Search tips
Search criteria

Results 1-25 (437799)

Clipboard (0)

Related Articles

1.  Perchlorate Radiolysis on Mars and the Origin of Martian Soil Reactivity 
Astrobiology  2013;13(6):515-520.
Results from the Viking biology experiments indicate the presence of reactive oxidants in martian soils that have previously been attributed to peroxide and superoxide. Instruments on the Mars Phoenix Lander and the Mars Science Laboratory detected perchlorate in martian soil, which is nonreactive under the conditions of the Viking biology experiments. We show that calcium perchlorate exposed to gamma rays decomposes in a CO2 atmosphere to form hypochlorite (ClO−), trapped oxygen (O2), and chlorine dioxide (ClO2). Our results show that the release of trapped O2 (g) from radiation-damaged perchlorate salts and the reaction of ClO− with amino acids that were added to the martian soils can explain the results of the Viking biology experiments. We conclude that neither hydrogen peroxide nor superoxide is required to explain the results of the Viking biology experiments. Key Words: Mars—Radiolysis—Organic degradation—in situ measurement—Planetary habitability and biosignatures. Astrobiology 13, 515–520.
PMCID: PMC3691774  PMID: 23746165
2.  Degradation and Pathway of Tetracycline Hydrochloride in Aqueous Solution by Potassium Ferrate 
Environmental Engineering Science  2012;29(5):357-362.
In the context of water treatment, the ferrate ([FeO4]2−) ion has long been known for its strong oxidizing power and for producing a coagulant from its reduced form [i.e., Fe(III)]. However, it has not been widely applied in water treatment, because of preparation difficulties and high cost. This article describes a low-cost procedure for producing solid potassium ferrate. In this synthetic procedure, NaClO was used in place of chlorine generation; and 10 M KOH was used in place of saturated KOH in the previous procedures. In addition, this study investigated the reactions of potassium ferrate with tetracycline hydrochloride (TC) at different pH and molar ratios. Results showed that the optimal pH range for TC degradation was pH 9–10, and TC could be mostly removed by Fe(VI) in 60 s. However, results showed >70% of TC degraded and <15% of dissolved organic carbon (DOC) reduction at molar ratio of 1:20. The main degradation pathway of TC is proposed based on the experimental data.
PMCID: PMC3337653  PMID: 22566741
potassium ferrate; tetracycline hydrochloride; pH; molar ratios
3.  Resistance of Bacterial Endospores to Outer Space for Planetary Protection Purposes—Experiment PROTECT of the EXPOSE-E Mission 
Astrobiology  2012;12(5):445-456.
Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the “trip to Mars” spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the “stay on Mars” spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the “trip to Mars” or “stay on Mars” spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations. Key Words: Planetary protection—Bacterial spores—Space experiment—Simulated Mars mission. Astrobiology 12, 445–456.
PMCID: PMC3371261  PMID: 22680691
4.  Bacterial Growth at the High Concentrations of Magnesium Sulfate Found in Martian Soils 
Astrobiology  2012;12(2):98-106.
The martian surface environment exhibits extremes of salinity, temperature, desiccation, and radiation that would make it difficult for terrestrial microbes to survive. Recent evidence suggests that martian soils contain high concentrations of MgSO4 minerals. Through warming of the soils, meltwater derived from subterranean ice-rich regolith may exist for an extended period of time and thus allow the propagation of terrestrial microbes and create significant bioburden at the near surface of Mars. The current report demonstrates that halotolerant bacteria from the Great Salt Plains (GSP) of Oklahoma are capable of growing at high concentrations of MgSO4 in the form of 2 M solutions of epsomite. The epsotolerance of isolates in the GSP bacterial collection was determined, with 35% growing at 2 M MgSO4. There was a complex physiological response to mixtures of MgSO4 and NaCl coupled with other environmental stressors. Growth also was measured at 1 M concentrations of other magnesium and sulfate salts. The complex responses may be partially explained by the pattern of chaotropicity observed for high-salt solutions as measured by agar gelation temperature. Select isolates could grow at the high salt concentrations and low temperatures found on Mars. Survival during repetitive freeze-thaw or drying-rewetting cycles was used as other measures of potential success on the martian surface. Our results indicate that terrestrial microbes might survive under the high-salt, low-temperature, anaerobic conditions on Mars and present significant potential for forward contamination. Stringent planetary protection requirements are needed for future life-detection missions to Mars. Key Words: Analogue—Mars—Planetary protection—Salts—Life in extreme environments. Astrobiology 12, 98–106.
