Search tips
Search criteria

Results 1-25 (1070780)

Clipboard (0)

Related Articles

1.  Analysis of stress-induced duplex destabilization (SIDD) properties of replication origins, genes and intergenes in the fission yeast, Schizosaccharomyces pombe 
BMC Research Notes  2012;5:643.
Replication and transcription, the two key functions of DNA, require unwinding of the DNA double helix. It has been shown that replication origins in the budding yeast, Saccharomyces cerevisiae contain an easily unwound stretch of DNA. We have used a recently developed method for determining the locations and degrees of stress-induced duplex destabilization (SIDD) for all the reported replication origins in the genome of the fission yeast, Schizosaccharomyces pombe.
We have found that the origins are more susceptible to SIDD as compared to the non-origin intergenic regions (NOIRs) and genes. SIDD analysis of many known origins in other eukaryotes suggests that SIDD is a common property of replication origins. Interestingly, the previously shown deletion-dependent changes in the activities of the origins of the ura4 origin region on chromosome 3 are paralleled by changes in SIDD properties, suggesting SIDD’s role in origin activity. SIDD profiling following in silico deletions of some origins suggests that many of the closely spaced S. pombe origins could be clusters of two or three weak origins, similar to the ura4 origin region.
SIDD appears to be a highly conserved, functionally important property of replication origins in S. pombe and other organisms. The distinctly low SIDD scores of origins and the long range effects of genetic alterations on SIDD properties provide a unique predictive potential to the SIDD analysis. This could be used in exploring different aspects of structural and functional organization of origins including interactions between closely spaced origins.
PMCID: PMC3533806  PMID: 23163955
Replication origins; ARS elements; S. pombe; SIDD
2.  A Link between ORC-Origin Binding Mechanisms and Origin Activation Time Revealed in Budding Yeast 
PLoS Genetics  2013;9(9):e1003798.
Eukaryotic DNA replication origins are selected in G1-phase when the origin recognition complex (ORC) binds chromosomal positions and triggers molecular events culminating in the initiation of DNA replication (a.k.a. origin firing) during S-phase. Each chromosome uses multiple origins for its duplication, and each origin fires at a characteristic time during S-phase, creating a cell-type specific genome replication pattern relevant to differentiation and genome stability. It is unclear whether ORC-origin interactions are relevant to origin activation time. We applied a novel genome-wide strategy to classify origins in the model eukaryote Saccharomyces cerevisiae based on the types of molecular interactions used for ORC-origin binding. Specifically, origins were classified as DNA-dependent when the strength of ORC-origin binding in vivo could be explained by the affinity of ORC for origin DNA in vitro, and, conversely, as ‘chromatin-dependent’ when the ORC-DNA interaction in vitro was insufficient to explain the strength of ORC-origin binding in vivo. These two origin classes differed in terms of nucleosome architecture and dependence on origin-flanking sequences in plasmid replication assays, consistent with local features of chromatin promoting ORC binding at ‘chromatin-dependent’ origins. Finally, the ‘chromatin-dependent’ class was enriched for origins that fire early in S-phase, while the DNA-dependent class was enriched for later firing origins. Conversely, the latest firing origins showed a positive association with the ORC-origin DNA paradigm for normal levels of ORC binding, whereas the earliest firing origins did not. These data reveal a novel association between ORC-origin binding mechanisms and the regulation of origin activation time.
Author Summary
Cell division requires the duplication of chromosomes, protein-DNA complexes harboring genetic information. Specific chromosomal positions, origins, initiate this duplication. Multiple origins are required for accurate, efficient duplication—an insufficient number leads to mistakes in the genetic material and pathologies such as cancer. Origins are chosen when the origin recognition complex (ORC) binds to them. The molecular interactions controlling this binding remain unclear. Understanding these interactions will lead to new ways to control cell division, which could aid in treatments of disease. Experiments were performed in the eukaryotic microbe budding yeast to define the types of molecular interactions ORC uses to bind origins. Yeasts are useful for these studies because chromosome duplication and structure are well conserved from yeast to humans. While ORC-DNA interactions were important, interactions between ORC and chromosomal proteins played a role. In addition, different origins relied on different types of molecular interactions with ORC. Finally, ORC-protein interactions but not ORC-DNA interactions were associated with enhanced origin function during chromosome-duplication, revealing an unanticipated link between the types of molecular interactions ORC uses to select an origin and the ultimate function of that origin. These results have implications for interfering with ORC-origin interactions to control cell division.
PMCID: PMC3772097  PMID: 24068963
3.  Association of Fission Yeast Orp1 and Mcm6 Proteins with Chromosomal Replication Origins 
Molecular and Cellular Biology  1999;19(10):7228-7236.
We have previously shown that replication of fission yeast chromosomes is initiated in distinct regions. Analyses of autonomous replicating sequences have suggested that regions required for replication are very different from those in budding yeast. Here, we present evidence that fission yeast replication origins are specifically associated with proteins that participate in initiation of replication. Most Orp1p, a putative subunit of the fission yeast origin recognition complex (ORC), was found to be associated with chromatin-enriched insoluble components throughout the cell cycle. In contrast, the minichromosome maintenance (Mcm) proteins, SpMcm2p and SpMcm6p, encoded by the nda1+/cdc19+ and mis5+ genes, respectively, were associated with chromatin DNA only during the G1 and S phases. Immunostaining of spread nuclei showed SpMcm6p to be localized at discrete foci on chromatin during the G1 and S phases. A chromatin immunoprecipitation assay demonstrated that Orp1p was preferentially localized at the ars2004 and ars3002 origins of the chromosome throughout the cell cycle, while SpMcm6p was associated with these origins only in the G1 and S phases. Both Orp1p and SpMcm6p were associated with a 1-kb region that contains elements required for autonomous replication of ars2004. The results suggest that the fission yeast ORC specifically interacts with chromosomal replication origins and that Mcm proteins are loaded onto the origins to play a role in initiation of replication.
PMCID: PMC84715  PMID: 10490657
4.  Multiple Orientation-Dependent, Synergistically Interacting, Similar Domains in the Ribosomal DNA Replication Origin of the Fission Yeast, Schizosaccharomyces pombe 
Molecular and Cellular Biology  1998;18(12):7294-7303.
