PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (814606)

Clipboard (0)
None

Related Articles

1.  Regulators of Trypanosoma brucei Cell Cycle Progression and Differentiation Identified Using a Kinome-Wide RNAi Screen 
PLoS Pathogens  2014;10(1):e1003886.
The African trypanosome, Trypanosoma brucei, maintains an integral link between cell cycle regulation and differentiation during its intricate life cycle. Whilst extensive changes in phosphorylation have been documented between the mammalian bloodstream form and the insect procyclic form, relatively little is known about the parasite's protein kinases (PKs) involved in the control of cellular proliferation and differentiation. To address this, a T. brucei kinome-wide RNAi cell line library was generated, allowing independent inducible knockdown of each of the parasite's 190 predicted protein kinases. Screening of this library using a cell viability assay identified ≥42 PKs that are required for normal bloodstream form proliferation in culture. A secondary screen identified 24 PKs whose RNAi-mediated depletion resulted in a variety of cell cycle defects including in G1/S, kinetoplast replication/segregation, mitosis and cytokinesis, 15 of which are novel cell cycle regulators. A further screen identified for the first time two PKs, named repressor of differentiation kinase (RDK1 and RDK2), depletion of which promoted bloodstream to procyclic form differentiation. RDK1 is a membrane-associated STE11-like PK, whilst RDK2 is a NEK PK that is essential for parasite proliferation. RDK1 acts in conjunction with the PTP1/PIP39 phosphatase cascade to block uncontrolled bloodstream to procyclic form differentiation, whilst RDK2 is a PK whose depletion efficiently induces differentiation in the absence of known triggers. Thus, the RNAi kinome library provides a valuable asset for functional analysis of cell signalling pathways in African trypanosomes as well as drug target identification and validation.
Author Summary
The African trypanosome, which is transmitted by the tsetse fly, causes the usually fatal disease Sleeping Sickness in humans and a wasting disease, called Nagana, in livestock in sub-Saharan Africa. There are no vaccines available against the diseases, and various problems are associated with current drug treatments (including toxicity to the patient and parasite drug resistance). Thus, it is important to identify essential parasite proteins that could be targeted by novel drugs. Protein kinases (PKs) are important cell signalling molecules, and are generally considered to have potential as drug targets. Here we report the construction of a library of trypanosome cell lines that allows us to specifically deplete each of the trypanosome's 190 PKs individually and analyse their function. Using this library, we show that ≥42 PKs are essential for proliferation of the mammalian-infective bloodstream form of the parasite (and thus have potential as drug targets), and demonstrate that 24 of these play important roles in coordinating cell division. We also shed light on how the parasite develops during its life cycle as it passes from the mammalian bloodstream form to the tsetse fly gut by identifying the first two PKs that regulate this life cycle developmental step.
doi:10.1371/journal.ppat.1003886
PMCID: PMC3894213  PMID: 24453978
2.  Global Quantitative SILAC Phosphoproteomics Reveals Differential Phosphorylation Is Widespread between the Procyclic and Bloodstream Form Lifecycle Stages of Trypanosoma brucei 
Journal of Proteome Research  2013;12(5):2233-2244.
We report a global quantitative phosphoproteomic study of bloodstream and procyclic form Trypanosoma brucei using SILAC labeling of each lifecycle stage. Phosphopeptide enrichment by SCX and TiO2 led to the identification of a total of 10096 phosphorylation sites on 2551 protein groups and quantified the ratios of 8275 phosphorylation sites between the two lifecycle stages. More than 9300 of these sites (92%) have not previously been reported. Model-based gene enrichment analysis identified over representation of Gene Ontology terms relating to the flagella, protein kinase activity, and the regulation of gene expression. The quantitative data reveal that differential protein phosphorylation is widespread between bloodstream and procyclic form trypanosomes, with significant intraprotein differential phosphorylation. Despite a lack of dedicated tyrosine kinases, 234 phosphotyrosine residues were identified, and these were 3–4 fold over-represented among site changing >10-fold between the two lifecycle stages. A significant proportion of the T. brucei kinome was phosphorylated, with evidence that MAPK pathways are functional in both lifecycle stages. Regulation of gene expression in T. brucei is exclusively post-transcriptional, and the extensive phosphorylation of RNA binding proteins observed may be relevant to the control of mRNA stability in this organism.
doi:10.1021/pr400086y
PMCID: PMC3646404  PMID: 23485197
phosphorylation; SILAC; Trypanosoma brucei; quantitative proteomics; phosphoproteomics
3.  Histone H1 Plays a Role in Heterochromatin Formation and VSG Expression Site Silencing in Trypanosoma brucei 
PLoS Pathogens  2012;8(11):e1003010.
