PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (614648)

Clipboard (0)
None

Related Articles

1.  Unique Type I Interferon Responses Determine the Functional Fate of Migratory Lung Dendritic Cells during Influenza Virus Infection 
PLoS Pathogens  2011;7(11):e1002345.
Migratory lung dendritic cells (DCs) transport viral antigen from the lungs to the draining mediastinal lymph nodes (MLNs) during influenza virus infection to initiate the adaptive immune response. Two major migratory DC subsets, CD103+ DCs and CD11bhigh DCs participate in this function and it is not clear if these antigen presenting cell (APC) populations become directly infected and if so whether their activity is influenced by the infection. In these experiments we show that both subpopulations can become infected and migrate to the draining MLN but a difference in their response to type I interferon (I-IFN) signaling dictates the capacity of the virus to replicate. CD103+ DCs allow the virus to replicate to significantly higher levels than do the CD11bhigh DCs, and they release infectious virus in the MLNs and when cultured ex-vivo. Virus replication in CD11bhigh DCs is inhibited by I-IFNs, since ablation of the I-IFN receptor (IFNAR) signaling permits virus to replicate vigorously and productively in this subset. Interestingly, CD103+ DCs are less sensitive to I-IFNs upregulating interferon-induced genes to a lesser extent than CD11bhigh DCs. The attenuated IFNAR signaling by CD103+ DCs correlates with their described superior antigen presentation capacity for naïve CD8+ T cells when compared to CD11bhigh DCs. Indeed ablation of IFNAR signaling equalizes the competency of the antigen presenting function for the two subpopulations. Thus, antigen presentation by lung DCs is proportional to virus replication and this is tightly constrained by I-IFN. The “interferon-resistant” CD103+ DCs may have evolved to ensure the presentation of viral antigens to T cells in I-IFN rich environments. Conversely, this trait may be exploitable by viral pathogens as a mechanism for systemic dissemination.
Author Summary
Migratory lung dendritic cells (DCs) control the initiation of the adaptive immune responses to influenza virus by expanding virus-specific T cells in draining lymph nodes (MLNs) that will subsequently clear the pathogen from the respiratory tract. Here we demonstrate that both subsets of lung DCs, CD103+ DCs and CD11bhigh DCs become infected by influenza virus in vivo and migrate to the MLNs, but only CD103+ DCs support productive virus replication. Enhanced virus replication in CD103+ DCs compared to CD11bhigh DCs was responsible for their superior antigen presentation efficacy for naïve CD8+ T cells and originated from a difference in sensitivity of the two DC populations to type I interferon (I-IFN). These data show that in contrast to most other immune cell types, DCs can become productively infected with influenza virus and I-IFN operates as a master regulator controlling which DC subset will present antigen during a viral infection. A deeper understanding of basic innate and adaptive immune response mechanisms regulated by I-FN may lead to the development of cutting edge therapies and improve vaccine efficacy against influenza and other viruses.
doi:10.1371/journal.ppat.1002345
PMCID: PMC3207893  PMID: 22072965
2.  The route of priming influences the ability of respiratory virus–specific memory CD8+ T cells to be activated by residual antigen 
The Journal of Experimental Medicine  2010;207(6):1153-1160.
After respiratory virus infections, memory CD8+ T cells are maintained in the lung airways by a process of continual recruitment. Previous studies have suggested that this process is controlled, at least in the initial weeks after virus clearance, by residual antigen in the lung-draining mediastinal lymph nodes (MLNs). We used mouse models of influenza and parainfluenza virus infection to show that intranasally (i.n.) primed memory CD8+ T cells possess a unique ability to be reactivated by residual antigen in the MLN compared with intraperitoneally (i.p.) primed CD8+ T cells, resulting in the preferential recruitment of i.n.-primed memory CD8+ T cells to the lung airways. Furthermore, we demonstrate that the inability of i.p.-primed memory CD8+ T cells to access residual antigen can be corrected by a subsequent i.n. virus infection. Thus, two independent factors, initial CD8+ T cell priming in the MLN and prolonged presentation of residual antigen in the MLN, are required to maintain large numbers of antigen-specific memory CD8+ T cells in the lung airways.
doi:10.1084/jem.20090283
PMCID: PMC2882830  PMID: 20457758
3.  Protective influenza-specific CD8 T cell responses require interactions with dendritic cells in the lungs 
The Journal of Experimental Medicine  2008;205(7):1635-1646.
Influenza infections induce a rapid, but transient, dendritic cell (DC) migration from the lungs to the lymph nodes (LNs) that is followed by substantial recruitment of DCs into the lungs without subsequent migration to the LNs. Given that peripheral DCs are primarily thought to be involved in the initiation of adaptive immunity after migration into lymphoid tissues, what role these newly lung-recruited DCs play in influenza virus immunity is unclear. In this study, we demonstrate that loss of non-LN migratory pulmonary DC subsets increases mortality, sustains higher viral titers, and impairs pulmonary CD8 T cell responses. Reconstitution of the lungs with pulmonary plasmacytoid DCs, CD8α+ DCs, or interstitial DCs restores CD8 T cell responses in a cell contact–, major histocompatability complex I–, and influenza peptide–dependent manner. Thus, after their initial activation in the LN, protective influenza-specific CD8 T cell responses require additional antigen-dependent interactions, specifically with DCs in the lungs.
doi:10.1084/jem.20080314
PMCID: PMC2442641  PMID: 18591411
4.  Virus-specific antigen presentation by different subsets of cells from lung and mediastinal lymph node tissues of influenza virus-infected mice. 
