PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (977612)

Clipboard (0)
None

Related Articles

1.  Effect of Pneumococcal Conjugate Vaccination on Serotype-Specific Carriage and Invasive Disease in England: A Cross-Sectional Study 
PLoS Medicine  2011;8(4):e1001017.
A cross sectional study by Stefan Flasche and coworkers document the serotype replacement of Streptococcus pneumoniae that has occurred in England since the introduction of PCV7 vaccination.
Background
We investigated the effect of the 7-valent pneumococcal conjugate vaccine (PCV7) programme in England on serotype-specific carriage and invasive disease to help understand its role in serotype replacement and predict the impact of higher valency vaccines.
Methods and Findings
Nasopharyngeal swabs were taken from children <5 y old and family members (n = 400) 2 y after introduction of PCV7 into routine immunization programs. Proportions carrying Streptococcus pneumoniae and serotype distribution among carried isolates were compared with a similar population prior to PCV7 introduction. Serotype-specific case∶carrier ratios (CCRs) were estimated using national data on invasive disease. In vaccinated children and their contacts vaccine-type (VT) carriage decreased, but was offset by an increase in non-VT carriage, with no significant overall change in carriage prevalence, odds ratio 1.06 (95% confidence interval 0.76–1.49). The lower CCRs of the replacing serotypes resulted in a net reduction in invasive disease in children. The additional serotypes covered by higher valency vaccines had low carriage but high disease prevalence. Serotype 11C emerged as predominant in carriage but caused no invasive disease whereas 8, 12F, and 22F emerged in disease but had very low carriage prevalence.
Conclusion
Because the additional serotypes included in PCV10/13 have high CCRs but low carriage prevalence, vaccinating against them is likely to significantly reduce invasive disease with less risk of serotype replacement. However, a few serotypes with high CCRs could mitigate the benefits of higher valency vaccines. Assessment of the effect of PCV on carriage as well as invasive disease should be part of enhanced surveillance activities for PCVs.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Pneumococcal diseases—major causes of illness and death in children and adults worldwide—are caused by Streptococcus pneumoniae, a bacterium that often colonizes the nasopharynx (the area of the throat behind the nose). Carriage of S. pneumoniae bacteria does not necessarily cause disease. However, these bacteria can cause local, noninvasive diseases such as ear infections and sinusitis and, more rarely, they can spread into the lungs, the bloodstream, or the covering of the brain, where they cause pneumonia, septicemia, and meningitis, respectively. Although these invasive pneumococcal diseases (IPDs) can be successfully treated if administered early, they can be fatal. Consequently, it is better to protect people against IPDs through vaccination than risk infection. Vaccination primes the immune system to recognize and attack disease-causing organisms (pathogens) rapidly and effectively by exposing it to weakened or dead pathogens or to pathogen molecules (antigens) that it recognizes as foreign.
Why Was This Study Done?
There are more than 90 S. pneumoniae variants or “serotypes” characterized by different polysaccharide (complex sugar) coats, which trigger the immune response against S. pneumoniae and determine each serotype's propensity to cause IPD. The pneumococcal conjugate vaccine PCV7 contains polysaccharides (linked to a protein carrier) from the seven serotypes mainly responsible for IPD in the US in 2000 when routine childhood PCV7 vaccination was introduced in that country. PCV7 prevents both IPD caused by the serotypes it contains and carriage of these serotypes, which means that, after vaccination, previously uncommon, nonvaccine serotypes can colonize the nasopharynx. If these serotypes have a high invasiveness potential, then “serotype replacement” could reduce the benefits of vaccination. In this cross-sectional study (a study that investigates the relationship between a disease and an intervention in a population at one time point), the researchers investigate the effect of the UK PCV7 vaccination program (which began in 2006) on serotype-specific carriage and IPD in England to understand the role of PCV7 in serotype replacement and to predict the likely impact of vaccines containing additional serotypes (higher valency vaccines).
What Did the Researchers Do and Find?
The researchers examined nasopharyngeal swabs taken from PCV7-vaccinated children and their families for S. pneumoniae, determined the serotype of any bacteria they found, and compared the proportion of people carrying S. pneumoniae (carrier prevalence) and the distribution of serotypes in this study population and in a similar population that was studied in 2000/2001, before the PCV vaccination program began. Overall, there was no statistically significant change in carrier prevalence, but carriage of vaccine serotypes decreased in vaccinated children and their contacts whereas carriage of nonvaccine serotypes increased. The serotype-specific case-to-carrier ratios (CCRs; a measure of serotype invasiveness that was estimated using national IPD data) of the replacing serotypes were generally lower than those of the original serotypes, which resulted in a net reduction in IPD in children. Moreover, before PCV7 vaccination began, PCV7-included serotypes were responsible for similar proportions of pneumococcal carriage and disease; afterwards, the additional serotypes present in the higher valency vaccines PVC10 and PVC13 were responsible for a higher proportion of disease than carriage. Finally, three serotypes not present in the higher valency vaccines with outstandingly high CCRs (high invasiveness potential) are identified.
What Do These Findings Mean?
These findings document the serotype replacement of S. pneumoniae that has occurred in England since the introduction of PCV7 vaccination and highlight the importance of assessing the effects of pneumococcal vaccines on carriage as well as on IPDs. Because the additional serotypes included in PCV10 and PCV13 have high CCRs but low carriage prevalence and because most of the potential replacement serotypes have low CCRs, these findings suggest that the introduction of higher valency vaccines should further reduce the occurrence of invasive disease with limited risk of additional serotype replacement. However, the emergence of a few serotypes that have high CCRs but are not included in PCV10 and PCV13 might mitigate the benefits of higher valency vaccines. In other words, although the recent introduction of PCV13 into UK vaccination schedules is likely to have an incremental benefit on the reduction of IPD compared to PCV7, this benefit might be offset by increases in the carriage of some high CCR serotypes. These serotypes should be considered for inclusion in future vaccines.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001017.
The US Centers for Disease Control and Prevention provides information for patients and health professionals on all aspects of pneumococcal disease and pneumococcal vaccination
The US National Foundation for Infectious Diseases has a fact sheet on pneumococcal diseases
The UK Health Protection Agency provides information on pneumococcal disease and on pneumococcal vaccines
The World Health Organization also provides information on pneumococcal vaccines
MedlinePlus has links to further information about pneumococcal infections (in English and Spanish)
doi:10.1371/journal.pmed.1001017
PMCID: PMC3071372  PMID: 21483718
2.  The PneuCarriage Project: A Multi-Centre Comparative Study to Identify the Best Serotyping Methods for Examining Pneumococcal Carriage in Vaccine Evaluation Studies 
PLoS Medicine  2015;12(11):e1001903.
Background
The pneumococcus is a diverse pathogen whose primary niche is the nasopharynx. Over 90 different serotypes exist, and nasopharyngeal carriage of multiple serotypes is common. Understanding pneumococcal carriage is essential for evaluating the impact of pneumococcal vaccines. Traditional serotyping methods are cumbersome and insufficient for detecting multiple serotype carriage, and there are few data comparing the new methods that have been developed over the past decade. We established the PneuCarriage project, a large, international multi-centre study dedicated to the identification of the best pneumococcal serotyping methods for carriage studies.
Methods and Findings
Reference sample sets were distributed to 15 research groups for blinded testing. Twenty pneumococcal serotyping methods were used to test 81 laboratory-prepared (spiked) samples. The five top-performing methods were used to test 260 nasopharyngeal (field) samples collected from children in six high-burden countries. Sensitivity and positive predictive value (PPV) were determined for the test methods and the reference method (traditional serotyping of >100 colonies from each sample).
For the alternate serotyping methods, the overall sensitivity ranged from 1% to 99% (reference method 98%), and PPV from 8% to 100% (reference method 100%), when testing the spiked samples. Fifteen methods had ≥70% sensitivity to detect the dominant (major) serotype, whilst only eight methods had ≥70% sensitivity to detect minor serotypes. For the field samples, the overall sensitivity ranged from 74.2% to 95.8% (reference method 93.8%), and PPV from 82.2% to 96.4% (reference method 99.6%). The microarray had the highest sensitivity (95.8%) and high PPV (93.7%). The major limitation of this study is that not all of the available alternative serotyping methods were included.
Conclusions
Most methods were able to detect the dominant serotype in a sample, but many performed poorly in detecting the minor serotype populations. Microarray with a culture amplification step was the top-performing method. Results from this comprehensive evaluation will inform future vaccine evaluation and impact studies, particularly in low-income settings, where pneumococcal disease burden remains high.
Catherine Satzke and collaborators exploit a panel of spiked and field pneumococcal samples to compare serotyping methods used for nasopharyngeal carriage studies.
Editors' Summary
Background
About 800,000 young children, mostly living in low-income countries, die annually from pneumococcal diseases, illnesses caused by the Streptococcus pneumoniae bacterium. S. pneumoniae is transmitted through contact with infected respiratory secretions and harmlessly colonizes the nose and throat of many healthy children (nasopharyngeal and oropharyngeal carriage). Occasionally, however, S. pneumoniae spreads into the lungs, the blood stream, or the covering of the brain, where it causes pneumonia, septicemia, and meningitis, respectively. These potentially fatal invasive pneumococcal diseases can be treated with antibiotics but can also be prevented by vaccination. Vaccination primes the immune system to attack disease-causing organisms (pathogens) by exposing it to weakened or dead pathogens or to pathogen molecules that it recognizes as foreign (antigens). Because there are more than 90 S. pneumoniae variants, or “serotypes,” each characterized by an immunologically distinct complex sugar coat, S. pneumoniae vaccines have to include multiple serotypes. “Pneumococcal conjugate vaccines” (PCVs) effectively prevent invasive pneumococcal diseases caused by common serotypes in resource-rich countries and are now being introduced into resource-poor countries.
Why Was This Study Done?
Although vaccination with PCVs reduces the carriage of the pneumococcal serotypes contained in them (vaccine serotypes), in the absence of these serotypes, non-vaccine serotypes can rapidly colonize the nasopharynx and become more common in both carriage and disease. Thus, “serotype replacement,” which may be more pronounced in low-income settings, threatens the global control of pneumococcal disease through vaccination; thus, when evaluating the impact of pneumococcal vaccines, it is important to analyze the carriage of multiple serotypes. Unfortunately, the traditional serotyping method—in which bacterial colonies are grown and a small number of colonies are typed using tests called the Quellung reaction and latex agglutination—is cumbersome and frequently misses the carriage of multiple serotypes. Several new serotyping methods have been developed over the past decade, and, here, in a multi-center comparative study (the PneuCarriage project), the researchers investigate which of these new methods is best for the examination of pneumococcal carriage in vaccine evaluation studies.
What Did the Researchers Do and Find?
