PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (961500)

Clipboard (0)
None

Related Articles

1.  Anthrax Postexposure Prophylaxis in Postal Workers, Connecticut, 2001 
Emerging Infectious Diseases  2002;8(10):1133-1137.
After inhalational anthrax was diagnosed in a Connecticut woman on November 20, 2001, postexposure prophylaxis was recommended for postal workers at the regional mail facility serving the patient’s area. Although environmental testing at the facility yielded negative results, subsequent testing confirmed the presence of Bacillus anthracis. We distributed questionnaires to 100 randomly selected postal workers within 20 days of initial prophylaxis. Ninety-four workers obtained antibiotics, 68 of whom started postexposure prophylaxis and 21 discontinued. Postal workers who stopped or never started taking prophylaxis cited as reasons disbelief regarding anthrax exposure, problems with adverse events, and initial reports of negative cultures. Postal workers with adverse events reported predominant symptoms of gastrointestinal distress and headache. The influence of these concerns on adherence suggests that communication about risks of acquiring anthrax, education about adverse events, and careful management of adverse events are essential elements in increasing adherence.
doi:10.3201/eid0810.020346
PMCID: PMC2730305  PMID: 12396928
Anthrax; Bacillus anthracis; prophylaxis; adverse effects; ciprofloxacin; doxycycline; patient noncompliance; Connecticut
2.  Inhalational Anthrax Outbreak among Postal Workers, Washington, D.C., 2001 
Emerging Infectious Diseases  2002;8(10):1066-1072.
In October 2001, four cases of inhalational anthrax occurred in workers in a Washington, D.C., mail facility that processed envelopes containing Bacillus anthracis spores. We reviewed the envelopes’ paths and obtained exposure histories and nasal swab cultures from postal workers. Environmental sampling was performed. A sample of employees was assessed for antibody concentrations to B. anthracis protective antigen. Case-patients worked on nonoverlapping shifts throughout the facility. Environmental sampling showed diffuse contamination of the facility, suggesting multiple aerosolization events. Potential workplace exposures were similar for the case-patients and the sample of workers. All nasal swab cultures and serum antibody tests were negative. Available tools could not identify subgroups of employees at higher risk for exposure or disease. Prophylaxis was necessary for all employees. To protect postal workers against bioterrorism, measures to reduce the risk of occupational exposure are necessary.
doi:10.3201/eid0810.020330
PMCID: PMC2730301  PMID: 12396917
bioterrorism; Bacillus anthracis; postal facility; inhalational anthrax
3.  Bacillus anthracis Aerosolization Associated with a Contaminated Mail Sorting Machine 
Emerging Infectious Diseases  2002;8(10):1044-1047.
On October 12, 2001, two envelopes containing Bacillus anthracis spores passed through a sorting machine in a postal facility in Washington, D.C. When anthrax infection was identified in postal workers 9 days later, the facility was closed. To determine if exposure to airborne B. anthracis spores continued to occur, we performed air sampling around the contaminated sorter. One CFU of B. anthracis was isolated from 990 L of air sampled before the machine was activated. Six CFUs were isolated during machine activation and processing of clean dummy mail. These data indicate that an employee working near this machine might inhale approximately 30 B. anthracis-containing particles during an 8-h work shift. What risk this may have represented to postal workers is not known, but the risk is approximately 20-fold less than estimates of sub-5 micron B. anthracis-containing particles routinely inhaled by asymptomatic, unvaccinated workers in a goat-hair mill.
doi:10.3201/eid0810.020356
PMCID: PMC2730297  PMID: 12396913
Bacillus anthracis; anthrax; risk assessment; occupational exposure
4.  Antimicrobial Postexposure Prophylaxis for Anthrax: Adverse Events and Adherence 
Emerging Infectious Diseases  2002;8(10):1124-1132.
