays.
NONOate and iloprost inhibited O2⋅− formation, acutely, effects blocked by inhibition of PKG and PKA, respectively. Rac1 and p47phox activation and translocation to the plasma membrane was completely inhibited by NONOate and iloprost, effects again reversed by co-incubation with PKG or PKA inhibitors.
NO and PGI2 block the acute activity of NOX in hVSMCs via the cGMP–PKG axis (for NO) and by the cAMP–PKA axis (for iloprost) through inhibition of Rac1 and p47phox translocation. These findings have implications in the pathophysiology and treatment of CVD.
PMCID: PMC2850987  PMID: 18420399
11.  Iloprost suppresses connective tissue growth factor production in fibroblasts and in the skin of scleroderma patients 
Journal of Clinical Investigation  2001;108(2):241-250.
Patients with scleroderma receiving Iloprost as a treatment for severe Raynaud’s phenomenon report a reduction in skin tightness, suggesting that this drug inhibits skin fibrosis. Connective tissue growth factor (CTGF), a recently described profibrotic cytokine, acts downstream and in concert with TGF-β to stimulate the fibrotic process and is involved in the fibrosis seen in scleroderma. Here we show that Iloprost, acting by elevation of cAMP, blocks the induction of CTGF and the increase in collagen synthesis in fibroblasts exposed to TGF-β. The potency of Iloprost with respect to suppression of CTGF far exceeds that of other prostanoid receptor agonists, suggesting that its effect is mediated by the prostacyclin receptor IP. By sampling dermal interstitial fluid using a suction blister device, we show that CTGF levels are greatly elevated in the dermis of scleroderma patients compared with healthy controls and that Iloprost infusion causes a marked decrease in dermal CTGF levels. These studies suggest that Iloprost could be reducing the level of a key profibrotic cytokine in scleroderma patients and that endogenous production of eicosanoids may limit the fibrotic response to TGF-β.
PMCID: PMC203022  PMID: 11457877
12.  Liposomal nanoparticles encapsulating iloprost exhibit enhanced vasodilation in pulmonary arteries 
Prostacyclin analogues are standard therapeutic options for vasoconstrictive diseases, including pulmonary hypertension and Raynaud’s phenomenon. Although effective, these treatment strategies are expensive and have several side effects. To improve drug efficiency, we tested liposomal nanoparticles as carrier systems. In this study, we synthesized liposomal nanoparticles tailored for the prostacyclin analogue iloprost and evaluated their pharmacologic efficacy on mouse intrapulmonary arteries, using a wire myograph. The use of cationic lipids, stearylamine, or 1,2-di-(9Z-octadecenoyl)-3-trimethylammonium-propane (DOTAP) in liposomes promoted iloprost encapsulation to at least 50%. The addition of cholesterol modestly reduced iloprost encapsulation. The liposomal nanoparticle formulations were tested for toxicity and pharmacologic efficacy in vivo and ex vivo, respectively. The liposomes did not affect the viability of human pulmonary artery smooth muscle cells. Compared with an equivalent concentration of free iloprost, four out of the six polymer-coated liposomal formulations exhibited significantly enhanced vasodilation of mouse pulmonary arteries. Iloprost that was encapsulated in liposomes containing the polymer polyethylene glycol exhibited concentration-dependent relaxation of arteries. Strikingly, half the concentration of iloprost in liposomes elicited similar pharmacologic efficacy as nonencapsulated iloprost. Cationic liposomes can encapsulate iloprost with high efficacy and can serve as potential iloprost carriers to improve its therapeutic efficacy.
PMCID: PMC4094575  PMID: 25045260
prostacyclin; cationic liposomes; pulmonary hypertension; wire myograph
13.  Milrinone enhances relaxation to prostacyclin and iloprost in pulmonary arteries isolated from lambs with persistent pulmonary hypertension of the newborn 
Prostacyclin is a pulmonary vasodilator and is produced by prostacyclin synthase and stimulates adenylate cyclase (AC) via the prostacyclin receptor (IP) to produce cAMP. Forskolin is a direct stimulant of AC. Phosphodiesterase 3 hydrolyzes cAMP and is inhibited by milrinone.