The researchers used 15 clinical isolates containing a mixture of pneumococcal serotypes to prepare 81 “spiked” samples, which they distributed to 15 laboratories for testing with 20 serotyping methods. They determined the sensitivity (the percentage of serotypes in the samples that were correctly identified) and the positive predictive value (PPV; the proportion of identified positives that were true positives) for each method and used the five top-performing methods (those with the highest sensitivity and PPV; a perfect test has a sensitivity and a PPV of 100%) to test 260 nasopharyngeal (field) samples collected from children in six high-burden countries. When testing the spiked samples, traditional serotyping of over 100 colonies per sample had a sensitivity of 98% and a PPV of 100% overall, whereas the sensitivity of the alternative methods ranged from 1% to 99%, and their PPV ranged from 8% to 100%. Fifteen methods detected the major serotype in the spiked samples with ≥70% sensitivity, but only eight detected the minor serotypes with the same sensitivity. For the field samples, the sensitivity and PPV of the top-performing tests ranged from 74.2% to 95.8% and from 82.2% to 96.4%, respectively (the sensitivity and PPV of the traditional method were 93.8% and 99.6%, respectively); a culture microarray method had the best overall performance (95.8% sensitivity and 93.7% PPV).
What Do These Findings Mean?
A pneumococcal serotyping method for use in carriage studies needs to have high sensitivity, to detect multiple serotypes in individual samples, and to detect most or all serotypes. These findings show that although most of the recently developed serotyping methods detected the dominant serotype in a sample, many failed to detect minor serotypes. Moreover, the performance of similar methods varied markedly, and methods optimized for testing pure isolates did not necessarily work well when testing more complex samples. These findings identified microarray with a culture amplification step as the top-performing method, but, importantly, this study did not test all the available serotyping methods. Also, because it assessed each method in only a single laboratory, no conclusions can be reached about the reproducibility of these methods or their suitability for use in less-experienced laboratories or in resource-limited settings. Nevertheless, these findings should help to guide future vaccine evaluation and impact studies, particularly in low-income settings, where the burden of pneumococcal disease remains high.
Additional Information
This list of resources contains links that can be accessed when viewing the PDF on a device or via the online version of the article at http://dx.doi.org/10.1371/journal.pmed.1001903.
The US Centers for Disease Control and Prevention provides information on all aspects of pneumococcal disease and pneumococcal vaccination, including personal stories (including some information in Spanish)
The UK National Health Service Choices website provides information about pneumococcal disease
Kidshealth, a website provided by the US-based not-for-profit Nemours Foundation, includes information on pneumococcal vaccination (in English and Spanish)
Public Health England provides guidance on pneumococcal disease and vaccination
The not-for-profit Immunization Action Coalition has information on pneumococcal disease, including personal stories
Gavi, a not-for-profit global vaccine alliance, is helping to roll out pneumococcal vaccination in resource-poor countries
More information about the PneuCarriage project is available
MedlinePlus provides links to other resources about pneumococcal infections (in English and Spanish)
The World Health Organization provides information about pneumococcal disease and pneumococcal vaccines.
doi:10.1371/journal.pmed.1001903
PMCID: PMC4648509  PMID: 26575033
3.  Effects of Community-Wide Vaccination with PCV-7 on Pneumococcal Nasopharyngeal Carriage in The Gambia: A Cluster-Randomized Trial 
PLoS Medicine  2011;8(10):e1001107.
In a cluster-randomized trial conducted in Gambian villages, Anna Roca and colleagues find that vaccination of children with pneumococcal conjugate vaccines reduced vaccine-type pneumococcal carriage even among nonvaccinated older children and adults.
Background
Introduction of pneumococcal conjugate vaccines (PCVs) of limited valency is justified in Africa by the high burden of pneumococcal disease. Long-term beneficial effects of PCVs may be countered by serotype replacement. We aimed to determine the impact of PCV-7 vaccination on pneumococcal carriage in rural Gambia.
Methods and Findings
A cluster-randomized (by village) trial of the impact of PCV-7 on pneumococcal nasopharyngeal carriage was conducted in 21 Gambian villages between December 2003 to June 2008 (5,441 inhabitants in 2006). Analysis was complemented with data obtained before vaccination. Because efficacy of PCV-9 in young Gambian children had been shown, it was considered unethical not to give PCV-7 to young children in all of the study villages. PCV-7 was given to children below 30 mo of age and to those born during the trial in all study villages. Villages were randomized (older children and adults) to receive one dose of PCV-7 (11 vaccinated villages) or meningococcal serogroup C conjugate vaccine (10 control villages). Cross-sectional surveys (CSSs) to collect nasopharyngeal swabs were conducted before vaccination (2,094 samples in the baseline CSS), and 4–6, 12, and 22 mo after vaccination (1,168, 1,210, and 446 samples in CSS-1, -2, and -3, respectively).
A time trend analysis showed a marked fall in the prevalence of vaccine-type pneumococcal carriage in all age groups following vaccination (from 23.7% and 26.8% in the baseline CSS to 7.1% and 8.5% in CSS-1, in vaccinated and control villages, respectively). The prevalence of vaccine-type pneumococcal carriage was lower in vaccinated than in control villages among older children (5 y to <15 y of age) and adults (≥15 y of age) at CSS-2 (odds ratio [OR] = 0.15 [95% CI 0.04–0.57] and OR = 0.32 [95% CI 0.10–0.98], respectively) and at CSS-3 (OR = 0.37 [95% CI 0.15–0.90] for older children, and 0% versus 7.6% for adults in vaccinated and control villages, respectively). Differences in the prevalence of non-vaccine-type pneumococcal carriage between vaccinated and control villages were small.
Conclusions
Vaccination of Gambian children reduced vaccine-type pneumococcal carriage across all age groups, indicating a “herd effect” in non-vaccinated older children and adults. No significant serotype replacement was detected.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
The prevention of pneumococcal disease, especially in children in developing countries, is a major international public health priority. Despite all the international attention on the UN's Millennium Development Goal 4—to reduce deaths in children under five years by two-thirds between 1990 and 2015—pneumonia, sepsis, and meningitis together compose more than 25% of the 10 million deaths occurring in children less than five years of age. Streptococcus pneumoniae is a leading bacterial cause of these diseases, and the World Health Organization estimates that approximately 800,000 children die each year of invasive pneumococcal disease.
Pneumococcal conjugate vaccines are currently available and protect against the serotypes that most commonly cause invasive pneumococcal disease in young children in North America and Europe. Such vaccines have been highly successful in reducing the incidence of invasive pneumococcal disease in both vaccinated children and in the non-vaccinated older population by reducing nasopharyngeal carriage (presence of pneumococcal bacteria in the back of the nose) in vaccinated infants, resulting in decreased transmission to contacts—the so-called herd effect. However, few countries with the highest burden of invasive pneumococcal disease, especially those in sub-Saharan Africa, have introduced the vaccine into their national immunization programs.
Why Was This Study Done?
The features of pneumococcal nasopharyngeal carriage and invasive pneumococcal disease in sub-Saharan Africa are different than in other regions. Therefore, careful evaluation of the immune effects of vaccination requires long-term, longitudinal studies. As an alternative to such long-term observational studies, and to anticipate the potential long-term effects of the introduction of pneumococcal conjugate vaccination in sub-Saharan Africa, the researchers conducted a cluster-randomized (by village) trial in The Gambia in which the whole populations of some villages were immunized with the vaccine PCV-7, and other villages received a control.
What Did the Researchers Do and Find?
With full consent from communities, the researchers randomized 21 similar villages in a rural region of western Gambia to receive pneumococcal conjugate vaccine or a control—meningococcal serogroup C conjugated vaccine, which is unlikely to affect pneumococcal carriage rates. For ethical reasons, the researchers only randomized residents aged over 30 months—all young infants received PCV-7, as a similar vaccine had already been shown to be effective in young infants. Before immunization began, the researchers took nasopharyngeal swabs from a random selection of village residents to determine the baseline pneumococcal carriage rates of both the serotypes of pneumococci covered by the vaccine (vaccine types, VTs) and the serotypes of pneumococci not covered in the vaccine (non-vaccine types, NVTs). The researchers then took nasopharyngeal swabs from a random sample of 1,200 of village residents in both groups of villages in cross-sectional surveys at 4–6, 12, and 22 months after vaccination. Villagers and laboratory staff were unaware of which vaccine was which (that is, they were blinded).
Before immunization, the overall prevalence of pneumococcal carriage in both groups was high, at 71.1%, and decreased with age. After vaccination, the overall prevalence of pneumococcal carriage in all three surveys was similar between vaccinated and control villages, showing a marked fall. However, the prevalence of carriage of VT pneumococci was significantly lower in vaccinated than in control villages in all surveys for all age groups. The prevalence of carriage of NVT pneumococci was similar in vaccinated and in control villages, except for a slightly higher prevalence of NVT pneumococci among vaccinated communities in adults at 4–6 months after vaccination. The researchers also found that the overall prevalence of pneumococcal carriage fell markedly after vaccination and reached minimum levels at 12 months in both study arms and in all age groups.
What Do These Findings Mean?
These findings show that vaccination of young Gambian children reduced carriage of VT pneumococci in vaccinated children but also in vaccinated and non-vaccinated older children and adults, revealing a potential herd effect from vaccination of young children. Furthermore, the immunological pressure induced by vaccinating whole communities did not lead to a community-wide increase in carriage of NVT pneumococci during a two-year period after vaccination. The researchers plan to conduct more long-term follow-up studies to determine nasopharyngeal carriage in these communities.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001107.
The World Health Organization has information about pneumococcus
The US Centers for Disease Control and Prevention provides information about pneumococcal conjugate vaccination
doi:10.1371/journal.pmed.1001107
PMCID: PMC3196470  PMID: 22028630
4.  Pneumococcal Carriage and Antibiotic Resistance in Young Children before 13-Valent Conjugate Vaccine 
Background
We sought to measure trends in Streptococcus pneumoniae (SP) carriage and antibiotic resistance in young children in Massachusetts communities after widespread adoption of heptavalent pneumococcal conjugate vaccine (PCV7) and before the introduction of the 13-valent pneumococcal conjugate vaccine (PCV13).
Methods
We conducted a cross-sectional study including collection of questionnaire data and nasopharyngeal specimens among children <7 years in primary care practices from 8 Massachusetts communities during the winter season of 2008–9 and compared with to similar studies performed in 2001, 2003–4, and 2006–7. Antimicrobial susceptibility testing and serotyping were performed on pneumococcal isolates, and risk factors for colonization in recent seasons (2006–07 and 2008–09) were evaluated.
Results
We collected nasopharyngeal specimens from 1,011 children, 290 (29%) of whom were colonized with pneumococcus. Non-PCV7 serotypes accounted for 98% of pneumococcal isolates, most commonly 19A (14%), 6C (11%), and 15B/C (11%). In 2008–09, newly-targeted PCV13 serotypes accounted for 20% of carriage isolates and 41% of penicillin non-susceptible S. pneumoniae (PNSP). In multivariate models, younger age, child care, young siblings, and upper respiratory illness remained predictors of pneumococcal carriage, despite near-complete serotype replacement. Only young age and child care were significantly associated with PNSP carriage.