We collected data during postexposure antimicrobial prophylaxis campaigns and from a prophylaxis program evaluation 60 days after start of antimicrobial prophylaxis involving persons from six U.S. sites where Bacillus anthracis exposures occurred. Adverse events associated with antimicrobial prophylaxis to prevent anthrax were commonly reported, but hospitalizations and serious adverse events as defined by Food and Drug Administration criteria were rare. Overall adherence during 60 days of antimicrobial prophylaxis was poor (44%), ranging from 21% of persons exposed in the Morgan postal facility in New York City to 64% of persons exposed at the Brentwood postal facility in Washington, D.C. Adherence was highest among participants in an investigational new drug protocol to receive additional antibiotics with or without anthrax vaccine—a likely surrogate for anthrax risk perception. Adherence of <60 days was not consistently associated with adverse events.
doi:10.3201/eid0810.020349
PMCID: PMC2730317  PMID: 12396927
Anthrax; Bacillus anthracis; antimicrobial prophylaxis; adverse events; adherence
5.  Epidemiologic Investigations of Bioterrorism-Related Anthrax, New Jersey, 2001 
Emerging Infectious Diseases  2002;8(10):1048-1055.
At least four Bacillus anthracis–containing envelopes destined for New York City and Washington, D.C., were processed at the Trenton Processing and Distribution Center (PDC) on September 18 and October 9, 2001. When cutaneous anthrax was confirmed in a Trenton postal worker, the PDC was closed. Four cutaneous and two inhalational anthrax cases were identified. Five patients were hospitalized; none died. Four were PDC employees; the others handled or received mail processed there. Onset dates occurred in two clusters following envelope processing at the PDC. The attack rate among the 170 employees present when the B. anthracis–containing letters were sorted on October 9 was 1.2%. Of 137 PDC environmental samples, 57 (42%) were positive. Five (10%) of 50 local post offices each yielded one positive sample. Cutaneous or inhalational anthrax developed in four postal employees at a facility where B. anthracis–containing letters were processed. Cross-contaminated mail or equipment was the likely source of infection in two other case-patients with cutaneous anthrax.
doi:10.3201/eid0810.020329
PMCID: PMC2730296  PMID: 12396914
Bacillus anthracis; anthrax; bioterrorism
6.  Investigation of Bioterrorism-Related Anthrax, United States, 2001: Epidemiologic Findings 
Emerging Infectious Diseases  2002;8(10):1019-1028.
In October 2001, the first inhalational anthrax case in the United States since 1976 was identified in a media company worker in Florida. A national investigation was initiated to identify additional cases and determine possible exposures to Bacillus anthracis. Surveillance was enhanced through health-care facilities, laboratories, and other means to identify cases, which were defined as clinically compatible illness with laboratory-confirmed B. anthracis infection. From October 4 to November 20, 2001, 22 cases of anthrax (11 inhalational, 11 cutaneous) were identified; 5 of the inhalational cases were fatal. Twenty (91%) case-patients were either mail handlers or were exposed to worksites where contaminated mail was processed or received. B. anthracis isolates from four powder-containing envelopes, 17 specimens from patients, and 106 environmental samples were indistinguishable by molecular subtyping. Illness and death occurred not only at targeted worksites, but also along the path of mail and in other settings. Continued vigilance for cases is needed among health-care providers and members of the public health and law enforcement communities.
doi:10.3201/eid0810.020353
PMCID: PMC2730292  PMID: 12396909
7.  Anti-toxin antibodies in prophylaxis and treatment of inhalation anthrax 
Future microbiology  2009;4:35-43.
The CDC recommend 60 days of oral antibiotics combined with a three-dose series of the anthrax vaccine for prophylaxis after potential exposure to aerosolized Bacillus anthracis spores. The anthrax vaccine is currently not licensed for anthrax postexposure prophylaxis and has to be made available under an Investigational New Drug protocol. Postexposure prophylaxis based on antibiotics can be problematic in cases where the use of antibiotics is contraindicated. Furthermore, there is a concern that an exposure could involve antibiotic-resistant strains of B. anthracis. Availability of alternate treatment modalities that are effective in prophylaxis of inhalation anthrax is therefore highly desirable. A major research focus toward this end has been on passive immunization using polyclonal and monoclonal antibodies against B. anthracis toxin components. Since 2001, significant progress has been made in isolation and commercial development of monoclonal and polyclonal antibodies that function as potent neutralizers of anthrax lethal toxin in both a prophylactic and therapeutic setting. Several new products have completed Phase I clinical trials and are slated for addition to the National Strategic Stockpile. These rapid advances were possible because of major funding made available by the US government through programs such as Bioshield and the Biomedical Advanced Research and Development Authority. Continued government funding is critical to support the development of a robust biodefense industry.
doi:10.2217/17460913.4.1.35
PMCID: PMC2710805  PMID: 19207098
antibiotic treatment; biodefense funding; inhalation anthrax; lethal factor; medical countermeasures; prophylactic antibodies; protective antigen; vaccination
8.  First Case of Bioterrorism-Related Inhalational Anthrax in the United States, Palm Beach County, Florida, 2001 
Emerging Infectious Diseases  2002;8(10):1029-1034.