The African sleeping sickness parasite Trypanosoma brucei evades the host immune system through antigenic variation of its variant surface glycoprotein (VSG) coat. Although the T. brucei genome contains ∼1500 VSGs, only one VSG is expressed at a time from one of about 15 subtelomeric VSG expression sites (ESs). For antigenic variation to work, not only must the vast VSG repertoire be kept silent in a genome that is mainly constitutively transcribed, but the frequency of VSG switching must be strictly controlled. Recently it has become clear that chromatin plays a key role in silencing inactive ESs, thereby ensuring monoallelic expression of VSG. We investigated the role of the linker histone H1 in chromatin organization and ES regulation in T. brucei. T. brucei histone H1 proteins have a different domain structure to H1 proteins in higher eukaryotes. However, we show that they play a key role in the maintenance of higher order chromatin structure in bloodstream form T. brucei as visualised by electron microscopy. In addition, depletion of histone H1 results in chromatin becoming generally more accessible to endonucleases in bloodstream but not in insect form T. brucei. The effect on chromatin following H1 knock-down in bloodstream form T. brucei is particularly evident at transcriptionally silent ES promoters, leading to 6–8 fold derepression of these promoters. T. brucei histone H1 therefore appears to be important for the maintenance of repressed chromatin in bloodstream form T. brucei. In particular H1 plays a role in downregulating silent ESs, arguing that H1-mediated chromatin functions in antigenic variation in T. brucei.
Author Summary
Trypanosoma brucei causes African sleeping sickness, endemic to sub-Saharan Africa. Bloodstream form T. brucei is covered with a dense coat of variant surface glycoprotein (VSG). Only one VSG is expressed at a time out of a vast repertoire of ∼1500 VSGs. The active VSG is transcribed in a telomeric VSG expression site (ES), and VSG switching allows immune evasion. Exactly how monoallelic exclusion of VSG ESs operates, and how switching between ESs is mediated remains mysterious, although epigenetics and chromatin structure clearly play a major role. The linker histone H1 is thought to orchestrate higher order chromatin structure in eukaryotes, but its exact function is unclear. We investigated the role of histone H1 in the regulation of antigenic variation in T. brucei. We show that histone H1 is associated with chromatin and is required for higher order chromatin structure. Depletion of histone H1 results in derepression of silent VSG ES promoters, indicating that H1-mediated chromatin functions in antigenic variation in T. brucei.
doi:10.1371/journal.ppat.1003010
PMCID: PMC3486875  PMID: 23133390
4.  The phosphoproteome of toll-like receptor-activated macrophages 
First global and quantitative analysis of phosphorylation cascades induced by toll-like receptor (TLR) stimulation in macrophages identifies nearly 7000 phosphorylation sites and shows extensive and dynamic up-regulation and down-regulation after lipopolysaccharide (LPS).In addition to the canonical TLR-associated pathways, mining of the phosphorylation data suggests an involvement of ATM/ATR kinases in signalling and shows that the cytoskeleton is a hotspot of TLR-induced phosphorylation.Intersecting transcription factor phosphorylation with bioinformatic promoter analysis of genes induced by LPS identified several candidate transcriptional regulators that were previously not implicated in TLR-induced transcriptional control.
Toll-like receptors (TLR) are a family of pattern recognition receptors that enable innate immune cells to sense infectious danger. Recognition of microbial structures, like lipopolysaccharide (LPS) of Gram-negative bacteria by TLR4, causes within hours substantial re-programming of macrophage gene expression, including up-regulation of chemokines driving inflammation, anti-microbial effector molecules and cytokines directing adaptive immune responses. TLR signalling is initiated by the adapter protein Myd88 and leads to the activation of kinase cascades that result in activation of the MAPK and NFkB pathways. Phosphorylation has an essential role in these early steps of TLR signalling, and in addition regulates critical transcription factors (TFs). Although TLR signalling has been extensively studied, a comprehensive analysis of phosphorylation events in TLR-activated macrophages is lacking. It is therefore unknown whether the canonical MAPK and NFkB pathways comprise the main phosphorylation events and which other molecular functions and processes are regulated by phosphorylation after stimulation with LPS.
Recent progress in mass spectrometry-based proteomics has opened the possibility to quantitatively investigate global changes in protein abundance and post-translational modifications. Stable isotope labelling with amino acids in cell culture (SILAC) allows highly accurate quantification, and has proved especially useful for direct comparison of phosphopeptide abundance in time-course or treatment analyses.
Here, we adapted SILAC to primary mouse macrophages, and performed a global, quantitative and kinetic analysis of the macrophage phosphoproteome after LPS stimulation. Bioinformatic analyses were used to identify kinases, pathways and biological processes enriched in the LPS-regulated phosphoproteome. To connect TF phosphorylation with transcription, we generated a parallel dataset of nascent RNA and used in silico promoter analysis to identify transcriptional regulators with binding site enrichment among the LPS-regulated gene set.