Previous investigations have shown that the fission yeast, Schizosaccharomyces pombe, has DNA replication origins (500 to 1500 bp) that are larger than those in the budding yeast, Saccharomyces cerevisiae (100 to 150 bp). Deletion and linker substitution analyses of two fission yeast origins revealed that they contain multiple important regions with AT-rich asymmetric (abundant A residues in one strand and T residues in the complementary strand) sequence motifs. In this work we present the characterization of a third fission yeast replication origin, ars3001, which is relatively small (∼570 bp) and responsible for replication of ribosomal DNA. Like previously studied fission yeast origins, ars3001 contains multiple important regions. The three most important of these regions resemble each other in several ways: each region is essential for origin function and is at least partially orientation dependent, each region contains similar clusters of A+T-rich asymmetric sequences, and the regions can partially substitute for each other. These observations suggest that ars3001 function requires synergistic interactions between domains binding similar proteins. It is likely that this requirement extends to other fission yeast origins, explaining why such origins are larger than those of budding yeast.
PMCID: PMC109311  PMID: 9819416
5.  GC-Rich DNA Elements Enable Replication Origin Activity in the Methylotrophic Yeast Pichia pastoris 
PLoS Genetics  2014;10(3):e1004169.
The well-studied DNA replication origins of the model budding and fission yeasts are A/T-rich elements. However, unlike their yeast counterparts, both plant and metazoan origins are G/C-rich and are associated with transcription start sites. Here we show that an industrially important methylotrophic budding yeast, Pichia pastoris, simultaneously employs at least two types of replication origins—a G/C-rich type associated with transcription start sites and an A/T-rich type more reminiscent of typical budding and fission yeast origins. We used a suite of massively parallel sequencing tools to map and dissect P. pastoris origins comprehensively, to measure their replication dynamics, and to assay the global positioning of nucleosomes across the genome. Our results suggest that some functional overlap exists between promoter sequences and G/C-rich replication origins in P. pastoris and imply an evolutionary bifurcation of the modes of replication initiation.
Author Summary
Genome duplication in eukaryotes initiates at loci called replication origins. Origins in most budding and fission yeasts are A/T-rich DNA sequences, while metazoan origins are G/C-rich and are often associated with promoters. Here we have globally mapped replication origins and nucleosome positions in an industrially important methylotrophic yeast, Pichia pastoris. We show that P. pastoris has two general classes of origins—A/T-rich origins resembling those of most other yeasts, and a novel, G/C-rich class, that appear more robust and are associated with promoters. P. pastoris is the first known species using two kinds of origins and the first known budding yeast to use a G/C-rich origin motif. Additionally, the G/C-rich motif matches one of the motifs annotated as binding sites of the human Hsf1 transcriptional regulator suggesting that in this species there may be a link between transcriptional regulation and DNA replication initiation.
PMCID: PMC3945215  PMID: 24603708
6.  Clustered Adenine/Thymine Stretches Are Essential for Function of a Fission Yeast Replication Origin 
Molecular and Cellular Biology  1999;19(10):6699-6709.
We have determined functional elements required for autonomous replication of the Schizosaccharomyces pombe ars2004 that acts as an intrinsic chromosomal replication origin. Internal deletion analysis of a 940-bp fragment (ars2004M) showed three regions, I to III, to be required for autonomously replicating sequence (ARS) activity. Eight-base-pair substitutions in the 40-bp region I, composed of arrays of adenines on a DNA strand, resulted in a great reduction of ARS activity. Substitutions of region I with synthetic sequences showed that no specific sequence but rather repeats of three or more consecutive adenines or thymines, without interruption by guanine or cytosine, are required for the ARS activity. The 65-bp region III contains 11 repeats of the AAAAT sequence, while the 165-bp region II has short adenine or thymine stretches and a guanine- and cytosine-rich region which enhances ARS activity. All three regions in ars2004M can be replaced with 40-bp poly(dA/dT) fragments without reduction of ARS activity. Although spacer regions in the ars2004M enhance ARS activity, all could be deleted when an 40-bp poly(dA/dT) fragment was added in place of region I. Our results suggest that the origin activity of fission yeast replicators depends on the number of adenine/thymine stretches, the extent of their clustering, and presence of certain replication-enhancing elements.
PMCID: PMC84658  PMID: 10490609
7.  Dissecting the fission yeast regulatory network reveals phase-specific control elements of its cell cycle 
BMC Systems Biology  2009;3:93.
Fission yeast Schizosaccharomyces pombe and budding yeast Saccharomyces cerevisiae are among the original model organisms in the study of the cell-division cycle. Unlike budding yeast, no large-scale regulatory network has been constructed for fission yeast. It has only been partially characterized. As a result, important regulatory cascades in budding yeast have no known or complete counterpart in fission yeast.
By integrating genome-wide data from multiple time course cell cycle microarray experiments we reconstructed a gene regulatory network. Based on the network, we discovered in addition to previously known regulatory hubs in M phase, a new putative regulatory hub in the form of the HMG box transcription factor SPBC19G7.04. Further, we inferred periodic activities of several less known transcription factors over the course of the cell cycle, identified over 500 putative regulatory targets and detected many new phase-specific and conserved cis-regulatory motifs. In particular, we show that SPBC19G7.04 has highly significant periodic activity that peaks in early M phase, which is coordinated with the late G2 activity of the forkhead transcription factor fkh2. Finally, using an enhanced Bayesian algorithm to co-cluster the expression data, we obtained 31 clusters of co-regulated genes 1) which constitute regulatory modules from different phases of the cell cycle, 2) whose phase order is coherent across the 10 time course experiments, and 3) which lead to identification of phase-specific control elements at both the transcriptional and post-transcriptional levels in S. pombe. In particular, the ribosome biogenesis clusters expressed in G2 phase reveal new, highly conserved RNA motifs.
Using a systems-level analysis of the phase-specific nature of the S. pombe cell cycle gene regulation, we have provided new testable evidence for post-transcriptional regulation in the G2 phase of the fission yeast cell cycle. Based on this comprehensive gene regulatory network, we demonstrated how one can generate and investigate plausible hypotheses on fission yeast cell cycle regulation which can potentially be explored experimentally.
