PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (847986)

Clipboard (0)
None

Related Articles

1.  The OmpA-Like Protein Loa22 Is Essential for Leptospiral Virulence 
PLoS Pathogens  2007;3(7):e97.
Pathogenic mechanisms of Leptospira interrogans, the causal agent of leptospirosis, remain largely unknown. This is mainly due to the lack of tools for genetic manipulations of pathogenic species. In this study, we characterized a mutant obtained by insertion of the transposon Himar1 into a gene encoding a putative lipoprotein, Loa22, which has a predicted OmpA domain based on sequence identity. The resulting mutant did not express Loa22 and was attenuated in virulence in the guinea pig and hamster models of leptospirosis, whereas the genetically complemented strain was restored in Loa22 expression and virulence. Our results show that Loa22 was expressed during host infection and exposed on the cell surface. Loa22 is therefore necessary for virulence of L. interrogans in the animal model and represents, to our knowledge, the first genetically defined virulence factor in Leptospira species.
Author Summary
The spirochetes, which include medically important pathogens such as the causative agents of Lyme disease, syphilis, and leptospirosis, constitute an evolutionarily unique group of bacteria. Leptospirosis is a zoonotic disease that causes a high rate of mortality and morbidity in humans and animals throughout the world each year. The year 2007 marks the centenary of the discovery of the causative agent of leptospirosis, Leptospira interrogans. Until now, the genetic obstacles posed by leptospires (principally, the difficulties in generating targeted mutants) have hampered the identification of virulence genes. In this study, we describe an avirulent mutant in a pathogenic Leptospira that was obtained via disruption of loa22, a gene that encodes an outer membrane protein containing an OmpA domain. This mutation resulted in an avirulent mutant in the guinea pig model, and reintroduction of loa22 into the mutant restored Leptospira's ability to kill guinea pigs. Our results therefore indicate that loa22 is a virulence determinant that is, to our knowledge, the first identified for this pathogen.
doi:10.1371/journal.ppat.0030097
PMCID: PMC1914066  PMID: 17630832
2.  Random Insertional Mutagenesis of Leptospira interrogans, the Agent of Leptospirosis, Using a mariner Transposon 
Journal of Bacteriology  2005;187(9):3255-3258.
The recent availability of the complete genome sequences of Leptospira interrogans, the agent of leptospirosis, has allowed the identification of several putative virulence factors. However, to our knowledge, attempts to carry out gene transfer in pathogenic Leptospira spp. have failed so far. In this study, we show that the Himar1 mariner transposon permits random mutagenesis in the pathogen L. interrogans. We have identified genes that have been interrupted by Himar1 insertion in 35 L. interrogans mutants. This approach of transposon mutagenesis will be useful for understanding the spirochetal physiology and the pathogenic mechanisms of Leptospira, which remain largely unknown.
doi:10.1128/JB.187.9.3255-3258.2005
PMCID: PMC1082815  PMID: 15838053
3.  Transcriptional Responses of Leptospira interrogans to Host Innate Immunity: Significant Changes in Metabolism, Oxygen Tolerance, and Outer Membrane 
Background
Leptospira interrogans is the major causative agent of leptospirosis. Phagocytosis plays important roles in the innate immune responses to L. interrogans infection, and L. interrogans can evade the killing of phagocytes. However, little is known about the adaptation of L. interrogans during this process.
Methodology/Principal Findings
To better understand the interaction of pathogenic Leptospira and innate immunity, we employed microarray and comparative genomics analyzing the responses of L. interrogans to macrophage-derived cells. During this process, L. interrogans altered expressions of many genes involved in carbohydrate and lipid metabolism, energy production, signal transduction, transcription and translation, oxygen tolerance, and outer membrane proteins. Among them, the catalase gene expression was significantly up-regulated, suggesting it may contribute to resisting the oxidative pressure of the macrophages. The expressions of several major outer membrane protein (OMP) genes (e.g., ompL1, lipL32, lipL41, lipL48 and ompL47) were dramatically down-regulated (10–50 folds), consistent with previous observations that the major OMPs are differentially regulated in vivo. The persistent down-regulations of these major OMPs were validated by immunoblotting. Furthermore, to gain initial insight into the gene regulation mechanisms in L. interrogans, we re-defined the transcription factors (TFs) in the genome and identified the major OmpR TF gene (LB333) that is concurrently regulated with the major OMP genes, suggesting a potential role of LB333 in OMPs regulation.
Conclusions/Significance
This is the first report on global responses of pathogenic Leptospira to innate immunity, which revealed that the down-regulation of the major OMPs may be an immune evasion strategy of L. interrogans, and a putative TF may be involved in governing these down-regulations. Alterations of the leptospiral OMPs up interaction with host antigen-presenting cells (APCs) provide critical information for selection of vaccine candidates. In addition, genome-wide annotation and comparative analysis of TFs set a foundation for further studying regulatory networks in Leptospira spp.
Author Summary
Leptospirosis is an important tropical disease around the world, particularly in humid tropical and subtropical countries. As a major pathogen of this disease, Leptospira interrogans can be shed from the urine of reservoir hosts, survive in soil and water, and infect humans through broken skin or mucous membranes. Recently, host adaptability and immune evasion of L. interrogans to host innate immunity was partially elucidated in infection or animal models. A better understanding of the molecular mechanisms of L. interrogans in response to host innate immunity is required to learn the nature of early leptospirosis. This study focused on the transcriptome of L. interrogans during host immune cells interaction. Significant changes in energy metabolism, oxygen tolerance and outer membrane protein profile were identified as potential immune evasion strategies by pathogenic Leptospira during the early stage of infection. The major outer membrane proteins (OMPs) of L. interrogans may be regulated by the major OmpR specific transcription factor (LB333). These results provide a foundation for further studying the pathogenesis of leptospirosis, as well as identifying gene regulatory networks in Leptospira spp.
doi:10.1371/journal.pntd.0000857
PMCID: PMC2964297  PMID: 21049008
4.  Genetic diversity among major endemic strains of Leptospira interrogans in China 
BMC Genomics  2007;8:204.
Background
Leptospirosis is a world-widely distributed zoonosis. Humans become infected via exposure to pathogenic Leptospira spp. from contaminated water or soil. The availability of genomic sequences of Leptospira interrogans serovar Lai and serovar Copenhageni opened up opportunities to identify genetic diversity among different pathogenic strains of L. interrogans representing various kinds of serotypes (serogroups and serovars).
Results
Comparative genomic hybridization (CGH) analysis was used to compare the gene content of L. interrogans serovar Lai strain Lai with that of other 10 L. interrogans strains prevailed in China and one identified from Brazil using a microarray spotted with 3,528 protein coding sequences (CDSs) of strain Lai. The cutoff ratio of sample/reference (S/R) hybridization for detecting the absence of genes from one tested strain was set by comparing the ratio of S/R hybridization and the in silico sequence similarities of strain Lai and serovar Copenhageni strain Fiocruz L1-130. Among the 11 strains tested, 275 CDSs were found absent from at least one strain. The common backbone of the L. interrogans genome was estimated to contain about 2,917 CDSs. The genes encoding fundamental cellular functions such as translation, energy production and conversion were conserved. While strain-specific genes include those that encode proteins related to either cell surface structures or carbohydrate transport and metabolism. We also found two genomic islands (GIs) in strain Lai containing genes divergently absent in other strains. Because genes encoding proteins with potential pathogenic functions are located within GIs, these elements might contribute to the variations in disease manifestation. Differences in genes involved in O-antigen biosynthesis were also identified for strains belonging to different serogroups, which offers an opportunity for future development of genomic typing tools for serological classification.