On October 4, 2001, we confirmed the first bioterrorism-related anthrax case identified in the United States in a resident of Palm Beach County, Florida. Epidemiologic investigation indicated that exposure occurred at the workplace through intentionally contaminated mail. One additional case of inhalational anthrax was identified from the index patient’s workplace. Among 1,076 nasal cultures performed to assess exposure, Bacillus anthracis was isolated from a co-worker later confirmed as being infected, as well as from an asymptomatic mail-handler in the same workplace. Environmental cultures for B. anthracis showed contamination at the workplace and six county postal facilities. Environmental and nasal swab cultures were useful epidemiologic tools that helped direct the investigation towards the infection source and transmission vehicle. We identified 1,114 persons at risk and offered antimicrobial prophylaxis.
doi:10.3201/eid0810.020354
PMCID: PMC2730309  PMID: 12396910
Anthrax; Bacillus anthracis; bioterrorism; nasal swab cultures; environmental cultures
9.  Surveillance for Anthrax Cases Associated with Contaminated Letters, New Jersey, Delaware, and Pennsylvania, 2001 
Emerging Infectious Diseases  2002;8(10):1073-1077.
In October 2001, two inhalational anthrax and four cutaneous anthrax cases, resulting from the processing of Bacillus anthracis–containing envelopes at a New Jersey mail facility, were identified. Subsequently, we initiated stimulated passive hospital-based and enhanced passive surveillance for anthrax-compatible syndromes. From October 24 to December 17, 2001, hospitals reported 240,160 visits and 7,109 intensive-care unit admissions in the surveillance area (population 6.7 million persons). Following a change to reporting criteria on November 8, the average of possible inhalational anthrax reports decreased 83% from 18 to 3 per day; the proportion of reports requiring follow-up increased from 37% (105/286) to 41% (47/116). Clinical follow-up was conducted on 214 of 464 possible inhalational anthrax patients and 98 possible cutaneous anthrax patients; 49 had additional laboratory testing. No additional cases were identified. To verify the limited scope of the outbreak, surveillance was essential, though labor-intensive. The flexibility of the system allowed interim evaluation, thus improving surveillance efficiency.
doi:10.3201/eid0810.020322
PMCID: PMC2730289  PMID: 12396918
Bacillus anthracis; anthrax; surveillance; bioterrorism
10.  Evaluation of Immunogenicity and Efficacy of Anthrax Vaccine Adsorbed for Postexposure Prophylaxis 
Antimicrobials administered postexposure can reduce the incidence or progression of anthrax disease, but they do not protect against the disease resulting from the germination of spores that may remain in the body after cessation of the antimicrobial regimen. Such additional protection may be achieved by postexposure vaccination; however, no anthrax vaccine is licensed for postexposure prophylaxis (PEP). In a rabbit PEP study, animals were subjected to lethal challenge with aerosolized Bacillus anthracis spores and then were treated with levofloxacin with or without concomitant intramuscular (i.m.) vaccination with anthrax vaccine adsorbed (AVA) (BioThrax; Emergent BioDefense Operations Lansing LLC, Lansing, MI), administered twice, 1 week apart. A significant increase in survival rates was observed among vaccinated animals compared to those treated with antibiotic alone. In preexposure prophylaxis studies in rabbits and nonhuman primates (NHPs), animals received two i.m. vaccinations 1 month apart and were challenged with aerosolized anthrax spores at day 70. Prechallenge toxin-neutralizing antibody (TNA) titers correlated with animal survival postchallenge and provided the means for deriving an antibody titer associated with a specific probability of survival in animals. In a clinical immunogenicity study, 82% of the subjects met or exceeded the prechallenge TNA value that was associated with a 70% probability of survival in rabbits and 88% probability of survival in NHPs, which was estimated based on the results of animal preexposure prophylaxis studies. The animal data provide initial information on protective antibody levels for anthrax, as well as support previous findings regarding the ability of AVA to provide added protection to B. anthracis-infected animals compared to antimicrobial treatment alone.
doi:10.1128/CVI.00099-13
PMCID: PMC3697458  PMID: 23658392
11.  Bioterrorism-Related Anthrax Surveillance, Connecticut, September–December, 2001 
Emerging Infectious Diseases  2002;8(10):1078-1082.