PMCID: PMC3277918  PMID: 22248384
5.  (18-Crown-6)potassium [(1,2,5,6-η)-cyclo­octa-1,5-diene][(1,2,3,4-η)-naph­tha­lene]­ferrate(−I) 
The title salt, [K(C12H24O6)][Fe(C8H12)(C10H8)], is the only known naphthalene complex containing iron in a formally negative oxidation state. Each (naphthalene)(1,5-cod)ferrate(−I) anion is in contact with one (18-crown-6)potassium cation via K⋯C contacts to the outer four carbon atoms of the naphthalene ligand (cod = 1,5-cyclo­octa­diene, 18-crown-6 = 1,4,7,10,13,16-hexa­oxacyclo­octa­deca­ne). When using the midpoints of the coordinating olefin bonds, the overall geometry of the coordination sphere around iron can be best described as distorted tetra­hedral. The naphthalene fold angle between the plane of the iron-coordinating butadiene unit and the plane containing the exo-benzene moiety is 19.2 (1)°.
PMCID: PMC3470125  PMID: 23125569
6.  Growth Performance and Root Transcriptome Remodeling of Arabidopsis in Response to Mars-Like Levels of Magnesium Sulfate 
PLoS ONE  2010;5(8):e12348.
Martian regolith (unconsolidated surface material) is a potential medium for plant growth in bioregenerative life support systems during manned missions on Mars. However, hydrated magnesium sulfate mineral levels in the regolith of Mars can reach as high as 10 wt%, and would be expected to be highly inhibitory to plant growth.
Methodology and Principal Findings
Disabling ion transporters AtMRS2-10 and AtSULTR1;2, which are plasma membrane localized in peripheral root cells, is not an effective way to confer tolerance to magnesium sulfate soils. Arabidopsis mrs2-10 and sel1-10 knockout lines do not mitigate the growth inhibiting impacts of high MgSO4·7H2O concentrations observed with wildtype plants. A global approach was used to identify novel genes with potential to enhance tolerance to high MgSO4·7H2O (magnesium sulfate) stress. The early Arabidopsis root transcriptome response to elevated concentrations of magnesium sulfate was characterized in Col-0, and also between Col-0 and the mutant line cax1-1, which was confirmed to be relatively tolerant of high levels of MgSO4·7H2O in soil solution. Differentially expressed genes in Col-0 treated for 45 min. encode enzymes primarily involved in hormone metabolism, transcription factors, calcium-binding proteins, kinases, cell wall related proteins and membrane-based transporters. Over 200 genes encoding transporters were differentially expressed in Col-0 up to 180 min. of exposure, and one of the first down-regulated genes was CAX1. The importance of this early response in wildtype Arabidopsis is exemplified in the fact that only four transcripts were differentially expressed between Col-0 and cax1-1 at 180 min. after initiation of treatment.
The results provide a solid basis for the understanding of the metabolic response of plants to elevated magnesium sulfate soils; it is the first transcriptome analysis of plants in this environment. The results foster the development of Mars soil-compatible plants by showing that cax1 mutants exhibit partial tolerance to magnesium sulfate, and by elucidating a small subset (500 vs. >10,000) of candidate genes for mutation or metabolic engineering that will enhance tolerance to magnesium sulfate soils.
PMCID: PMC2925951  PMID: 20808807
7.  An iron-based beverage, HydroFerrate fluid (MRN-100), alleviates oxidative stress in murine lymphocytes in vitro 
Nutrition Journal  2009;8:18.
Several studies have examined the correlation between iron oxidation and H2O2 degradation. The present study was carried out to examine the protective effects of MRN-100 against stress-induced apoptosis in murine splenic cells in vitro. MRN-100, or HydroFerrate fluid, is an iron-based beverage composed of bivalent and trivalent ferrates.