PMCID: PMC2758837  PMID: 19758441
8.  Fission Yeast Homologs of Human CENP-B Have Redundant Functions Affecting Cell Growth and Chromosome Segregation 
Molecular and Cellular Biology  2000;20(8):2852-2864.
Two functionally important DNA sequence elements in centromeres of the fission yeast Schizosaccharomyces pombe are the centromeric central core and the K-type repeat. Both of these DNA elements show internal functional redundancy that is not correlated with a conserved DNA sequence. Specific, but degenerate, sequences in these elements are bound in vitro by the S. pombe DNA-binding proteins Abp1p (also called Cbp1p) and Cbhp, which are related to the mammalian centromere DNA-binding protein CENP-B. In this study, we determined that Abp1p binds to at least one of its target sequences within S. pombe centromere II central core (cc2) DNA with an affinity (Ks = 7 × 109 M−1) higher than those of other known centromere DNA-binding proteins for their cognate targets. In vivo, epitope-tagged Cbhp associated with centromeric K repeat chromatin, as well as with noncentromeric regions. Like abp1+/cbp1+, we found that cbh+ is not essential in fission yeast, but a strain carrying deletions of both genes (Δabp1 Δcbh) is extremely compromised in growth rate and morphology and missegregates chromosomes at very high frequency. The synergism between the two null mutations suggests that these proteins perform redundant functions in S. pombe chromosome segregation. In vitro assays with cell extracts with these proteins depleted allowed the specific assignments of several binding sites for them within cc2 and the K-type repeat. Redundancy observed at the centromere DNA level appears to be reflected at the protein level, as no single member of the CENP-B-related protein family is essential for proper chromosome segregation in fission yeast. The relevance of these findings to mammalian centromeres is discussed.
PMCID: PMC85508  PMID: 10733588
9.  Activation of Silent Replication Origins at Autonomously Replicating Sequence Elements near the HML Locus in Budding Yeast 
Molecular and Cellular Biology  1999;19(9):6098-6109.
In the budding yeast, Saccharomyces cerevisiae, replicators can function outside the chromosome as autonomously replicating sequence (ARS) elements; however, within chromosome III, certain ARSs near the transcriptionally silent HML locus show no replication origin activity. Two of these ARSs comprise the transcriptional silencers E (ARS301) and I (ARS302). Another, ARS303, resides between HML and the CHA1 gene, and its function is not known. Here we further localized and characterized ARS303 and in the process discovered a new ARS, ARS320. Both ARS303 and ARS320 are competent as chromosomal replication origins since origin activity was seen when they were inserted at a different position in chromosome III. However, at their native locations, where the two ARSs are in a cluster with ARS302, the I silencer, no replication origin activity was detected regardless of yeast mating type, special growth conditions that induce the transcriptionally repressed CHA1 gene, trans-acting mutations that abrogate transcriptional silencing at HML (sir3, orc5), or cis-acting mutations that delete the E and I silencers containing ARS elements. These results suggest that, for the HML ARS cluster (ARS303, ARS320, and ARS302), inactivity of origins is independent of local transcriptional silencing, even though origins and silencers share key cis- and trans-acting components. Surprisingly, deletion of active replication origins located 25 kb (ORI305) and 59 kb (ORI306) away led to detection of replication origin function at the HML ARS cluster, as well as at ARS301, the E silencer. Thus, replication origin silencing at HML ARSs is mediated by active replication origins residing at long distances from HML in the chromosome. The distal active origins are known to fire early in S phase, and we propose that their inactivation delays replication fork arrival at HML, providing additional time for HML ARSs to fire as origins.
PMCID: PMC84529  PMID: 10454557
10.  The centromere enhancer mediates centromere activation in Schizosaccharomyces pombe. 
Molecular and Cellular Biology  1997;17(6):3305-3314.
The centromere enhancer is a functionally important DNA region within the Schizosaccharomyces pombe centromeric K-type repeat. We have previously shown that addition of the enhancer and cen2 centromeric central core to a circular minichromosome is sufficient to impart appreciable centromere function. A more detailed analysis of the enhancer shows that it is dispensable for centromere function in a cen1-derived minichromosome containing the central core and the remainder of the K-type repeat, indicating that the critical centromeric K-type repeat, like the central core, is characterized by functional redundancy. The centromeric enhancer is required, however, for a central core-carrying minichromosome to exhibit immediate centromere activity when the circular DNA is introduced via transformation into S. pombe. This immediate activation is probably a consequence of a centromere-targeted epigenetic system that governs the chromatin architecture of the region. Moreover, our studies show that two entirely different DNA sequences, consisting of elements derived from two native centromeres, can display centromere function. An S. pombe CENP-B-like protein, Abp1p/Cbp1p, which is required for proper chromosome segregation in vivo, binds in vitro to sites within and adjacent to the modular centromere enhancer, as well as within the centromeric central cores. These results provide direct evidence in fission yeast of a model, similar to one proposed for mammalian systems, whereby no specific sequence is necessary for centromere function but certain classes of sequences are competent to build the appropriate chromatin foundation upon which the centromere/kinetochore can be formed and activated.
PMCID: PMC232183  PMID: 9154829
11.  Origin Replication Complex Binding, Nucleosome Depletion Patterns, and a Primary Sequence Motif Can Predict Origins of Replication in a Genome with Epigenetic Centromeres 
mBio  2014;5(5):e01703-14.
Origins of DNA replication are key genetic elements, yet their identification remains elusive in most organisms. In previous work, we found that centromeres contain origins of replication (ORIs) that are determined epigenetically in the pathogenic yeast Candida albicans. In this study, we used origin recognition complex (ORC) binding and nucleosome occupancy patterns in Saccharomyces cerevisiae and Kluyveromyces lactis to train a machine learning algorithm to predict the position of active arm (noncentromeric) origins in the C. albicans genome. The model identified bona fide active origins as determined by the presence of replication intermediates on nondenaturing two-dimensional (2D) gels. Importantly, these origins function at their native chromosomal loci and also as autonomously replicating sequences (ARSs) on a linear plasmid. A “mini-ARS screen” identified at least one and often two ARS regions of ≥100 bp within each bona fide origin. Furthermore, a 15-bp AC-rich consensus motif was associated with the predicted origins and conferred autonomous replicating activity to the mini-ARSs. Thus, while centromeres and the origins associated with them are epigenetic, arm origins are dependent upon critical DNA features, such as a binding site for ORC and a propensity for nucleosome exclusion.