Conclusions
Serotype replacement post-PCV7 is essentially complete and has been sustained in young children, with the relatively virulent 19A being the most common serotype. Predictors of carriage remained similar despite serotype replacement. PCV13 may reduce 19A and decrease antibiotic-resistant strains, but monitoring for new serotype replacement is warranted.
doi:10.1097/INF.0b013e31824214ac
PMCID: PMC3288953  PMID: 22173142
Streptococcus pneumoniae; pneumococcal conjugate vaccine; antibiotic resistance; serotype; colonization
5.  Risk factors for nasopharyngeal carriage of drug-resistant Streptococcus pneumoniae: data from a nation-wide surveillance study in Greece 
Background
A nation-wide surveillance study was conducted in Greece in order to provide a representative depiction of pneumococcal carriage in the pre-vaccination era and to evaluate potential risk factors for carriage of resistant strains in healthy preschool children attending daycare centers.
Methods
A study group was organized with the responsibility to collect nasopharyngeal samples from children. Questionnaires provided demographic data, data on antibiotic consumption, family and household data, and medical history data. Pneumococcal isolates were tested for their susceptibility to various antimicrobial agents and resistant strains were serotyped.
Results
Between February and May 2004, from a total population of 2536 healthy children, a yield of 746 pneumococci was isolated (carriage rate 29.41%). Resistance rates differed among geographic regions. Recent antibiotic use in the last month was strongly associated with the isolation of resistant pneumococci to a single or multiple antibiotics. Serotypes 19F, 14, 9V, 23F and 6B formed 70.6% of the total number of resistant strains serotyped.
Conclusion
Recent antibiotic use is a significant risk factor for the colonization of otherwise healthy children's nasopharynx by resistant strains of S pneumoniae. The heptavalent pneumococcal conjugate vaccine could provide coverage for a significant proportion of resistant strains in the Greek community. A combined strategy of vaccination and prudent antibiotic use could provide a means for combating pneumococcal resistance.
doi:10.1186/1471-2334-9-120
PMCID: PMC2724373  PMID: 19640285
6.  Continued Impact of Pneumococcal Conjugate Vaccine on Carriage in Young Children 
Pediatrics  2009;124(1):e1-11.
OBJECTIVES
The goals were to assess serial changes in Streptococcus pneumoniae serotypes and antibiotic resistance in young children and to evaluate whether risk factors for carriage have been altered by heptavalent pneumococcal conjugate vaccine (PCV7).
METHODS
Nasopharyngeal specimens and questionnaire/medical record data were obtained from children 3 months to <7 years of age in primary care practices in 16 Massachusetts communities during the winter seasons of 2000–2001 and 2003–2004 and in 8 communities in 2006–2007. Antimicrobial susceptibility testing and serotyping were performed with S pneumoniae isolates.
RESULTS
We collected 678, 988, and 972 specimens during the sampling periods in 2000–2001, 2003–2004, and 2006–2007, respectively. Carriage of non-PCV7 serotypes increased from 15% to 19% and 29% (P < .001), with vaccine serotypes decreasing to 3% of carried serotypes in 2006–2007. The relative contribution of several non-PCV7 serotypes, including 19A, 35B, and 23A, increased across sampling periods. By 2007, commonly carried serotypes included 19A (16%), 6A (12%), 15B/C (11%), 35B (9%), and 11A (8%), and high-prevalence serotypes seemed to have greater proportions of penicillin nonsusceptibility. In multivariate models, common predictors of pneumococcal carriage, such as child care attendance, upper respiratory tract infection, and the presence of young siblings, persisted.
CONCLUSIONS
The virtual disappearance of vaccine serotypes in S pneumoniae carriage has occurred in young children, with rapid replacement with penicillin-nonsusceptible nonvaccine serotypes, particularly 19A and 35B. Except for the age group at highest risk, previous predictors of carriage, such as child care attendance and the presence of young siblings, have not been changed by the vaccine.
doi:10.1542/peds.2008-3099
PMCID: PMC2782668  PMID: 19564254
Streptococcus pneumoniae; pneumococcal conjugate vaccine; antibiotic resistance; serotype; colonization
7.  Nasopharyngeal Carriage Rate and Serotypes of Streptococcus pneumoniae and Antimicrobial Susceptibility in Healthy Korean Children Younger than 5 Years Old: Focus on Influence of Pneumococcal Conjugate Vaccination 
Infection & Chemotherapy  2013;45(1):76-84.
Background
Even after pneumococcal vaccination introduction, Streptococcus pneumoniae (pneumoccocus) is still an important cause of respiratory and invasive severe infection. Pneumococcus is resided in nasal mucosa and local or systemic infection begins with the nasal mucosa damage. We studied the indirect effect of pneumococcal conjugate vaccine (PCV) on pneumococcal nasopharyngeal carriage rates, serotypes and antimicrobial susceptibility between vaccinate and non-vaccinated children.
Materials and Methods
From January 2010 to October 2010, 379 healthy children under 5 years old from three university hospitals were recruited. Fully vaccinated children over 3 time doses of PCV and children with no vaccination history of PCV were enrolled, and nasopharyngeal aspirations were obtained from these children. Serotypes using multibead serotyping assay with multiplex PCR and antimicrobial susceptibility was analyzed. Antimicrobial susceptibilities were determined by the CLIS guideline.
Results
Two hundred seventy six children were received pneumococcal vaccination while 103 were not. 137 pneumococci were isolated from nasopharyngeal aspiration specimens. Nasal carriage rate was significantly low in vaccinated group (P-value; 0.001). Nasopharyngeal carriage rate was 28.6% (79/276) in vaccinate group and 56.3% (58/103) in non-vaccinated group. Among those vaccinated group, 13.0% (36/276) of the serotypes were vaccine or vaccine related type with the most common type 19F. In contrast, 31.1% (32/103) of the serotypes in non vaccinated group were vaccine or vaccine related type with the most common type 6A. The resistant rate of penicillin was 90.5%. For antimicrobial susceptibility, amoxicillin and amoxicillin/clavulanate showed high susceptibility (73.0%), but 19F and 19A serotypes were all resistant against amoxicillin.
Conclusions
High nasopharyngeal carriage rate in non vaccinated group corresponded to the result of past study. However, 19F and 19A still came up as problematic serotypes with a high carriage rate and antimicrobial resistance in both vaccinated and non vaccinated groups. Also, this study showed that the resistance rate of primary oral antimicrobial agents was increased in compared to past. For solving these problems, the selective antimicrobial use with establishment of high dose amoxicillin/clavulanate regimen and active PCV immunization should be needed. Furthermore, pneumococcal carriage and serotype study concerning with antimicrobial susceptibility should be conducted in the future in 10 or 13-valent PCV received children.
doi:10.3947/ic.2013.45.1.76
PMCID: PMC3780942  PMID: 24265953
Streptococcus pneumoniae; Serotype; Pneumococcal conjugate vaccine; Oral antimicrobial; Antimicrobial resistance
8.  Effectiveness and cost-effectiveness of general immunisation of infants and young children with the heptavalent conjugated pneumococcal vaccine 
Background
The European Agency for the Evaluation of Medicinal Products (EMEA) granted market authorisation to the heptavalent pneumococcal vaccine Prevenar (Wyeth) in the year 2001. The indication of Prevenar is the active immunisation of infants and young children under the age of two against invasive disease caused by Streptococcus pneumonia serotypes 4, 6B, 9V, 14, 18C, 19F and 23F. At the time of this study the German vaccination scheme advises the immunisation with Prevenar only for children at high risk.
Objectives
The objective of the study is first to determine the efficacy and effectiveness of the immunisation of all children with the heptavalent conjugated pneumococcal vaccine in Germany and second, whether a general recommendation for vaccination of all children would be cost-effective.
Methods
A systematic literature search was performed in 29 relevant databases for the period of January 1999 to June 2004. Thus 1,884 articles were identified which were then assessed according to predefined selection criteria.
Results
There is evidence for the medical effectiveness of Prevenar against invasive pneumococcal disease caused by the covered serotypes from a major double-blinded RCT undertaken in California. The vaccine shows lower values of effectiveness against otitis media and pneumonia. The values for effectiveness of the vaccine in Germany are below the data for California because of the different incidence of Serotypes. The cost-effectiveness rates for an immunisation of all children with Prevenar vary across different countries. One reason - besides different Health Systems - can be seen in the uncertainty about the duration of protection, another in the assumption on regional serotype coverage of the vaccine. From the healthcare payers' perspective a general vaccination of all children in Germany is not cost-effective, from a societal perspective the benefits from vaccination could prevail the cost. The actual price of the vaccine (if financed by the Healthcare Payer, 2004) has dropped and is lower than the assumed price in the German cost-effectiveness study. This fact could raise the cost-effectiveness-ratio of a general immunisation.
Discussion
The low evidence of information on the herd immunity effect of pneumococcal immunisation, the occurrence on serotype-replacement phenomenon and the effects on the prevalence of antibiotic-resistant strains shall be considered when deciding whether the pneumococcal vaccination for all infants and young children should be added to the German vaccination scheme. There is also little information on the duration of vaccine effectiveness and regional effectiveness because of different serotype incidence. The economic models thus incorporate some uncertainties.
Conclusion
At present, relatively few pneumococcal strains in Germany show antibiotic resistance. This situation shall further be observed while improving the data evidence for future decisions (epidemiologic data of incidence of pneumococcal diseases and serotyping of pneumococcal bacteria). From the economic perspective no distinct recommendation to add the conjugated vaccination for all children to the German vaccination scheme can be given. This situation may change if the price for the vaccine further decreases. Furthermore a future cost-effectiveness analysis for Germany should incorporate the effects of the replacement phenomenon, the herd immunisation effects and the effects of the vaccination on the antibiotic-resistant pneumococcal strains.
PMCID: PMC3011321  PMID: 21289926
9.  Report on Invasive Disease and Meningitis due to Haemophilus influenzae and Streptococcus pneumonia from The Network for Surveillance of Pneumococcal diseases in the East African Region (netSPEAR) 
Pneumococcal disease in young children has not been as well characterized in East Africa as it has been in industrialized countries. Although pneumococci are likely to cause substantial mortality and morbidity, universal diagnostic challenges plus the rudimentary nature of public health surveillance make the true epidemiology difficult to ascertain with these methods alone. However, local data are critical to inform the debate on vaccine deployment and assess vaccine impact. The Network for Surveillance of Pneumococcal Disease in the East African Region has worked to expand the World Health Organization Paediatric Bacterial Meningitis Surveillance Network - initiated surveillance process aimed at Haemophilus influenza type b, to carry out surveillance on pneumococcal diseases.
A total of 119 H influenzae isolates from children aged > 2 months but <5 years have been confirmed. Eighty three (69.75%) belonged to serotype b, 19 other capsular antigens and 17 non-typable. For Streptococcus pneumoniae a total of 442 isolates were confirmed as pneumococci; 302 from blood cultures and 140 from cerebrospinal fluid. Most of the isolates were obtained from patients in the 6 - 29 months age group; in this age group, overall coverage by the heptavalent vaccine was 56% (increasing to 67% with the addition of cross-protection due to serotype 6A). S. pneumoniae isolates are susceptible to most commonly used antibiotics with the exception of trimethoprim-sulfamethoxazole, and have exhibited no resistance to penicillin.