Conclusion
CGH analyses for pathogenic leptospiral strains prevailed in China against the L. interrogans serovar Lai strain Lai CDS-spotted microarrays revealed 2,917 common backbone CDSs and strain specific genes encoding proteins mainly related to cell surface structures and carbohydrated transport/metabolism. Of the 275 CDSs considered absent from at least one of the L. interrogans strains tested, most of them were clustered in the rfb gene cluster and two putative genomic islands (GI A and B) in strain Lai. The strain-specific genes detected via this work will provide a knowledge base for further investigating the pathogenesis of L interrogans and/or for the development of effective vaccines and/or diagnostic tools.
doi:10.1186/1471-2164-8-204
PMCID: PMC1936430  PMID: 17603913
5.  Leptospiral LruA Is Required for Virulence and Modulates an Interaction with Mammalian Apolipoprotein AI 
Infection and Immunity  2013;81(10):3872-3879.
Leptospirosis is a worldwide zoonosis caused by spirochetes of the genus Leptospira. While understanding of pathogenesis remains limited, the development of mutagenesis in Leptospira has provided a powerful tool for identifying novel virulence factors. LruA is a lipoprotein that has been implicated in leptospiral uveitis as a target of the immune response. In this study, two lruA mutants, M754 and M765, generated by transposon mutagenesis from Leptospira interrogans serovar Manilae, were characterized. In M754, the transposon inserted in the middle of lruA, resulting in no detectable expression of LruA. In M765, the transposon inserted toward the 3′ end of the gene, resulting in expression of a truncated protein. LruA was demonstrated to be on the cell surface in M765 and the wild type (WT). M754, but not M765, was attenuated in a hamster model of acute infection. A search for differential binding to human serum proteins identified a serum protein of around 30 kDa bound to the wild type and the LruA deletion mutant (M754), but not to the LruA truncation mutant (M765). Two-dimensional separation of proteins from leptospiral cells incubated with guinea pig serum identified the 28-kDa apolipoprotein A-I (ApoA-I) as a major mammalian serum protein that binds Leptospira in vitro. Interestingly, M754 (with no detectable LruA) bound more ApoA-I than did the LruA-expressing strains Manilae wild type and M765. Our data thus identify LruA as a surface-exposed leptospiral virulence factor that contributes to leptospiral pathogenesis, possibly by modulating cellular interactions with serum protein ApoA-I.
doi:10.1128/IAI.01195-12
PMCID: PMC3811782  PMID: 23918777
6.  Major Surface Protein LipL32 Is Not Required for Either Acute or Chronic Infection with Leptospira interrogans▿ †  
Infection and Immunity  2008;77(3):952-958.
Leptospira interrogans is responsible for leptospirosis, a zoonosis of worldwide distribution. LipL32 is the major outer membrane protein of pathogenic leptospires, accounting for up to 75% of total outer membrane protein. In recent times LipL32 has become the focus of intense study because of its surface location, dominance in the host immune response, and conservation among pathogenic species. In this study, an lipL32 mutant was constructed in L. interrogans using transposon mutagenesis. The lipL32 mutant had normal morphology and growth rate compared to the wild type and was equally adherent to extracellular matrix. Protein composition of the cell membranes was found to be largely unaffected by the loss of LipL32, with no obvious compensatory increase in other proteins. Microarray studies found no obvious stress response or upregulation of genes that may compensate for the loss of LipL32 but did suggest an association between LipL32 and the synthesis of heme and vitamin B12. When hamsters were inoculated by systemic and mucosal routes, the mutant caused acute severe disease manifestations that were indistinguishable from wild-type L. interrogans infection. In the rat model of chronic infection, the LipL32 mutant colonized the renal tubules as efficiently as the wild-type strain. In conclusion, this study showed that LipL32 does not play a role in either the acute or chronic models of infection. Considering the abundance and conservation of LipL32 among all pathogenic Leptospira spp. and its absence in saprophytic Leptospira, this finding is remarkable. The role of this protein in leptospiral biology and pathogenesis thus remains elusive.
doi:10.1128/IAI.01370-08
PMCID: PMC2643616  PMID: 19103763
7.  A Putative Regulatory Genetic Locus Modulates Virulence in the Pathogen Leptospira interrogans 
Infection and Immunity  2014;82(6):2542-2552.
Limited research has been conducted on the role of transcriptional regulators in relation to virulence in Leptospira interrogans, the etiological agent of leptospirosis. Here, we identify an L. interrogans locus that encodes a sensor protein, an anti-sigma factor antagonist, and two genes encoding proteins of unknown function. Transposon insertion into the gene encoding the sensor protein led to dampened transcription of the other 3 genes in this locus. This lb139 insertion mutant (the lb139− mutant) displayed attenuated virulence in the hamster model of infection and reduced motility in vitro. Whole-transcriptome analyses using RNA sequencing revealed the downregulation of 115 genes and the upregulation of 28 genes, with an overrepresentation of gene products functioning in motility and signal transduction and numerous gene products with unknown functions, predicted to be localized to the extracellular space. Another significant finding encompassed suppressed expression of the majority of the genes previously demonstrated to be upregulated at physiological osmolarity, including the sphingomyelinase C precursor Sph2 and LigB. We provide insight into a possible requirement for transcriptional regulation as it relates to leptospiral virulence and suggest various biological processes that are affected due to the loss of native expression of this genetic locus.
doi:10.1128/IAI.01803-14
PMCID: PMC4019197  PMID: 24686063
8.  Leptospiral Outer Membrane Protein LipL41 Is Not Essential for Acute Leptospirosis but Requires a Small Chaperone Protein, Lep, for Stable Expression 
Infection and Immunity  2013;81(8):2768-2776.
Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira spp., but knowledge of leptospiral pathogenesis remains limited. However, the development of mutagenesis systems has allowed the investigation of putative virulence factors and their involvement in leptospirosis. LipL41 is the third most abundant lipoprotein found in the outer membranes of pathogenic leptospires and has been considered a putative virulence factor. LipL41 is encoded on the large chromosome 28 bp upstream of a small open reading frame encoding a hypothetical protein of unknown function. This gene was named lep, for LipL41 expression partner. In this study, lipL41 was found to be cotranscribed with lep. Two transposon mutants were characterized: a lipL41 mutant and a lep mutant. In the lep mutant, LipL41 protein levels were reduced by approximately 90%. Lep was shown through cross-linking and coexpression experiments to bind to LipL41. Lep is proposed to be a molecular chaperone essential for the stable expression of LipL41. The roles of LipL41 and Lep in the pathogenesis of Leptospira interrogans were investigated; surprisingly, neither of these two unique proteins was essential for acute leptospirosis.
doi:10.1128/IAI.00531-13
PMCID: PMC3719587  PMID: 23690405
9.  The essential genome of a bacterium 
This study reports the essential Caulobacter genome at 8 bp resolution determined by saturated transposon mutagenesis and high-throughput sequencing. This strategy is applicable to full genome essentiality studies in a broad class of bacterial species.