DNA replication machinery is highly conserved, yet the definition of exactly what specifies a replication origin differs in different species. Here, we utilized computational genomics to predict origin locations in Candida albicans by combining locations of binding sites for the conserved origin replication complex, necessary for replication initiation, together with chromatin organization patterns. We identified predicted sequences that exhibited bona fide origin function and developed a linear plasmid assay to delimit the DNA fragments necessary for origin function. Additionally, we found that a short AC-rich motif, which is enriched in predicted origins, is required for origin function. Thus, we demonstrated a new machine learning paradigm for identification of potential origins from a genome with no prior information. Furthermore, this work suggests that C. albicans has two different types of origins: “hard-wired” arm origins that rely upon specific sequence motifs and “epigenetic” centromeric origins that are recruited to kinetochores in a sequence-independent manner.
PMCID: PMC4173791  PMID: 25182328
12.  Isolation, Characterization, and Molecular Cloning of a Protein (Abp2) That Binds to a Schizosaccharomyces pombe Origin of Replication (ars3002) 
Molecular and Cellular Biology  1998;18(3):1670-1681.
The autonomously replicating sequence (ARS) element ars3002 is associated with the most active replication origin within a cluster of three closely spaced origins on chromosome III of Schizosaccharomyces pombe. A 361-bp portion of ars3002 containing detectable ARS activity includes multiple near matches to the S. pombe ARS consensus sequence previously reported by Maundrell et al. (K. Maundrell, A. Hutchison, and S. Shall, EMBO J. 7:2203–2209, 1988). Using a gel shift assay with a multimer of an oligonucleotide containing three overlapping matches to the Maundrell ARS consensus sequence, we have detected several proteins in S. pombe crude extracts that bind to the oligonucleotide and ars3002. One of these proteins, ARS binding protein 1, was previously described (Abp1 [Y. Murakami, J. A. Huberman, and J. Hurwitz, Proc. Natl. Acad. Sci. USA 93:502–507, 1996]). In this report the isolation, characterization, and cloning of a second binding activity, designated ARS binding protein 2 (Abp2), are described. Purified Abp2 has an apparent molecular mass of 75 kDa. Footprinting analyses revealed that it binds preferentially to overlapping near matches to the Maundrell ARS consensus sequence. The gene abp2 was isolated, sequenced, and overexpressed in Escherichia coli. The DNA binding activity of overexpressed Abp2 was similar to that of native Abp2. The deduced amino acid sequence contains a region similar to a proline-rich motif (GRP) present in several proteins that bind A+T-rich DNA sequences. Replacement of amino acids within this motif with alanine either abolished or markedly reduced the DNA binding activity of the mutated Abp2 protein, indicating that this motif is essential for the DNA binding activity of Abp2. Disruption of the abp2 gene showed that the gene is not essential for cell viability. However, at elevated temperatures the null mutant was less viable than the wild type and exhibited changes in nuclear morphology. The null mutant entered mitosis with delayed kinetics when DNA replication was blocked with hydroxyurea, and advancement through mitosis led to the loss of cell viability and aberrant formation of septa. The null mutant was also sensitive to UV radiation, suggesting that Abp2 may play a role in regulating the cell cycle response to stress signals.
PMCID: PMC108882  PMID: 9488484
13.  Checkpoint independence of most DNA replication origins in fission yeast 
BMC Molecular Biology  2007;8:112.
In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2).
Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in checkpoint-mutant cells.
The fact that ~97% of fission yeast replication origins – both early and late – are not significantly affected by replication checkpoint mutations in HU-treated cells suggests that (i) most late-firing origins are restrained from firing in HU-treated cells by at least one checkpoint-independent mechanism, and (ii) checkpoint-dependent slowing of S phase in fission yeast when DNA is damaged may be accomplished primarily by the slowing of replication forks.
PMCID: PMC2235891  PMID: 18093330
14.  The Origin Recognition Complex Interacts with a Subset of Metabolic Genes Tightly Linked to Origins of Replication 
PLoS Genetics  2009;5(12):e1000755.
The origin recognition complex (ORC) marks chromosomal sites as replication origins and is essential for replication initiation. In yeast, ORC also binds to DNA elements called silencers, where its primary function is to recruit silent information regulator (SIR) proteins to establish transcriptional silencing. Indeed, silencers function poorly as chromosomal origins. Several genetic, molecular, and biochemical studies of HMR-E have led to a model proposing that when ORC becomes limiting in the cell (such as in the orc2-1 mutant) only sites that bind ORC tightly (such as HMR-E) remain fully occupied by ORC, while lower affinity sites, including many origins, lose ORC occupancy. Since HMR-E possessed a unique non-replication function, we reasoned that other tight sites might reveal novel functions for ORC on chromosomes. Therefore, we comprehensively determined ORC “affinity” genome-wide by performing an ORC ChIP–on–chip in ORC2 and orc2-1 strains. Here we describe a novel group of orc2-1–resistant ORC–interacting chromosomal sites (ORF–ORC sites) that did not function as replication origins or silencers. Instead, ORF–ORC sites were comprised of protein-coding regions of highly transcribed metabolic genes. In contrast to the ORC–silencer paradigm, transcriptional activation promoted ORC association with these genes. Remarkably, ORF–ORC genes were enriched in proximity to origins of replication and, in several instances, were transcriptionally regulated by these origins. Taken together, these results suggest a surprising connection among ORC, replication origins, and cellular metabolism.