On November 19, 2001, a case of inhalational anthrax was identified in a 94-year-old Connecticut woman, who later died. We conducted intensive surveillance for additional anthrax cases, which included collecting data from hospitals, emergency departments, private practitioners, death certificates, postal facilities, veterinarians, and the state medical examiner. No additional cases of anthrax were identified. The absence of additional anthrax cases argued against an intentional environmental release of Bacillus anthracis in Connecticut and suggested that, if the source of anthrax had been cross-contaminated mail, the risk for anthrax in this setting was very low. This surveillance system provides a model that can be adapted for use in similar emergency settings.
doi:10.3201/eid0810.020399
PMCID: PMC2730303  PMID: 12396919
12.  Recombinant Protective Antigen Anthrax Vaccine Improves Survival when Administered as a Postexposure Prophylaxis Countermeasure with Antibiotic in the New Zealand White Rabbit Model of Inhalation Anthrax 
Inhalation anthrax is a potentially lethal form of disease resulting from exposure to aerosolized Bacillus anthracis spores. Over the last decade, incidents spanning from the deliberate mailing of B. anthracis spores to incidental exposures in users of illegal drugs have highlighted the importance of developing new medical countermeasures to protect people who have been exposed to “anthrax spores” and are at risk of developing disease. The New Zealand White rabbit (NZWR) is a well-characterized model that has a pathogenesis and clinical presentation similar to those seen in humans. This article reports how the NZWR model was adapted to evaluate postexposure prophylaxis using a recombinant protective antigen (rPA) vaccine in combination with an oral antibiotic, levofloxacin. NZWRs were exposed to multiples of the 50% lethal dose (LD50) of B. anthracis spores and then vaccinated immediately (day 0) and again on day 7 postexposure. Levofloxacin was administered daily beginning at 6 to 12 h postexposure for 7 treatments. Rabbits were evaluated for clinical signs of disease, fever, bacteremia, immune response, and survival. A robust immune response (IgG anti-rPA and toxin-neutralizing antibodies) was observed in all vaccinated groups on days 10 to 12. Levofloxacin plus either 30 or 100 μg rPA vaccine resulted in a 100% survival rate (18 of 18 per group), and a vaccine dose as low as 10 μg rPA resulted in an 89% survival rate (16 of 18) when used in combination with levofloxacin. In NZWRs that received antibiotic alone, the survival rate was 56% (10 of 18). There was no adverse effect on the development of a specific IgG response to rPA in unchallenged NZWRs that received the combination treatment of vaccine plus antibiotic. This study demonstrated that an accelerated two-dose regimen of rPA vaccine coadministered on days 0 and 7 with 7 days of levofloxacin therapy results in a significantly greater survival rate than with antibiotic treatment alone. Combination of vaccine administration and antibiotic treatment may be an effective strategy for treating a population exposed to aerosolized B. anthracis spores.
doi:10.1128/CVI.00240-12
PMCID: PMC3416090  PMID: 22695155
13.  Efficacy of Oritavancin in a Murine Model of Bacillus anthracis Spore Inhalation Anthrax ▿  
The inhaled form of Bacillus anthracis infection may be fatal to humans. The current standard of care for inhalational anthrax postexposure prophylaxis is ciprofloxacin therapy twice daily for 60 days. The potent in vitro activity of oritavancin, a semisynthetic lipoglycopeptide, against B. anthracis (MIC against Ames strain, 0.015 μg/ml) prompted us to test its efficacy in a mouse aerosol-anthrax model. In postexposure prophylaxis dose-ranging studies, a single intravenous (i.v.) dose of oritavancin of 5, 15, or 50 mg/kg 24 h after a challenge with 50 to 75 times the median lethal dose of Ames strain spores provided 40, 70, and 100% proportional survival, respectively, at 30 days postchallenge. Untreated animals died within 4 days of challenge, whereas 90% of control animals receiving ciprofloxacin at 30 mg/kg intraperitoneally twice daily for 14 days starting 24 h after challenge survived. Oritavancin demonstrated significant activity post symptom development; a single i.v. dose of 50 mg/kg administered 42 h after challenge provided 56% proportional survival at 30 days. In a preexposure prophylaxis study, a single i.v. oritavancin dose of 50 mg/kg administered 1, 7, 14, or 28 days before lethal challenge protected 90, 100, 100, and 20% of mice at 30 days; mice treated with ciprofloxacin 24 h or 24 and 12 h before challenge all died within 5 days. Efficacy in pre- and postexposure models of inhalation anthrax, together with a demonstrated low propensity to engender resistance, promotes further study of oritavancin pharmacokinetics and efficacy in nonhuman primate models.
doi:10.1128/AAC.00360-08
PMCID: PMC2533456  PMID: 18606841
14.  Epidemiologic Responses to Anthrax Outbreaks: A Review of Field Investigations, 1950–2001 
Emerging Infectious Diseases  2002;8(10):1163-1174.