The essential Caulobacter genome was determined at 8 bp resolution using hyper-saturated transposon mutagenesis coupled with high-throughput sequencing.Essential protein-coding sequences comprise 90% of the essential genome; the remaining 10% comprising essential non-coding RNA sequences, gene regulatory elements and essential genome replication features.Of the 3876 annotated open reading frames (ORFs), 480 (12.4%) were essential ORFs, 3240 (83.6%) were non-essential ORFs and 156 (4.0%) were ORFs that severely impacted fitness when mutated.The essential elements are preferentially positioned near the origin and terminus of the Caulobacter chromosome.This high-resolution strategy is applicable to high-throughput, full genome essentiality studies and large-scale genetic perturbation experiments in a broad class of bacterial species.
The regulatory events that control polar differentiation and cell-cycle progression in the bacterium Caulobacter crescentus are highly integrated, and they have to occur in the proper order (McAdams and Shapiro, 2011). Components of the core regulatory circuit are largely known. Full discovery of its essential genome, including non-coding, regulatory and coding elements, is a prerequisite for understanding the complete regulatory network of this bacterial cell. We have identified all the essential coding and non-coding elements of the Caulobacter chromosome using a hyper-saturated transposon mutagenesis strategy that is scalable and can be readily extended to obtain rapid and accurate identification of the essential genome elements of any sequenced bacterial species at a resolution of a few base pairs.
We engineered a Tn5 derivative transposon (Tn5Pxyl) that carries at one end an inducible outward pointing Pxyl promoter (Christen et al, 2010). We showed that this transposon construct inserts into the genome randomly where it can activate or disrupt transcription at the site of integration, depending on the insertion orientation. DNA from hundred of thousands of transposon insertion sites reading outward into flanking genomic regions was parallel PCR amplified and sequenced by Illumina paired-end sequencing to locate the insertion site in each mutant strain (Figure 1). A single sequencing run on DNA from a mutagenized cell population yielded 118 million raw sequencing reads. Of these, >90 million (>80%) read outward from the transposon element into adjacent genomic DNA regions and the insertion site could be mapped with single nucleotide resolution. This yielded the location and orientation of 428 735 independent transposon insertions in the 4-Mbp Caulobacter genome.
Within non-coding sequences of the Caulobacter genome, we detected 130 non-disruptable DNA segments between 90 and 393 bp long in addition to all essential promoter elements. Among 27 previously identified and validated sRNAs (Landt et al, 2008), three were contained within non-disruptable DNA segments and another three were partially disruptable, that is, insertions caused a notable growth defect. Two additional small RNAs found to be essential are the transfer-messenger RNA (tmRNA) and the ribozyme RNAseP (Landt et al, 2008). In addition to the 8 non-disruptable sRNAs, 29 out of the 130 intergenic essential non-coding sequences contained non-redundant tRNA genes; duplicated tRNA genes were non-essential. We also identified two non-disruptable DNA segments within the chromosomal origin of replication. Thus, we resolved essential non-coding RNAs, tRNAs and essential replication elements within the origin region of the chromosome. An additional 90 non-disruptable small genome elements of currently unknown function were identified. Eighteen of these are conserved in at least one closely related species. Only 2 could encode a protein of over 50 amino acids.
For each of the 3876 annotated open reading frames (ORFs), we analyzed the distribution, orientation, and genetic context of transposon insertions. There are 480 essential ORFs and 3240 non-essential ORFs. In addition, there were 156 ORFs that severely impacted fitness when mutated. The 8-bp resolution allowed a dissection of the essential and non-essential regions of the coding sequences. Sixty ORFs had transposon insertions within a significant portion of their 3′ region but lacked insertions in the essential 5′ coding region, allowing the identification of non-essential protein segments. For example, transposon insertions in the essential cell-cycle regulatory gene divL, a tyrosine kinase, showed that the last 204 C-terminal amino acids did not impact viability, confirming previous reports that the C-terminal ATPase domain of DivL is dispensable for viability (Reisinger et al, 2007; Iniesta et al, 2010). In addition, we found that 30 out of 480 (6.3%) of the essential ORFs appear to be shorter than the annotated ORF, suggesting that these are probably mis-annotated.
Among the 480 ORFs essential for growth on rich media, there were 10 essential transcriptional regulatory proteins, including 5 previously identified cell-cycle regulators (McAdams and Shapiro, 2003; Holtzendorff et al, 2004; Collier and Shapiro, 2007; Gora et al, 2010; Tan et al, 2010) and 5 uncharacterized predicted transcription factors. In addition, two RNA polymerase sigma factors RpoH and RpoD, as well as the anti-sigma factor ChrR, which mitigates rpoE-dependent stress response under physiological growth conditions (Lourenco and Gomes, 2009), were also found to be essential. Thus, a set of 10 transcription factors, 2 RNA polymerase sigma factors and 1 anti-sigma factor are the core essential transcriptional regulators for growth on rich media. To further characterize the core components of the Caulobacter cell-cycle control network, we identified all essential regulatory sequences and operon transcripts. Altogether, the 480 essential protein-coding and 37 essential RNA-coding Caulobacter genes are organized into operons such that 402 individual promoter regions are sufficient to regulate their expression. Of these 402 essential promoters, the transcription start sites (TSSs) of 105 were previously identified (McGrath et al, 2007).
The essential genome features are non-uniformly distributed on the Caulobacter genome and enriched near the origin and the terminus regions. In contrast, the chromosomal positions of the published E. coli essential coding sequences (Rocha, 2004) are preferentially located at either side of the origin (Figure 4A). This indicates that there are selective pressures on chromosomal positioning of some essential elements (Figure 4A).
The strategy described in this report could be readily extended to quickly determine the essential genome for a large class of bacterial species.
Caulobacter crescentus is a model organism for the integrated circuitry that runs a bacterial cell cycle. Full discovery of its essential genome, including non-coding, regulatory and coding elements, is a prerequisite for understanding the complete regulatory network of a bacterial cell. Using hyper-saturated transposon mutagenesis coupled with high-throughput sequencing, we determined the essential Caulobacter genome at 8 bp resolution, including 1012 essential genome features: 480 ORFs, 402 regulatory sequences and 130 non-coding elements, including 90 intergenic segments of unknown function. The essential transcriptional circuitry for growth on rich media includes 10 transcription factors, 2 RNA polymerase sigma factors and 1 anti-sigma factor. We identified all essential promoter elements for the cell cycle-regulated genes. The essential elements are preferentially positioned near the origin and terminus of the chromosome. The high-resolution strategy used here is applicable to high-throughput, full genome essentiality studies and large-scale genetic perturbation experiments in a broad class of bacterial species.
doi:10.1038/msb.2011.58
PMCID: PMC3202797  PMID: 21878915
functional genomics; next-generation sequencing; systems biology; transposon mutagenesis
10.  High-Temperature Protein G Is an Essential Virulence Factor of Leptospira interrogans 
Infection and Immunity  2014;82(3):1123-1131.