Journal of Virology  1995;69(10):6359-6366.
Immune responses at mucosal sites are thought to be initiated in the draining lymph nodes, where dendritic cells present viral antigens and induce naive T cells to proliferate and to become effectors. Formal proof that antigen-presenting cells (APC) do indeed localize to the regional lymph nodes has been lacking for viral infections of the respiratory tract. Influenza virus was detected in the draining mediastinal lymph nodes (MLN) early after intranasal inoculation, with peak virus titers in this tissue measured at 2 days postinfection. Virus-specific cytotoxic T-lymphocyte responses were first detected in the MLN 1 day later. Macrophages, dendritic cells, and B lymphocytes were isolated from influenza virus-infected mice and assayed for the capacity to stimulate a major histocompatibility complex class I-restricted virus-specific T-cell hybridoma. All APC populations from lungs and MLN contained virus and thus had the potential to present antigen to CD8+ T cells. The APC recovered from the lungs of influenza virus-infected mice and dendritic cells from the MLN were able to stimulate virus-specific responses. The lack of a virus-specific T-cell response to B cells corresponds to the small number of virus-positive B lymphocytes in the MLN. These results indicate that dendritic cells and macrophages are antigen positive in mice acutely infected with an influenza A virus and that dendritic cells are probably responsible for initiating the cytotoxic T-lymphocyte response to influenza virus in the draining lymph nodes.
PMCID: PMC189535  PMID: 7666537
5.  Plasmacytoid dendritic cells inhibit pulmonary immunopathology and promote clearance of respiratory syncytial virus 
The Journal of Experimental Medicine  2006;203(5):1153-1159.
Respiratory syncytial virus (RSV) infection is widely spread and is a major cause of bronchiolitis in infants and high-risk adults, often leading to hospitalization. RSV infection leads to obstruction and inflammation of the airways and induction of innate and acquired immune responses. Because dendritic cells (DCs) are essential in the elicitation of these immune responses, we investigated the presence and the role of dendritic cell subtypes upon RSV infection in the lung. Here, we report that RSV infection increased the number of both conventional and plasmacytoid dendritic cells in the lung and the lung-draining lymph nodes. In particular, the increase in plasmacytoid dendritic cell numbers was sustained and lasted until 30 d after infection. Depletion of plasmacytoid dendritic cells resulted in decreased RSV clearance. In addition, depletion of plasmacytoid dendritic cells resulted in an exacerbation of all manifestations of immune-mediated pathology caused by RSV infection. In conclusion, this study demonstrates that both conventional and plasmacytoid dendritic cells are attracted to the site of RSV infection. It is demonstrated that plasmacytoid dendritic cells play a protective role during RSV infection by modulation of local immune responses.
doi:10.1084/jem.20052359
PMCID: PMC2121199  PMID: 16682497
6.  Alveolar macrophages regulate the induction of primary cytotoxic T-lymphocyte responses during influenza virus infection. 
Journal of Virology  1997;71(12):9450-9457.
Virus-specific cytotoxic T lymphocytes (CTL) are thought to be responsible for the eradication of respiratory influenza virus infections by direct cytolysis of virus-infected epithelial cells. In this study, we provide evidence for a role for alveolar macrophages (AM) in the regulation of pulmonary virus-specific CTL responses. Prior to infection with influenza virus, AM were selectively eliminated in vivo with a liposome-mediated depletion technique, and virus-specific CTL activities of lung and mediastinal lymph node (MLN) cells were assayed ex vivo and compared with those for normal mice. AM depletion resulted in increased primary CTL responses and changed the kinetics of the CTL response. Flow cytometric analysis of lung and MLN cells showed that the percentage of CD8+ cells was not altered after AM depletion and that lung cells from AM-depleted mice had an increased capacity to lyse virus-infected cells. Upon restimulation in vitro, virus-specific CTL activity in lung cells of normal mice was similar to that in lung cells of AM-depleted mice. Furthermore, elimination of AM resulted in increased virus titers in the lung, but virus clearance as a function of time was not affected. Our results show that AM regulate virus-specific CTL responses during respiratory influenza virus infection by removing viral particles, by downregulating the priming and activity of CTL in MLN cells, and by inhibiting the expansion of virus-specific CTL in the lung.
PMCID: PMC230250  PMID: 9371606
7.  Residual Antigen Presentation after Influenza Virus Infection Affects CD8 T Cell Activation and Migration 
Immunity  2006;24(4):439-449.