A surveillance network is in place providing local data on the importance of S pneumoniae as a cause of both meningitis and bacteremia. Serotypes in the currently available heptavalent conjugate pneumococcal vaccine and related serotypes account for two-thirds of invasive pneumococcal disease among children aged 6 to 29 months.
doi:10.1086/596494
PMCID: PMC2673056  PMID: 19191610
10.  Phenotypic and Genotypic Characterization of Streptococcus pneumoniae Strains Colonizing Children Attending Day-Care Centers in Norway▿  
Journal of Clinical Microbiology  2008;46(8):2508-2518.
A cross-sectional study of nasopharyngeal colonization with Streptococcus pneumoniae was performed among 573 children attending 29 day-care centers (DCCs) in Norway prior to the start of mass vaccination with the heptavalent pneumococcal conjugate vaccine (PCV-7). A sensitive sampling method was employed, including transport in an enrichment broth and serotyping of pneumococci directly from the broth, in addition to traditional single-colony isolation from blood agar plates. The prevalence of carriage was high, peaking at 88.7% in 2-year-olds. More than one serotype was isolated from 12.7% of the carriers. Of 509 isolates obtained, 227 (44.6%) belonged to the PCV-7 serotypes. Penicillin nonsusceptibility was rare (1.8% of the isolates). Nonsusceptibility to erythromycin (5.9%), clindamycin (2.0%), and tetracycline (5.5%) was associated with PCV-7 serotypes (P < 0.001). Multilocus sequence typing was performed on the whole strain collection, revealing 102 sequence types (STs), of which 31 (30.4%) were novel. Eleven isolates (2.2%) belonged to the England14-9 clone, and 19 isolates (3.7%) belonged to, or were single-locus variants of, the Portugal19F-21 clone. The pneumococcal populations within the DCCs were composed of a majority of isolates with STs shared between the DCCs and a minority of isolates with STs unique for each DCC. The highest numbers of different STs, including novel STs, were found within the most frequent serotypes. Our study indicates that carriage of S. pneumoniae is highly prevalent among children in Norwegian DCCs, with a genetically diverse pneumococcal population consisting of unique microepidemic DCC populations.
doi:10.1128/JCM.02296-07
PMCID: PMC2519506  PMID: 18524970
11.  Effect of Seven-Valent Pneumococcal Conjugate Vaccine on Staphylococcus aureus Colonisation in a Randomised Controlled Trial 
PLoS ONE  2011;6(6):e20229.
Background
Heptavalent pneumococcal conjugate vaccine (PCV7) shifts nasopharyngeal colonisation with vaccine serotype pneumococci towards nonvaccine serotypes. Because of the reported negative association of vaccine serotype pneumococci and Staphylococcus aureus in the nasopharynx, we explored the effect of PCV7 on nasopharyngeal colonisation with S. aureus in children and parents.
Methodology/Principal Findings
This study was part of a randomised controlled trial on the effect of PCV7 on pneumococcal carriage, enrolling healthy newborns who were randomly assigned (1∶1∶1) to receive PCV7 (1) at 2 and 4 months of age (2) at 2, 4 and 11 months or (3) no PCV7 (controls). Nasopharyngeal colonisation of S. aureus was a planned secondary outcome. Nasopharyngeal swabs were obtained from all children over a 2-year period with 6-months interval and from one parent at the child's age of 12 and 24 months and cultured for Streptococcus pneumoniae and S. aureus. Between July 2005 and February 2006, 1005 children were enrolled and received either 2-doses of PCV7 (n = 336), 2+1-doses (336) or no dose (n = 333) before PCV7 implementation in the Dutch national immunization program. S. aureus colonisation had doubled in children in the 2+1-dose group at 12 months of age compared with unvaccinated controls (10.1% versus 5.0%; p = 0.019). A negative association for co-colonisation of S. pneumoniae and S. aureus was observed for both vaccine serotype (adjusted odds ratio (aOR) 0.53, 95% confidence interval (CI) 0.38–0.74) and nonvaccine serotype pneumococci (aOR 0.67, 95% CI 0.52–0.88).
Conclusions/Significance
PCV7 induces a temporary increase in S. aureus colonisation in children around 12 months of age after a 2+1-dose PCV7 schedule. The potential clinical consequences are unknown and monitoring is warranted.
Trial Registration
ClinicalTrials.gov NCT00189020
doi:10.1371/journal.pone.0020229
PMCID: PMC3112202  PMID: 21695210
12.  Short- and Long-Term Effects of Pneumococcal Conjugate Vaccination of Children on Penicillin Resistance 
Recent observations have shown that wide-scale vaccination with pneumococcal conjugate vaccines was associated with a reduction in invasive disease, supporting the expectation that vaccination could help reduce carriage of Streptococcus pneumoniae and control the spread of resistant strains. However, it is too early to assess whether these effects can be sustained in the long term. Here, we used mathematical modeling to investigate time changes in pneumococcal colonization and resistance induced by conjugate vaccination in an environment where antibiotic exposure is high and resistance is widespread. According to model predictions, vaccination induced a decrease in carriage of vaccine-type pneumococci to very low levels, typically in 10 to 15 years under epidemiologically realistic conditions. Almost simultaneously, non-vaccine-type pneumococci spread in the community. Consequently, while there was a short-term decrease in the overall carriage rate, it was followed after a few years by a renewed, although limited, increase. Vaccination with a heptavalent vaccine did not affect the extent to which antibiotic resistance was selected: in all cases, the distribution of resistance levels peaked at high levels (MIC > 2 μg/ml) after 20 years. With a vaccine optimally designed to include all serotypes currently exhibiting decreased susceptibility to penicillin G, the selection of resistance was slowed down, although not prevented. These results suggest that because of serotype replacement, the effects of vaccination observed today may not be sustained in the long term. As a consequence, vaccination alone may not be successful in controlling selection for resistance in S. pneumoniae.
doi:10.1128/AAC.48.6.2206-2213.2004
PMCID: PMC415598  PMID: 15155223
13.  Nasopharyngeal carriage, antibiogram & serotype distribution of Streptococcus pneumoniae among healthy under five children 
Background & objectives:
Information related to nasopharyngeal carriage of Streptococcus pneumoniae among healthy children is scanty in India. This prospective study was undertaken to determine the presence of asymptomatic nasopharyngeal colonization, assess serogroups/types (SGT) and drug resistance of S. pneumoniae in children below five years of age.
Methods:
A total of 109 male and 81 female children in the age group of three months to five years belonging to different socio-economic classes were enrolled. They were recruited across all age groups from those attending paediatric OPD of a tertiary care and research centre for immunization program. Fifty three isolates identified as pneumococci were tested for their antimicrobial susceptibility pattern by Kirby-Bauer's disc diffusion and E-Test methods. Serotyping was performed by detection of the quelling reaction with specific antiserum.
Result:
The pneumococcal carriage rate in the study population was 27.9 per cent. The isolation rate was associated with age being higher (49.2%) in smaller children (3-12 months) and among male (62.2%). The most prevalent SGTs were 19 followed by 10, 14 and 7; 21 per cent of isolates belonging to serotype 10 (n=7) were 11 (n=4) were not covered in any of the conjugate vaccines currently available in Indian market. Resistance to co-trimoxazole, tetracycline, penicillin and erythromycin was observed in 91 per cent (n=48), 36 per cent (n=19), 17 per cent (n=9) and 9 per cent (n=5) isolates, respectively. All the penicillin resistant isolates were found to be intermediately resistant by E-Test. Multidrug resistance was observed in 19 per cent (n=10) isolates.
Interpretation & conclusions:
High level of antibiotic resistance was present in S. pneumoniae isolated from healthy children below age five. A pneumococcal conjugate vaccine with the prevailing SGTs would help to reduce the pool of antibiotic resistant pneumococci. Continued surveillance of serotypes and tracking susceptibility pattern of S. pneumoniae will help to introduce appropriate vaccination protocols.
PMCID: PMC4216494  PMID: 25297353
Antibiotic resistance; nasopharyngeal carriage; serotypes; Streptococcus pneumoniae
14.  Nasopharyngeal carriage, serotype distribution and antimicrobial resistance of Streptococcus pneumoniae among children from Brazil before the introduction of the 10-valent conjugate vaccine 
BMC Infectious Diseases  2013;13:318.
Background
Streptococcus pneumoniae remains a major cause of childhood morbidity and mortality worldwide. Nasopharyngeal colonization plays an important role in the development and transmission of pneumococcal diseases, and infants and young children are considered to be the main reservoir of this pathogen. The aim of this study was to evaluate the rates and characteristics associated with nasopharyngeal carriage, the distribution of serotypes and the antimicrobial resistance profiles of Streptococcus pneumoniae among children in a large metropolitan area in Brazil before the introduction of the 10-valent pneumococcal conjugate vaccine.
Methods
Between March and June 2010, nasopharyngeal swabs were collected from 242 children aged <6 years attending one day care center and the emergency room of a pediatric hospital. Pneumococcal isolates were identified by conventional methods and serotypes were determined by a sequential multiplex PCR assay and/or the Quellung reaction. The antimicrobial susceptibilities of the pneumococci were assessed by the disk diffusion method. MICs for erythromycin and penicillin were also performed. Erythromycin resistance genes were investigated by PCR.
Results
The overall colonization rate was 49.2% and it was considerably higher among children in the day care center. Pneumococcal carriage was more common among day care attenders and cohabitants with young siblings. The most prevalent serotypes were 6B, 19F, 6A, 14, 15C and 23F, which accounted for 61.2% of the isolates. All isolates were susceptible to clindamycin, levofloxacin, rifampicin and vancomycin. The highest rate of non-susceptibility was observed for sulphamethoxazole-trimethoprim (51.2%). Penicillin non-susceptible pneumococci (PNSP) accounted for 27.3% of the isolates (MICs of 0.12-4 μg/ml). Penicillin non-susceptibility was strongly associated with serotypes 14 and 23F. Hospital attendance and the presence of respiratory or general symptoms were frequently associated with PNSP carriage. The two erythromycin-resistant isolates (MICs of 2 and 4 μg/ml) belonged to serotype 6A, presented the M phenotype and harbored the mef(A/E) gene.