Leptospira interrogans is a global zoonotic pathogen and is the causative agent of leptospirosis, an endemic disease of humans and animals worldwide. There is limited understanding of leptospiral pathogenesis; therefore, further elucidation of the mechanisms involved would aid in vaccine development and the prevention of infection. HtpG (high-temperature protein G) is the bacterial homolog to the highly conserved molecular chaperone Hsp90 and is important in the stress responses of many bacteria. The specific role of HtpG, especially in bacterial pathogenesis, remains largely unknown. Through the use of an L. interrogans htpG transposon insertion mutant, this study demonstrates that L. interrogans HtpG is essential for virulence in the hamster model of acute leptospirosis. Complementation of the htpG mutant completely restored virulence. Surprisingly, the htpG mutant did not appear to show sensitivity to heat or oxidative stress, phenotypes common in htpG mutants in other bacterial species. Furthermore, the mutant did not show increased sensitivity to serum complement, reduced survival within macrophages, or altered protein or lipopolysaccharide expression. The underlying cause for attenuation thus remains unknown, but HtpG is a novel leptospiral virulence factor and one of only a very small number identified to date.
doi:10.1128/IAI.01546-13
PMCID: PMC3958012  PMID: 24366253
11.  Isolation and Characterization of Two Novel Plasmids from Pathogenic Leptospira interrogans Serogroup Canicola Serovar Canicola Strain Gui44 
Background
Previous genomic analysis of pathogenic Leptospira has identified two circular chromosomes but no plasmid. This study aims to investigate potential extrachromosomal elements of L.interrogans serovar Canicola strain Gui44.
Methodology
Two novel plasmids, pGui1 and pGui2, were isolated from the pathogenic strain Gui44, using a modified alkaline lysis method. Southern blotting was performed to determine the presence and size of them. Then, 454 and Hiseq sequencing were applied to obtain and analyze the complete sequences of the two plasmids. Furthermore, real-time quantitative PCR and next-generation sequencing were used to compare relative copy numbers of the two plasmids with that of the chromosomes. Finally, after serial passages in vitro for more than 2 years, the strain Gui44 was subsequently re-sequenced to estimate stability of the two plasmids.
Principal Findings
The larger plasmid, pGui1, 74,981 base pairs (bp) in length with GC content of 34.63%, possesses 62 open reading frames (ORFs). The smaller plasmid, pGui2, is 66,851 bp in length with GC content of 33.33%, and contains 63 ORFs. The replication initiation proteins encoded by pGui1 and pGui2 demonstrate significant sequence similarity with LA1839 (86% and 88%), a well-known replication protein in another pathogenic L.interrogans serovar Lai strain Lai, suggesting the ability for autonomous plasmid replication. Quantitative PCR and next-generation sequencing confirms a single copy of both plasmids and their stable presence in the strain Gui44 with in vitro serial passages after more than 2 years. Interestingly, the two plasmids both contain a significant number of novel genes (35 in pGui1 and 52 in pGui2).
Conclusions
This report confirms the presence of two separate circular plasmids in serovar Canicola strain Gui44 and provides a new understanding of genomic organization, adaptation, evolution and pathogenesis of Leptospira, which will aid in the development of in vivo genetic manipulation systems in pathogenic Leptospira species.
Author Summary
Leptospira species are the causative agent of leptospirosis, one of the most common animal to human transmitted diseases. Previous genomic analysis of L.interrogans serovar Lai and Copenhageni has identified the presence of large (4.33 mega base) and small (350 kilo base) circular chromosomes without evidence of any plasmids. Detailed understanding of Leptospira and its pathogenicity was delayed by the lack of available genetic tools. In this study we confirm the existence of two novel plasmids in L.interrogans serovar Canicola strain Gui44, an epidemic strain in China. Some novel genes identified in the two plasmids may play important roles in the characterization of the strain. The two plasmids will provide useful information in understanding the diversity of Leptospira genome and markedly improve our understanding of the evolution and pathogenesis of L.interrogans. In particular, it will contribute to the development of genetic manipulation systems in pathogenic Leptospira species.
doi:10.1371/journal.pntd.0003103
PMCID: PMC4140679  PMID: 25144555
12.  Targeted Mutagenesis in Pathogenic Leptospira Species: Disruption of the LigB Gene Does Not Affect Virulence in Animal Models of Leptospirosis▿  
Infection and Immunity  2008;76(12):5826-5833.
The pathogenic mechanisms of Leptospira interrogans, the causal agent of leptospirosis, remain largely unknown. This is mainly due to the lack of tools for genetically manipulating pathogenic Leptospira species. Thus, homologous recombination between introduced DNA and the corresponding chromosomal locus has never been demonstrated for this pathogen. Leptospiral immunoglobulin-like repeat (Lig) proteins were previously identified as putative Leptospira virulence factors. In this study, a ligB mutant was constructed by allelic exchange in L. interrogans; in this mutant a spectinomycin resistance (Spcr) gene replaced a portion of the ligB coding sequence. Gene disruption was confirmed by PCR, immunoblot analysis, and immunofluorescence studies. The ligB mutant did not show decrease virulence compared to the wild-type strain in the hamster model of leptospirosis. In addition, inoculation of rats with the ligB mutant induced persistent colonization of the kidneys. Finally, LigB was not required to mediate bacterial adherence to cultured cells. Taken together, our data provide the first evidence of site-directed homologous recombination in pathogenic Leptospira species. Furthermore, our data suggest that LigB does not play a major role in dissemination of the pathogen in the host and in the development of acute disease manifestations or persistent renal colonization.
doi:10.1128/IAI.00989-08
PMCID: PMC2583567  PMID: 18809657
13.  Live Imaging of Bioluminescent Leptospira interrogans in Mice Reveals Renal Colonization as a Stealth Escape from the Blood Defenses and Antibiotics 
Leptospira (L.) interrogans are bacteria responsible for a worldwide reemerging zoonosis. Some animals asymptomatically carry L. interrogans in their kidneys and excrete bacteria in their urine, which contaminates the environment. Humans are infected through skin contact with leptospires and develop mild to severe leptospirosis. Previous attempts to construct fluorescent or bioluminescent leptospires, which would permit in vivo visualization and investigation of host defense mechanisms during infection, have been unsuccessful. Using a firefly luciferase cassette and random transposition tools, we constructed bioluminescent chromosomal transformants in saprophytic and pathogenic leptospires. The kinetics of leptospiral dissemination in mice, after intraperitoneal inoculation with a pathogenic transformant, was tracked by bioluminescence using live imaging. For infective doses of 106 to 107 bacteria, we observed dissemination and exponential growth of leptospires in the blood, followed by apparent clearance of bacteria. However, with 2×108 bacteria, the septicemia led to the death of mice within 3 days post-infection. In surviving mice, one week after infection, pathogenic leptospires reemerged only in the kidneys, where they multiplied and reached a steady state, leading to a sustained chronic renal infection. These experiments reveal that a fraction of the leptospiral population escapes the potent blood defense, and colonizes a defined number of niches in the kidneys, proportional to the infective dose. Antibiotic treatments failed to eradicate leptospires that colonized the kidneys, although they were effective against L. interrogans if administered before or early after infection. To conclude, mice infected with bioluminescent L. interrogans proved to be a novel model to study both acute and chronic leptospirosis, and revealed that, in the kidneys, leptospires are protected from antibiotics. These bioluminescent leptospires represent a powerful new tool to challenge mice treated with drugs or vaccines, and test the survival, dissemination, and transmission of leptospires between environment and hosts.