Splenic lymphocytes from mice were cultured in the presence or absence of MRN-100 for 2 hrs and were subsequently exposed to hydrogen peroxide (H2O2) at a concentration of 25 μM for 14 hrs. Percent cell death was examined by flow cytometry and trypan blue exclusion. The effect of MRN-100 on Bcl-2 and Bax protein levels was determined by Western blot.
Results show, as expected, that culture of splenic cells with H2O2 alone results in a significant increase in cell death (apoptosis) as compared to control (CM) cells. In contrast, pre-treatment of cells with MRN-100 followed by H2O2 treatment results in significantly reduced levels of apoptosis.
In addition, MRN-100 partially prevents H2O2-induced down-regulation of the anti-apoptotic molecule Bcl-2 and upregulation of the pro-apoptotic molecule Bax.
Our findings suggest that MRN-100 may offer a protective effect against oxidative stress-induced apoptosis in lymphocytes.
PMCID: PMC2683876  PMID: 19409106
8.  2-Amino­pyridinium bis­(pyridine-2,6-dicarboxyl­ato)ferrate(III) 
In the title compound, (C5H7N2)[Fe(C7H3NO4)2] or [2-apyH][Fe(pydc)2], the asymmetric unit contains an [Fe(pydc)2]− (pydc is pyridine-2,6-dicarboxyl­ate) anion and a protonated 2-amino­pyridine cation ([2-apyH]+). The complex anion contains an FeIII atom within a distorted octahedral FeN2O4 coordination geometry. N—H⋯O and C—H⋯O hydrogen bonding, offset π–π stacking [centroid–centroid distance = 3.805 (13) Å] and C=O⋯π inter­actions [3.494 (14) Å] generate a three-dimensional network structure.
PMCID: PMC3274902  PMID: 22346849
9.  Tetra­butyl­ammonium tetra­kis­(trimethyl­silanolato-κO)ferrate(III) 
In the title salt, (C16H36N)[Fe(C3H9OSi)4], the cation contains a central N atom bonded to four n-butyl alkyl groups in a tetra­hedral arrangement, while the anion contains a central FeIII atom tetra­hedrally coordinated by four trimethyl­silanolate ligands.
PMCID: PMC3435606  PMID: 22969479
10.  2-Carbamylpyridinium tetra­chlorido­ferrate(III) 
The title compound, (C6H7N2O)[FeCl4], contains two carbamylpyridinium (picolinamidinium) cations, which are linked into chains by N+—H⋯O hydrogen bonds formed between protonated pyridyl N atoms and carbonyl groups. Tetra­chloridoferrate(III) anions lie between these chains, accepting N—H⋯Cl hydrogen bonds from both H atoms of the picolinamidium –NH2 group.
PMCID: PMC2970958  PMID: 21578113
11.  4-(4-Pyrid­yl)pyridinium bis­(pyridine-2,6-dicarboxyl­ato)ferrate(III) tetra­hydrate 
In the title compound, (C10H9N2)[Fe(C7H3NO4)2]·4H2O or (bpyH)[Fe(pydc)2]·4H2O, the asymmetric unit contains an [Fe(pydc)2]− (pydcH2= pyridine-2,6-dicarboxylic acid) anion, a protonated 4,4′-bipyridine as a counter-ion, (bpyH)+, and four uncoordinated water mol­ecules. The anion is a six-coordinate complex with a distorted octa­hedral geometry around the FeIII atom. A wide range of non-covalent inter­actions, i.e. O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds, ion pairing, C—O⋯π [3.431 (2) Å] and C—H⋯π stacking inter­actions result in the formation of a three-dimensional network structure.