Summary
Activated virus-specific CD8 T cells remain in the lung airways for several months after influenza virus infection. We show that maintenance of this cell population is dependent upon the route of infection and prolonged presentation of viral antigen in the draining lymph nodes (DLN) of the respiratory tract. The local effects on T cell migration have been examined. We show retention of virus-specific CD8 T cells in the mediastinal lymph node (MLN) and continuing recruitment of blood-borne migrants into the lung airways during antigen presentation. These data show that antigen that is retained after pulmonary influenza virus infection controls the migratory pattern and activation state of virus-specific CD8 T cells near the site of virus amplification.
doi:10.1016/j.immuni.2006.01.015
PMCID: PMC2861289  PMID: 16618602
8.  SUBVERSION OF PULMONARY DENDRITIC CELL FUNCTION BY PARAMYXOVIRUS INFECTIONS1 
Lower respiratory tract infections caused by the paramyxoviruses human metapneumovirus (hMPV) and respiratory syncytial virus (RSV) are characterized by short-lasting virus-specific immunity and often long term airway morbidity, both of which may be the result of alterations in the antigen presenting function of the lung which follow these infections. In this study, we investigated whether hMPV and RSV experimental infections alter the phenotype and function of dendritic cells (DC) subsets which are recruited to the lung. Characterization of lung DC trafficking demonstrated a differential recruitment of plasmacytoid DC (pDC), conventional DC (cDC) and interferon-producing killer DC (IKDC) to the lung and draining lymph nodes after hMPV and RSV infection. In vitro infection of lung DC indicated that in pDC, production of IFN-α, TNF-α, and CCL5 was induced only by hMPV while CCL3 and CCL4 were induced by both viruses. In cDC, a similar repertoire of cytokines was induced by hMPV and RSV, except for IFN-β, which was not induced by RSV. The function of lung pDC was altered following hMPV or RSV infection in vivo, as we demonstrated a reduced capacity of lung pDC to produce IFN-α as well as other cytokines including IL-6, TNF-α, CCL2, CCL3 and CCL4 in response to TLR9 agonist. Moreover, we observed an impaired capacity of cDC from infected mice to present Ag to CD4+ T cells, an effect that lasted beyond the acute phase of infection. Our findings suggest that acute paramyxovirus infections can alter the long term immune function of pulmonary DC.
doi:10.4049/jimmunol.0802262
PMCID: PMC2865244  PMID: 19234204
Dendritic cells; Lung; Viral; Cytokines; Cell trafficking
9.  IL-15 trans-presentation by pulmonary dendritic cells promotes effector CD8 T cell survival during influenza virus infection 
We have recently demonstrated that peripheral CD8 T cells require two separate activation hits to accumulate to high numbers in the lungs after influenza virus infection: a primary interaction with mature, antigen-bearing dendritic cells (DCs) in the lymph node, and a second, previously unrecognized interaction with MHC I–viral antigen–bearing pulmonary DCs in the lungs. We demonstrate that in the absence of lung-resident DC subsets, virus-specific CD8 T cells undergo significantly increased levels of apoptosis in the lungs; however, reconstitution with pulmonary plasmacytoid DCs and CD8α+ DCs promotes increased T cell survival and accumulation in the lungs. Further, our results show that the absence of DCs after influenza virus infection results in significantly reduced levels of IL-15 in the lungs and that pulmonary DC–mediated rescue of virus-specific CD8 T cell responses in the lungs requires trans-presentation of IL-15 via DC-expressed IL-15Rα. This study demonstrates a key, novel requirement for DC trans-presented IL-15 in promoting effector CD8 T cell survival in the respiratory tract after virus infection, and suggests that this trans-presentation could be an important target for the development of unique antiviral therapies and more effective vaccine strategies.
doi:10.1084/jem.20091711
PMCID: PMC2839152  PMID: 20212069
10.  Activation of cytokine genes in T cells during primary and secondary murine influenza pneumonia 
The patterns of cytokine mRNA expression in mice with primary or secondary influenza pneumonia have been assessed by in situ hybridization analysis of cells from both the mediastinal lymph node (MLN) and the virus-infected lung. Evidence of substantial transcriptional activity was found in all lymphocyte subsets recovered from both anatomical sites. The kinetics of cytokine mRNA expression after primary infection with an H3N2 virus were in accord with the idea that the initial response occurs in regional lymphoid tissue, with the effector T cells later moving to the lung. This temporal separation was much less apparent for the more rapid secondary response resulting from challenge of H3N2-primed mice with an H1N1 virus. Among the T cell receptor alpha/beta+ subsets, transcripts for interferon (IFN) gamma and tumor necrosis factor beta were most commonly found in the CD8+ population whereas mRNA for interleukin (IL) 4 and IL-10 was much more prevalent in CD4+ T cells. The gamma/delta T cells expressed mRNA for all cytokines tested, with IL-2, IL-4, and IFN-gamma predominating among those recovered from the inflammatory exudate. At particular time points, especially early in the MLN and late in the infected lung, the frequency of mRNA+ lymphocytes was much higher than would be expected from current understanding of the prevalence of virus-specific precursors and effectors. If this response is typical, induction of cytokine gene expression for T cells that are not responding directly to the invading pathogen may be a prominent feature of acute virus infections.