Author Summary
Leptospirosis is a worldwide neglected disease caused by the pathogenic bacterium named Leptospira interrogans. Some rodents, such as rats, do not get sick from leptospirosis and constitute a reservoir. They carry leptospires in their kidneys and excrete the bacteria in the environment. L. interrogans are mobile and penetrate their hosts through abraded skin or mucosa. Infected humans may develop mild to severe leptospirosis, potentially leading to death. Leptospires are difficult to cultivate and to genetically manipulate, impairing the study of leptospirosis. Here, we constructed bioluminescent leptospires, and monitored infection in live mice by tracking bioluminescence. In the first days after infection, a rapid dissemination and growth of bacteria was observed in the blood circulation, followed around one week after the infection by their apparent disappearance. However, the leptospires reemerged and multiplied in the kidneys, to reach sustained levels three weeks after infection. The use of antibiotics showed that antibiotic-susceptible L. interrogans are very difficult to eradicate once they are settled in the kidneys. Mice infected with bioluminescent leptospires represent a pertinent model to study leptospirosis. These bioluminescent leptospires are novel tools that will be useful to test the efficacy of treatments or vaccines against leptospirosis.
doi:10.1371/journal.pntd.0003359
PMCID: PMC4256284  PMID: 25474719
14.  Cross-protective Immunity Against Leptospirosis Elicited by a Live, Attenuated Lipopolysaccharide Mutant 
The Journal of Infectious Diseases  2011;203(6):870-879.
Background. Leptospira species cause leptospirosis, a zoonotic disease found worldwide. Current vaccines against leptospirosis provide protection only against closely related serovars.
Methods. We evaluated an attenuated transposon mutant of Leptospira interrogans serovar Manilae (M1352, defective in lipopolysaccharide biosynthesis) as a live vaccine against leptospirosis. Hamsters received a single dose of vaccine and were challenged with the homologous serovar (Manilae) and a serologically unrelated heterologous serovar (Pomona). Comparisons were made with killed vaccines. Potential cross-protective antigens against leptospirosis were investigated.
Results. Live M1352 vaccine induced superior protection in hamsters against homologous challenge. The live vaccine also stimulated cross-protection against heterologous challenge, with 100% survival (live M1352) versus 40% survival (killed vaccine). Hamsters receiving either vaccine responded to the dominant membrane proteins LipL32 and LipL41. Hamsters receiving the live vaccine additionally recognized LA3961/OmpL36 (unknown function), Loa22 (OmpA family protein, recognized virulence factor), LA2372 (general secretory protein G), and LA1939 (hypothetical protein). Manilae LigA was recognized by M1352 vaccinates, whereas LipL36 was detected in Pomona.
Conclusion. This study demonstrated that a live, attenuated vaccine can stimulate cross-protective immunity to L. interrogans and has identified antigens that potentially confer cross-protection against leptospirosis.
doi:10.1093/infdis/jiq127
PMCID: PMC3071135  PMID: 21220775
15.  Transposon Express, a software application to report the identity of insertions obtained by comprehensive transposon mutagenesis of sequenced genomes: analysis of the preference for in vitro Tn5 transposition into GC-rich DNA 
Nucleic Acids Research  2004;32(14):e113.
Comprehensive mutant libraries can be readily constructed by transposon mutagenesis. To systematically mutagenise the genome of the Gram-positive bacterium Streptomyces coelicolor A3(2), we have employed high-throughput shuttle transposon mutagenesis of a cosmid library prepared in Escherichia coli. The location of transposon insertions is determined using automated procedures for cosmid isolation and DNA sequencing. However, a major bottleneck was the subsequent analysis of DNA sequence files. To overcome this limitation, a software application, Transposon Express, was written to allow the rapid location of transposon insertions in a sequenced genome (available at http://www.swan.ac.uk/genetics/dyson/InstallTE). Transposon Express determines the identity both of a disrupted open reading frame (ORF), and the short target site duplication created by transposition. Transposon Express also reports the orientation of the transposon and can therefore predict transcriptional coupling between an upstream promoter and a promoter-less reporter gene carried by the transposon. Analysis of a large dataset of independent insertions created using a Tn5-based transposon revealed an insertional preference for GC-rich streptomycete DNA compared to E.coli vector DNA. In addition to demonstrating the value of Transposon Express as a generic tool supporting genome-wide transposon mutagenesis programs, these data provide insight into target site selection by Tn5.
doi:10.1093/nar/gnh112
PMCID: PMC514396  PMID: 15308758
16.  Comparative and Functional Genomic Analyses of Iron Transport and Regulation in Leptospira spp.▿ †  
Journal of Bacteriology  2006;188(22):7893-7904.
The spirochetes of the Leptospira genus contain saprophytic and pathogenic members, the latter being responsible for leptospirosis. Despite the recent sequencing of the genome of the pathogen L. interrogans, the slow growth of these bacteria, their virulence in humans, and a lack of genetic tools make it difficult to work with these pathogens. In contrast, the development of numerous genetic tools for the saprophyte L. biflexa enables its use as a model bacterium. Leptospira spp. require iron for growth. In this work, we show that Leptospira spp. can acquire iron from different sources, including siderophores. A comparative genome analysis of iron uptake systems and their regulation in the saprophyte L. biflexa and the pathogen L. interrogans is presented in this study. Our data indicated that, for instance, L. biflexa and L. interrogans contain 8 and 12 genes, respectively, whose products share homology with proteins that have been shown to be TonB-dependent receptors. We show that some genes involved in iron uptake were differentially expressed in response to iron. In addition, we were able to disrupt several putative genes involved in iron acquisition systems or iron regulation in L. biflexa. Comparative genomics, in combination with gene inactivation, gives us significant functional information on iron homeostasis in Leptospira spp.
doi:10.1128/JB.00711-06
PMCID: PMC1636298  PMID: 16980464
17.  Genome-Scale Metabolic Network Validation of Shewanella oneidensis Using Transposon Insertion Frequency Analysis 
PLoS Computational Biology  2014;10(9):e1003848.
Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA). TIFA incorporated the observed genome and sequence motif bias of the miniHimar transposon. The gene essentiality calls were compared to: 1) previous genome-wide direct gene-essentiality assignments; and, 2) flux balance analysis (FBA) predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential, and that genes that contain insertions are not always nonessential. The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis, but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions.
Author Summary
Metabolic modeling techniques play a central role in rational design of industrial strains, personalized medicine, and automated network reconstruction. However, due to the large size of models, very few have been comprehensively tested using single gene knockout mutants for every gene in the model. Such a genetic test could evaluate whether genes that for a given condition are predicted to be essential by a model, are indeed essential in reality (and vice versa). We developed a new probability-based technology that identifies the essentiality of genes from observed transposon insertion data. This data was acquired by pooling tens of thousands of transposon mutants, and localizing the insertion locations all at once by using massive parallel sequencing. We utilized this gene essentiality data for the genome-scale genetic validation of a metabolic model. For instance: our work identified nonessential genes that were predicted to be essential for growth by an existing metabolic model of Shewanella oneidensis, highlighting incomplete areas within this metabolic model.
doi:10.1371/journal.pcbi.1003848
PMCID: PMC4168976  PMID: 25233219
18.  Inactivation of clpB in the Pathogen Leptospira interrogans Reduces Virulence and Resistance to Stress Conditions ▿ †  
Infection and Immunity  2011;79(9):3711-3717.