Conclusions
Correlations between serotypes, settings and penicillin non-susceptibility were observed. Serotypes coverage projected for the 10-valent pneumococcal conjugate vaccine was low (45.5%), but pointed out the potential reduction of PNSP nasopharyngeal colonization by nearly 20%.
doi:10.1186/1471-2334-13-318
PMCID: PMC3718621  PMID: 23849314
Streptococcus pneumoniae; Nasopharyngeal carriage; Serotypes; Antimicrobial resistance; Pneumococcal conjugate vaccines
15.  Changing Trends in Antimicrobial Resistance and Serotypes of Streptococcus pneumoniae Isolates in Asian Countries: an Asian Network for Surveillance of Resistant Pathogens (ANSORP) Study 
Antimicrobial resistance in Streptococcus pneumoniae remains a serious concern worldwide, particularly in Asian countries, despite the introduction of heptavalent pneumococcal conjugate vaccine (PCV7). The Asian Network for Surveillance of Resistant Pathogens (ANSORP) performed a prospective surveillance study of 2,184 S. pneumoniae isolates collected from patients with pneumococcal infections from 60 hospitals in 11 Asian countries from 2008 to 2009. Among nonmeningeal isolates, the prevalence rate of penicillin-nonsusceptible pneumococci (MIC, ≥4 μg/ml) was 4.6% and penicillin resistance (MIC, ≥8 μg/ml) was extremely rare (0.7%). Resistance to erythromycin was very prevalent in the region (72.7%); the highest rates were in China (96.4%), Taiwan (84.9%), and Vietnam (80.7%). Multidrug resistance (MDR) was observed in 59.3% of isolates from Asian countries. Major serotypes were 19F (23.5%), 23F (10.0%), 19A (8.2%), 14 (7.3%), and 6B (7.3%). Overall, 52.5% of isolates showed PCV7 serotypes, ranging from 16.1% in Philippines to 75.1% in Vietnam. Serotypes 19A (8.2%), 3 (6.2%), and 6A (4.2%) were the most prominent non-PCV7 serotypes in the Asian region. Among isolates with serotype 19A, 86.0% and 79.8% showed erythromycin resistance and MDR, respectively. The most remarkable findings about the epidemiology of S. pneumoniae in Asian countries after the introduction of PCV7 were the high prevalence of macrolide resistance and MDR and distinctive increases in serotype 19A.
doi:10.1128/AAC.05658-11
PMCID: PMC3294909  PMID: 22232285
16.  Risk factors for serotype 19A carriage after introduction of 7-valent pneumococcal vaccination 
Background
After the implementation of 7-valent pneumococcal conjugate vaccine (PCV7), in several countries, serotype 19A is now the serotype most frequently involved in pneumococcal diseases and carriage. To determine factors potentially related to 19A nasopharyngeal (NP) carriage we analyzed data from an ongoing prospective French national surveillance study of pneumococcal NP carriage in young children.
Methods
NP swabs were obtained from children aged 6 to 24 months, either during routine check-ups with normal findings, or when they presented with acute otitis media (AOM). The swabs were sent for analysis to the French National Reference Centre for Pneumococci. Factors influencing pneumococcal carriage and carriage of penicillin non-susceptible (PNSP), 19A and PNS-19A were investigated by multivariate logistic regression.
Results
From 2006 to 2009, 66 practitioners enrolled 3507 children (mean age 13.6 months), of whom, 98.3% of children had been vaccinated with PCV7 and 33.4% of children attended daycare centres (DCC). Serotype 19A was found in 10.4% of the overall population, 20.5% of S. pneumoniae carriers (n = 1780) and 40.8% of PNSP carriers (n = 799). Among 19A strains, 10.7% were penicillin-susceptible, 80% intermediate and 9.3% fully resistant. Logistic regression analysis showed that the main factors associated with PNSP carriage were AOM (OR = 3.09, 95% CI [2.39;3.98]), DCC (OR = 1.70, 95% CI [1.42;2.03]), and recent antibiotic use (OR = 1.24, 95% CI [1.05;1.47]. The main factors predictive of 19A carriage were recent antibiotic use (OR = 1.81, 95% CI [1.42;2.30]), AOM (OR = 1.67, 95% CI [1.11;2.49]), DCC (OR = 1.56, 95% CI [1.21;2.2] and young age, <12 months (OR = 1.51, 95% CI [1.16;1.97]).
Conclusion
In a population of children aged from 6 to 24 months with a high rate of PCV7 vaccination coverage, we found that antibiotic exposure, DCC attendance and AOM were linked to 19A carriage.
doi:10.1186/1471-2334-11-95
PMCID: PMC3101155  PMID: 21501471
17.  Optimal Serotype Compositions for Pneumococcal Conjugate Vaccination under Serotype Replacement 
PLoS Computational Biology  2014;10(2):e1003477.
Pneumococcal conjugate vaccination has proved highly effective in eliminating vaccine-type pneumococcal carriage and disease. However, the potential adverse effects of serotype replacement remain a major concern when implementing routine childhood pneumococcal conjugate vaccination programmes. Applying a concise predictive model, we present a ready-to-use quantitative tool to investigate the implications of serotype replacement on the net effectiveness of vaccination against invasive pneumococcal disease (IPD) and to guide in the selection of optimal vaccine serotype compositions. We utilise pre-vaccination data on pneumococcal carriage and IPD and assume partial or complete elimination of vaccine-type carriage, its replacement by non-vaccine-type carriage, and stable case-to-carrier ratios (probability of IPD per carriage episode). The model predicts that the post-vaccination IPD incidences in Finland for currently available vaccine serotype compositions can eventually decrease among the target age group of children <5 years of age by 75%. However, due to replacement through herd effects, the decrease among the older population is predicted to be much less (20–40%). We introduce a sequential algorithm for the search of optimal serotype compositions and assess the robustness of inferences to uncertainties in data and assumptions about carriage and IPD. The optimal serotype composition depends on the age group of interest and some serotypes may be highly beneficial vaccine types in one age category (e.g. 6B in children), while being disadvantageous in another. The net effectiveness will be improved only if the added serotype has a higher case-to-carrier ratio than the average case-to-carrier ratio of the current non-vaccine types and the degree of improvement in effectiveness depends on the carriage incidence of the serotype. The serotype compositions of currently available pneumococcal vaccines are not optimal and the effectiveness of vaccination in the population at large could be improved by including new serotypes in the vaccine (e.g. 22 and 9N).
Author Summary
The bacterial pathogen Streptococcus pneumoniae (pneumococcus) is a major contributor to child mortality worldwide. Hence, effective pneumococcal vaccination programmes are globally among the most cost-effective public health interventions. Three different conjugate vaccine compositions, targeting 7, 10 or 13 pneumococcal serotypes, have been used in infant vaccination programmes. The use of these vaccines has both decreased the disease burden and changed the patterns of pneumococcal carriage in locations where they have been in use. However, due to serotype replacement, where the lost vaccine serotype carriage is replaced by carriage of the non-vaccine serotypes, the net effect of vaccination on the disease burden has generally been milder than expected. Here, we apply a concise model for serotype replacement and present a ready-to-use tool for the prediction of patterns in post-vaccination pneumococcal incidence of carriage and invasive disease. We introduce a sequential algorithm for the identification of the most optimal additional serotypes to current vaccine formulations and demonstrate how differences in the invasiveness across serotypes imply that the disease incidence may either decrease or increase after vaccination. The methods we outline have direct relevance in decision making while reviewing the performance of the current pneumococcal vaccination programmes.
doi:10.1371/journal.pcbi.1003477
PMCID: PMC3923658  PMID: 24550722
18.  Serotype-Specific Changes in Invasive Pneumococcal Disease after Pneumococcal Conjugate Vaccine Introduction: A Pooled Analysis of Multiple Surveillance Sites 
PLoS Medicine  2013;10(9):e1001517.
In a pooled analysis of data collected from invasive pneumococcal disease surveillance databases, Daniel Feikin and colleagues examine serotype replacement after the introduction of 7-valent pneumococcal conjugate vaccine (PCV7) into national immunization programs.
Please see later in the article for the Editors' Summary
Background
Vaccine-serotype (VT) invasive pneumococcal disease (IPD) rates declined substantially following introduction of 7-valent pneumococcal conjugate vaccine (PCV7) into national immunization programs. Increases in non-vaccine-serotype (NVT) IPD rates occurred in some sites, presumably representing serotype replacement. We used a standardized approach to describe serotype-specific IPD changes among multiple sites after PCV7 introduction.
Methods and Findings
Of 32 IPD surveillance datasets received, we identified 21 eligible databases with rate data ≥2 years before and ≥1 year after PCV7 introduction. Expected annual rates of IPD absent PCV7 introduction were estimated by extrapolation using either Poisson regression modeling of pre-PCV7 rates or averaging pre-PCV7 rates. To estimate whether changes in rates had occurred following PCV7 introduction, we calculated site specific rate ratios by dividing observed by expected IPD rates for each post-PCV7 year. We calculated summary rate ratios (RRs) using random effects meta-analysis. For children <5 years old, overall IPD decreased by year 1 post-PCV7 (RR 0·55, 95% CI 0·46–0·65) and remained relatively stable through year 7 (RR 0·49, 95% CI 0·35–0·68). Point estimates for VT IPD decreased annually through year 7 (RR 0·03, 95% CI 0·01–0·10), while NVT IPD increased (year 7 RR 2·81, 95% CI 2·12–3·71). Among adults, decreases in overall IPD also occurred but were smaller and more variable by site than among children. At year 7 after introduction, significant reductions were observed (18–49 year-olds [RR 0·52, 95% CI 0·29–0·91], 50–64 year-olds [RR 0·84, 95% CI 0·77–0·93], and ≥65 year-olds [RR 0·74, 95% CI 0·58–0·95]).
Conclusions
Consistent and significant decreases in both overall and VT IPD in children occurred quickly and were sustained for 7 years after PCV7 introduction, supporting use of PCVs. Increases in NVT IPD occurred in most sites, with variable magnitude. These findings may not represent the experience in low-income countries or the effects after introduction of higher valency PCVs. High-quality, population-based surveillance of serotype-specific IPD rates is needed to monitor vaccine impact as more countries, including low-income countries, introduce PCVs and as higher valency PCVs are used.
Please see later in the article for the Editors' Summary
Editors’ Summary
Background
Pneumococcal disease–a major cause of illness and death in children and adults worldwide–is caused by Streptococcus pneumoniae, a bacterium that often colonizes the nose and throat harmlessly. Unfortunately, S. pneumoniae occasionally spreads into the lungs, bloodstream, or covering of the brain, where it causes pneumonia, septicemia, and meningitis, respectively. These invasive pneumococcal diseases (IPDs) can usually be successfully treated with antibiotics but can be fatal. Consequently, it is better to avoid infection through vaccination. Vaccination primes the immune system to recognize and attack disease-causing organisms (pathogens) rapidly and effectively by exposing it to weakened or dead pathogens or to pathogen molecules that it recognizes as foreign (antigens). Because there are more than 90 S. pneumoniae variants or “serotypes,” each characterized by a different antigenic polysaccharide (complex sugar) coat, vaccines that protect against S. pneumoniae have to include multiple serotypes. Thus, the pneumococcal conjugate vaccine PCV7, which was introduced into the US infant immunization regimen in 2000, contains polysaccharides from the seven S. pneumoniae serotypes mainly responsible for IPD in the US at that time.
Why Was This Study Done?