After establishing SILAC conditions for efficient labelling of primary bone marrow-derived macrophages in two independent experiments 1850 phosphoproteins with a total of 6956 phosphorylation sites were reproducibly identified. Phosphoproteins were detected from all cellular compartments, with a clear enrichment for nuclear and cytoskeleton-associated proteins. LPS caused major regulation of a large fraction of phosphopeptides, with 24% of all sites up-regulated and 9% down-regulated after stimulation (Figure 3A and B). These changes were highly dynamic, as the majority of the regulated phosphopeptides were up-regulated or down-regulated transiently or in a delayed manner (Figure 3C). Overall, the extent of changes in the phosphoproteome was comparable to the transcriptional re-programming, underscoring the importance of phosphorylation cascades in TLR signalling. Our parallel transcriptome data also showed that widespread phosphorylation precedes massive transcriptional changes.
To obtain footprints of kinase activation in response to TLR ligation, we searched phosphopeptide sequences for known linear sequence motifs of 33 kinases and identified kinase motifs enriched among LPS-regulated phosphorylation sites (compared to non-regulated phosphorylation sites) (Table I). Motif ERK/MAPK was highly enriched, in accordance with the essential role of the MAPK module in TLR signalling. Other kinases with motif enrichment have also recently been linked to TLR signalling (e.g. PKD; AKT and its targets GSK3 and mTOR). However, the DNA damage-actviated kinases ATM/ATR and the cell cycle-associated kinases AURORA and CHK1/2 have not been associated with the macrophage response to TLR activation yet. These finding shed new light on older data on the effect of TLR on macrophage proliferation in response to macrophage colony stimulating factor. Of interest, in follow-up experiments using pharmacological inhibitors of the kinases with motif enrichment, we observed that inhibition of ATM kinase activity caused increased LPS-induced expression of several cytokines and chemokines, suggesting that this pathway regulates inflammatory responses.
In further bioinformatic analyses, the Gene Ontology and signalling pathway annotations of phosphoproteins were used to identify signalling pathways and cellular processes targeted by TLR4-controlled phosphorylation (Table II). Among the expected hits, based on the known TLR pathways, were TLR signalling, MAPK and AKT as well as mTOR signalling. Of interest, the annotation terms ‘Rho GTPase cycle' and ‘cytoskeleton' were significantly enriched among LPS-regulated phosphoproteins, indicating a more prominent role for cytoskeletal proteins in the transduction of TLR signals or in the biological response to it.
We were especially interested in the phosphorylation of TFs and its regulation by LPS (Figure 6A). We hypothesised that functionally important TFs should have an increased frequency of binding sites in the promoters of LPS-regulated genes (Figure 6B). To identify transcriptionally regulated genes with high sensitivity, we isolated nascent RNA after metabolic labelling (Figure 6C–E). In silico promoter scanning using Genomatix software for binding sites for all 50 TF families with phosphorylated members was used to test for enrichment in transciptionally induced genes (Figure 6F). At the early time point, binding site enrichment for the canonical TLR-associated TF NFkB was detected, and in addition we found that several other TF families with an established role in the transcription of individual LPS-target genes showed binding site enrichment (CEBP, MEF2, NFAT and HEAT). In addition, enrichment for OCT and HOXC binding sites at the early time point and SORY matrices later after stimulation indicated an involvement of the phosphorylated members of the respective TF families in the execution of TLR-induced transcriptional responses. An initial test of the function for a few of these candidate transcriptional regulators was performed using siRNA knockdown in primary macrophages. These experiments suggested that knock down of the SORY binding phosphoprotein Capicua homolog (Cic) and to a lesser extent of the CREB family member Atf7 selectively attenuates LPS-induced expression of Il1a and Il1b.
In summary, this study provides a novel and global perspective on innate immune activation by TLR signalling (Figure 5). We quantitatively detected a large number of previously unknown site-specific phosphorylation events, which are now publicly available through the Phosida database. By combining different data mining approaches, we consistently identified canonical and newly implicated TLR-activated signalling modules. In particular, the PI3K/AKT and the related mTOR pathway were highlighted; furthermore, DNA damage–response associated ATM/ATR kinases and the cytoskeleton emerged as unexpected hotspots for phosphorylation. Finally, weaving together corresponding phophoproteome and nascent transcriptome datasets through the loom of in silico promoter analysis we identified TFs with a likely role in mediating TLR-induced gene expression programmes.