Leptospira interrogans is the causative agent of leptospirosis, which is an emerging zoonotic disease. Resistance to stress conditions is largely uncharacterized for this bacterium. We therefore decided to analyze a clpB mutant that we obtained by random transposon mutagenesis. The mutant did not produce any of the two isoforms of ClpB. The clpB mutant exhibited growth defects at 30° and 37°C and in poor nutrient medium and showed increased susceptibility to oxidative stress, whereas the genetically complemented strain was restored in ClpB expression and in vitro wild-type growth. We also showed that the clpB mutant was attenuated in virulence in an animal model of acute leptospirosis. Our findings demonstrate that ClpB is involved in the general stress response. The chaperone is also necessary, either directly or indirectly, for the virulence of the pathogen L. interrogans.
doi:10.1128/IAI.05168-11
PMCID: PMC3165490  PMID: 21730091
19.  In silico and microarray-based genomic approaches to identifying potential vaccine candidates against Leptospira interrogans 
BMC Genomics  2006;7:293.
Background
Currently available vaccines against leptospirosis are of low efficacy, have an unacceptable side-effect profile, do not induce long-term protection, and provide no cross-protection against the different serovars of pathogenic leptospira. The current major focus in leptospirosis research is to discover conserved protective antigens that may elicit longer-term protection against a broad range of Leptospira. There is a need to screen vaccine candidate genes in the genome of Leptospira interrogans.
Results
Bioinformatics, comparative genomic hybridization (CGH) analysis and transcriptional analysis were used to identify vaccine candidates in the genome of L. interrogans serovar Lai strain #56601. Of a total of 4727 open reading frames (ORFs), 616 genes were predicted to encode surface-exposed proteins by P-CLASSIFIER combined with signal peptide prediction, α-helix transmembrane topology prediction, integral β-barrel outer membrane protein and lipoprotein prediction, as well as by retaining the genes shared by the two sequenced L. interrogans genomes and by subtracting genes with human homologues. A DNA microarray of L. interrogans strain #56601 was constructed for CGH analysis and transcriptome analysis in vitro. Three hundred and seven differential genes were identified in ten pathogenic serovars by CGH; 1427 genes had high transcriptional levels (Cy3 signal ≥ 342 and Cy5 signal ≥ 363.5, respectively). There were 565 genes in the intersection between the set encoding surface-exposed proteins and the set of 307 differential genes. The number of genes in the intersection between this set of 565 and the set of 1427 highly transcriptionally active genes was 226. These 226 genes were thus identified as putative vaccine candidates. The proteins encoded by these genes are not only potentially surface-exposed in the bacterium, but also conserved in two sequenced L. interrogans. Moreover, these genes are conserved among ten epidemic serovars in China and have high transcriptional levels in vitro.
Conclusion
Of the 4727 ORFs in the genome of L. interrogans, 226 genes were identified as vaccine candidates by bioinformatics, CGH and transcriptional analysis on the basis of the theory of reverse vaccinology. The proteins encoded by these genes might be useful as vaccine candidates as well as for diagnosis of leptospirosis.
doi:10.1186/1471-2164-7-293
PMCID: PMC1664576  PMID: 17109759
20.  Targeted and Random Mutagenesis of Ehrlichia chaffeensis for the Identification of Genes Required for In vivo Infection 
PLoS Pathogens  2013;9(2):e1003171.
Ehrlichia chaffeensis is a tick transmitted pathogen responsible for the disease human monocytic ehrlichiosis. Research to elucidate gene function in rickettsial pathogens is limited by the lack of genetic manipulation methods. Mutational analysis was performed, targeting to specific and random insertion sites within the bacterium's genome. Targeted mutagenesis at six genomic locations by homologous recombination and mobile group II intron-based methods led to the consistent identification of mutants in two genes and in one intergenic site; the mutants persisted in culture for 8 days. Three independent experiments using Himar1 transposon mutagenesis of E. chaffeensis resulted in the identification of multiple mutants; these mutants grew continuously in macrophage and tick cell lines. Nine mutations were confirmed by sequence analysis. Six insertions were located within non-coding regions and three were present in the coding regions of three transcriptionally active genes. The intragenic mutations prevented transcription of all three genes. Transposon mutants containing a pool of five different insertions were assessed for their ability to infect deer and subsequent acquisition by Amblyomma americanum ticks, the natural reservoir and vector, respectively. Three of the five mutants with insertions into non-coding regions grew well in deer. Transposition into a differentially expressed hypothetical gene, Ech_0379, and at 18 nucleotides downstream to Ech_0230 gene coding sequence resulted in the inhibition of growth in deer, which is further evidenced by their failed acquisition by ticks. Similarly, a mutation into the coding region of ECH_0660 gene inhibited the in vivo growth in deer. This is the first study evaluating targeted and random mutagenesis in E. chaffeensis, and the first to report the generation of stable mutants in this obligate intracellular bacterium. We further demonstrate that in vitro mutagenesis coupled with in vivo infection assessment is a successful strategy in identifying genomic regions required for the pathogen's in vivo growth.
Author Summary
The tick-transmitted bacterium, Ehrlichia chaffeensis, causes human monocytic ehrlichiosis, an acute febrile illness that can progress to a fatal outcome. This and other related pathogens have evolved to establish infections in vertebrate and tick hosts for completing their lifecycle. Our recent studies suggest that the pathogen's differential gene expression during growth in ticks and mammals is a major contributor for its dual host adaptation. However, the importance of the pathogen phenotype differences is best understood if we have methods to knock down protein expression from one or more genes. Creating mutations in obligate intracellular pathogens remain a challenge due to their limited survival in the extracellular environment. Here, we present evidence for multiple insertion mutations in the E. chaffeensis genome. Three of the nine mutations in the genome inhibiting gene expression prevented infection of deer, the natural host for the pathogen. This is the first study demonstrating the feasibility of creating mutations in an Ehrlichia species; and directly linking specific regions of the genome to in vivo infection. Methods described here allow for studies to define genes important for infectivity and ability to cause disease, and are equally important for initiating similar studies in other related emerging zoonotic pathogens.
doi:10.1371/journal.ppat.1003171
PMCID: PMC3573109  PMID: 23459099
21.  A Model System for Studying the Transcriptomic and Physiological Changes Associated with Mammalian Host-Adaptation by Leptospira interrogans Serovar Copenhageni 
PLoS Pathogens  2014;10(3):e1004004.
Leptospirosis, an emerging zoonotic disease with worldwide distribution, is caused by spirochetes belonging to the genus Leptospira. More than 500,000 cases of severe leptospirosis are reported annually, with >10% of these being fatal. Leptospires can survive for weeks in suitably moist conditions before encountering a new host. Reservoir hosts, typically rodents, exhibit little to no signs of disease but shed large numbers of organisms in their urine. Transmission occurs when mucosal surfaces or abraded skin come into contact with infected urine or urine-contaminated water or soil. In humans, leptospires can cause a variety of clinical manifestations, ranging from asymptomatic or mild fever to severe icteric (Weil's) disease and pulmonary haemorrhage. Currently, little is known about how Leptospira persist within a reservoir host. Prior in vitro studies have suggested that leptospires alter their transcriptomic and proteomic profiles in response to environmental signals encountered during mammalian infection. However, no study has examined gene expression by leptospires within a mammalian host-adapted state. To obtain a more faithful representation of how leptospires respond to host-derived signals, we used RNA-Seq to compare the transcriptome of L. interrogans cultivated within dialysis membrane chambers (DMCs) implanted into the peritoneal cavities of rats with that of organisms grown in vitro. In addition to determining the relative expression levels of “core” housekeeping genes under both growth conditions, we identified 166 genes that are differentially-expressed by L. interrogans in vivo. Our analyses highlight physiological aspects of host adaptation by leptospires relating to heme uptake and utilization. We also identified 11 novel non-coding transcripts that are candidate small regulatory RNAs. The DMC model provides a facile system for studying the transcriptional and antigenic changes associated with mammalian host-adaption, selection of targets for mutagenesis, and the identification of previously unrecognized virulence determinants.