PMCID: PMC2983936  PMID: 21580510
12.  9-Amino­acridinium bis­(pyridine-2,6-dicarboxyl­ato-κ3 O 2,N,O 6)ferrate(III) tetra­hydrate 
The asymmetric unit of the title compound, (C13H11N2)[Fe(C7H3NO4)2]·4H2O, contains a 9-amino­acridinium cation, one anionic complex and four uncoordinated water mol­ecules. In the anionic complex, the FeIII ion is six-coordinated by two almost perpendicular [dihedral angle = 88.78 (7)°] pyridine-2,6-dicarboxyl­ate ligands in a distorted octa­hedral geometry. In the crystal, anions are connected into chains along [10-1] by weak C—H⋯O inter­actions, which create ten-membered hydrogen-bonded R 2 2(10) rings. These chains are linked by three-membered water clusters. The final three-dimensional network is constructed by numerous inter­molecular O—H⋯O and N—H⋯O inter­actions.
PMCID: PMC3379098  PMID: 22719319
13.  Benzyl­triethyl­ammonium tetra­chlorido­ferrate(III) 
In the title mol­ecular salt, (C13H22N)[FeCl4], three of the chloride ions of the tetra­hedral FeIII-containing anion are disordered over two orientations in a 0.656 (11):0.344 (11) ratio. In the crystal, there are no identifiable directional inter­actions between cations and anions except for Coulombic forces.
PMCID: PMC3379130  PMID: 22719351
14.  Epitaxial Structure of (001)- and (111)-Oriented Perovskite Ferrate Films Grown by Pulsed-Laser Deposition 
Crystal Growth & Design  2010;10(4):1725-1729.
We report epitaxial growth and structures of SrFeO2.5 (SFO) films on SrTiO3 (STO) (001) and (111) substrates by pulsed-laser deposition. Reflection high-energy electron diffraction intensity oscillations were observed during the initial growth on both substrates, reflecting a layer-by-layer growth mode of the formula unit cell. It was found that the films were stabilized with a monoclinic structure that was derived from the original orthorhombic structure of bulk Brownmillerite. Using an X-ray reciprocal space mapping technique, in-plane domain structures and the orientation relationship were investigated. In addition, the impact of laser spot area on the epitaxial structures was studied. For the films grown on the (001) STO, the orientation relationship was robust against the change of the laser spot area: SFO(001)//STO(001) and SFO(100)//STO(100) for the out-of-plane and the in-plane, respectively, with the [001] axis tilted toward the 4-fold a- and b-axes by ∼1.4°, whereas nearly (111)-oriented films were obtained on the (111) STO, exhibiting a complicated manner of tilting that depended on laser spot area. The observed variation in tilting configurations can be understood in terms of possible atomic arrangements at the SFO/STO interface. These results present a guide to control the heteroepitaxial growth and structure of (111)-oriented noncubic perovskites.
The epitaxial structures of SrFeO2.5 films grown on SrTiO3 (001) and (111) substrates by PLD are reported. A layer-by-layer growth mode was achieved in the initial stage on both substrates. The films were stabilized with a monoclinic structure, where we identified the in-plane domain structures and orientation relationship. Our study presents a guide to control the heteroepitaxy of (111)-oriented noncubic perovskites.
PMCID: PMC2851191  PMID: 20383295
15.  (Cryptand-222)potassium(+) (hydrogensulfido)[5,10,15,20-tetra­kis(2-pival­amido­phen­yl)porphyrinato]ferrate(II) 
As part of a systematic investigation for a number of FeII porphyrin complexes used as biomimetic models for cytochrome P450, crystals of the title compound, [K(C18H36N2O6)][FeII(C64H64N8O4)(HS)], were prepared. The compound exhibits a non-planar conformation with major ruffling and saddling distortions. The average equatorial iron–pyrrole N atom [Fe—Np = 2.102 (2) Å] bond length and the distance between the FeII atom and the 24-atom core of the porphyrin ring (Fe—PC= 0.558 Å) are typical for high-spin iron(II) penta­coordinate porphyrinates. One of the tert-butyl groups in the structure is disordered over two sets with occupancies of 0.84 and 0.16.
PMCID: PMC2977240  PMID: 21583412
16.  Boron Enrichment in Martian Clay 
PLoS ONE  2013;8(6):e64624.
We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.