Recognition of microbial danger signals by toll-like receptors (TLR) causes re-programming of macrophages. To investigate kinase cascades triggered by the TLR4 ligand lipopolysaccharide (LPS) on systems level, we performed a global, quantitative and kinetic analysis of the phosphoproteome of primary macrophages using stable isotope labelling with amino acids in cell culture, phosphopeptide enrichment and high-resolution mass spectrometry. In parallel, nascent RNA was profiled to link transcription factor (TF) phosphorylation to TLR4-induced transcriptional activation. We reproducibly identified 1850 phosphoproteins with 6956 phosphorylation sites, two thirds of which were not reported earlier. LPS caused major dynamic changes in the phosphoproteome (24% up-regulation and 9% down-regulation). Functional bioinformatic analyses confirmed canonical players of the TLR pathway and highlighted other signalling modules (e.g. mTOR, ATM/ATR kinases) and the cytoskeleton as hotspots of LPS-regulated phosphorylation. Finally, weaving together phosphoproteome and nascent transcriptome data by in silico promoter analysis, we implicated several phosphorylated TFs in primary LPS-controlled gene expression.
doi:10.1038/msb.2010.29
PMCID: PMC2913394  PMID: 20531401
macrophage; nascent RNA; phosphoproteome; SILAC; toll-like receptors
5.  Novel Membrane-Bound eIF2α Kinase in the Flagellar Pocket of Trypanosoma brucei▿  
Eukaryotic Cell  2007;6(11):1979-1991.
Translational control mediated by phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 (eIF2α) is central to stress-induced programs of gene expression. Trypanosomatids, important human pathogens, display differentiation processes elicited by contact with the distinct physiological milieu found in their insect vectors and mammalian hosts, likely representing stress situations. Trypanosoma brucei, the agent of African trypanosomiasis, encodes three potential eIF2α kinases (TbeIF2K1 to -K3). We show here that TbeIF2K2 is a transmembrane glycoprotein expressed both in procyclic and in bloodstream forms. The catalytic domain of TbeIF2K2 phosphorylates yeast and mammalian eIF2α at Ser51. It also phosphorylates the highly unusual form of eIF2α found in trypanosomatids specifically at residue Thr169 that corresponds to Ser51 in other eukaryotes. T. brucei eIF2α, however, is not a substrate for GCN2 or PKR in vitro. The putative regulatory domain of TbeIF2K2 does not share any sequence similarity with known eIF2α kinases. In both procyclic and bloodstream forms TbeIF2K2 is mainly localized in the membrane of the flagellar pocket, an organelle that is the exclusive site of exo- and endocytosis in these parasites. It can also be detected in endocytic compartments but not in lysosomes, suggesting that it is recycled between endosomes and the flagellar pocket. TbeIF2K2 location suggests a relevance in sensing protein or nutrient transport in T. brucei, an organism that relies heavily on posttranscriptional regulatory mechanisms to control gene expression in different environmental conditions. This is the first membrane-associated eIF2α kinase described in unicellular eukaryotes.
doi:10.1128/EC.00249-07
PMCID: PMC2168417  PMID: 17873083
6.  Cytosolic Peroxidases Protect the Lysosome of Bloodstream African Trypanosomes from Iron-Mediated Membrane Damage 
PLoS Pathogens  2014;10(4):e1004075.
African trypanosomes express three virtually identical non-selenium glutathione peroxidase (Px)-type enzymes which preferably detoxify lipid-derived hydroperoxides. As shown previously, bloodstream Trypanosoma brucei lacking the mitochondrial Px III display only a weak and transient proliferation defect whereas parasites that lack the cytosolic Px I and Px II undergo extremely fast lipid peroxidation and cell lysis. The phenotype can completely be rescued by supplementing the medium with the α-tocopherol derivative Trolox. The mechanism underlying the rapid cell death remained however elusive. Here we show that the lysosome is the origin of the cellular injury. Feeding the px I–II knockout parasites with Alexa Fluor-conjugated dextran or LysoTracker in the presence of Trolox yielded a discrete lysosomal staining. Yet upon withdrawal of the antioxidant, the signal became progressively spread over the whole cell body and was completely lost, respectively. T. brucei acquire iron by endocytosis of host transferrin. Supplementing the medium with iron or transferrin induced, whereas the iron chelator deferoxamine and apo-transferrin attenuated lysis of the px I–II knockout cells. Immunofluorescence microscopy with MitoTracker and antibodies against the lysosomal marker protein p67 revealed that disintegration of the lysosome precedes mitochondrial damage. In vivo experiments confirmed the negligible role of the mitochondrial peroxidase: Mice infected with px III knockout cells displayed only a slightly delayed disease development compared to wild-type parasites. Our data demonstrate that in bloodstream African trypanosomes, the lysosome, not the mitochondrion, is the primary site of oxidative damage and cytosolic trypanothione/tryparedoxin-dependent peroxidases protect the lysosome from iron-induced membrane peroxidation. This process appears to be closely linked to the high endocytic rate and distinct iron acquisition mechanisms of the infective stage of T. brucei. The respective knockout of the cytosolic px I–II in the procyclic insect form resulted in cells that were fully viable in Trolox-free medium.