PMCID: PMC2190883  PMID: 8426116
11.  Quantitative and Qualitative Deficits in Neonatal Lung-Migratory Dendritic Cells Impact the Generation of the CD8+ T Cell Response 
PLoS Pathogens  2014;10(2):e1003934.
CD103+ and CD11b+ populations of CD11c+MHCIIhi murine dendritic cells (DCs) have been shown to carry antigens from the lung through the afferent lymphatics to mediastinal lymph nodes (MLN). We compared the responses of these two DC populations in neonatal and adult mice following intranasal infection with respiratory syncytial virus. The response in neonates was dominated by functionally-limited CD103+ DCs, while CD11b+ DCs were diminished in both number and function compared to adults. Infecting mice at intervals through the first three weeks of life revealed an evolution in DC phenotype and function during early life. Using TCR transgenic T cells with two different specificities to measure the ability of CD103+ DC to induce epitope-specific CD8+ T cell responses, we found that neonatal CD103+ DCs stimulate proliferation in a pattern distinct from adult CD103+ DCs. Blocking CD28-mediated costimulatory signals during adult infection demonstrated that signals from this costimulatory pathway influence the hierarchy of the CD8+ T cell response to RSV, suggesting that limited costimulation provided by neonatal CD103+ DCs is one mechanism whereby neonates generate a distinct CD8+ T cell response from that of adults.
Author Summary
Respiratory syncytial virus (RSV) infection is most severe in infants under six months and the most common cause of hospitalization for lower respiratory tract infection in children under five years. Disease is a consequence of virus- and T-cell-mediated pathology. Adaptive immune responses to viral respiratory infections are initiated by dendritic cells (DCs) that traffic to lymph nodes from the infected lungs. We compared the phenotype and function of two lung-migratory DC populations, identified by high expression of MHC Class II and CD103+ (CD103+DCs) or CD11b+ (CD11b+DCs), in mice infected in early life or as adults. We found that DC subsets undergo dramatic quantitative and qualitative changes during the first weeks of life, and CD103+DCs from neonatal mediastinal lymph nodes induced a fundamentally different CD8+ T-cell response profile than CD103+DCs from adults. The adult response pattern required CD28-mediated costimulatory signals, which is a limiting functional property of neonatal CD103+DCs. Thus, the ability of neonatal CD103+DCs to provide sufficient costimulation to neonatal CD8+ T-cells can influence the immunodominance hierarchy and functional properties of neonatal CD8+ T-cell responses compared to those of adults. A better understanding of deficiencies in early life immunity will guide vaccine approaches that induce disease-sparing immune responses in infants.
doi:10.1371/journal.ppat.1003934
PMCID: PMC3923758  PMID: 24550729
12.  In situ imaging reveals different responses by naïve and memory CD8 T cells to late antigen presentation by lymph node DC after influenza virus infection 
European journal of immunology  2008;38(12):3304-3315.
Pulmonary influenza infection causes prolonged lymph node hypertrophy while processed viral antigens continue to be presented to virus-specific CD8 T cells. We show that naïve, but not central/memory, nucleoprotein (NP)-specific CD8 T cells recognized antigen-bearing CD11b+ DC in the DLN more than 30 days after infection. After these late transfers the naïve CD8 T cells underwent an abortive proliferative response in the mediastinal lymph node (MLN), where large clusters of partially-activated cells remained in the paracortex until at least a week after transfer. A majority of the endogenous NP-specific CD8 T cells that were in the MLN between 30–50 days after infection also showed signs of a continuing response to antigen stimulation. A high frequency of endogenous NP-specific CD8 T cells in the mediastinal lymph node indicates that late antigen presentation may help shape the epitope dominance hierarchy during reinfection.
doi:10.1002/eji.200838602
PMCID: PMC2662394  PMID: 19009527
Antigen presentation; immunodominance; memory CD8 T cells
13.  Rapid Influx and Death of Plasmacytoid Dendritic Cells in Lymph Nodes Mediate Depletion in Acute Simian Immunodeficiency Virus Infection 
PLoS Pathogens  2009;5(5):e1000413.
Plasmacytoid dendritic cells (pDC) are essential innate immune system cells that are lost from the circulation in human immunodeficiency virus (HIV)–infected individuals associated with CD4+ T cell decline and disease progression. pDC depletion is thought to be caused by migration to tissues or cell death, although few studies have addressed this directly. We used precise methods of enumeration and in vivo labeling with 5-bromo-2′-deoxyuridine to track recently divided pDC in blood and tissue compartments of monkeys with acute pathogenic simian immunodeficiency virus (SIV) infection. We show that pDC are lost from blood and peripheral lymph nodes within 14 days of infection, despite a normal frequency of pDC in bone marrow. Paradoxically, pDC loss masked a highly dynamic response characterized by rapid pDC mobilization into blood and a 10- to 20-fold increase in recruitment to lymph nodes relative to uninfected animals. Within lymph nodes, pDC had increased levels of apoptosis and necrosis, were uniformly activated, and were infected at frequencies similar to CD4+ T cells. Nevertheless, remaining pDC had essentially normal functional responses to stimulation through Toll-like receptor 7, with half of lymph node pDC producing both TNF-α and IFN-α. These findings reveal that cell migration and death both contribute to pDC depletion in acute SIV infection. We propose that the rapid recruitment of pDC to inflamed lymph nodes in lentivirus infection has a pathologic consequence, bringing cells into close contact with virus, virus-infected cells, and pro-apoptotic factors leading to pDC death.