Author Summary
Chromosomes must be replicated prior to cell division. The process of duplication of each eukaryotic chromosome starts at discrete sites called origins of replication. An evolutionarily conserved Origin Recognition Complex (ORC) binds origins and helps make them replication-competent. ORC also binds another class of chromosomal sites that primarily function not as origins but as “silencers.” Silencers serve as starting points for the formation of silent chromatin, a special structure that represses local gene transcription in a promoter-independent fashion. One yeast silencer studied in great detail was found to bind ORC in vitro and in vivo with high affinity (“tightly”). On the other hand, several replication origins were found to bind ORC with lower affinity (“loosely”). We performed a genome-wide comparison of ORC affinity and found a novel class of high-affinity ORC–binding sites. Surprisingly, this class consisted neither of origins nor of silencers but of highly expressed genes involved in various metabolic processes. Transcriptional activation helped target ORC to these sites. These genes were frequently found near origins of replication, and in several instances their transcription was affected by deletion of the nearby origin. These results may shed light on a new molecular mechanism connecting nutrient status and cell division.
PMCID: PMC2778871  PMID: 19997491
15.  The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. 
Molecular Biology of the Cell  1994;5(7):747-761.
The DNA requirements for centromere function in fission yeast have been investigated using a minichromosome assay system. Critical elements of Schizosaccharomyces pombe centromeric DNA are portions of the centromeric central core and sequences within a 2.1-kilobase segment found on all three chromosomes as part of the K-type (K/K"/dg) centromeric repeat. The S. pombe centromeric central core contains DNA sequences that appear functionally redundant, and the inverted repeat motif that flanks the central core in all native fission yeast centromeres is not essential for centromere function in circular minichromosomes. Tandem copies of centromeric repeat K", in conjunction with the central core, exert an additive effect on centromere function, increasing minichromosome mitotic stability with each additional copy. Centromeric repeats B and L, however, and parts of the central core and its core-associated repeat are dispensable and cannot substitute for K-type sequences. Several specific protein binding sites have been identified within the centromeric K-type repeat, consistent with a recently proposed model for centromere/kinetochore function in S. pombe.
PMCID: PMC301093  PMID: 7812044
16.  Functional analysis of a replication origin from Saccharomyces cerevisiae: identification of a new replication enhancer. 
Nucleic Acids Research  1997;25(24):5057-5064.
Yeast replication origins have a modular arrangement of essential DNA sequences containing the ARS consensus sequence (ACS) flanked by auxiliary DNA elements which stimulate origin function. One of the auxiliary elements identified at several origins is a DNA replication enhancer that binds the Abf1p protein. We have isolated an ARS sequence from Saccharomyces cerevisiae based on its ability to bind Abf1p. Here we present a detailed molecular dissection of this ARS, designated ARS 1501, and we demonstrate that it functions as a genomic replication origin on chromosome XV . Mutagenesis of the Abf1p DNA-binding sites revealed that these sequences did not contribute significantly to ARS function. Instead, a new DNA element important for replication, designated REN1501, has been located 5' to the T-rich strand of the ACS. We show that REN1501 functions in either orientation and at variable distances from the ACS, defining this element as a DNA replication enhancer. Most significantly, point mutations within this element decreased the stability of plasmids bearing ARS 1501, suggesting that REN1501 binds a protein important for replication initiation. Only three elements found at origins are known to specifically bind proteins. These include the ARS essential sequences and the Abf1p and Rap1p DNA-binding sites. We show that the function of REN1501 at the origin cannot be replaced by a Rap1p DNA-binding site or a site that binds the transcriptional factor Gal4p and can only be partially substituted for by an Abf1p recognition sequence. This implies that the role of the REN1501 element at the ARS 1501 origin is specific, and suggest that the frequency of origin firing in eukaryotic cells may be regulated by origin-specific enhancers.
PMCID: PMC147147  PMID: 9396816
17.  The essential genome of a bacterium 
This study reports the essential Caulobacter genome at 8 bp resolution determined by saturated transposon mutagenesis and high-throughput sequencing. This strategy is applicable to full genome essentiality studies in a broad class of bacterial species.
The essential Caulobacter genome was determined at 8 bp resolution using hyper-saturated transposon mutagenesis coupled with high-throughput sequencing.Essential protein-coding sequences comprise 90% of the essential genome; the remaining 10% comprising essential non-coding RNA sequences, gene regulatory elements and essential genome replication features.Of the 3876 annotated open reading frames (ORFs), 480 (12.4%) were essential ORFs, 3240 (83.6%) were non-essential ORFs and 156 (4.0%) were ORFs that severely impacted fitness when mutated.The essential elements are preferentially positioned near the origin and terminus of the Caulobacter chromosome.This high-resolution strategy is applicable to high-throughput, full genome essentiality studies and large-scale genetic perturbation experiments in a broad class of bacterial species.
The regulatory events that control polar differentiation and cell-cycle progression in the bacterium Caulobacter crescentus are highly integrated, and they have to occur in the proper order (McAdams and Shapiro, 2011). Components of the core regulatory circuit are largely known. Full discovery of its essential genome, including non-coding, regulatory and coding elements, is a prerequisite for understanding the complete regulatory network of this bacterial cell. We have identified all the essential coding and non-coding elements of the Caulobacter chromosome using a hyper-saturated transposon mutagenesis strategy that is scalable and can be readily extended to obtain rapid and accurate identification of the essential genome elements of any sequenced bacterial species at a resolution of a few base pairs.
We engineered a Tn5 derivative transposon (Tn5Pxyl) that carries at one end an inducible outward pointing Pxyl promoter (Christen et al, 2010). We showed that this transposon construct inserts into the genome randomly where it can activate or disrupt transcription at the site of integration, depending on the insertion orientation. DNA from hundred of thousands of transposon insertion sites reading outward into flanking genomic regions was parallel PCR amplified and sequenced by Illumina paired-end sequencing to locate the insertion site in each mutant strain (Figure 1). A single sequencing run on DNA from a mutagenized cell population yielded 118 million raw sequencing reads. Of these, >90 million (>80%) read outward from the transposon element into adjacent genomic DNA regions and the insertion site could be mapped with single nucleotide resolution. This yielded the location and orientation of 428 735 independent transposon insertions in the 4-Mbp Caulobacter genome.