Author Summary
In many cell types, mitochondria are the main source of intracellular reactive oxygen species but iron-induced oxidative lysosomal damage has been described as well. African trypanosomes are the causative agents of human sleeping sickness and the cattle disease Nagana. The parasites are obligate extracellular pathogens that multiply in the bloodstream and body fluids of their mammalian hosts and as procyclic forms in their insect vector, the tsetse fly. Bloodstream Trypanosoma brucei in which the genes for cytosolic lipid hydroperoxide-detoxifying peroxidases have been knocked out undergo an extremely rapid membrane peroxidation and lyse within less than two hours when they are cultured without an exogenous antioxidant. Here we show that the primary site of intracellular damage is the single terminal lysosome of the parasites. Disintegration of the lysosome clearly precedes damage of the mitochondrion and parasite death. Iron, acquired by the endocytosis of iron-loaded host transferrin, induces cell lysis. Contrary to the cytosolic enzymes, the respective mitochondrial peroxidase is dispensable for both in vitro proliferation and mouse infectivity. This is the first report demonstrating that cytosolic thiol peroxidases are responsible for protecting the lysosome of a cell.
doi:10.1371/journal.ppat.1004075
PMCID: PMC3983053  PMID: 24722489
7.  Hypothemicin, a fungal natural product, identifies therapeutic targets in Trypanosoma brucei 
eLife  2013;2:e00712.
Protein kinases are potentially attractive therapeutic targets for neglected parasitic diseases, including African trypanosomiasis caused by the protozoan, Trypanosoma brucei. How to prioritize T. brucei kinases and quantify their intracellular engagement by small-molecule inhibitors remain unsolved problems. Here, we combine chemoproteomics and RNA interference to interrogate trypanosome kinases bearing a Cys-Asp-Xaa-Gly motif (CDXG kinases). We discovered that hypothemycin, a fungal polyketide previously shown to covalently inactivate a subset of human CDXG kinases, kills T. brucei in culture and in infected mice. Quantitative chemoproteomic analysis with a hypothemycin-based probe revealed the relative sensitivity of endogenous CDXG kinases, including TbGSK3short and a previously uncharacterized kinase, TbCLK1. RNAi-mediated knockdown demonstrated that both kinases are essential, but only TbCLK1 is fully engaged by cytotoxic concentrations of hypothemycin in intact cells. Our study identifies TbCLK1 as a therapeutic target for African trypanosomiasis and establishes a new chemoproteomic tool for interrogating CDXG kinases in their native context.
DOI: http://dx.doi.org/10.7554/eLife.00712.001
eLife digest
Human African trypanosomiasis—commonly known as sleeping sickness—is a debilitating and potentially fatal tropical disease that is widespread in sub-Saharan Africa. It is caused by the single-celled parasite Trypanosoma brucei, which is transmitted to humans by the bite of the tsetse fly. The infection takes its name from the disruption of the circadian clock that occurs early on in the disorder and leads to sleep disturbances. If left untreated, T. brucei infection leads to coma, organ failure and death.
Most of the existing pharmaceutical treatments for sleeping sickness were developed more than 50 years ago. However, they are only weakly absorbed into the bloodstream—meaning that high doses must be used—and they lead to unpleasant side effects. Moreover, the T. brucei parasite is developing resistance to existing drugs, so further research is needed to identify new therapeutic targets.
One promising option could be the parasite’s protein kinases. These enzymes, which add phosphate-based chemical groups to proteins, have a key role in regulating protein function and many of them are already being investigated as therapeutic targets for cancers and autoimmune diseases. T. brucei has 182 different kinases, suggesting a wealth of potential new targets. However, many of these are similar to human enzymes, and inhibiting the latter could lead to harmful side effects.
Now, Nishino et al. have produced a synthetic version of a microbially derived kinase inhibitor, called hypothemycin, and have shown that it kills T. brucei cells grown in culture. Hypothemycin also killed T. brucei in infected mice, completely curing the infection in one third of animals, although high doses of the drug led to side effects. Using a chemical biology approach and quantitative mass spectrometry, Nishino et al. found that the main target of hypothemycin was a previously unknown kinase that is essential for T. brucei survival. Although hypothemycin itself is probably unsuitable as a treatment due to its lack of specificity, the work of Nishino et al. suggests that its kinase targets deserve further investigation.