Author Summary
Leptospirosis, a global disease caused by the unusual bacterium Leptospira, is transmitted from animals to humans. Pathogenic species of Leptospira are excreted in urine from infected animals and can continue to survive in suitable environments before coming into contact with a new reservoir or accidental host. Leptospires have an inherent ability to survive a wide range of conditions encountered in nature during transmission and within mammals. However, we know very little about the regulatory pathways and gene products that promote mammalian host adaptation and enable leptospires to establish infection. In this study, we used a novel system whereby leptospires are cultivated in dialysis membrane chambers implanted into the peritoneal cavities of rats to compare the gene expression profiles of mammalian host-adapted and in vitro-cultivated organisms. In addition to providing a facile system for studying the transcriptional and physiologic changes leptospires undergo during mammalian infection, our data provide a rational basis for selecting new targets for mutagenesis.
doi:10.1371/journal.ppat.1004004
PMCID: PMC3953431  PMID: 24626166
22.  FlaA Proteins in Leptospira interrogans Are Essential for Motility and Virulence but Are Not Required for Formation of the Flagellum Sheath 
Infection and Immunity  2012;80(6):2019-2025.
Spirochetes have periplasmic flagella composed of a core surrounded by a sheath. The pathogen Leptospira interrogans has four flaB (proposed core subunit) and two flaA (proposed sheath subunit) genes. The flaA genes are organized in a locus with flaA2 immediately upstream of flaA1. In this study, flaA1 and flaA2 mutants were constructed by transposon mutagenesis. Both mutants still produced periplasmic flagella. The flaA1 mutant did not produce FlaA1 but continued to produce FlaA2 and retained normal morphology and virulence in a hamster model of infection but had reduced motility. The flaA2 mutant did not produce either the FlaA1 or the FlaA2 protein. Cells of the flaA2 mutant lacked the distinctive hook-shaped ends associated with L. interrogans and lacked translational motility in liquid and semisolid media. These observations were confirmed with a second, independent flaA2 mutant. The flaA2 mutant failed to cause disease in animal models of acute infection. Despite lacking FlaA proteins, the flagella of the flaA2 mutant were of the same thickness as wild-type flagella, as measured by electron microscopy, and exhibited a normal flagellum sheath, indicating that FlaA proteins are not essential for the synthesis of the flagellum sheath, as observed for other spirochetes. This study shows that FlaA subunits contribute to leptospiral translational motility, cellular shape, and virulence.
doi:10.1128/IAI.00131-12
PMCID: PMC3370569  PMID: 22451522
23.  Responses of Human Endothelial Cells to Pathogenic and Non-Pathogenic Leptospira Species 
Leptospirosis is a widespread zoonotic infection that primarily affects residents of tropical regions, but causes infections in animals and humans in temperate regions as well. The agents of leptospirosis comprise several members of the genus Leptospira, which also includes non-pathogenic, saprophytic species. Leptospirosis can vary in severity from a mild, non-specific illness to severe disease that includes multi-organ failure and widespread endothelial damage and hemorrhage. To begin to investigate how pathogenic leptospires affect endothelial cells, we compared the responses of two endothelial cell lines to infection by pathogenic versus non-pathogenic leptospires. Microarray analyses suggested that pathogenic L. interrogans and non-pathogenic L. biflexa triggered changes in expression of genes whose products are involved in cellular architecture and interactions with the matrix, but that the changes were in opposite directions, with infection by L. biflexa primarily predicted to increase or maintain cell layer integrity, while L. interrogans lead primarily to changes predicted to disrupt cell layer integrity. Neither bacterial strain caused necrosis or apoptosis of the cells even after prolonged incubation. The pathogenic L. interrogans, however, did result in significant disruption of endothelial cell layers as assessed by microscopy and the ability of the bacteria to cross the cell layers. This disruption of endothelial layer integrity was abrogated by addition of the endothelial protective drug lisinopril at physiologically relevant concentrations. These results suggest that, through adhesion of L. interrogans to endothelial cells, the bacteria may disrupt endothelial barrier function, promoting dissemination of the bacteria and contributing to severe disease manifestations. In addition, supplementing antibiotic therapy with lisinopril or derivatives with endothelial protective activities may decrease the severity of leptospirosis.
Author Summary
Leptospirosis is a widespread zoonotic infection that primarily affects residents of tropical regions, but is seen occasionally in temperate regions as well. Leptospirosis can vary in severity from a mild, non-specific illness to severe disease that includes multi-organ failure and widespread endothelial damage and hemorrhage. To investigate how pathogenic leptospires affect endothelial cells, we compared the responses of two endothelial cell lines to infection by pathogenic versus non-pathogenic leptospires. Our analyses suggested that pathogenic L. interrogans and non-pathogenic L. biflexa caused changes in expression of genes whose products are involved in cellular architecture and interactions with the matrix, but that the changes were in opposite directions, with infection by L. biflexa primarily maintaining cell layer integrity, while L. interrogans disrupted cell layers. In fact, L. interrogans caused significant disruption of endothelial cell layers, but this damage could be abrogated by the endothelial protective drug lisinopril. Our results suggest that L. interrogans binds to endothelial cells and disrupts endothelial barrier function, which may promote dissemination of the bacteria and contribute to severe disease manifestations. This disruption may be slowed by endothelial-protective drugs to decrease damage in leptospirosis.
doi:10.1371/journal.pntd.0000918
PMCID: PMC3001904  PMID: 21179504
24.  Determining Risk for Severe Leptospirosis by Molecular Analysis of Environmental Surface Waters for Pathogenic Leptospira 
PLoS Medicine  2006;3(8):e308.
Background
Although previous data indicate that the overall incidence of human leptospirosis in the Peruvian Amazon is similar in urban and rural sites, severe leptospirosis has been observed only in the urban context. As a potential explanation for this epidemiological observation, we tested the hypothesis that concentrations of more virulent Leptospira would be higher in urban than in rural environmental surface waters.
Methods and Findings
A quantitative real-time PCR assay was used to compare levels of Leptospira in urban and rural environmental surface waters in sites in the Peruvian Amazon region of Iquitos. Molecular taxonomic analysis of a 1,200-bp segment of the leptospiral 16S ribosomal RNA gene was used to identify Leptospira to the species level. Pathogenic Leptospira species were found only in urban slum water sources (Fisher's exact test; p = 0.013). The concentration of pathogen-related Leptospira was higher in urban than rural water sources (~103 leptospires/ml versus 0.5 × 102 leptospires/ml; F = 8.406, p < 0.05). Identical 16S rRNA gene sequences from Leptospira interrogans serovar Icterohaemorrhagiae were found in urban slum market area gutter water and in human isolates, suggesting a specific mode of transmission from rats to humans. In a prospective, population-based study of patients presenting with acute febrile illness, isolation of L. interrogans-related leptospires from humans was significantly associated with urban acquisition (75% of urban isolates); human isolates of other leptospiral species were associated with rural acquisition (78% of rural isolates) (chi-square analysis; p < 0.01). This distribution of human leptospiral isolates mirrored the distribution of leptospiral 16S ribosomal gene sequences in urban and rural water sources.