Vaccination with PCV7 was subsequently introduced in several other high- and middle-income countries, and IPD caused by the serotypes included in the vaccine declined substantially in children and in adults (because of reduced bacterial transmission and herd protection) in the US and virtually all these countries. However, increases in IPD caused by non-vaccine serotypes occurred in some settings, presumably because of “serotype replacement.” PCV7 prevents both IPD caused by the serotypes it contains and carriage of these serotypes. Consequently, after vaccination, previously less common, non-vaccine serotypes can colonize the nose and throat, some of which can cause IPD. In July 2010, a World Health Organization expert consultation on serotype replacement called for a comprehensive analysis of the magnitude and variability of pneumococcal serotype replacement following PCV7 use to help guide the introduction of PCVs in low-income countries, where most pneumococcal deaths occur. In this pooled analysis of data from multiple surveillance sites, the researchers investigate serotype-specific changes in IPD after PCV7 introduction using a standardized approach.
What Did the Researchers Do and Find?
The researchers identified 21 databases that had data about the rate of IPD for at least 2 years before and 1 year after PCV7 introduction. They estimated whether changes in IPD rates had occurred after PCV7 introduction by calculating site-specific rate ratios–the observed IPD rate for each post-PCV7 year divided by the expected IPD rate in the absence of PCV7 extrapolated from the pre-PCV7 rate. Finally, they used a statistical approach (random effects meta-analysis) to estimate summary (pooled) rate ratios. For children under 5 years old, the overall number of observed cases of IPD in the first year after the introduction of PCV7 was about half the expected number; this reduction in IPD continued through year 7 after PCV7 introduction. Notably, the rate of IPD caused by the S. pneumonia serotypes in PCV7 decreased every year, but the rate of IPD caused by non-vaccine serotypes increased annually. By year 7, the number of cases of IPD caused by non-vaccine serotypes was 3-fold higher than expected, but was still smaller than the decrease in vaccine serotypes, thereby leading to the decrease in overall IPD. Finally, smaller decreases in overall IPD also occurred among adults but occurred later than in children 2 years or more after PCV7 introduction.
What Do These Findings Mean?
These findings show that consistent, rapid, and sustained decreases in overall IPD and in IPD caused by serotypes included in PCV7 occurred in children and thus support the use of PCVs. The small increases in IPD caused by non-vaccine serotypes that these findings reveal are likely to be the result of serotype replacement, but changes in antibiotic use and other factors may also be involved. These findings have several important limitations, however. For example, PCV7 is no longer made and extrapolation of these results to newer PCV10 and PCV13 formulations should be done cautiously. On the other hand, many of the serotypes causing serotype replacement after PCV7 are included in these higher valency vaccines. Moreover, because the data analyzed in this study mainly came from high-income countries, these findings may not be generalizable to low-income countries. Nevertheless, based on their analysis, the researchers make recommendations for the collection and analysis of IPD surveillance data that should allow valid interpretations of the effect of PCVs on IPD to be made, an important requisite for making sound policy decisions about vaccination against pneumococcal disease.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001517.
The US Centers for Disease Control and Prevention provides information for patients and health professionals on all aspects of pneumococcal disease and pneumococcal vaccination, including personal stories
Public Health England provides information on pneumococcal disease and on pneumococcal vaccines
The World Health Organization also provides information on pneumococcal vaccines
The not-for-profit Immunization Action Coalition has information on pneumococcal disease, including personal stories
MedlinePlus has links to further information about pneumococcal infections (in English and Spanish)
The International Vaccine Access Center at Johns Hopkins Bloomberg School of Public Health has more information on introduction of pneumococcal conjugate vaccines in low-income countries
doi:10.1371/journal.pmed.1001517
PMCID: PMC3782411  PMID: 24086113
19.  Identifying an appropriate PCV for use in Senegal, recent insights concerning Streptococcus pneumoniae NP carriage and IPD in Dakar 
BMC Infectious Diseases  2014;14:627.
Background
Since 2000, the Global Alliance for Vaccines and Immunization (GAVI) and WHO have supported the introduction of the Pneumococcal Conjugate Vaccine (PCV) in the immunization programs of developing countries. The highest pneumococcal nasopharyngeal carriage rates have been reported (40-60%) in these countries, and the highest incidence and case fatality rates of pneumococcal infections have been demonstrated in Africa.
Methods
Studies concerning nasopharyngeal pneumococcal carriage and pneumococcal infection in children less than 5 years old were conducted in Dakar from 2007 to 2008. Serotype, antibiotic susceptibility and minimum inhibitory concentrations were determined. In addition, among 17 overall publications, 6 manuscripts of the Senegalese literature published from 1972 to 2013 were selected for data comparisons.
Results
Among the 264 children observed, 132 (50%) children generated a nasopharyngeal (NP) positive culture with Streptococcus pneumoniae. The five most prevalent serotypes, were 6B (9%), 19 F (9%), 23 F (7.6%), 14 (7.6%) and 6A (6.8%). Fifteen percent of the strains (20/132) showed reduced susceptibility to penicillin and 3% (4/132) showed reduced susceptibility to anti-pneumococcal fluoroquinolones. Among the 196 suspected pneumococcal infections, 62 (31.6%) Streptococcus pneumoniae were isolated. Serogroup 1 was the most prevalent serotype (21.3%), followed by 6B (14.9%), 23 F (14.9%) and 5 (8.5%). Vaccine coverage for PCV-7, PCV-10 and PCV-13, were 36.2% (17/47), 66% (31/47) and 70.2% (33/47) respectively. Reduced susceptibility to penicillin and anti-pneumococcal fluoroquinolones was 6.4% and 4.3%, respectively, and the overall lethality was 42.4% (14/33).
Conclusions
This study confirms a high rate of carriage and disease caused by Streptococcus pneumoniae serotypes contained within the current generation of pneumococcal conjugate vaccines and consistent with reports from other countries in sub-Saharan Africa prior to PCV introduction. Antimicrobial resistance in this small unselected sample confirms a low rate of antibiotic resistance. Case-fatality is high. Introduction of a high valency pneumococcal vaccine should be a priority for health planners with the establishment of an effective surveillance system to monitor post vaccine changes.
doi:10.1186/s12879-014-0627-8
PMCID: PMC4258793  PMID: 25471219
Streptococcus pneumoniae; Nasopharyngeal carriage; Invasive pneumococcal disease; Serotypes; Antibiotic resistance; Children; Sub-Saharan Africa; Senegal
20.  Epidemiology and risk factors for Staphylococcus aureus colonization in children in the post-PCV7 era 
Background
The incidence of community-associated methicillin-resistant Staphylococcus aureus (MRSA) has risen dramatically in the U.S., particularly among children. Although Streptococcus pneumoniae colonization has been inversely associated with S. aureus colonization in unvaccinated children, this and other risk factors for S. aureus carriage have not been assessed following widespread use of the heptavalent pneumococcal conjugate vaccine (PCV7). Our objectives were to (1) determine the prevalence of S. aureus and MRSA colonization in young children in the context of widespread use of PCV7; and (2) examine risk factors for S. aureus colonization in the post-PCV7 era, including the absence of vaccine-type S. pneumoniae colonization.
Methods
Swabs of the anterior nares (S. aureus) were obtained from children enrolled in an ongoing study of nasopharyngeal pneumococcal colonization of healthy children in 8 Massachusetts communities. Children 3 months to <7 years of age seen for well child or sick visits in primary care offices from 11/03–4/04 and 10/06–4/07 were enrolled. S. aureus was identified and antibiotic susceptibility testing was performed. Epidemiologic risk factors for S. aureus colonization were collected from parent surveys and chart reviews, along with data on pneumococcal colonization. Multivariate mixed model analyses were performed to identify factors associated with S. aureus colonization.
Results
Among 1,968 children, the mean age (SD) was 2.7 (1.8) years, 32% received an antibiotic in the past 2 months, 2% were colonized with PCV7 strains and 24% were colonized with non-PCV7 strains. The prevalence of S. aureus colonization remained stable between 2003–04 and 2006–07 (14.6% vs. 14.1%), while MRSA colonization remained low (0.2% vs. 0.9%, p = 0.09). Although absence of pneumococcal colonization was not significantly associated with S. aureus colonization, age (6–11 mo vs. ≥5 yrs, OR 0.39 [95% CI 0.24–0.64]; 1–1.99 yrs vs. ≥5 yrs, OR 0.35 [0.23–0.54]; 2–2.99 yrs vs. ≥5 yrs, OR 0.45 [0.28–0.73]; 3–3.99 yrs vs. ≥5 yrs, OR 0.53 [0.33–0.86]) and recent antibiotic use were significant predictors in multivariate models.
Conclusion
In Massachusetts, S. aureus and MRSA colonization remained stable from 2003–04 to 2006–07 among children <7 years despite widespread use of pneumococcal conjugate vaccine. S. aureus nasal colonization varies by age and is inversely correlated with recent antibiotic use.
doi:10.1186/1471-2334-9-110
PMCID: PMC2716346  PMID: 19594890
21.  Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients with Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this analysis was to determine the effectiveness of the influenza vaccination and the pneumococcal vaccination in patients with chronic obstructive pulmonary disease (COPD) in reducing the incidence of influenza-related illness or pneumococcal pneumonia.
Clinical Need: Condition and Target Population
Influenza Disease
Influenza is a global threat. It is believed that the risk of a pandemic of influenza still exists. Three pandemics occurred in the 20th century which resulted in millions of deaths worldwide. The fourth pandemic of H1N1 influenza occurred in 2009 and affected countries in all continents.
Rates of serious illness due to influenza viruses are high among older people and patients with chronic conditions such as COPD. The influenza viruses spread from person to person through sneezing and coughing. Infected persons can transfer the virus even a day before their symptoms start. The incubation period is 1 to 4 days with a mean of 2 days. Symptoms of influenza infection include fever, shivering, dry cough, headache, runny or stuffy nose, muscle ache, and sore throat. Other symptoms such as nausea, vomiting, and diarrhea can occur.
Complications of influenza infection include viral pneumonia, secondary bacterial pneumonia, and other secondary bacterial infections such as bronchitis, sinusitis, and otitis media. In viral pneumonia, patients develop acute fever and dyspnea, and may further show signs and symptoms of hypoxia. The organisms involved in bacterial pneumonia are commonly identified as Staphylococcus aureus and Hemophilus influenza. The incidence of secondary bacterial pneumonia is most common in the elderly and those with underlying conditions such as congestive heart disease and chronic bronchitis.
Healthy people usually recover within one week but in very young or very old people and those with underlying medical conditions such as COPD, heart disease, diabetes, and cancer, influenza is associated with higher risks and may lead to hospitalization and in some cases death. The cause of hospitalization or death in many cases is viral pneumonia or secondary bacterial pneumonia. Influenza infection can lead to the exacerbation of COPD or an underlying heart disease.
Streptococcal Pneumonia
Streptococcus pneumoniae, also known as pneumococcus, is an encapsulated Gram-positive bacterium that often colonizes in the nasopharynx of healthy children and adults. Pneumococcus can be transmitted from person to person during close contact. The bacteria can cause illnesses such as otitis media and sinusitis, and may become more aggressive and affect other areas of the body such as the lungs, brain, joints, and blood stream. More severe infections caused by pneumococcus are pneumonia, bacterial sepsis, meningitis, peritonitis, arthritis, osteomyelitis, and in rare cases, endocarditis and pericarditis.