Author Summary
Plasmacytoid dendritic cells (pDC) are essential components of the innate immune system whose loss from blood is associated with disease progression in human immunodeficiency virus–infected individuals. The mechanism of pDC loss is undefined but is believed to be associated with migration to tissues or cell death. To address this question, we studied pDC kinetics in blood and tissues in the related rhesus macaque monkey model of simian immunodeficiency virus infection. We found that pDC were present in normal numbers in bone marrow but were lost from blood and lymph nodes within 14 days of intravenous infection. Underlying pDC loss was a profound mobilization of pDC from bone marrow into blood and subsequent influx into lymph nodes. In lymph nodes pDC were activated, apoptotic, and frequently infected with virus. Nevertheless, pDC were functionally normal with respect to cytokine production. We conclude that migration and death both contribute to pDC depletion, with influx into lymph nodes bringing cells into an environment favoring their death by infection or apoptosis.
doi:10.1371/journal.ppat.1000413
PMCID: PMC2671605  PMID: 19424421
14.  Modulation of Naive CD4+ T-Cell Responses to an Airway Antigen during Pulmonary Mycobacterial Infection▿  
Infection and Immunity  2007;75(5):2260-2268.
During pulmonary mycobacterial infection, there is increased trafficking of dendritic cells from the lungs to the draining lymph nodes. We hypothesized that ongoing mycobacterial infection would modulate recruitment and activation of antigen-specific naive CD4+ T cells after airway antigen challenge. BALB/c mice were infected by aerosol with Mycobacterium bovis BCG. At peak bacterial burden in the lungs (4 to 6 weeks postinfection), carboxy-fluorescein diacetate succinimidyl ester-labeled naive ovalbumin-specific DO11.10 T cells were adoptively transferred into infected and uninfected mice. Recipient mice were challenged intranasally with soluble ovalbumin (OVA), and OVA-specific T-cell responses were measured in the lungs, draining mediastinal lymph nodes (MLN), and spleens. OVA challenge resulted in increased activation and proliferation of OVA-specific T cells in the draining MLN of both infected and uninfected mice. However, only BCG-infected mice had prominent OVA-specific T-cell activation, proliferation, and Th1 differentiation in the lungs. BCG infection caused greater distribution of airway OVA to pulmonary dendritic cells and enhanced presentation of OVA peptide by lung CD11c+ cells. Together, these data suggest that an existing pulmonary mycobacterial infection alters the phenotype of lung dendritic cells so that they can activate antigen-specific naive CD4+ T cells in the lungs in response to airway antigen challenge.
doi:10.1128/IAI.01709-06
PMCID: PMC1865791  PMID: 17296758
15.  Vaccinia Virus Interleukin-18-Binding Protein Promotes Virulence by Reducing Gamma Interferon Production and Natural Killer and T-Cell Activity 
Journal of Virology  2003;77(18):9960-9968.
Interleukin-18 (IL-18) is a proinflammatory cytokine that promotes natural killer (NK) and T-cell activation. Several poxviruses, including vaccinia virus (VV), encode a soluble IL-18-binding protein (IL-18bp). The role of the VV IL-18bp (gene C12L) in vivo was studied with wild-type (vC12L), deletion mutant (vΔC12L), and revertant (vC12L-rev) viruses in a murine intranasal model of infection. The data show that vΔC12L was markedly attenuated, characterized by a mild weight loss and reduced virus titers in lungs, brain, and spleen. Three days after infection, NK cytotoxic activity was augmented in the lung, spleen, and mediastinal lymph nodes (MLNs) of vΔC12L-infected mice compared to controls. Seven days after infection, vΔC12L-infected mice displayed heightened VV-specific cytotoxic T-lymphocyte (CTL) responses in the lungs, spleen, and MLNs. Gamma interferon (IFN-γ) levels were also dramatically elevated in lavage fluids and cells from lungs of mice infected with vΔC12L. Finally, we demonstrate that IL-18 is produced in vitro and in vivo after VV infection. Taken together, these data demonstrate a role for the vIL-18bp in counteracting IL-18 in both the innate and the specific immune response to VV infection and indicate that the ability of IL-18 to promote vigorous T-cell responses (cytotoxic activity and IFN-γ production) is a critical factor in the accelerated clearance of the vΔC12L mutant.
doi:10.1128/JVI.77.18.9960-9968.2003
PMCID: PMC224600  PMID: 12941906
16.  Alveolar epithelial cells orchestrate DC function in murine viral pneumonia 
The Journal of Clinical Investigation  2012;122(10):3652-3664.