To characterize the prostacyclin-AC-cAMP pathway in the ovine ductal ligation model of persistent pulmonary hypertension of the newborn (PPHN).
University-based laboratory animal facility.
Lambs delivered to time-dated pregnant ewes.
Fifth generation pulmonary arteries (PA) and lung parenchyma were isolated from control fetal lambs (n = 8) and fetal lambs with PPHN induced by antenatal ductal ligation (n = 9). We studied relaxation responses to various agonists (milrinone, forskolin, prostacyclin, and iloprost, a prostacyclin analog) that increase cAMP in PA after half-maximal constriction with norepinephrine and pretreatment with propranolol ± indo-methacin. Lung protein levels of prostacyclin synthase, IP, AC2, and phosphodiesterase 3A were analyzed by Western blot and cAMP by enzyme-linked immunoassay.
Main Results
Milrinone relaxed control and PPHN PA and pretreatment with indomethacin significantly impaired this response. Relaxation to milrinone, prostacyclin, and iloprost were significantly impaired in PA from PPHN lambs. Pretreatment with milrinone markedly enhanced relaxation to prostacyclin and iloprost in PPHN PA, similar to relaxation in control PA. Relaxation to forskolin was similar in control and PPHN PAs indicating normal AC activity. Protein levels of prostacyclin synthase and IP were decreased in PPHN lungs compared with control, but AC2, cAMP, and phosphodiesterase 3A remained unchanged.
Prostacyclin and iloprost are dilators of PAs from PPHN lambs and their effect is enhanced by milrinone. This combination therapy may be an effective strategy in the management of patients with PPHN.
PMCID: PMC2741129  PMID: 19057444
pulmonary hypertension; nitric oxide; prostacyclin; newborn; phosphodiesterase; cyclic AMP
14.  Effects of inhaled iloprost on right ventricular contractility, right ventriculo-vascular coupling and ventricular interdependence: a randomized placebo-controlled trial in an experimental model of acute pulmonary hypertension 
Critical Care  2008;12(5):R113.
Prostacyclin inhalation is increasingly used to treat acute pulmonary hypertension and right ventricular failure, although its pharmacodynamic properties remain controversial. Prostacyclins not only affect vasomotor tone but may also have cAMP-mediated positive inotropic effects and modulate autonomic nervous system tone. We studied the role of these different mechanisms in the overall haemodynamic effects produced by iloprost inhalation in an experimental model of acute pulmonary hypertension.
In this prospective, randomized, placebo-controlled animal study, twenty-six pigs (mean weight 35 ± 2 kg) were instrumented with biventricular conductance catheters, a pulmonary artery flow probe and a high-fidelity pulmonary artery pressure catheter. The effects of inhaled iloprost (50 μg) were studied in the following groups: animals with acute hypoxia-induced pulmonary hypertension, and healthy animals with and without blockade of the autonomic nervous system.
During pulmonary hypertension, inhalation of iloprost resulted in a 51% increase in cardiac output compared with placebo (5.6 ± 0.7 versus 3.7 ± 0.8 l/minute; P = 0.0013), a selective reduction in right ventricular afterload (effective pulmonary arterial elastance: 0.6 ± 0.3 versus 1.2 ± 0.5 mmHg/ml; P = 0.0005) and a significant increase in left ventricular end-diastolic volume (91 ± 12 versus 70 ± 20 ml; P = 0.006). Interestingly, right ventricular contractility was reduced after iloprost-treatment (slope of preload recruitable stroke work: 2.2 ± 0.5 versus 3.4 ± 0.8 mWatt·s/ml; P = 0.0002), whereas ventriculo-vascular coupling remained essentially preserved (ratio of right ventricular end-systolic elastance to effective pulmonary arterial elastance: 0.97 ± 0.33 versus 1.03 ± 0.15). In healthy animals, inhaled iloprost had only minimal haemodynamic effects and produced no direct effects on myocardial contractility, even after pharmacological blockade of the autonomic nervous system.