PMCID: PMC3675118  PMID: 23762242
17.  Metabolic Activity and Population Dynamics of Rhizobia Introduced into Unamended and Bentonite-Amended Loamy Sand 
Respiration measurements showed that the cumulative amount of CO2 respired by rhizobia introduced into sterile bentonite-amended loamy sand was significantly higher than it was in unamended loamy sand. The maintenance respiration of rhizobial cells was not influenced by the presence of bentonite clay. Carbon was used more efficiently during growth in bentonite-amended than in unamended loamy sand. The presence of bentonite clay increased the growth rate of rhizobia introduced into sterile soil. Survival studies performed in nonsterile bentonite-amended loamy sand showed that the use of high (1010 cells per g of dry soil) rather than lower (104 to 107 cells per g of dry soil) inoculum densities increased the final survival levels of introduced rhizobia. In unamended loamy sand, the application of 1010 or 107 cells per g of dry soil resulted in similar final survival levels. Pore shape and the continuity of the water-filled pore system were suggested to largely determine the colonization rate of protective microhabitats.
PMCID: PMC202184  PMID: 16348889
18.  Carbon Monoxide Metabolism in Roadside Soils 
Air-dried soils which were equilibrated under relative humidities greater than 93% or moistened with liquid water showed marked increases in their capacities to oxidize CO to CO2. Liquid water addition in excess of saturation resulted in lower CO oxidation rates, reflecting the limited diffusion of CO through the aqueous phase. After 35 days' storage under 100% relative humidity, the capacity for CO oxidation decreased to 21% of the value observed with a freshly collected sample. Incubation of this stored soil under an atmosphere containing 200 ppm of CO (250 mg/m3) for 21 days resulted in a sevenfold increase in CO oxidation. A correlation was noted between the CO oxidative activity and the history of previous exposure of soils to high ambient levels of CO. The organisms responsible for CO oxidation apparently comprise a small fraction of the microbial population in the soils. With a roadside soil the oxidation of CO provided the driving force for the assimilation of CO2. The stoichiometry of the oxidative and assimilatory reactions in soil was in the range of values reported from laboratory studies with CO chemoautotrophs (carboxydobacteria). It is proposed that the population and activity of CO-oxidizing microorganisms increase in response to increasing levels of CO in the environment.
PMCID: PMC243888  PMID: 16345770
19.  Effects of Simulated Mars Conditions on the Survival and Growth of Escherichia coli and Serratia liquefaciens▿  
Escherichia coli and Serratia liquefaciens, two bacterial spacecraft contaminants known to replicate under low atmospheric pressures of 2.5 kPa, were tested for growth and survival under simulated Mars conditions. Environmental stresses of high salinity, low temperature, and low pressure were screened alone and in combination for effects on bacterial survival and replication, and then cells were tested in Mars analog soils under simulated Mars conditions. Survival and replication of E. coli and S. liquefaciens cells in liquid medium were evaluated for 7 days under low temperatures (5, 10, 20, or 30°C) with increasing concentrations (0, 5, 10, or 20%) of three salts (MgCl2, MgSO4, NaCl) reported to be present on the surface of Mars. Moderate to high growth rates were observed for E. coli and S. liquefaciens at 30 or 20°C and in solutions with 0 or 5% salts. In contrast, cell densities of both species generally did not increase above initial inoculum levels under the highest salt concentrations (10 and 20%) and the four temperatures tested, with the exception that moderately higher cell densities were observed for both species at 10% MgSO4 maintained at 20 or 30°C. Growth rates of E. coli and S. liquefaciens in low salt concentrations were robust under all pressures (2.5, 10, or 101.3 kPa), exhibiting a general increase of up to 2.5 orders of magnitude above the initial inoculum levels of the assays. Vegetative E. coli cells were maintained in a Mars analog soil for 7 days under simulated Mars conditions that included temperatures between 20 and −50°C for a day/night diurnal period, UVC irradiation (200 to 280 nm) at 3.6 W m−2 for daytime operations (8 h), pressures held at a constant 0.71 kPa, and a gas composition that included the top five gases found in the martian atmosphere. Cell densities of E. coli failed to increase under simulated Mars conditions, and survival was reduced 1 to 2 orders of magnitude by the interactive effects of desiccation, UV irradiation, high salinity, and low pressure (in decreasing order of importance). Results suggest that E. coli may be able to survive, but not grow, in surficial soils on Mars.