People with impaired immune systems are susceptible to pneumococcal infection. Young children, elderly people, patients with underlying medical conditions including chronic lung or heart disease, human immunodeficiency virus (HIV) infection, sickle cell disease, and people who have undergone a splenectomy are at a higher risk for acquiring pneumococcal pneumonia.
Technology
Influenza and Pneumococcal Vaccines
Trivalent Influenza Vaccines in Canada
In Canada, 5 trivalent influenza vaccines are currently authorized for use by injection. Four of these are formulated for intramuscular use and the fifth product (Intanza®) is formulated for intradermal use.
The 4 vaccines for intramuscular use are:
Fluviral (GlaxoSmithKline), split virus, inactivated vaccine, for use in adults and children ≥ 6 months;
Vaxigrip (Sanofi Pasteur), split virus inactivated vaccine, for use in adults and children ≥ 6 months;
Agriflu (Novartis), surface antigen inactivated vaccine, for use in adults and children ≥ 6 months; and
Influvac (Abbott), surface antigen inactivated vaccine, for use in persons ≥ 18 years of age.
FluMist is a live attenuated virus in the form of an intranasal spray for persons aged 2 to 59 years. Immunization with current available influenza vaccines is not recommended for infants less than 6 months of age.
Pneumococcal Vaccine
Pneumococcal polysaccharide vaccines were developed more than 50 years ago and have progressed from 2-valent vaccines to the current 23-valent vaccines to prevent diseases caused by 23 of the most common serotypes of S pneumoniae. Canada-wide estimates suggest that approximately 90% of cases of pneumococcal bacteremia and meningitis are caused by these 23 serotypes. Health Canada has issued licenses for 2 types of 23-valent vaccines to be injected intramuscularly or subcutaneously:
Pneumovax 23® (Merck & Co Inc. Whitehouse Station, NJ, USA), and
Pneumo 23® (Sanofi Pasteur SA, Lion, France) for persons 2 years of age and older.
Other types of pneumococcal vaccines licensed in Canada are for pediatric use. Pneumococcal polysaccharide vaccine is injected only once. A second dose is applied only in some conditions.
Research Questions
What is the effectiveness of the influenza vaccination and the pneumococcal vaccination compared with no vaccination in COPD patients?
What is the safety of these 2 vaccines in COPD patients?
What is the budget impact and cost-effectiveness of these 2 vaccines in COPD patients?
Research Methods
Literature search
Search Strategy
A literature search was performed on July 5, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2000 to July 5, 2010. The search was updated monthly through the AutoAlert function of the search up to January 31, 2011. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Articles with an unknown eligibility were reviewed with a second clinical epidemiologist and then a group of epidemiologists until consensus was established. Data extraction was carried out by the author.
Inclusion Criteria
studies comparing clinical efficacy of the influenza vaccine or the pneumococcal vaccine with no vaccine or placebo;
randomized controlled trials published between January 1, 2000 and January 31, 2011;
studies including patients with COPD only;
studies investigating the efficacy of types of vaccines approved by Health Canada;
English language studies.
Exclusion Criteria
non-randomized controlled trials;
studies investigating vaccines for other diseases;
studies comparing different variations of vaccines;
studies in which patients received 2 or more types of vaccines;
studies comparing different routes of administering vaccines;
studies not reporting clinical efficacy of the vaccine or reporting immune response only;
studies investigating the efficacy of vaccines not approved by Health Canada.
Outcomes of Interest
Primary Outcomes
Influenza vaccination: Episodes of acute respiratory illness due to the influenza virus.
Pneumococcal vaccination: Time to the first episode of community-acquired pneumonia either due to pneumococcus or of unknown etiology.
Secondary Outcomes
rate of hospitalization and mechanical ventilation
mortality rate
adverse events
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses. The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Efficacy of the Influenza Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The influenza vaccination was associated with significantly fewer episodes of influenza-related acute respiratory illness (ARI). The incidence density of influenza-related ARI was:
All patients: vaccine group: (total of 4 cases) = 6.8 episodes per 100 person-years; placebo group: (total of 17 cases) = 28.1 episodes per 100 person-years, (relative risk [RR], 0.2; 95% confidence interval [CI], 0.06−0.70; P = 0.005).
Patients with severe airflow obstruction (forced expiratory volume in 1 second [FEV1] < 50% predicted): vaccine group: (total of 1 case) = 4.6 episodes per 100 person-years; placebo group: (total of 7 cases) = 31.2 episodes per 100 person-years, (RR, 0.1; 95% CI, 0.003−1.1; P = 0.04).
Patients with moderate airflow obstruction (FEV1 50%−69% predicted): vaccine group: (total of 2 cases) = 13.2 episodes per 100 person-years; placebo group: (total of 4 cases) = 23.8 episodes per 100 person-years, (RR, 0.5; 95% CI, 0.05−3.8; P = 0.5).
Patients with mild airflow obstruction (FEV1 ≥ 70% predicted): vaccine group: (total of 1 case) = 4.5 episodes per 100 person-years; placebo group: (total of 6 cases) = 28.2 episodes per 100 person-years, (RR, 0.2; 95% CI, 0.003−1.3; P = 0.06).
The Kaplan-Meier survival analysis showed a significant difference between the vaccinated group and the placebo group regarding the probability of not acquiring influenza-related ARI (log-rank test P value = 0.003). Overall, the vaccine effectiveness was 76%. For categories of mild, moderate, or severe COPD the vaccine effectiveness was 84%, 45%, and 85% respectively.
With respect to hospitalization, fewer patients in the vaccine group compared with the placebo group were hospitalized due to influenza-related ARIs, although these differences were not statistically significant. The incidence density of influenza-related ARIs that required hospitalization was 3.4 episodes per 100 person-years in the vaccine group and 8.3 episodes per 100 person-years in the placebo group (RR, 0.4; 95% CI, 0.04−2.5; P = 0.3; log-rank test P value = 0.2). Also, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD.
Fewer patients in the vaccine group compared with the placebo group required mechanical ventilation due to influenza-related ARIs. However, these differences were not statistically significant. The incidence density of influenza-related ARIs that required mechanical ventilation was 0 episodes per 100 person-years in the vaccine group and 5 episodes per 100 person-years in the placebo group (RR, 0.0; 95% CI, 0−2.5; P = 0.1; log-rank test P value = 0.4). In addition, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD. The effectiveness of the influenza vaccine in preventing influenza-related ARIs and influenza-related hospitalization was not related to age, sex, severity of COPD, smoking status, or comorbid diseases.
safety
Overall, significantly more patients in the vaccine group than the placebo group experienced local adverse reactions (vaccine: 17 [27%], placebo: 4 [6%]; P = 0.002). Significantly more patients in the vaccine group than the placebo group experienced swelling (vaccine 4, placebo 0; P = 0.04) and itching (vaccine 4, placebo 0; P = 0.04). Systemic reactions included headache, myalgia, fever, and skin rash and there were no significant differences between the 2 groups for these reactions (vaccine: 47 [76%], placebo: 51 [81%], P = 0.5).
With respect to lung function, dyspneic symptoms, and exercise capacity, there were no significant differences between the 2 groups at 1 week and at 4 weeks in: FEV1, maximum inspiratory pressure at residual volume, oxygen saturation level of arterial blood, visual analogue scale for dyspneic symptoms, and the 6 Minute Walking Test for exercise capacity.
There was no significant difference between the 2 groups with regard to the probability of not acquiring total ARIs (influenza-related and/or non-influenza-related); (log-rank test P value = 0.6).
Summary of Efficacy of the Pneumococcal Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The Kaplan-Meier survival analysis showed no significant differences between the group receiving the penumoccocal vaccination and the control group for time to the first episode of community-acquired pneumonia due to pneumococcus or of unknown etiology (log-rank test 1.15; P = 0.28). Overall, vaccine efficacy was 24% (95% CI, −24 to 54; P = 0.33).
With respect to the incidence of pneumococcal pneumonia, the Kaplan-Meier survival analysis showed a significant difference between the 2 groups (vaccine: 0/298; control: 5/298; log-rank test 5.03; P = 0.03).
Hospital admission rates and median length of hospital stays were lower in the vaccine group, but the difference was not statistically significant. The mortality rate was not different between the 2 groups.
Subgroup Analysis
The Kaplan-Meier survival analysis showed significant differences between the vaccine and control groups for pneumonia due to pneumococcus and pneumonia of unknown etiology, and when data were analyzed according to subgroups of patients (age < 65 years, and severe airflow obstruction FEV1 < 40% predicted). The accumulated percentage of patients without pneumonia (due to pneumococcus and of unknown etiology) across time was significantly lower in the vaccine group than in the control group in patients younger than 65 years of age (log-rank test 6.68; P = 0.0097) and patients with a FEV1 less than 40% predicted (log-rank test 3.85; P = 0.0498).
Vaccine effectiveness was 76% (95% CI, 20−93; P = 0.01) for patients who were less than 65 years of age and −14% (95% CI, −107 to 38; P = 0.8) for those who were 65 years of age or older. Vaccine effectiveness for patients with a FEV1 less than 40% predicted and FEV1 greater than or equal to 40% predicted was 48% (95% CI, −7 to 80; P = 0.08) and −11% (95% CI, −132 to 47; P = 0.95), respectively. For patients who were less than 65 years of age (FEV1 < 40% predicted), vaccine effectiveness was 91% (95% CI, 35−99; P = 0.002).
Cox modelling showed that the effectiveness of the vaccine was dependent on the age of the patient. The vaccine was not effective in patients 65 years of age or older (hazard ratio, 1.53; 95% CI, 0.61−a2.17; P = 0.66) but it reduced the risk of acquiring pneumonia by 80% in patients less than 65 years of age (hazard ratio, 0.19; 95% CI, 0.06−0.66; P = 0.01).
safety
No patients reported any local or systemic adverse reactions to the vaccine.
PMCID: PMC3384373  PMID: 23074431
22.  High Nasopharyngeal Carriage of Non-Vaccine Serotypes in Western Australian Aboriginal People Following 10 Years of Pneumococcal Conjugate Vaccination 
PLoS ONE  2013;8(12):e82280.
Background
Invasive pneumococcal disease (IPD) continues to occur at high rates among Australian Aboriginal people. The seven-valent pneumococcal conjugate vaccine (7vPCV) was given in a 2-4-6-month schedule from 2001, with a 23-valent pneumococcal polysaccharide vaccine (23vPPV) booster at 18 months, and replaced with 13vPCV in July 2011. Since carriage surveillance can supplement IPD surveillance, we have monitored pneumococcal carriage in western Australia (WA) since 2008 to assess the impact of the 10-year 7vPCV program.
Methods
We collected 1,500 nasopharyngeal specimens from Aboriginal people living in varied regions of WA from August 2008 until June 2011. Specimens were cultured on selective media. Pneumococcal isolates were serotyped by the quellung reaction.