In animals with acute pulmonary hypertension, inhaled iloprost improved global haemodynamics primarily via selective pulmonary vasodilatation and restoration of left ventricular preload. The reduction in right ventricular afterload is associated with a paradoxical decrease in right ventricular contractility. Our data suggest that this reflects an indirect mechanism by which ventriculo-vascular coupling is maintained at the lowest possible energetic cost. We found no evidence for a direct negative inotropic effect of iloprost.
PMCID: PMC2592739  PMID: 18783596
15.  Lung vasodilatory response to inhaled iloprost in experimental pulmonary hypertension: amplification by different type phosphodiesterase inhibitors 
Respiratory Research  2005;6(1):76.
Inhaled prostanoids and phosphodiesterase (PDE) inhibitors have been suggested for treatment of severe pulmonary hypertension. In catheterized rabbits with acute pulmonary hypertension induced by continuous infusion of the stable thromboxane analogue U46619, we asked whether sildenafil (PDE1/5/6 inhibitor), motapizone (PDE3 inhibitor) or 8-Methoxymethyl-IBMX (PDE1 inhibitor) synergize with inhaled iloprost. Inhalation of iloprost caused a transient pulmonary artery pressure decline, levelling off within <20 min, without significant changes in blood gases or systemic hemodynamics. Infusion of 8-Methoxymethyl-IBMX, motapizone and sildenafil caused each a dose-dependent decrease in pulmonary artery pressure, with sildenafil possessing the highest efficacy and at the same time selectivity for the pulmonary circulation. When combining a per se ineffective dose of each PDE inhibitor (200 μg/kg × min 8-Methoxymethyl-IBMX, 1 μg/kg × min sildenafil, 5 μg/kg × min motapizone) with subsequent iloprost nebulization, marked amplification of the prostanoid induced pulmonary vasodilatory response was noted and the area under the curve of PPA reduction was nearly threefold increased with all approaches, as compared to sole iloprost administration. Further amplification was achieved with the combination of inhaled iloprost with sildenafil plus motapizone, but not with sildenafil plus 8MM-IBMX. Systemic hemodynamics and gas exchange were not altered for all combinations. We conclude that co-administration of minute systemic doses of selective PDE inhibitors with inhaled iloprost markedly enhances and prolongs the pulmonary vasodilatory response to inhaled iloprost, with maintenance of pulmonary selectivity and ventilation perfusion matching. The prominent effect of sildenafil may be operative via both PDE1 and PDE5, and is further enhanced by co-application of a PDE3 inhibitor.
PMCID: PMC1180856  PMID: 16033645
16.  Long-term effects of intravenous iloprost in patients with idiopathic pulmonary arterial hypertension deteriorating on non-parenteral therapy 
The majority of patients with idiopathic pulmonary arterial hypertension (IPAH) in functional classes II and III are currently being treated with non-parenteral therapies, including endothelin receptor antagonists (ERA), phosphodiesterase (PDE)-5 inhibitors, inhaled iloprost or combinations of these substances. If these treatments fail, current guidelines recommend the addition of parenteral prostanoid therapy. There is, however, limited evidence for the efficacy of parenteral prostanoids when added to combinations of non-parenteral therapies.
In this retrospective, multicentre study we collected data from consecutive IPAH patients receiving intravenous iloprost in addition to optimized non-parenteral therapy between Jan 2002 and Dec 2009. Analyses included 6 min walk distance (6MWD), functional class, need for transplantation, and survival.
During the observation period, 50 patients were treated with intravenous iloprost in addition to non-parenteral therapy; 44% of the patients were on dual combination therapy and 52% on triple combination. Three months after initiation of iloprost, functional class had improved in 24% of the patients and the median 6MWD had increased from 289 m to 298 m (n.s.). During the observation period, 22 patients (44%) died and 14 (28%) underwent lung transplantation. The probabilities of LuTx-free survival at 1, 3 and 5 years following iloprost initiation were 38%, 17% and 17%, respectively. A 6MWD < 300 m and persistent functional class IV at 3 months after initiation of intravenous iloprost were predictors of an adverse outcome.
In essence, late initiation of intravenous iloprost in IPAH patients who previously failed to respond to non-parenteral therapies appears to be of limited efficacy in the majority patients. Alternative therapeutic options are currently not available, underlying the need for the development of new drugs.