PMCID: PMC2849189  PMID: 20154104
20.  Role of Microniches in Protecting Introduced Rhizobium leguminosarum biovar trifolii against Competition and Predation in Soil 
The importance of microniches for the survival of introduced Rhizobium leguminosarum biovar trifolii cells was studied in sterilized and recolonized sterilized loamy sand and silt loam. The recolonized soils contained several species of soil microorganisms but were free of protozoa. Part of these soil samples was inoculated with the flagellate Bodo saltans, precultured on rhizobial cells. The introduced organisms were enumerated in different soil fractions by washing the soil, using a standardized washing procedure. With this method, free organisms and organisms associated with soil particles or aggregates >50 μm were separated. The total number of rhizobia was influenced slightly (silt loam) or not at all (loamy sand) by the recolonization with microorganisms or by the addition of flagellates alone. However, when both flagellates and microorganisms were present, numbers of rhizobia decreased drastically. This decrease was more than the sum of both effects separately. Nevertheless, populations of rhizobia were still higher than in natural soil. In the presence of flagellates, higher percentages of rhizobia and other microorganisms were associated with soil particles or aggregates >50 μm than in the absence of flagellates. In recolonized soils, however, the percentages of particle-associated rhizobia were lower than in soils not recolonized previous to inoculation. Thus, the presence of other microorganisms hindered rhizobial colonization of sites where they are normally associated with soil particles or aggregates.
PMCID: PMC183367  PMID: 16348125
21.  An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils 
Scientific Reports  2013;3:2025.
An ‘anomalous' negative flux, in which carbon dioxide (CO2) enters rather than is released from the ground, was studied in a saline/alkaline soil. Soil sterilization disclosed an inorganic process of CO2 dissolution into (during the night) and out of (during the day) the soil solution, driven by variation in soil temperature. Experimental and modeling analysis revealed that pH and soil moisture were the most important determinants of the magnitude of this inorganic CO2 flux. In the extreme cases of air-dried saline/alkaline soils, this inorganic process was predominant. While the diurnal flux measured was zero sum, leaching of the dissolved inorganic carbon in the soil solution could potentially effect net carbon ecosystem exchange. This finding implies that an inorganic module should be incorporated when dealing with the CO2 flux of saline/alkaline land. Neglecting this inorganic flux may induce erroneous or misleading conclusions in interpreting CO2 fluxes of these ecosystems.
PMCID: PMC3685845  PMID: 23778238
22.  Relationship between Desiccation and Exopolysaccharide Production in a Soil Pseudomonas sp 
The relationship between desiccation and the production of extracellular polysaccharides (EPS) by soil bacteria was investigated by using a Pseudomonas species isolated from soil. Cultures subjected to desiccation while growing in a sand matrix contained more EPS and less protein than those growing at high water potential, suggesting that resources were allocated to EPS production in response to desiccation. Desiccation did not have a significant effect on activity as measured by reduction of iodonitrotetrazolium. Purified EPS produced by the Pseudomonas culture contained several times its weight in water at low water potential. Sand amended with EPS held significantly more water and dried significantly more slowly than unamended sand, implying that an EPS matrix may buffer bacterial colonies from some effects of desiccation. We conclude that bacteria may use EPS production to alter their microenvironment to enhance survival of desiccation.
PMCID: PMC195588  PMID: 16348695
23.  Inactivation of Dried Bacteria and Bacterial Spores by Means of Gamma Irradiation at High Temperatures 
Applied Microbiology  1974;27(5):830-833.