We used unpublished reports, published manuscripts, and communication with investigators to identify and summarize 49 anthrax-related epidemiologic field investigations conducted by the Centers for Disease Control and Prevention from 1950 to August 2001. Of 41 investigations in which Bacillus anthracis caused human or animal disease, 24 were in agricultural settings, 11 in textile mills, and 6 in other settings. Among the other investigations, two focused on building decontamination, one was a response to bioterrorism threats, and five involved other causes. Knowledge gained in these investigations helped guide the public health response to the October 2001 intentional release of B. anthracis, especially by addressing the management of anthrax threats, prevention of occupational anthrax, use of antibiotic prophylaxis in exposed persons, use of vaccination, spread of B. anthracis spores in aerosols, clinical diagnostic and laboratory confirmation methods, techniques for environmental sampling of exposed surfaces, and methods for decontaminating buildings.
doi:10.3201/eid0810.020223
PMCID: PMC2730298  PMID: 12396934
anthrax; Bacillus anthracis; bacterial infections; disease outbreaks; public health; bioterrorism; Centers for Disease Control and Prevention (U.S.); historical article (publication type); zoonoses
15.  Airborne Infection with Bacillus anthracis—from Mills to Mail 
Emerging Infectious Diseases  2004;10(6):996-1001.
The lack of identified exposures in 2 of the 11 cases of bioterrorism-related inhalation anthrax in 2001 raised uncertainty about the infectious dose and transmission of Bacillus anthracis. We used the Wells-Riley mathematical model of airborne infection to estimate 1) the exposure concentrations in postal facilities where cases of inhalation anthrax occurred and 2) the risk for infection in various hypothetical scenarios of exposure to B. anthracis aerosolized from contaminated mail in residential settings. These models suggest that a small number of cases of inhalation anthrax can be expected when large numbers of persons are exposed to low concentrations of B. anthracis. The risk for inhalation anthrax is determined not only by bacillary virulence factors but also by infectious aerosol production and removal rates and by host factors.
doi:10.3201/eid1006.020738
PMCID: PMC3323150  PMID: 15207048
Anthrax; Air microbiology; Infection; Risk; Inhalation exposure; Lethal Dose 50; Ventilation
16.  Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. 
Emerging Infectious Diseases  2001;7(6):933-944.
From October 4 to November 2, 2001, the first 10 confirmed cases of inhalational anthrax caused by intentional release of Bacillus anthracis were identified in the United States. Epidemiologic investigation indicated that the outbreak, in the District of Columbia, Florida, New Jersey, and New York, resulted from intentional delivery of B. anthracis spores through mailed letters or packages. We describe the clinical presentation and course of these cases of bioterrorism-related inhalational anthrax. The median age of patients was 56 years (range 43 to 73 years), 70% were male, and except for one, all were known or believed to have processed, handled, or received letters containing B. anthracis spores. The median incubation period from the time of exposure to onset of symptoms, when known (n=6), was 4 days (range 4 to 6 days). Symptoms at initial presentation included fever or chills (n=10), sweats (n=7), fatigue or malaise (n=10), minimal or nonproductive cough (n=9), dyspnea (n=8), and nausea or vomiting (n=9). The median white blood cell count was 9.8 X 10(3)/mm(3) (range 7.5 to 13.3), often with increased neutrophils and band forms. Nine patients had elevated serum transaminase levels, and six were hypoxic. All 10 patients had abnormal chest X-rays; abnormalities included infiltrates (n=7), pleural effusion (n=8), and mediastinal widening (seven patients). Computed tomography of the chest was performed on eight patients, and mediastinal lymphadenopathy was present in seven. With multidrug antibiotic regimens and supportive care, survival of patients (60%) was markedly higher (<15%) than previously reported.