PMCID: PMC3247176  PMID: 22133492
17.  A multicenter, retrospective study of patients with pulmonary arterial hypertension transitioned from parenteral prostacyclin therapy to inhaled iloprost 
Pulmonary Circulation  2013;3(2):381-388.
Pulmonary arterial hypertension (PAH) is characterized by progressive increases in pulmonary vascular resistance, leading to right heart failure and death. Guidelines recommend customization of treatment, necessitating the development of effective strategies for transitioning patients among treatments. In this study, we characterized our experience with patient transitions from parenteral prostacyclin to inhaled iloprost. We retrospectively assessed records from 11 centers of 37 consecutive patients with PAH aged ≥ 18 years who were treated with intravenous (IV) or subcutaneous (SC) prostacyclin analogues and transitioned to inhaled iloprost. The transition period began on the first day of inhaled iloprost with the intent of discontinuing parenteral prostacyclin and ended on the first day on inhaled iloprost free of parenteral prostacyclin. Persistence was defined as the absence of (1) parenteral prostacyclin while remaining on inhaled iloprost during post-transition Days 1-90 and (2) no reinitiation of parenteral prostacyclin during post-transition Days 90-365. All patients were clinically stable before transitioning to inhaled iloprost. The mean age was 46.5 years, 70.3% were female, 51.4% had idiopathic PAH, and 43.0% were in New York Heart Association Functional Class III. Among patients with an overlapping transition, the mean transition period was 10.5 days. A transition dosing algorithm was used in 10 patients (27.0%). At one year, 78.4% of the patients remained persistent on inhaled iloprost and 81.1% were free of clinical worsening. In selected patients on background oral PAH therapy, transitioning from parenteral prostacyclin to inhaled iloprost appears safe and feasible and is associated with long-term success. Further study is needed to define the optimal patient selection criteria and transition algorithm.
PMCID: PMC3757833  PMID: 24015339
iloprost; persistence; prostacyclin; pulmonary arterial hypertension; transition; treatment strategy
18.  Angiogenic function of prostacyclin biosynthesis in human endothelial progenitor cells 
Circulation research  2008;103(1):80-88.
The role of prostaglandins production in the control of regenerative function of endothelial progenitor cells (EPCs) has not been studied. We hypothesized that activation of cyclooxygenase (COX) enzymatic activity and the subsequent production of prostacyclin (PGI2) is an important mechanism responsible for the regenerative function of EPCs. In the present study, we detected high levels of COX-1 protein expression and PGI2 biosynthesis in human EPCs outgrown from blood mononuclear cells. Expression of COX-2 protein was almost undetectable under basal conditions but significantly elevated after treatment with tumor necrosis factor-α. Condition medium derived from EPCs hyperpolarized human coronary artery smooth muscle cells, similar to the effect of the PGI2 analogue iloprost. The proliferation and in vitro tube formation by EPCs were inhibited by the COX inhibitor indomethacin, or by genetic inactivation of COX-1 or PGI2 synthase (PGIS) with small interfering RNA (siRNA). Impaired tube formation and cell proliferation induced by inactivation of COX-1 were rescued by the treatment with iloprost or selective peroxisome-proliferator activated receptor-δ (PPARδ) agonist, GW501516, but not by the selective PGI2 receptor agonist, cicaprost. Down regulation of PPARδ by siRNA also reduced angiogenic capacity of EPCs. Iloprost failed to reverse PPARδ-siRNA-induced impairment of angiogenesis. Furthermore, transfection of PGIS-siRNA, COX-1-siRNA, or PPARδ-siRNA into EPCs decreased the capillary formation in vivo after transplantation of human EPCs into the nude mice. These results suggest that activation of COX-1-PGI2-PPARδ pathway is an important mechanism underlying pro-angiogenic function of EPCs.