Within non-coding sequences of the Caulobacter genome, we detected 130 non-disruptable DNA segments between 90 and 393 bp long in addition to all essential promoter elements. Among 27 previously identified and validated sRNAs (Landt et al, 2008), three were contained within non-disruptable DNA segments and another three were partially disruptable, that is, insertions caused a notable growth defect. Two additional small RNAs found to be essential are the transfer-messenger RNA (tmRNA) and the ribozyme RNAseP (Landt et al, 2008). In addition to the 8 non-disruptable sRNAs, 29 out of the 130 intergenic essential non-coding sequences contained non-redundant tRNA genes; duplicated tRNA genes were non-essential. We also identified two non-disruptable DNA segments within the chromosomal origin of replication. Thus, we resolved essential non-coding RNAs, tRNAs and essential replication elements within the origin region of the chromosome. An additional 90 non-disruptable small genome elements of currently unknown function were identified. Eighteen of these are conserved in at least one closely related species. Only 2 could encode a protein of over 50 amino acids.
For each of the 3876 annotated open reading frames (ORFs), we analyzed the distribution, orientation, and genetic context of transposon insertions. There are 480 essential ORFs and 3240 non-essential ORFs. In addition, there were 156 ORFs that severely impacted fitness when mutated. The 8-bp resolution allowed a dissection of the essential and non-essential regions of the coding sequences. Sixty ORFs had transposon insertions within a significant portion of their 3′ region but lacked insertions in the essential 5′ coding region, allowing the identification of non-essential protein segments. For example, transposon insertions in the essential cell-cycle regulatory gene divL, a tyrosine kinase, showed that the last 204 C-terminal amino acids did not impact viability, confirming previous reports that the C-terminal ATPase domain of DivL is dispensable for viability (Reisinger et al, 2007; Iniesta et al, 2010). In addition, we found that 30 out of 480 (6.3%) of the essential ORFs appear to be shorter than the annotated ORF, suggesting that these are probably mis-annotated.
Among the 480 ORFs essential for growth on rich media, there were 10 essential transcriptional regulatory proteins, including 5 previously identified cell-cycle regulators (McAdams and Shapiro, 2003; Holtzendorff et al, 2004; Collier and Shapiro, 2007; Gora et al, 2010; Tan et al, 2010) and 5 uncharacterized predicted transcription factors. In addition, two RNA polymerase sigma factors RpoH and RpoD, as well as the anti-sigma factor ChrR, which mitigates rpoE-dependent stress response under physiological growth conditions (Lourenco and Gomes, 2009), were also found to be essential. Thus, a set of 10 transcription factors, 2 RNA polymerase sigma factors and 1 anti-sigma factor are the core essential transcriptional regulators for growth on rich media. To further characterize the core components of the Caulobacter cell-cycle control network, we identified all essential regulatory sequences and operon transcripts. Altogether, the 480 essential protein-coding and 37 essential RNA-coding Caulobacter genes are organized into operons such that 402 individual promoter regions are sufficient to regulate their expression. Of these 402 essential promoters, the transcription start sites (TSSs) of 105 were previously identified (McGrath et al, 2007).
The essential genome features are non-uniformly distributed on the Caulobacter genome and enriched near the origin and the terminus regions. In contrast, the chromosomal positions of the published E. coli essential coding sequences (Rocha, 2004) are preferentially located at either side of the origin (Figure 4A). This indicates that there are selective pressures on chromosomal positioning of some essential elements (Figure 4A).
The strategy described in this report could be readily extended to quickly determine the essential genome for a large class of bacterial species.
Caulobacter crescentus is a model organism for the integrated circuitry that runs a bacterial cell cycle. Full discovery of its essential genome, including non-coding, regulatory and coding elements, is a prerequisite for understanding the complete regulatory network of a bacterial cell. Using hyper-saturated transposon mutagenesis coupled with high-throughput sequencing, we determined the essential Caulobacter genome at 8 bp resolution, including 1012 essential genome features: 480 ORFs, 402 regulatory sequences and 130 non-coding elements, including 90 intergenic segments of unknown function. The essential transcriptional circuitry for growth on rich media includes 10 transcription factors, 2 RNA polymerase sigma factors and 1 anti-sigma factor. We identified all essential promoter elements for the cell cycle-regulated genes. The essential elements are preferentially positioned near the origin and terminus of the chromosome. The high-resolution strategy used here is applicable to high-throughput, full genome essentiality studies and large-scale genetic perturbation experiments in a broad class of bacterial species.
PMCID: PMC3202797  PMID: 21878915
functional genomics; next-generation sequencing; systems biology; transposon mutagenesis
18.  Mrc1 Marks Early-Firing Origins and Coordinates Timing and Efficiency of Initiation in Fission Yeast ▿ † 
Molecular and Cellular Biology  2011;31(12):2380-2391.
How early- and late-firing origins are selected on eukaryotic chromosomes is largely unknown. Here, we show that Mrc1, a conserved factor required for stabilization of stalled replication forks, selectively binds to the early-firing origins in a manner independent of Cdc45 and Hsk1 kinase in the fission yeast Schizosaccharomyces pombe. In mrc1Δ cells (and in swi1Δ cells to some extent), efficiency of firing is stimulated, and its timing is advanced selectively at those origins that are normally bound by Mrc1. In contrast, the late or inefficient origins which are not bound by Mrc1 are not activated in mrc1Δ cells. The enhanced firing and precocious Cdc45 loading at Mrc1-bound early-firing origins are not observed in a checkpoint mutant of mrc1, suggesting that non-checkpoint function is involved in maintaining the normal program of early-firing origins. We propose that prefiring binding of Mrc1 is an important marker of early-firing origins which are precociously activated by the absence of this protein.
PMCID: PMC3133423  PMID: 21518960
19.  Atomic force microscopy of DNA in solution and DNA modelling show that structural properties specify the eukaryotic replication initiation site 
Nucleic Acids Research  2007;35(20):6832-6845.