PMCID: PMC2631903  PMID: 11747719
17.  Isolated Case of Bioterrorism-related Inhalational Anthrax, New York City, 2001 
Emerging Infectious Diseases  2003;9(6):689-696.
On October 31, 2001, in New York City, a 61-year-old female hospital employee who had acquired inhalational anthrax died after a 6-day illness. To determine sources of exposure and identify additional persons at risk, the New York City Department of Health, Centers for Disease Control and Prevention, and law enforcement authorities conducted an extensive investigation, which included interviewing contacts, examining personal effects, summarizing patient’s use of mass transit, conducting active case finding and surveillance near her residence and at her workplace, and collecting samples from co-workers and the environment. We cultured all specimens for Bacillus anthracis. We found no additional cases of cutaneous or inhalational anthrax. The route of exposure remains unknown. All environmental samples were negative for B. anthracis. This first case of inhalational anthrax during the 2001 outbreak with no apparent direct link to contaminated mail emphasizes the need for close coordination between public health and law enforcement agencies during bioterrorism-related investigations.
doi:10.3201/eid0906.020668
PMCID: PMC3000144  PMID: 12781008
B. anthracis; inhalational anthrax; bioterrorism; research
18.  The Anthrax Vaccine and Research: Reactions from Postal Workers and Public Health Professionals 
During the 2001 anthrax attacks, public health agencies faced operational and communication decisions about the use of antibiotic prophylaxis and the anthrax vaccine with affected groups, including postal workers. This communication occurred within an evolving situation with incomplete and uncertain data. Guidelines for prophylactic antibiotics changed several times, contributing to confusion and mistrust. At the end of 60 days of taking antibiotics, people were offered an additional 40 days' supply of antibiotics, with or without the anthrax vaccine, the former constituting an investigational new drug protocol. Using data from interviews and focus groups with 65 postal workers in 3 sites and structured interviews with 16 public health professionals, this article examines the challenges for public health professionals who were responsible for communication with postal workers about the vaccine. Multiple factors affected the response, including a lack of trust, risk perception, disagreement about the recommendation, and the controversy over the military's use of the vaccine. Some postal workers reacted with suspicion to the vaccine offer, believing that they were the subjects of research, and some African American workers specifically drew an analogy to the Tuskegee syphilis study. The consent forms required for the protocol heightened mistrust. Postal workers also had complex and ambivalent responses to additional research on their health. The anthrax attacks present us with an opportunity to understand the challenges of communication in the context of uncertain science and suggest key strategies that may improve communications about vaccines and other drugs authorized for experimental use in future public health emergencies.
doi:10.1089/bsp.2007.0064
PMCID: PMC2963592  PMID: 19117431
19.  Raxibacumab: potential role in the treatment of inhalational anthrax 
Anthrax is a highly contagious and potentially fatal human disease caused by Bacillus anthracis, an aerobic, Gram-positive, spore-forming rod-shaped bacterium with worldwide distribution as a zoonotic infection in herbivore animals. Bioterrorist attacks with inhalational anthrax have prompted the development of more effective treatments. Antibodies against anthrax toxin have been shown to decrease mortality in animal studies. Raxibacumab is a recombinant human monoclonal antibody developed against inhalational anthrax. The drug received approval after human studies showed its safety and animal studies demonstrated its efficacy for treatment as well as prophylaxis against inhalational anthrax. It works by preventing binding of the protective antigen component of the anthrax toxin to its receptors in host cells, thereby blocking the toxin’s deleterious effects. Recently updated therapy guidelines for Bacillus anthracis recommend the use of antitoxin treatment. Raxibacumab is the first monoclonal antitoxin antibody made available that can be used with the antibiotics recommended for treatment of the disease. When exposure is suspected, raxibacumab should be given with anthrax vaccination to augment immunity. Raxibacumab provides additional protection against inhalational anthrax via a mechanism different from that of either antibiotics or active immunization. In combination with currently available and recommended therapies, raxibacumab should reduce the morbidity and mortality of inhalational anthrax.
Video abstract
doi:10.2147/IDR.S47305
PMCID: PMC4011807  PMID: 24812521
anthrax; monoclonal antibody; protective antigen; raxibacumab
20.  Bioterrorism-related Inhalational Anthrax in an Elderly Woman, Connecticut, 2001 
Emerging Infectious Diseases  2003;9(6):681-688.