PMCID: PMC2664088  PMID: 18511850
adult stem cells; angiogenesis; prostaglandins; peroxisome-proliferator activated receptor; cyclooxygenase
19.  Prostacyclin inhibits IFN-γ-stimulated cytokine expression by reduced recruitment of p300/CBP to STAT1 in a SOCS-1 independent manner 
Increasing evidence indicates that Pulmonary Arterial Hypertension (PAH) is a vascular inflammatory disease. Prostacyclin (PGI2) is widely used to treat PAH and is believed to benefit patients largely through vasodilatory effects. PGI2 is also increasingly believed to have anti-inflammatory effects; including decreasing leukocyte cytokine production, yet few mechanistic details exist to explain how these effects are mediated at the transcriptional level. Since activated monocytes are critical sources of MCP-1 and other cytokines in cardiovascular inflammation, we examined the effects of iloprost on IFN-γ and IL-6 stimulated cytokine production in human monocytes. We found iloprost inhibited IFN-γ and IL-6-induced MCP-1, IL-8, RANTES, and TNF-α production in monocytes indicating wide-ranging anti-inflammatory action. We found that activation of STAT1 was critical for IFN-γ-induced MCP-1 production and demonstrated that iloprost inhibited STAT1 activation by several actions: 1) iloprost inhibited the phosphorylation of STAT1-S727 in the transactivation domain (TAD), thereby reducing recruitment of the histone acetylase and co-activator CBP/p300 to STAT1; 2) iloprost selectively inhibited activation of janus kinase 2 (JAK2), but not JAK1, both responsible for activation STAT1 via phosphorylation of STAT1-Y701, resulting in reduced nuclear recruitment and activation of STAT1; 3) SOCS-1, which normally terminates IFN-γ-signaling, was not involved in iloprost-mediated inhibition of STAT1, indicating divergence from the classical pathway for terminating IFN-γ-signaling. We conclude that PGI2 exerts anti-inflammatory action by inhibiting STAT1 induced cytokine production, in part by targeting the transactivation domain induced recruitment of the histone acetylase CBP/p300.
PMCID: PMC2783325  PMID: 19915063
20.  Prostacyclin prevents murine lung cancer independent of the membrane receptor by activation of PPARγ 
Overexpression of prostacyclin synthase (PGIS) decreases lung tumor multiplicity in chemical and cigarette-smoke induced murine lung cancer models. Prostacyclin signals through a single G-protein coupled receptor (IP), which signals through cAMP. To determine the role of this receptor in lung cancer chemoprevention by prostacyclin, PGIS-overexpressing mice were crossed to mice that lack the IP receptor (IP (−/−)). Carcinogen-induced lung tumor incidence was similar in IP(+/+), IP(+/−) and IP(−/−) mice, and overexpression of PGIS gave equal protection in all three groups, indicating that the protective effects of prostacyclin are not mediated through activation of IP. Since prostacyclin can activate members of the PPAR family of nuclear receptors, we examined the role of PPARγ in prostacyclin’s protection against lung tumorigenesis. Iloprost, a stable prostacyclin analog, activated PPARγ in non-transformed bronchial epithelial cells and in a subset of human non-small cell lung cancer cell lines (NSCLC). Iloprost-impregnated chow fed to wild-type mice resulted in elevated lung macrophages and decreased lung tumor formation. Transgenic animals with lung specific PPARγ-overexpression also developed fewer lung tumors. This reduction was not enhanced by administration of supplemental iloprost. These studies indicate that PPARγ is a critical target for prostacyclin mediated lung cancer chemoprevention, and may also have therapeutic activity.
PMCID: PMC2680197  PMID: 19138979
21.  New Therapeutic Strategies for Systemic Sclerosis—a Critical Analysis of the Literature 
Systemic sclerosis (SSc) is a multi-system disease characterized by skin fibrosis and visceral disease. Therapy is organ and pathogenesis targeted. In this review, we describe novel strategies in the treatment of SSc. Utilizing the MEDLINE and the COCHRANE REGISTRY, we identified open trials, controlled trials, for treatment of SSc from 1999 to April 2005. We used the terms scleroderma, systemic sclerosis, Raynaud's phenomenon, pulmonary hypertension, methotrexate, cyclosporin, tacrolimus, relaxin, low-dose penicillamine, IVIg, calcium channel blockers, losartan, prazocin, iloprost, N-acetylcysteine, bosentan, cyclophosphamide, lung transplantation, ACE inhibitors, anti-thymocyte globulin, and stem cell transplantation. Anecdotal reports were omitted.