Influenza viruses (IVs) cause pneumonia in humans with progression to lung failure. Pulmonary DCs are key players in the antiviral immune response, which is crucial to restore alveolar barrier function. The mechanisms of expansion and activation of pulmonary DC populations in lung infection remain widely elusive. Using mouse BM chimeric and cell-specific depletion approaches, we demonstrated that alveolar epithelial cell (AEC) GM-CSF mediates recovery from IV-induced injury by affecting lung DC function. Epithelial GM-CSF induced the recruitment of CD11b+ and monocyte-derived DCs. GM-CSF was also required for the presence of CD103+ DCs in the lung parenchyma at baseline and for their sufficient activation and migration to the draining mediastinal lymph nodes (MLNs) during IV infection. These activated CD103+ DCs were indispensable for sufficient clearance of IVs by CD8+ T cells and for recovery from IV-induced lung injury. Moreover, GM-CSF applied intratracheally activated CD103+ DCs, inducing increased migration to MLNs, enhanced viral clearance, and attenuated lung injury. Together, our data reveal that GM-CSF–dependent cross-talk between IV-infected AECs and CD103+ DCs is crucial for effective viral clearance and recovery from injury, which has potential implications for GM-CSF treatment in severe IV pneumonia.
doi:10.1172/JCI62139
PMCID: PMC3461909  PMID: 22996662
17.  PC61 (Anti-CD25) Treatment Inhibits Influenza A Virus-Expanded Regulatory T Cells and Severe Lung Pathology during a Subsequent Heterologous Lymphocytic Choriomeningitis Virus Infection 
Journal of Virology  2013;87(23):12636-12647.
Prior immunity to influenza A virus (IAV) in mice changes the outcome to a subsequent lymphocytic choriomeningitis virus (LCMV) infection and can result in severe lung pathology, similar to that observed in patients that died of the 1918 H1N1 pandemic. This pathology is induced by IAV-specific memory CD8+ T cells cross-reactive with LCMV. Here, we discovered that IAV-immune mice have enhanced CD4+ Foxp3+ T-regulatory (Treg) cells in their lungs, leading us to question whether a modulation in the normal balance of Treg and effector T-cell responses also contributes to enhancing lung pathology upon LCMV infection of IAV-immune mice. Treg cell and interleukin-10 (IL-10) levels remained elevated in the lungs and mediastinal lymph nodes (mLNs) throughout the acute LCMV response of IAV-immune mice. PC61 treatment, used to decrease Treg cell levels, did not change LCMV titers but resulted in a surprising decrease in lung pathology upon LCMV infection in IAV-immune but not in naive mice. Associated with this decrease in pathology was a retention of Treg in the mLN and an unexpected partial clonal exhaustion of LCMV-specific CD8+ T-cell responses only in IAV-immune mice. PC61 treatment did not affect cross-reactive memory CD8+ T-cell proliferation. These results suggest that in the absence of IAV-expanded Treg cells and in the presence of cross-reactive memory, the LCMV-specific response was overstimulated and became partially exhausted, resulting in a decreased effector response. These studies suggest that Treg cells generated during past infections can influence the characteristics of effector T-cell responses and immunopathology during subsequent heterologous infections. Thus, in humans with complex infection histories, PC61 treatment may lead to unexpected results.
doi:10.1128/JVI.00936-13
PMCID: PMC3838166  PMID: 24049180
18.  Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells 
Although CD103-expressing dendritic cells (DCs) are widely present in nonlymphoid tissues, the transcription factors controlling their development and their relationship to other DC subsets remain unclear. Mice lacking the transcription factor Batf3 have a defect in the development of CD8α+ conventional DCs (cDCs) within lymphoid tissues. We demonstrate that Batf3−/− mice also lack CD103+CD11b− DCs in the lung, intestine, mesenteric lymph nodes (MLNs), dermis, and skin-draining lymph nodes. Notably, Batf3−/− mice displayed reduced priming of CD8 T cells after pulmonary Sendai virus infection, with increased pulmonary inflammation. In the MLNs and intestine, Batf3 deficiency resulted in the specific lack of CD103+CD11b− DCs, with the population of CD103+CD11b+ DCs remaining intact. Batf3−/− mice showed no evidence of spontaneous gastrointestinal inflammation and had a normal contact hypersensitivity (CHS) response, despite previous suggestions that CD103+ DCs were required for immune homeostasis in the gut and CHS. The relationship between CD8α+ cDCs and nonlymphoid CD103+ DCs implied by their shared dependence on Batf3 was further supported by similar patterns of gene expression and their shared developmental dependence on the transcription factor Irf8. These data provide evidence for a developmental relationship between lymphoid organ–resident CD8α+ cDCs and nonlymphoid CD103+ DCs.
doi:10.1084/jem.20091627
PMCID: PMC2856032  PMID: 20351058
19.  Complement Mediated Signaling on Pulmonary CD103+ Dendritic Cells Is Critical for Their Migratory Function in Response to Influenza Infection 
PLoS Pathogens  2013;9(1):e1003115.