On November 20, 2001, inhalational anthrax was confirmed in an elderly woman from rural Connecticut. To determine her exposure source, we conducted an extensive epidemiologic, environmental, and laboratory investigation. Molecular subtyping showed that her isolate was indistinguishable from isolates associated with intentionally contaminated letters. No samples from her home or community yielded Bacillus anthracis, and she received no first-class letters from facilities known to have processed intentionally contaminated letters. Environmental sampling in the regional Connecticut postal facility yielded B. anthracis spores from 4 (31%) of 13 sorting machines. One extensively contaminated machine primarily processes bulk mail. A second machine that does final sorting of bulk mail for her zip code yielded B. anthracis on the column of bins for her carrier route. The evidence suggests she was exposed through a cross-contaminated bulk mail letter. Such cross-contamination of letters and postal facilities has implications for managing the response to future B. anthracis–contaminated mailings.
doi:10.3201/eid0906.020728
PMCID: PMC3000148  PMID: 12781007
Bacillus anthracis; inhalational anthrax; bioterrorism; postal facilities; research
21.  Environmental Sampling for Spores of Bacillus anthracis 
Emerging Infectious Diseases  2002;8(10):1083-1087.
On November 11, 2001, following the bioterrorism-related anthrax attacks, the U.S. Postal Service collected samples at the Southern Connecticut Processing and Distribution Center; all samples were negative for Bacillus anthracis. After a patient in Connecticut died from inhalational anthrax on November 19, the center was sampled again on November 21 and 25 by using dry and wet swabs. All samples were again negative for B. anthracis. On November 28, guided by information from epidemiologic investigation, we sampled the site extensively with wet wipes and surface vacuum sock samples (using HEPA vacuum). Of 212 samples, 6 (3%) were positive, including one from a highly contaminated sorter. Subsequently B. anthracis was also detected in mail-sorting bins used for the patient’s carrier route. These results suggest cross-contaminated mail as a possible source of anthrax for the inhalational anthrax patient in Connecticut. In future such investigations, extensive sampling guided by epidemiologic data is imperative.
doi:10.3201/eid0810.020398
PMCID: PMC2730287  PMID: 12396920
Bacillus anthracis; anthrax; environmental sampling; postal facility; surface sampling; HEPA vacuum sock; swabs; wipes
22.  Determination of serum IgG antibodies to Bacillus anthracis protective antigen in environmental sampling workers using a fluorescent covalent microsphere immunoassay 
Aims: To evaluate potential exposure to Bacillis anthracis (Ba) spores in sampling/decontamination workers in the aftermath of an anthrax terror attack.
Methods: Fifty six serum samples were obtained from workers involved in environmental sampling for Ba spores at the American Media, Inc. (AMI) building in Boca Raton, FL after the anthrax attack there in October 2001. Nineteen sera were drawn from individuals both pre-entry and several weeks after entrance into the building. Nine sera each were drawn from unique individuals at the pre-entry and follow up blood draws. Thirteen donor control sera were also evaluated. Individuals were surveyed for Ba exposure by measurement of serum Ba anti-protective antigen (PA) specific IgG antibodies using a newly developed fluorescent covalent microsphere immunoassay (FCMIA).
Results: Four sera gave positive anti-PA IgG results (defined as anti-PA IgG concentrations ⩾ the mean µg/ml anti-PA IgG from donor control sera (n = 13 plus 2 SD which were also inhibited ⩾ 85% when the serum was pre-adsorbed with PA). The positive sera were the pre-entry and follow up samples of two workers who had received their last dose of anthrax vaccine in 2000.
Conclusion: It appears that the sampling/decontamination workers of the present study either had insufficient exposure to Ba spores to cause the production of anti-PA IgG antibodies or they were exposed to anthrax spores without producing antibody. The FCMIA appears to be a fast, sensitive, accurate, and precise method for the measurement of anti-PA IgG antibodies.