Methotrexate, cyclosporin, tacrolimus, relaxin, low-dose penicillamine, and IVIg may be beneficial in improving the skin tightness in SSc. Calcium channel blockers, the angiotensin II receptor type 1 antagonist losartan, prazocin, the prostacyclin analogue iloprost, N-acetylcysteine and the dual endothelin-receptor antagonist bosentan may be beneficial for Raynaud's phenomenon. Epoprostenol and bosentan are approved for therapy of pulmonary hypertension (PAH). Other options under investigation include intravenous or aerolized iloprost. Cyclophosphamide (CYC) pulse therapy is effective in suppressing active alveolitis. Stem cell and lung transplantation is a viable option for carefully selected patients. Renal crisis can be effectively managed when hypertension is aggressively controlled with angiotensin converting enzyme (ACE) inhibitors. Patients should continue taking ACE inhibitors even after beginning dialysis in hope of discontinuing dialysis. Anti-thymocyte globulin and mycophenolate mofetil appear safe in SSc. The improvement in skin score and the apparent stability of systemic disease during the treatment period suggest that controlled studies of these agents are justified. Stem cell transplantation is under investigation for severe disease. Novel therapies are currently being tested in the treatment of SSc and have the potential of modifying the disease process and overall clinical outcome. The evaluation of these studies is still a difficult process.
PMCID: PMC2275417  PMID: 16295521
22.  Rationale for prostaglandin I2 in bone marrow oedema – from theory to application 
Arthritis Research & Therapy  2008;10(5):R120.
Bone marrow oedema (BME) and avascular osteonecrosis (AVN) are disorders of unclear origin. Although there are numerous operative and non-operative treatments for AVN, pain management in patients with AVN remains challenging. Prostaglandins play an important role in inflammatory responses and cell differentiation. It is thought that prostaglandin I2 ([PGI2] or synonoma prostacyclin) and its analogues promote bone regeneration on a cellular or systemic level. The purpose of this study was to assess the curative and symptomatic efficacy of the prostacyclin analogue iloprost in BME and AVN patients.
We are reporting on 50 patients (117 bones) affected by BME/AVN who were treated with iloprost. Pain levels before, during and 3 and 6 months after iloprost application were evaluated by a visual analogue scale (VAS). The short form(SF)-36 health survey served to judge general health status before and after treatment. Harris Hip Score (HHS) and Knee Society Score (KSS) were performed as functional scores and MRI and X-rays before and 3 and 6 months after iloprost application served as objective parameters for morphological changes of the affected bones.
We found a significant improvement in pain, functional and radiological outcome in BME and early AVN stages after iloprost application, whereas patients with advanced AVN stages did not benefit from iloprost infusions. Mean pain level decreased from 5.26 (day 0) to 1.63 (6 months) and both HHS and KSS increased during follow-up. Moreover, the SF-36 increased from 353.2 (day 0) to 560.5 points (6 months). We found a significant decrease in BME on MRI scans after iloprost application.
In addition to other drugs, iloprost may be an alternative substance which should be considered in the treatment of BME/AVN-associated pain.
PMCID: PMC2592809  PMID: 18834533
23.  Inhaled iloprost for the control of pulmonary hypertension 
Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by an elevated pulmonary arterial pressure and vascular resistance with a poor prognosis. Various pulmonary and extrapulmonary causes are now recognized to exist separately from the idiopathic form of pulmonary hypertension. An imbalance in the presence of vasoconstrictors and vasodilators plays an important role in the pathophysiology of the disease, one example being the lack of prostacyclin. Prostacyclin and its analogues are potent vasodilators with antithrombotic, antiproliferative and anti-inflammatory qualities, all of which are important factors in the pathogenesis of precapillary pulmonary hypertension. Iloprost is a stable prostacyclin analogue available for intravenous and aerosolized application. Due to the severe side effects of intravenous administration, the use of inhaled iloprost has become a mainstay in PAH therapy. However, owing to the necessity for 6 to 9 inhalations a day, oral treatment is often preferred as a first-line therapy. Numerous studies proving the efficacy and safety of inhaled iloprost have been performed. It is therefore available for a first-line therapy for PAH. The combination with endothelin-receptor antagonists or sildenafil has shown encouraging effects. Further studies with larger patient populations will have to demonstrate the use of combination therapy for long-term treatment of pulmonary hypertension.