Trafficking of lung dendritic cells (DCs) to the draining lymph node (dLN) is a crucial step for the initiation of T cell responses upon pathogen challenge. However, little is known about the factors that regulate lung DC migration to the dLN. In this study, using a model of influenza infection, we demonstrate that complement component C3 is critically required for efficient emigration of DCs from the lung to the dLN. C3 deficiency affect lung DC-mediated viral antigen transport to the dLN, resulting in severely compromised priming of virus-specific T cell responses. Consequently, C3-deficient mice lack effector T cell response in the lungs that affected viral clearance and survival. We further show that direct signaling by C3a and C5a through C3aR and C5aR respectively expressed on lung DCs is required for their efficient trafficking. However, among lung DCs, only CD103+ DCs make a significant contribution to lung C5a levels and exclusively produce high levels of C3 and C5 during influenza infection. Collectively, our findings show that complement has a profound impact on immune regulation by controlling tissue DC trafficking and highlights a potential utility for complement as an adjuvant in novel vaccine strategies.
Author Summary
Influenza is a global health problem frequented by epidemics and pandemics. Current vaccines against influenza offer limited protection hence the need for reformulation and repeated vaccination. There is a pressing need to develop newer vaccines that are able to generate T cell response. In order to develop such vaccines, there is a need to understand how T cell responses are generated during influenza infection. Influenza specific T cell responses are generated by the dendritic cells (DCs) in the lung. Upon influenza infection, DCs in the lung carry viral peptides to the draining lymph node (dLN) to initiate an immune response. Thus, migration of DCs from the lung to the dLN is an important step in the initiation of influenza specific T cell response. We now show that activation products of the complement system interact with their receptors on the DCs, which signals for the DCs to migrate from the lung to the dLN. Thus, our results reveal a previously unknown function for complement in mediating lung DC migration during influenza infection and highlight its potential as an adjuvant in novel vaccine strategies.
doi:10.1371/journal.ppat.1003115
PMCID: PMC3542115  PMID: 23326231
20.  Plasmacytoid dendritic cells enhance mortality during lethal influenza infections by eliminating virus-specific CD8 T cells 
Previous studies have shown that the reduction in CD8 T cell immunity observed during high-dose influenza virus infection (IAV) is mediated via lymph node (LN) dendritic cells (DC) that express FasL and drive FasL:Fas (DC:T) induced apoptosis. However, the specific DC subset(s) within the LN and the additional factors required for DC-mediated elimination of IAV-specific CD8 T cells remain unknown. Herein, we demonstrate that plasmacytoid DC (pDC) which downregulate FasL during sublethal, but not lethal, IAV-infection accumulate to greater numbers within the LN of lethal dose infected mice. Further our findings show that pDC from lethal, but not sublethal dose IAV infections, drive elimination of Fas+ CD8 T cells and that this elimination only occurs in the absence of TCR recognition of IAV-peptide-MHC class I complexes. Together these results suggest that pDC play a heretofore unknown deleterious role during lethal dose IAV-infections by limiting the CD8 T cell response.
doi:10.4049/jimmunol.0902984
PMCID: PMC2851488  PMID: 20220091
21.  Human Immunodeficiency Virus Type 1 Activates Plasmacytoid Dendritic Cells and Concomitantly Induces the Bystander Maturation of Myeloid Dendritic Cells 
Journal of Virology  2004;78(10):5223-5232.
In this study, we analyzed the phenotypic and physiological consequences of the interaction of plasmacytoid dendritic cells (pDCs) with human immunodeficiency virus type 1 (HIV-1). pDCs are one cellular target of HIV-1 and respond to the virus by producing alpha/beta interferon (IFN-α/β) and chemokines. The outcome of this interaction, notably on the function of bystander myeloid DC (CD11c+ DCs), remains unclear. We therefore evaluated the effects of HIV-1 exposure on these two DC subsets under various conditions. Blood-purified pDCs and CD11c+ DCs were exposed in vitro to HIV-1, after which maturation markers, cytokine production, migratory capacity, and CD4 T-cell stimulatory capacity were analyzed. pDCs exposed to different strains of infectious or even chemically inactivated, nonreplicating HIV-1 strongly upregulated the expression of maturation markers, such as CD83 and functional CCR7, analogous to exposure to R-848, a synthetic agonist of toll-like receptor-7 and -8. In addition, HIV-1-activated pDCs produced cytokines (IFN-α and tumor necrosis factor alpha), migrated in response to CCL19 and, in coculture, matured CD11c+ DCs, which are not directly activated by HIV. pDCs also acquired the ability to stimulate naïve CD4+ T cells, albeit less efficiently than CD11c+ DCs. This HIV-1-induced maturation of both DC subsets may explain their disappearance from the blood of patients with high viral loads and may have important consequences on HIV-1 cellular transmission and HIV-1-specific T-cell responses.
doi:10.1128/JVI.78.10.5223-5232.2004
PMCID: PMC400371  PMID: 15113904
22.  Cellular Immune Responses to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Infection in Senescent BALB/c Mice: CD4+ T Cells Are Important in Control of SARS-CoV Infection▿  
Journal of Virology  2009;84(3):1289-1301.