DOI: http://dx.doi.org/10.7554/eLife.00712.002
doi:10.7554/eLife.00712
PMCID: PMC3707081  PMID: 23853713
T. brucei; chemoproteomics; hypothemycin; protein kinase; Mouse; Other
8.  A Cell-surface Phylome for African Trypanosomes 
The cell surface of Trypanosoma brucei, like many protistan blood parasites, is crucial for mediating host-parasite interactions and is instrumental to the initiation, maintenance and severity of infection. Previous comparisons with the related trypanosomatid parasites T. cruzi and Leishmania major suggest that the cell-surface proteome of T. brucei is largely taxon-specific. Here we compare genes predicted to encode cell surface proteins of T. brucei with those from two related African trypanosomes, T. congolense and T. vivax. We created a cell surface phylome (CSP) by estimating phylogenies for 79 gene families with putative surface functions to understand the more recent evolution of African trypanosome surface architecture. Our findings demonstrate that the transferrin receptor genes essential for bloodstream survival in T. brucei are conserved in T. congolense but absent from T. vivax and include an expanded gene family of insect stage-specific surface glycoproteins that includes many currently uncharacterized genes. We also identify species-specific features and innovations and confirm that these include most expression site-associated genes (ESAGs) in T. brucei, which are absent from T. congolense and T. vivax. The CSP presents the first global picture of the origins and dynamics of cell surface architecture in African trypanosomes, representing the principal differences in genomic repertoire between African trypanosome species and provides a basis from which to explore the developmental and pathological differences in surface architectures. All data can be accessed at: http://www.genedb.org/Page/trypanosoma_surface_phylome.
Author Summary
The African trypanosome (Trypanosoma brucei) is a single-celled, vector-borne parasite that causes Human African Trypanosomiasis (or ‘sleeping sickness’) throughout sub-Saharan Africa and, along with related species T. congolense and T. vivax, a similar disease in wild and domestic animals. Together, the African trypanosomes have significant effects on human and animal health and associated costs for socio-economic development in Africa. Genes expressed on the trypanosome cell surface are instrumental in causing disease and sustaining infection by resisting the host immune system. Here we compare repertoires of genes with predicted cell-surface expression in T. brucei, T. congolense and T. vivax and estimate the phylogeny of each predicted cell-surface gene family. This ‘cell-surface phylome’ (CSP) provides a detailed analysis of species-specific gene families and of gene gain and loss in shared families, aiding the identification of surface proteins that may mediate specific aspects of pathogenesis and disease progression. Overall, the CSP suggests that each trypanosome species has modified its surface proteome uniquely, indicating that T. brucei, T. congolense and T. vivax have subtly distinct mechanisms for interacting with both vertebrate and insect hosts.
doi:10.1371/journal.pntd.0002121
PMCID: PMC3605285  PMID: 23556014
9.  Identification of Compounds with Anti-Proliferative Activity against Trypanosoma brucei brucei Strain 427 by a Whole Cell Viability Based HTS Campaign 
Human African Trypanosomiasis (HAT) is caused by two trypanosome sub-species, Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. Drugs available for the treatment of HAT have significant issues related to difficult administration regimes and limited efficacy across species and disease stages. Hence, there is considerable need to find new alternative and less toxic drugs. An approach to identify starting points for new drug candidates is high throughput screening (HTS) of large compound library collections. We describe the application of an Alamar Blue based, 384-well HTS assay to screen a library of 87,296 compounds against the related trypanosome subspecies, Trypanosoma brucei brucei bloodstream form lister 427. Primary hits identified against T.b. brucei were retested and the IC50 value compounds were estimated for T.b. brucei and a mammalian cell line HEK293, to determine a selectivity index for each compound. The screening campaign identified 205 compounds with greater than 10 times selectivity against T.b. brucei. Cluster analysis of these compounds, taking into account chemical and structural properties required for drug-like compounds, afforded a panel of eight compounds for further biological analysis. These compounds had IC50 values ranging from 0.22 µM to 4 µM with associated selectivity indices ranging from 19 to greater than 345. Further testing against T.b. rhodesiense led to the selection of 6 compounds from 5 new chemical classes with activity against the causative species of HAT, which can be considered potential candidates for HAT early drug discovery. Structure activity relationship (SAR) mining revealed components of those hit compound structures that may be important for biological activity. Four of these compounds have undergone further testing to 1) determine whether they are cidal or static in vitro at the minimum inhibitory concentration (MIC), and 2) estimate the time to kill.
Author Summary
Human African Sleeping Sickness (HAT) is a disease caused by sub-species of Trypanosoma. The disease affects developing countries within Africa, mainly occurring in rural regions that lack resources to purchase drugs for treatment. Drugs that are currently available have significant side effects, and treatment regimes are lengthy and not always transferrable to the field. In consideration of these factors, new drugs are urgently needed for the treatment of HAT. To discover compounds suitable for drug discovery, cultured trypanosomes can be tested against libraries of compounds to identify candidates for further biological analysis. We have utilised a 384-well format, Alamar Blue viability assay to screen a large non-proprietary compound collection against Trypanosoma brucei brucei bloodstream form lister 427. The assay was shown to be reproducible, with reference compounds exhibiting activity in agreement with previously published results. Primary screening hits were retested against T.b. brucei and HEK293 mammalian cells in order to assess selectivity against the parasite. Selective hits were characterised by chemical analysis, taking into consideration drug-like properties amenable to further progression. Priority compounds were tested against a panel of protozoan parasites, including Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and Plasmodium falciparum. Five new compound classes were discovered that are amenable to progression in the drug discovery process for HAT.
doi:10.1371/journal.pntd.0001896
PMCID: PMC3510080  PMID: 23209849
10.  Profiling the Trypanosoma cruzi Phosphoproteome 
PLoS ONE  2011;6(9):e25381.