Conclusions
Our findings data support the hypothesis that urban severe leptospirosis in the Peruvian Amazon is associated with higher concentrations of more pathogenic leptospires at sites of exposure and transmission. This combined quantitative and molecular taxonomical risk assessment of environmental surface waters is globally applicable for assessing risk for leptospiral infection and severe disease in leptospirosis-endemic regions.
Vinetz and colleagues used a quantitative real time PCR assay combined with molecular taxonomic analysis to quantify Leptospira in environmental surface waters in the Peruvian Amazon region of Iquitos.
Editors' Summary
Background.
Humans catch many diseases from animals—so-called zoonotic infections. Often, these occur in limited regions of the world. However, one—leptospirosis—occurs in temperate and tropical climates, and in urban and rural settings, making it the most widespread zoonotic disease. Leptospirosis is caused by Leptospira, a large group of closely related spiral-shaped bacteria that live in both domestic animals (for example, cattle) and wild animals (particularly rats). Millions of humans become infected each year with leptospires through close contact with water, food, or soil contaminated with the urine of infected animals—swimming or wading in contaminated water is particularly hazardous. Some infected people have no symptoms; others develop a flu-like disease that clears up within a few days. However, in 5%–10% of infected people, the disease progresses to a second, sometimes fatal phase. This is usually characterized by jaundice, kidney problems, and an enlarged spleen (it's then called Weil disease) but can also involve the lungs (pulmonary leptospirosis). Leptospirosis can be successfully treated with antibiotics if treatment is started soon after infection.
Why Was This Study Done?
In a recent study in the Peruvian Amazon, half of the people visiting urban hospitals and rural health posts with acute fever had antibodies in their blood to Leptospira, suggesting that they had acute leptospirosis. However, only patients living in urban areas developed pulmonary leptospirosis. In this study, the researchers tested the hypothesis that this pattern arose because more virulent types of Leptospira were present at higher levels in urban environmental surface water than in rural water sources.
What Did the Researchers Do and Find?
Between June 2003 and March 2004, the researchers isolated strains of Leptospira from patients with acute fever who visited a hospital in the town of Iquitos or clinics in nearby villages. Early in 2004, they also collected a large number of different water samples from an urban slum in Iquitos and from a nearby rural community. They measured the concentrations of Leptospira in these samples by using a molecular technique called real-time PCR (polymerase chain reaction) to detect and quantify a type of RNA found only in disease-causing Leptospira. They also identified which specific Leptospira were present in the water samples and the patient samples by sequencing this RNA. The researchers found that leptospires were present in both urban and rural water samples (particularly in samples from gutters and puddles in the urban slum's market area) but that their concentration in the positive water samples from the urban sites was 20 times that in the positive samples from the rural sites. Furthermore, the distribution of different Leptospira types isolated from the patients mirrored that of the bacteria in the local environment. So, one particular type of Leptospira interrogans known as icterohaemorrhagiae—the leptospire most commonly associated with severe leptospirosis in the patients—was found more often in the urban water samples than in the rural ones. Finally, the researchers discovered a new group of Leptospira in the rural environment. This group may contain one or several new species of Leptospira but whether any of them causes human disease is unknown.
What Do These Findings Mean?
These results support the researchers' hypothesis that pulmonary leptospirosis in urban areas of the Peruvian Amazon is associated with high environmental levels of specific disease-causing leptospires. The researchers were able to discover this link only by using molecular techniques—this sort of study is impossible with traditional bacteriological techniques because Leptospira are hard to grow in the laboratory and cannot be isolated efficiently from environmental water sources. Different types can't be identified using a microscope. The researchers' findings need to be validated in other settings, but they suggest that environmental interventions such as reducing sources of standing water and clearing away garbage in urban areas might reduce the number of cases of severe leptospirosis. The distribution of different Leptospira types also suggests that whereas rats may be the main disease reservoir in towns, cattle, pigs, and bats may be more important in rural settings in Peru and presumably elsewhere. Overall, this new information, together with the availability of molecular methods for rapid clinical diagnosis and environmental risk assessment, should aid attempts to control leptospirosis around the world.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030308.
US Centers for Disease Control and Prevention, information for patients and professionals on leptospirosis
The Leptospirosis Information Center, information and advice on human leptospirosis for the public and medical professionals
MedlinePlus encyclopedia entry on leptospirosis
NHS Direct Online, patient information on leptospirosis from the UK National Health Service online encyclopedia
Wikipedia pages on leptospirosis (note: Wikipedia is a free online encyclopedia that anyone can edit)
doi:10.1371/journal.pmed.0030308
PMCID: PMC1551915  PMID: 16933963
25.  Pathogenomic Inference of Virulence-Associated Genes in Leptospira interrogans 
Leptospirosis is a globally important, neglected zoonotic infection caused by spirochetes of the genus Leptospira. Since genetic transformation remains technically limited for pathogenic Leptospira, a systems biology pathogenomic approach was used to infer leptospiral virulence genes by whole genome comparison of culture-attenuated Leptospira interrogans serovar Lai with its virulent, isogenic parent. Among the 11 pathogen-specific protein-coding genes in which non-synonymous mutations were found, a putative soluble adenylate cyclase with host cell cAMP-elevating activity, and two members of a previously unstudied ∼15 member paralogous gene family of unknown function were identified. This gene family was also uniquely found in the alpha-proteobacteria Bartonella bacilliformis and Bartonella australis that are geographically restricted to the Andes and Australia, respectively. How the pathogenic Leptospira and these two Bartonella species came to share this expanded gene family remains an evolutionary mystery. In vivo expression analyses demonstrated up-regulation of 10/11 Leptospira genes identified in the attenuation screen, and profound in vivo, tissue-specific up-regulation by members of the paralogous gene family, suggesting a direct role in virulence and host-pathogen interactions. The pathogenomic experimental design here is generalizable as a functional systems biology approach to studying bacterial pathogenesis and virulence and should encourage similar experimental studies of other pathogens.
Author Summary
Leptospirosis is one of the most common diseases transmitted by animals worldwide. It is important because it causes an often lethal febrile illnesses in tropical and subtropical areas associated with poor sanitation and agriculture. Leptospirosis may be epidemic, associated with natural disasters and flooding, or endemic in tropical regions. It is unknown how Leptospira cause disease and why different strains cause different severity of illness. In this study we attenuated (weakened) a highly virulent strain of L. interrogans by culturing it in vitro over several months. Comparison of the whole genome sequence before and after the attenuation process revealed a small set of genes that were mutated, and therefore associated with virulence. We discovered a putative soluble adenylate cyclase with host cell cAMP elevating activity, with implications for immune evasion and a new gene family that is upregulated in vivo during acute hamster infection. Interestingly, both Bartonella bacilliformis and Bartonella australis also have this unique gene family we describe in pathogenic Leptospira. This information aids in our understanding of Leptospira evolution and pathogenesis.
doi:10.1371/journal.pntd.0002468
PMCID: PMC3789758  PMID: 24098822

Results 1-25 (847986)