The replication origins (ORIs) of Schizosaccharomyces pombe, like those in most eukaryotes, are long chromosomal regions localized within A+T-rich domains. Although there is no consensus sequence, the interacting proteins are strongly conserved, suggesting that DNA structure is important for ORI function. We used atomic force microscopy in solution and DNA modelling to study the structural properties of the Spars1 origin. We show that this segment is the least stable of the surrounding DNA (9 kb), and contains regions of intrinsically bent elements (strongly curved and inherently supercoiled DNAs). The pORC-binding site co-maps with a superhelical DNA region, where the spatial arrangement of adenine/thymine stretches may provide the binding substrate. The replication initiation site (RIP) is located within a strongly curved DNA region. On pORC unwinding, this site shifts towards the apex of the curvature, thus potentiating DNA melting there. Our model is entirely consistent with the sequence variability, large size and A+T-richness of ORIs, and also accounts for the multistep nature of the initiation process, the specificity of pORC-binding site(s), and the specific location of RIP. We show that the particular DNA features and dynamic properties identified in Spars1 are present in other eukaryotic origins.
PMCID: PMC2175326  PMID: 17933778
20.  Replication Origins and Timing of Temporal Replication in Budding Yeast: How to Solve the Conundrum? 
Current Genomics  2010;11(3):199-211.
Similarly to metazoans, the budding yeast Saccharomyces cereviasiae replicates its genome with a defined timing. In this organism, well-defined, site-specific origins, are efficient and fire in almost every round of DNA replication. However, this strategy is neither conserved in the fission yeast Saccharomyces pombe, nor in Xenopus or Drosophila embryos, nor in higher eukaryotes, in which DNA replication initiates asynchronously throughout S phase at random sites. Temporal and spatial controls can contribute to the timing of replication such as Cdk activity, origin localization, epigenetic status or gene expression. However, a debate is going on to answer the question how individual origins are selected to fire in budding yeast. Two opposing theories were proposed: the “replicon paradigm” or “temporal program” vs. the “stochastic firing”. Recent data support the temporal regulation of origin activation, clustering origins into temporal blocks of early and late replication. Contrarily, strong evidences suggest that stochastic processes acting on origins can generate the observed kinetics of replication without requiring a temporal order. In mammalian cells, a spatiotemporal model that accounts for a partially deterministic and partially stochastic order of DNA replication has been proposed. Is this strategy the solution to reconcile the conundrum of having both organized replication timing and stochastic origin firing also for budding yeast? In this review we discuss this possibility in the light of our recent study on the origin activation, suggesting that there might be a stochastic component in the temporal activation of the replication origins, especially under perturbed conditions.
PMCID: PMC2878984  PMID: 21037857
Budding yeast; DNA replication; origins of replication; temporal program; stochastic firing; genomic instability; Clb5; Sic1.
21.  Diversity of Eukaryotic DNA Replication Origins Revealed by Genome-Wide Analysis of Chromatin Structure 
PLoS Genetics  2010;6(9):e1001092.
Eukaryotic DNA replication origins differ both in their efficiency and in the characteristic time during S phase when they become active. The biological basis for these differences remains unknown, but they could be a consequence of chromatin structure. The availability of genome-wide maps of nucleosome positions has led to an explosion of information about how nucleosomes are assembled at transcription start sites, but no similar maps exist for DNA replication origins. Here we combine high-resolution genome-wide nucleosome maps with comprehensive annotations of DNA replication origins to identify patterns of nucleosome occupancy at eukaryotic replication origins. On average, replication origins contain a nucleosome depleted region centered next to the ACS element, flanked on both sides by arrays of well-positioned nucleosomes. Our analysis identified DNA sequence properties that correlate with nucleosome occupancy at replication origins genome-wide and that are correlated with the nucleosome-depleted region. Clustering analysis of all annotated replication origins revealed a surprising diversity of nucleosome occupancy patterns. We provide evidence that the origin recognition complex, which binds to the origin, acts as a barrier element to position and phase nucleosomes on both sides of the origin. Finally, analysis of chromatin reconstituted in vitro reveals that origins are inherently nucleosome depleted. Together our data provide a comprehensive, genome-wide view of chromatin structure at replication origins and suggest a model of nucleosome positioning at replication origins in which the underlying sequence occludes nucleosomes to permit binding of the origin recognition complex, which then (likely in concert with nucleosome modifiers and remodelers) positions nucleosomes adjacent to the origin to promote replication origin function.
Author Summary
Eukaryotic DNA replication begins at specific sites in the genome called replication origins, which are bound by the proteins that comprise the origin recognition complex (ORC). In budding yeast, there are more replication origins available than are used in any particular cell division cycle. Each origin has a characteristic time during the cell division cycle when the DNA replication machinery is assembled at a particular origin and begins to replicate DNA. Previous studies have indicated that differences in replication timing and origin use/availability may be a consequence of the chromatin structure surrounding an origin. Here we present a genome-wide analysis of nucleosome architecture of replication origins aligned by their ORC-binding site. We find that origins can be built with a variety of nucleosome occupancy patterns, and that these patterns are influenced by adjacent genomic features. Finally, we determined the genome-wide consequences of ORC depletion on nucleosome architecture at origins. ORC depletion allowed encroachment of flanking nucleosomes towards the origin and changed the nucleosome phasing, indicating that ORC acts as a barrier to position and phase nucleosomes. Our analysis provides a comprehensive, genome-wide view of replication origins that reveals a previously unappreciated diversity in origin structure.
PMCID: PMC2932696  PMID: 20824081
22.  A Schizosaccharomyces pombe artificial chromosome large DNA cloning system. 
Nucleic Acids Research  1998;26(22):5052-5060.
The feasibility of using the fission yeast, Schizosaccharomyces pombe , as a host for the propagation of cloned large fragments of human DNA has been investigated. Two acentric vector arms were utilized; these carry autonomously replicating sequences ( ars elements), selectable markers ( ura4(+) or LEU2 ) and 250 bp of S. pombe terminal telomeric repeats. All cloning was performed between the unique sites in both vector arms for the restriction endonuclease Not I. Initially the system was tested by converting six previously characterized cosmids from human chromosome 11p13 into a form that could be propagated in S.pombe as linear episomal elements of 50-60 kb in length. In all transformants analysed these cosmids were maintained intact. To test if larger fragments of human DNA could also be propagated total human DNA was digested with Not I and size fractionated by pulsed field gel electrophoresis (PFGE). Fractions of 100-1000 kb were ligated to Not I-digested vector arms and transformed into S.pombe protoplasts in the presence of lipofectin. Prototrophic ura+leu+transformants were obtained which upon examination by PFGE were found to contain additional linear chromosomes migrating at between 100 and 500 kb with a copy number of 5-10 copies/cell. Hybridization analyses revealed that these additional bands contained human DNA. Fluorescent in situ hybridization (FISH) analyses of several independent clones indicated that the inserts were derived from single loci within the human genome. These analyses clearly demonstrate that it is possible to clone large fragments of heterologous DNA in fission yeast using this S.p ombe artificial chromosome system which we have called SPARC. This vector-host system will complement the various other systems for cloning large DNA fragments.