Protein phosphorylation is a reversible post-translational modification essential for the regulation of several signal transduction pathways and biological processes in the living cell. Therefore, the identification of protein phosphorylation sites is crucial to understand cell signaling control at the molecular level. Based on mass spectrometry, recent studies have reported the large-scale mapping of phosphorylation sites in various eukaryotes and prokaryotes. However, little is known about the impact of phosphorylation in protozoan parasites. To in depth characterize the phosphoproteome of Trypanosoma cruzi, a parasite of the Kinetoplastida class, protein samples from cells at different phases of the metacyclogenesis – differentiation process of the parasites from non-infective epimastigotes to infective metacyclic trypomastigotes - were enriched for phosphopeptides using TiO2 chromatography and analyzed on an LTQ-Orbitrap mass spectrometer. In total, 1,671 proteins were identified, including 753 phosphoproteins, containing a total of 2,572 phosphorylation sites. The distribution of phosphorylated residues was 2,162 (84.1%) on serine, 384 (14.9%) on threonine and 26 (1.0%) on tyrosine. Here, we also report several consensus phosphorylation sequence motifs and as some of these conserved groups have enriched biological functions, we can infer the regulation by protein kinases of this functions. To our knowledge, our phosphoproteome is the most comprehensive dataset identified until now for Kinetoplastida species. Here we also were able to extract biological information and infer groups of sites phosphorylated by the same protein kinase. To make our data accessible to the scientific community, we uploaded our study to the data repositories PHOSIDA, Proteome Commons and TriTrypDB enabling researchers to access information about the phosphorylation sites identified here.
doi:10.1371/journal.pone.0025381
PMCID: PMC3178638  PMID: 21966514
11.  Identification and Characterization of Hundreds of Potent and Selective Inhibitors of Trypanosoma brucei Growth from a Kinase-Targeted Library Screening Campaign 
In the interest of identification of new kinase-targeting chemotypes for target and pathway analysis and drug discovery in Trypanosomal brucei, a high-throughput screen of 42,444 focused inhibitors from the GlaxoSmithKline screening collection was performed against parasite cell cultures and counter-screened against human hepatocarcinoma (HepG2) cells. In this way, we have identified 797 sub-micromolar inhibitors of T. brucei growth that are at least 100-fold selective over HepG2 cells. Importantly, 242 of these hit compounds acted rapidly in inhibiting cellular growth, 137 showed rapid cidality. A variety of in silico and in vitro physicochemical and drug metabolism properties were assessed, and human kinase selectivity data were obtained, and, based on these data, we prioritized three compounds for pharmacokinetic assessment and demonstrated parasitological cure of a murine bloodstream infection of T. brucei rhodesiense with one of these compounds (NEU-1053). This work represents a successful implementation of a unique industrial-academic collaboration model aimed at identification of high quality inhibitors that will provide the parasitology community with chemical matter that can be utilized to develop kinase-targeting tool compounds. Furthermore these results are expected to provide rich starting points for discovery of kinase-targeting tool compounds for T. brucei, and new HAT therapeutics discovery programs.
Author Summary
Human African trypanosomiasis, or sleeping sickness, affects 10,000 patients annually, yet current drugs for this disease are poor, with high toxicity and inconvenient dosing requirements. Trypanosoma brucei, the parasite that causes sleeping sickness, is sensitive to a class of compounds called kinase inhibitors, and our project was aimed at identifying kinase-targeting compounds that rapidly and irreversibly inhibit parasite growth. This was accomplished by high-throughput screening of over 42,000 compounds, which resulted in identification of 797 potent inhibitors of parasite growth that are non-toxic to human cells. These inhibitors were studied for the speed of their effects and reversibility of growth inhibition, and were grouped on the basis of chemical structure similarity. One compound was shown to cure mice from a bloodstream of infection of T. brucei. These compounds can now be utilized by the research community as starting points for new drug discovery, and also as tool compounds for understanding the function of kinases in T. brucei.
doi:10.1371/journal.pntd.0003253
PMCID: PMC4207660  PMID: 25340575
12.  Effects of the green tea catechin (−)-epigallocatechin gallate on Trypanosoma brucei 
Graphical abstract
Highlights
► EGCG inhibits TbACC activity in lysates. ► EGCG induces an increase in TbACC phosphorylation in lysates. ► EGCG inhibits growth of Trypanosoma brucei in culture with an EC50 of ∼30 μM. ► Intra-peritoneal administration of EGCG did not reduce virulence in mice.