We characterized the cellular immune response to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in 12- to 14-month-old BALB/c mice, a model that mimics features of the human disease. Following intranasal administration, the virus replicated in the lungs, with peak titers on day 2 postinfection. Enhanced production of cytokines (tumor necrosis factor alpha [TNF-α] and interleukin-6 [IL-6]) and chemokines (CXCL10, CCL2, CCL3, and CCL5) correlated with migration of NK cells, macrophages, and plasmacytoid dendritic cells (pDC) into the lungs. By day 7, histopathologic evidence of pneumonitis was seen in the lungs when viral clearance occurred. At this time, a second wave of enhanced production of cytokines (TNF-α, IL-6, gamma interferon [IFN-γ], IL-2, and IL-5), chemokines (CXCL9, CXCL10, CCL2, CCL3, and CCL5), and receptors (CXCR3, CCR2, and CCR5), was detected in the lungs, associated with an influx of T lymphocytes. Depletion of CD8+ T cells at the time of infection did not affect viral replication or clearance. However, depletion of CD4+ T cells resulted in an enhanced immune-mediated interstitial pneumonitis and delayed clearance of SARS-CoV from the lungs, which was associated with reduced neutralizing antibody and cytokine production and reduced pulmonary recruitment of lymphocytes. Innate defense mechanisms are able to control SARS-CoV infection in the absence of CD4+ and CD8+ T cells and antibodies. Our findings provide new insights into the pathogenesis of SARS, demonstrating the important role of CD4+ but not CD8+ T cells in primary SARS-CoV infection in this model.
doi:10.1128/JVI.01281-09
PMCID: PMC2812346  PMID: 19906920
23.  Identification of dendritic cell subsets responding to genital infection by Chlamydia muridarum 
Dendritic cells are central for the induction of T cell responses needed for chlamydial eradication. Here we report the activation of two dendritic cell subsets: a classical, CD11b+ (cDC) and plasmacytoid (pDC) during genital infection with C. muridarum. Genital infection induced influx of cDC and pDC into the gential tract (GT) and its draining lymph node (ILN) as well as co-localization with T cells in the ILN. Genital infection with C. muridarum also stimulated high levels of costimulatory molecules on cDC central for the activation of naïve T cells in vivo. In contrast, pDC expressed low levels of most co-stimulatory molecules in vivo and did not secrete cytokines associated with production of Th1 cells (IL-12) in vitro. However, pDC up-regulated ICOSL expression and produced IL-6 and IL-10 in response to chlamydial exposure in vitro. Our findings demonstrate that these two DC subsets likely have different functions in vivo. cDC are poised for induction of anti-chlamydial T cell responses whereas pDC have characteristics associated with the differentiation of non-Th1 cell subsets.
doi:10.1111/j.1574-695X.2008.00523.x
PMCID: PMC3304542  PMID: 19159430
Chlamydia muridarum; conventional dendritic cell; plasmacytoid dendritic cell
24.  Organ-dependent in vivo priming of naive CD4+,but not CD8+,T cells by plasmacytoid dendritic cells 
The Journal of Experimental Medicine  2007;204(8):1923-1933.
Plasmacytoid dendritic cells (PDCs) play a pivotal role as cytokine-secreting accessory cells in the antimicrobial immune defense. In contrast, the capacity of PDCs to act as antigen-presenting cells in naive T cell priming remains unclear. By studying T cell responses in mice that lack conventional DCs (cDCs), and by the use of a PDC-specific antigen-targeting strategy, we show that PDCs can initiate productive naive CD4+ T cell responses in lymph nodes, but not in the spleen. PDC-triggered CD4+ T cell responses differed from cDC-driven responses in that they were not associated with concomitant CD8+ T cell priming. Our results establish PDCs as a bona fide DC subset that initiates unique CD4+ Th cell–dominated primary immune responses.
doi:10.1084/jem.20062373
PMCID: PMC2118686  PMID: 17646404
25.  Paradoxical roles of BST2/Tetherin in promoting IFN-I response and viral infection 
Bone marrow stromal antigen-2 (BST2) is a transmembrane protein that prevents virus release from infected cells. It was also reported that BST2 inhibits type-I-interferon (IFN-I) production by plasmacytoid DC (pDC). To determine BST2 impact on antiviral responses in vivo we generated BST2−/− mice. Following infection with a murine retrovirus, BST2−/− mice had slightly elevated viral loads; however, infection with other enveloped viruses revealed unexpected roles of BST2. BST2−/− mice showed reduced IFN-I production by pDC. Moreover, BST2−/− mice had lower viral titers in lungs following intranasal infection with VSV-OVA and influenza B, and increased numbers of virus-specific CD8+T cells in the lungs, suggesting that BST2 may facilitate entry and/or replication of enveloped viruses and modulate priming of CD8+T cells. These findings suggest complex roles of BST2 beyond retroviral control in vivo, possibly reflecting the involvement of BST2 in endocytosis and intracellular trafficking of viruses, viral nucleic acids and antigens.
doi:10.4049/jimmunol.1103145
PMCID: PMC3522186  PMID: 22327075
BST2; tetherin; virus; interferon; plasmacytoid dendritic cell

Results 1-25 (614648)