Dried preparations with Streptococcus faecium, strain A21, and spores of Bacillus sphaericus, strain CIA, normally used for control of the microbiological efficiency of radiation sterilization plants and preparations with spores of Bacillus subtilis, normally used for control of sterilization by dry heat, formalin, and ethylene oxide, as well as similar preparations with Micrococcus radiodurans, strain R1, and spores of Bacillus globigii (B. subtilis, var. niger) were gamma irradiated with dose rates from 16 to 70 krad/h at temperatures from 60 to 100 C. At 80 C the radiation response of the spore preparations was the same as at room temperature, whereas the radiation resistance of the preparations with the two vegetative strains was reduced. At 100 C the radiation response of preparations with spores of B. subtilis was unaffected by the high temperature, whereas at 16 and and 25 krad/h the radiation resistance of the radiation-resistant sporeformer B. sphaericus, strain CIA, was reduced to the level of radiation resistance of preparations with spores of B. subtilis. It is concluded that combinations of heat and gamma irradiation at the temperatures and dose rates tested may have very few practical applications in sterilization of medical equipment.
PMCID: PMC380155  PMID: 4208509
24.  Searching for signatures of life on Mars: an Fe-isotope perspective 
Recent spacecraft and lander missions to Mars have reinforced previous interpretations that Mars was a wet and warm planet in the geological past. The role of liquid water in shaping many of the surface features on Mars has long been recognized. Since the presence of liquid water is essential for survival of life, conditions on early Mars might have been more favourable for the emergence and evolution of life. Until a sample return mission to Mars, one of the ways of studying the past environmental conditions on Mars is through chemical and isotopic studies of Martian meteorites. Over 35 individual meteorite samples, believed to have originated on Mars, are now available for lab-based studies. Fe is a key element that is present in both primary and secondary minerals in the Martian meteorites. Fe-isotope ratios can be fractionated by low-temperature processes which includes biological activity. Experimental investigations of Fe reduction and oxidation by bacteria have produced large fractionation in Fe-isotope ratios. Hence, it is considered likely that if there is/were any form of life present on Mars then it might be possible to detect its signature by Fe-isotope studies of Martian meteorites. In the present study, we have analysed a number of Martian meteorites for their bulk-Fe-isotope composition. In addition, a set of terrestrial analogue material has also been analysed to compare the results and draw inferences. So far, our studies have not found any measurable Fe-isotopic fractionation in bulk Martian meteorites that can be ascribed to any low-temperature process operative on Mars.
PMCID: PMC1664681  PMID: 17008212
Mars; Martian meteorites; SNC; terrestrial analogues; iron isotopes; life
25.  Persistence of Biomarker ATP and ATP-Generating Capability in Bacterial Cells and Spores Contaminating Spacecraft Materials under Earth Conditions and in a Simulated Martian Environment▿  
Applied and Environmental Microbiology  2008;74(16):5159-5167.
Most planetary protection research has concentrated on characterizing viable bioloads on spacecraft surfaces, developing techniques for bioload reduction prior to launch, and studying the effects of simulated martian environments on microbial survival. Little research has examined the persistence of biogenic signature molecules on spacecraft materials under simulated martian surface conditions. This study examined how endogenous adenosine-5′-triphosphate (ATP) would persist on aluminum coupons under simulated martian conditions of 7.1 mbar, full-spectrum simulated martian radiation calibrated to 4 W m−2 of UV-C (200 to 280 nm), −10°C, and a Mars gas mix of CO2 (95.54%), N2 (2.7%), Ar (1.6%), O2 (0.13%), and H2O (0.03%). Cell or spore viabilities of Acinetobacter radioresistens, Bacillus pumilus, and B. subtilis were measured in minutes to hours, while high levels of endogenous ATP were recovered after exposures of up to 21 days. The dominant factor responsible for temporal reductions in viability and loss of ATP was the simulated Mars surface radiation; low pressure, low temperature, and the Mars gas composition exhibited only slight effects. The normal burst of endogenous ATP detected during spore germination in B. pumilus and B. subtilis was reduced by 1 or 2 orders of magnitude following, respectively, 8- or 30-min exposures to simulated martian conditions. The results support the conclusion that endogenous ATP will persist for time periods that are likely to extend beyond the nominal lengths of most surface missions on Mars, and planetary protection protocols prior to launch may require additional rigor to further reduce the presence and abundance of biosignature molecules on spacecraft surfaces.
PMCID: PMC2519281  PMID: 18567687

Results 1-25 (437799)