PMCID: PMC147965  PMID: 9801299
23.  High-resolution analysis of four efficient yeast replication origins reveals new insights into the ORC and putative MCM binding elements 
Nucleic Acids Research  2011;39(15):6523-6535.
In budding yeast, the eukaryotic initiator protein ORC (origin recognition complex) binds to a bipartite sequence consisting of an 11 bp ACS element and an adjacent B1 element. However, the genome contains many more matches to this consensus than actually bind ORC or function as origins in vivo. Although ORC-dependent loading of the replicative MCM helicase at origins is enhanced by a distal B2 element, less is known about this element. Here, we analyzed four highly active origins (ARS309, ARS319, ARS606 and ARS607) by linker scanning mutagenesis and found that sequences adjacent to the ACS contributed substantially to origin activity and ORC binding. Using the sequences of four additional B2 elements we generated a B2 multiple sequence alignment and identified a shared, degenerate 8 bp sequence that was enriched within 228 known origins. In addition, our high-resolution analysis revealed that not all origins exist within nucleosome free regions: a class of Sir2-regulated origins has a stably positioned nucleosome overlapping or near B2. This study illustrates the conserved yet flexible nature of yeast origin architecture to promote ORC binding and origin activity, and helps explain why a strong match to the ORC binding site is insufficient to identify origins within the genome.
PMCID: PMC3159467  PMID: 21558171
24.  Premature termination of RNA polymerase II mediated transcription of a seed protein gene in Schizosaccharomyces pombe 
Nucleic Acids Research  2002;30(13):2940-2949.
The poly(A) signal and downstream elements with transcriptional pausing activity play an important role in termination of RNA polymerase II transcription. We show that an intronic sequence derived from the plant seed protein gene (AmA1) specifically acts as a transcriptional terminator in the fission yeast, Schizosaccharomyces pombe. The 3′-end points of mRNA encoded by the AmA1 gene were mapped at different positions in S.pombe and in native cells of Amaranthus hypochondriacus. Deletion analyses of the AmA1 intronic sequence revealed that multiple elements essential for proper transcriptional termination in S.pombe include two site-determining elements (SDEs) and three downstream sequence elements. RT–PCR analyses detected transcripts up to the second SDE. This is the first report showing that the highly conserved mammalian poly(A) signal, AAUAAA, is also functional in S.pombe. The poly(A) site was determined as Y(A) both in native and heterologous systems but at different positions. Deletion of these cis-elements abolished 3′-end processing in S.pombe and a single point mutation in this motif reduced the activity by 70% while enhancing activity at downstream SDE. These results indicate that the bipartite sequence elements as signals for 3′-end processing in fission yeast act in tandem with other cis-acting elements. A comparison of these elements in the AmA1 intron that function as a transcriptional terminator in fission yeast with that of its native genes showed that both require an AT-rich distal and proximal upstream element. However, these sequences are not identical. Transcription run-on analysis indicates that elongating RNA polymerase II molecules accumulate over these pause signals, maximal at 611–949 nt. Furthermore, we demonstrate that the AmA1 intronic terminator sequence acts in a position-independent manner when placed within another gene.
PMCID: PMC117036  PMID: 12087180
25.  Susceptibility to Superhelically Driven DNA Duplex Destabilization: A Highly Conserved Property of Yeast Replication Origins 
Strand separation is obligatory for several DNA functions, including replication. However, local DNA properties such as A+T content or thermodynamic stability alone do not determine the susceptibility to this transition in vivo. Rather, superhelical stresses provide long-range coupling among the transition behaviors of all base pairs within a topologically constrained domain. We have developed methods to analyze superhelically induced duplex destabilization (SIDD) in genomic DNA that take into account both this long-range stress-induced coupling and sequence-dependent local thermodynamic stability. Here we apply this approach to examine the SIDD properties of 39 experimentally well-characterized autonomously replicating DNA sequences (ARS elements), which function as replication origins in the yeast Saccharomyces cerevisiae. We find that these ARS elements have a strikingly increased susceptibility to SIDD relative to their surrounding sequences. On average, these ARS elements require 4.78 kcal/mol less free energy to separate than do their immediately surrounding sequences, making them more than 2,000 times easier to open. Statistical analysis shows that the probability of this strong an association between SIDD sites and ARS elements arising by chance is approximately 4 × 10−10. This local enhancement of the propensity to separate to single strands under superhelical stress has obvious implications for origin function. SIDD properties also could be used, in conjunction with other known origin attributes, to identify putative replication origins in yeast, and possibly in other metazoan genomes.
Several DNA functions require the two strands of the DNA duplex to transiently separate. Examples include the initiation of gene expression and of DNA replication. Here the authors examine the strand separation properties of the DNA duplex at autonomously replicating sequences (ARS elements), which are the potential replication origins in yeast.
In vivo, susceptibility to strand separation does not depend only on local DNA properties such as adenine plus thymine content or thermodynamic stability. Rather, stresses imposed on the DNA in vivo couple together the strand-opening behaviors of all base pairs that experience them. The authors use computational methods for analyzing stress-driven strand separation to examine the susceptibility to opening of 39 experimentally well-characterized ARS elements. They show that these ARS elements have strikingly increased susceptibilities to stress-induced separation relative to the surrounding sequences. On average, these ARS elements require 4.78 kcal/mol less free energy to separate than do surrounding sequences, making them more than 2,000 times easier to open. This enhanced susceptibility to stress-driven strand separation has obvious implications for the mechanisms that begin the process of replication. This property is also shared by bacterial and viral replication start points, suggesting that it may be a general attribute of replication origins.
PMCID: PMC1183513  PMID: 16103908

Results 1-25 (1070780)