doi:10.1136/oem.2003.008565
PMCID: PMC1740834  PMID: 15258278
23.  Exposure to Bioterrorism and Mental Health Response among Staff on Capitol Hill 
The October 2001 anthrax attacks heralded a new era of bioterrorism threat in the U.S. At the time, little systematic data on mental health effects were available to guide authorities' response. For this study, which was conducted 7 months after the anthrax attacks, structured diagnostic interviews were conducted with 137 Capitol Hill staff workers, including 56 who had been directly exposed to areas independently determined to have been contaminated. Postdisaster psychopathology was associated with exposure; of those with positive nasal swab tests, PTSD was diagnosed in 27% and any post-anthrax psychiatric disorder in 55%. Fewer than half of those who were prescribed antibiotics completed the entire course, and only one-fourth had flawless antibiotic adherence. Thirty percent of those not exposed believed they had been exposed; 18% of all study participants had symptoms they suspected were symptoms of anthrax infection, and most of them sought medical care. Extrapolation of raw numbers to large future disasters from proportions with incorrect belief in exposure in this limited study indicates a potential for important public health consequences, to the degree that people alter their healthcare behavior based on incorrect exposure beliefs. Incorrect belief in exposure was associated with being very upset, losing trust in health authorities, having concerns about mortality, taking antibiotics, and being male. Those who incorrectly believe they were exposed may warrant concern and potential interventions as well as those exposed. Treatment adherence and maintenance of trust for public health authorities may be areas of special concern, warranting further study to inform authorities in future disasters involving biological, chemical, and radiological agents.
doi:10.1089/bsp.2009.0031
PMCID: PMC2956562  PMID: 20028246
24.  Large-Scale Screening of Nasal Swabs for Bacillus anthracis: Descriptive Summary and Discussion of the National Institutes of Health's Experience 
Journal of Clinical Microbiology  2002;40(8):3012-3016.
In October 2001, a letter containing a large number of anthrax spores was sent through the Brentwood post office in Washington, D.C., to a United States Senate office on Capitol Hill, resulting in contamination in both places. Several thousand people who worked at these sites were screened for spore exposure by collecting nasal swab samples. We describe here a screening protocol which we, as a level A laboratory, used on very short notice to process a large number of specimens (3,936 swabs) in order to report preliminary results as quickly as possible. Six isolates from our screening met preliminary criteria for Bacillus anthracis identification and were referred for definitive testing. Although none of the isolates was later confirmed to be B. anthracis, we studied these isolates further to define their biochemical characteristics and 16S rRNA sequences. Four of the six isolates were identified as Bacillus megaterium, one was identified as Bacillus cereus, and one was an unidentifiable Bacillus sp. Our results suggest that large-scale nasal-swab screening for potential exposure to anthrax spores, particularly if not done immediately postexposure, may not be very effective for detecting B. anthracis but may detect a number of Bacillus spp. that are phenotypically very similar to B. anthracis.
doi:10.1128/JCM.40.8.3012-3016.2002
PMCID: PMC120640  PMID: 12149367
25.  Antibiotics Cure Anthrax in Animal Models▿  
Respiratory anthrax, in the absence of early antibiotic treatment, is a fatal disease. This study aimed to test the efficiency of antibiotic therapy in curing infected animals and those sick with anthrax. Postexposure prophylaxis (24 h postinfection [p.i.]) of guinea pigs infected intranasally with Bacillus anthracis Vollum spores with doxycycline, ofloxacin, imipenem, and gentamicin conferred protection. However, upon termination of treatment, the animals died from respiratory anthrax. Combined treatment with antibiotics and active vaccination with a protective antigen-based vaccine leads to full protection even after cessation of treatment. Delaying the initiation of antibiotic administration to over 24 h p.i. resulted in treatment of animals with anthrax exhibiting various degrees of bacteremia and toxemia. Treatment with doxycycline or ciprofloxacin cured sick guinea pigs and rabbits exhibiting bacteremia levels up to 105 CFU/ml. Addition of anti-protective antigen (PA) antibodies augmented the efficiency of protection, allowing the cure of guinea pigs and rabbits with 10- to 20-fold-higher bacteremia levels, up to 7 × 105 CFU/ml and 2 × 106 CFU/ml, respectively. Treatment with ciprofloxacin and a monoclonal anti-PA antibody rescued rabbits with bacteremia levels up to 4 × 106 CFU/ml. During antibiotic administration, all surviving animals developed a protective immune response against development of a fatal disease and subcutaneous challenge with Vollum spores. In conclusion, these results demonstrate that antibiotic treatment can prevent the development of fatal disease in respiratory-anthrax-infected animals and can cure animals after disease establishment. A therapeutic time window of 40 h to 48 h from infection to initiation of efficient antibiotic-mediated cure was observed.
doi:10.1128/AAC.01689-10
PMCID: PMC3067169  PMID: 21263056

Results 1-25 (961500)