PMCID: PMC2686263  PMID: 19475782
pulmonary arterial hypertension; prostacyclin; iloprost; inhaled
24.  Defective alterations in the collagen network to prostacyclin in COPD lung fibroblasts 
Respiratory Research  2013;14(1):21.
Prostacyclin analogs are potent vasodilators and possess anti-inflammatory properties. However, the effect of prostacyclin on extracellular matrix (ECM) in COPD is not well known. Collagen fibrils and proteoglycans are essential ECM components in the lung and fibroblasts are key players in regulating the homeostasis of ECM proteins. The aim was to study the synthesis of prostacyclin and its effect on fibroblast activity and ECM production, and in particular collagen I and the collagen-associated proteoglycans biglycan and decorin.
Parenchymal lung fibroblasts were isolated from lungs from COPD patients (GOLD stage IV) and from lungs and transbronchial biopsies from control subjects. The prostacyclin analog iloprost was used to study the effect of prostacyclin on ECM protein synthesis, migration, proliferation and contractile capacity of fibroblasts.
TGF-β1 stimulation significantly increased prostacyclin synthesis in fibroblasts from COPD patients (p < 0.01), but showed no effect on fibroblasts from control subjects. Collagen I synthesis was decreased by iloprost in both control and COPD fibroblasts (p < 0.05). Conversely, iloprost significantly altered biglycan and decorin synthesis in control fibroblasts, but iloprost displayed no effect on these proteoglycans in COPD fibroblasts. Proliferation rate was reduced (p < 0.05) and contractile capacity was increased in COPD fibroblasts (p < 0.05) compared to control fibroblasts. Iloprost decreased proliferative rate in control fibroblasts (p < 0.05), whereas iloprost attenuated contraction capacity in both COPD (p < 0.01) and control fibroblasts (p < 0.05).
Iloprost reduced collagen I synthesis and fibroblast contractility but did not affect the collagen-associated proteoglycans or proliferation rate in fibroblasts from COPD patients. Enhanced prostacyclin production could lead to improper collagen network fibrillogenesis and a more emphysematous lung structure in severe COPD patients.
PMCID: PMC3585859  PMID: 23406566
Chronic obstructive pulmonary disease; Collagen I; Fibroblast; Prostacyclin; Proteoglycans; Decorin; Biglycan; Proliferation; Fibroblast gel contraction; Transforming growth factor β
25.  Prostacyclin Analogues Stimulate Receptor-mediated cAMP Synthesis and ATP Release from Rabbit and Human Erythrocytes 
The purpose of this study was to establish that the prostacyclin (PGI2) receptor (IP receptor) is present on rabbit and human erythrocytes and that its activation stimulates cAMP synthesis and ATP release.
The effect of incubation of erythrocytes with the active PGI2 analogues, iloprost or UT-15C, on cAMP levels and ATP release was determined in the absence and presence of the IP receptor antagonist, CAY10441. Western analysis was used to determine the presence of the IP receptor on isolated membranes. To establish that effects of PGI2 analogues were not due to prostaglandin E2 (PGE2) receptor activation, the effect of PGE2 on cAMP levels and ATP release was determined.
Rabbit and human erythrocytes possess IP receptors. Iloprost and UT-15C stimulated increases in cAMP and ATP release that were prevented by the IP receptor antagonist, CAY10441. PGE2 did not stimulate cAMP accumulation or ATP release and did not inhibit iloprost-induced increases in cAMP.
This study establishes that the IP preceptor is present on rabbit and human erythrocytes and that its activation results in increases in cAMP and ATP release. These results suggest a novel mechanism by which PGI2 and its active analogues, when administered pharmacologically, could produce vasodilation.
PMCID: PMC3076303  PMID: 18574748
Red blood cell; adenylyl cyclase; adenosine triphosphate; iloprost; UT-15C

Results 1-25 (1168612)