Results
Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis were carried by 71.9%, 63.2% and 63.3% respectively of children <5 years of age, and 34.6%, 22.4% and 27.2% of people ≥5 years. Of 43 pneumococcal serotypes identified, the most common were 19A, 16F and 6C in children <5 years, and 15B, 34 and 22F in older people. 7vPCV serotypes accounted for 14.5% of all serotypeable isolates, 13vPCV for 32.4% and 23vPPV for 49.9%, with little variation across all age groups. Serotypes 1 and 12F were rarely identified, despite causing recent IPD outbreaks in WA. Complete penicillin resistance (MIC ≥2µg/ml) was found in 1.6% of serotype 19A (5.2%), 19F (4.9%) and 16F (3.2%) isolates and reduced penicillin susceptibility (MIC ≥0.125µg/ml) in 24.9% of isolates, particularly 19F (92.7%), 19A (41.3%), 16F (29.0%). Multi-resistance to cotrimoxazole, tetracycline and erythromycin was found in 83.0% of 23F isolates. Among non-serotypeable isolates 76.0% had reduced susceptibility and 4.0% showed complete resistance to penicillin.
Conclusions
Ten years after introduction of 7vPCV for Aboriginal Australian children, 7vPCV serotypes account for a small proportion of carried pneumococci. A large proportion of circulating serotypes are not covered by any currently licensed vaccine.
doi:10.1371/journal.pone.0082280
PMCID: PMC3857785  PMID: 24349245
23.  Molecular epidemiology of pneumococcal isolates from children in China 
Saudi Medical Journal  2016;37(4):403-413.
Objectives:
To investigate the molecular epidemiology of pneumococcal isolates in Chongqing, China.
Methods:
In this cross-sectional study, 51 invasive Streptococcus pneumoniae (S. pneumoniae) strains were from children with invasive pneumococcal disease (IPD) and 32 carriage strains from healthy children from January 2010 to December 2013 at the Children’s Hospital of Chongqing Medical University, Chongqing, China. Multilocus sequence typing was used to identify the sequence types (STs). Capsular serotypes were determined by multiplex polymerase chain reaction. Drug susceptibility and resistance was determined by minimum inhibitory concentrations.
Results:
In this study, 11 serotypes were identified among the 83 S. pneumoniae clinical isolates tested. Prevalent serotypes were 19A (20.4%), 6A/B (20.4%), 19F (15.7%), 14 (14.5%), and 23F (10.8%). Serotype 19F was the most frequent carriage strain, and serotype 19A was the most frequent invasive strain. The ST983 was the most prevalent ST for carriage strains, and ST320 was the most prevalent ST for invasive strains. For gene analysis, psaA (99.5%) and piaA (98.6%) were present and much conserved in all pneumococci tested. The cps2A and pcsB genes were more frequent in invasive isolates than carriage strains. Antimicrobial resistance rates of invasive pneumococcal isolates to erythromycin, penicillin, meropenem, cefotaxime, and clindamycin were higher than the carriage isolates from children.
Conclusion:
Our epidemiological evidence shows that 19A, 6A/B, 19F, 14, and 23F remain the most prevalent serotypes, which can be targeted by PCV13. Genotypes and drug resistance varied between carriage and invasive strains. The PsaA and PiaA may be good protein vaccine candidates.
doi:10.15537/smj.2016.4.14507
PMCID: PMC4852018  PMID: 27052283
24.  Systematic Evaluation of Serotypes Causing Invasive Pneumococcal Disease among Children Under Five: The Pneumococcal Global Serotype Project 
PLoS Medicine  2010;7(10):e1000348.
Hope Johnson and colleagues calculate the global and regional burden of serotype-specific pneumococcal disease in children under the age of five.
Background
Approximately 800,000 children die each year due to pneumococcal disease and >90% of these deaths occur in developing countries where few children have access to life-saving serotype-based vaccines. Understanding the serotype epidemiology of invasive pneumococcal disease (IPD) among children is necessary for vaccine development and introduction policies. The aim of this study was to systematically estimate the global and regional distributions of serotypes causing IPD in children <5 years of age.
Methods and Findings
We systematically reviewed studies with IPD serotype data among children <5 years of age from the published literature and unpublished data provided by researchers. Studies conducted prior to pneumococcal conjugate vaccine (PCV) introduction, from 1980 to 2007, with ≥12 months of surveillance, and reporting ≥20 serotyped isolates were included. Serotype-specific proportions were pooled in a random effects meta-analysis and combined with PD incidence and mortality estimates to infer global and regional serotype-specific PD burden. Of 1,292, studies reviewed, 169 were included comprising 60,090 isolates from 70 countries. Globally and regionally, six to 11 serotypes accounted for ≥70% of IPD. Seven serotypes (1, 5, 6A, 6B, 14, 19F, 23F) were the most common globally; and based on year 2000 incidence and mortality estimates these seven serotypes accounted for >300,000 deaths in Africa and 200,000 deaths in Asia. Serotypes included in both the 10- and 13-valent PCVs accounted for 10 million cases and 600,000 deaths worldwide.
Conclusions
A limited number of serotypes cause most IPD worldwide. The serotypes included in existing PCV formulations account for 49%–88% of deaths in Africa and Asia where PD morbidity and mortality are the highest, but few children have access to these life-saving vaccines.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Despite all the international attention on Millennium Development Goal (MDG) 4—to reduce deaths in children under 5 years by two thirds by 2015—pneumonia, sepsis, and meningitis together comprise >25% of the 10 million deaths occurring annually in children <5 years of age. Streptococcus pneumoniae is a leading bacterial cause of these diseases and the World Health Organization estimates that approximately 800,000 children die each year of invasive pneumococcal disease. Three pneumococcal conjugate vaccines are currently available and protect against the serotypes most commonly causing invasive pneumococcal disease in young children in North America. However, few countries with the highest burden of invasive pneumococcal disease have introduced the vaccines into their national immunization programs. Not only is it important to introduce a vaccine, but also to use a vaccine covering the appropriate serotypes prevalent in a susceptible region.
Why Was This Study Done?
Over the past few years, data on serotyping in many high burden countries has become available. The authors conducted this study (a systematic review and meta-analysis) to quantify the serotypes causing invasive pneumococcal disease in children <5 years of age in order to estimate the global and regional serotype distribution and serotype-specific disease burden. This information can then be used to estimate the potential public health impact of pneumococcal conjugate vaccine formulations and help to inform decision making for both pneumococcal vaccine development and the introduction of a vaccine into a specific region.
What Did the Researchers Do and Find?
Using published studies and unpublished data provided by researchers, the researchers systematically reviewed studies that included data on invasive pneumococcal disease serotype among children <5 years of age. The researchers then used statistical tools to pool the serotype-specific proportions and combined this information with pneumococcal disease incidence and mortality estimates to calculate the global and regional burden of serotype-specific pneumococcal disease.
The researchers reviewed 1,292 studies and included 169 suitable studies in their analysis, which included information on 60,090 isolates from 70 countries. The researchers produced regional estimates of the serotypes that caused invasive pneumococcal disease among under five-year-olds in different regions: six serotypes were identified as causing most invasive pneumococcal disease in North America; nine serotypes were identified in Africa; and 11 serotypes were identified in Asia. The researchers also found that seven serotypes (1, 5, 6A, 6B, 14, 19F, and 23F) were the most common globally and that these seven serotypes accounted for 58%–66% of invasive pneumococcal disease in every region. On the basis of incidence and mortality estimates of invasive pneumococcal disease for the year 2000 (before pneumococcal conjugate vaccines were introduced), the researchers found that these serotypes represented >300,000 deaths in Africa and 200,000 deaths in Asia.
What Do These Findings Mean?
This study shows that a limited number of serotypes cause most invasive pneumococcal disease worldwide. This finding contradicts the conventional supposition that the most common serotypes causing invasive pneumococcal disease vary greatly across geographic regions. Crucially, the findings of this study also show that the serotypes currently included in existing pneumococcal conjugate formulations account for 49%–74% of deaths in Africa and Asia where the morbidity and mortality of pneumococcal disease are the highest and where most children do not have access to current pneumococcal conjugate vaccines. Although the authors do not provide country-level estimates of serotype distribution, country-specific vaccine impact estimates can be made using country-level pneumococcal disease burden numbers combined with the regional serotype estimates provided in this study. This means that national policy makers can assess the potential impact of serotypes included in different conjugate vaccines, which should contribute to their decision-making process. In addition, manufacturers can now work from a consensus set of serotype coverage estimates to plan and design future serotype-based vaccine formulations to target the pneumococcal disease burden.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000348
The World Health Organization provides information about pneumococcus
The PneumoACTION provides information about pneumonia and pneumococcal disease
The Global Alliance for Vaccination and Immunisation has information on all aspects of vaccination and immunization
The US Centers for Disease Control provides information about pneumococcal conjugate vaccination
The Word Pneumonia Day coalition provides information about pneumonia
doi:10.1371/journal.pmed.1000348
PMCID: PMC2950132  PMID: 20957191
25.  Nasopharyngeal carriage rate of Streptococcus pneumoniae in Ugandan children with sickle cell disease 
BMC Research Notes  2012;5:28.
Background
Nasopharyngeal carriage of Streptococcus pneumoniae is a determinant for invasive pneumococcal disease, which often complicates homozygous sickle cell disease. Here, we determined the nasopharyngeal carriage rate of S. pneumoniae in Ugandan children with homozygous sickle cell disease, who attended the outpatient Sickle Cell Clinic at Mulago National Referral hospital in Kampala, Uganda.
Results
S. pneumoniae occurred in 27 of the 81 children with homozygous sickle cell disease (giving a carriage rate of 33%, 27/81). Twenty three children were previously hospitalized of whom S. pneumoniae occurred in only two (9%, 2/23), while among the 58 who were not previously hospitalized it occurred in 25 (43%, 25/58, χ2 = 8.8, p = 0.003), meaning there is an association between high carriage rate and no hospitalization. Two children previously immunized with the pneumococcal conjugate vaccine did not carry the organism. Prior antimicrobial usage was reported in 53 children (65%, 53/81). There was high resistance of pneumococci to penicillin (100%, 27/27) and trimethoprime-sulfamethoxazole (97%, 26/27), but low resistance to other antimicrobials. Of the 70 children without sickle cell disease, S. pneumoniae occurred in 38 (54%, 38/70) of whom 43 were males and 27 females (53% males, 23/43, and 56% females, 15/27).
Conclusion
Nasopharyngeal carriage of penicillin resistant pneumococci in Ugandan children with homozygous sickle cell disease is high. While nasopharyngeal carriage of S. pneumoniae is a determinant for invasive pneumococcal disease, pneumococcal bacteremia is reportedly low in Ugandan children with sickle cell disease. Studies on the contribution of high carriage rates to invasive pneumococcal disease in these children will be helpful. This is the first report on pneumococcal carriage rate in Ugandan children with sickle cell disease.
doi:10.1186/1756-0500-5-28
PMCID: PMC3283489  PMID: 22243524

Results 1-25 (977612)