The current pharmacopeia to treat the lethal human and animal diseases caused by the protozoan parasite Trypanosoma brucei remains limited. The parasite’s ability to undergo antigenic variation represents a considerable barrier to vaccine development, making the identification of new drug targets extremely important. Recent studies have demonstrated that fatty acid synthesis is important for growth and virulence of Trypanosoma brucei brucei, suggesting this pathway may have therapeutic potential. The first committed step of fatty acid synthesis is catalyzed by acetyl-CoA carboxylase (ACC), which is a known target of (−)-epigallocatechin-3-gallate (EGCG), an active polyphenol compound found in green tea. EGCG exerts its effects on ACC through activation of AMP-dependent protein kinase, which phosphorylates and inhibits ACC. We found that EGCG inhibited TbACC activity with an EC50 of 37 μM and 55 μM for bloodstream form and procyclic form lysates, respectively. Treatment with 100 μM EGCG induced a 4.7- and 1.7- fold increase in TbACC phosphorylation in bloodstream form and procyclic lysates. EGCG also inhibited the growth of bloodstream and procyclic parasites in culture, with a 48 h EC50 of 33 μM and 27 μM, respectively, which is greater than the EGCG plasma levels typically achievable in humans through oral dosing. Daily intraperitoneal administration of EGCG did not reduce the virulence of an acute mouse model of T. b. brucei infection. These data suggest a reduced potential for EGCG to treat T. brucei infections, but suggest that EGCG may prove to be useful as a tool to probe ACC regulation.
doi:10.1016/j.ijpddr.2012.09.001
PMCID: PMC3862400  PMID: 24533284
ACC, acetyl-CoA carboxylase; AMPK, AMP-activated protein kinase; BF, bloodstream form; DMSO, dimethyl sulfoxide; EGCG, (−)-epigallocatechin gallate; PF, procyclic form; RNAi, RNA interference; SA-HRP, streptavidin conjugated to horseradish peroxidase; Trypanosoma brucei; Epigallocatechin gallate; Acetyl-CoA carboxylase; Phosphorylation
13.  Expression site attenuation mechanistically links antigenic variation and development in Trypanosoma brucei 
eLife  2014;3:e02324.
We have discovered a new mechanism of monoallelic gene expression that links antigenic variation, cell cycle, and development in the model parasite Trypanosoma brucei. African trypanosomes possess hundreds of variant surface glycoprotein (VSG) genes, but only one is expressed from a telomeric expression site (ES) at any given time. We found that the expression of a second VSG alone is sufficient to silence the active VSG gene and directionally attenuate the ES by disruptor of telomeric silencing-1B (DOT1B)-mediated histone methylation. Three conserved expression-site-associated genes (ESAGs) appear to serve as signal for ES attenuation. Their depletion causes G1-phase dormancy and reversible initiation of the slender-to-stumpy differentiation pathway. ES-attenuated slender bloodstream trypanosomes gain full developmental competence for transformation to the tsetse fly stage. This surprising connection between antigenic variation and developmental progression provides an unexpected point of attack against the deadly sleeping sickness.
DOI: http://dx.doi.org/10.7554/eLife.02324.001
eLife digest
African sleeping sickness is a potentially lethal disease that is caused by a parasite called T. brucei and spread by tsetse flies. Like many of the parasites that cause tropical diseases, T. brucei employs genetic trickery to evade the immune systems of humans and other mammals. This involves changing the variant surface glycoprotein (VSG) coat that surrounds the parasite on a regular basis in order to remain one step ahead of the immune system of its host: while the immune system looks for invaders wearing a particular coat, the parasites are spreading through the host in a completely different coat.
To infect other hosts, the parasite must undergo changes that allow it to re-infect the tsetse fly. Therefore, besides the ‘antigenic variation’ that allows it to change its surface coat when it is in the blood of its host, T. brucei must undergo a more fundamental metamorphosis before it is capable of colonizing the tsetse fly. However, many details of the changes that allow the parasites to re-infect flies are not understood.
T. brucei has several hundred VSG genes clustered in about 15 regions known as expression sites, but only a single expression site is active at any given time. Each expression site also contains a number of other genes known as expression site-associated genes (ESAGs). Antigenic variation can occur as a result of different VSG genes within the same expression site being expressed as proteins, or when the active expression site is silenced and another expression site is activated. This is another process that is not fully understood.
Batram et al. now reveal that the expression of VSG genes, antigenic variation and the changes that allow the parasites to re-infect flies are all related to each other. This suggests that the expression site could provide a new point of attack in the fight against African sleeping sickness.
DOI: http://dx.doi.org/10.7554/eLife.02324.002
doi:10.7554/eLife.02324
PMCID: PMC4027811  PMID: 24844706
Trypanosoma brucei; variant surface glycoprotein (VSG); monoallelic expression; antigenic variation; expression site attenuation; developmental reprogramming; other
14.  Identification of a Wee1–Like Kinase Gene Essential for Procyclic Trypanosoma brucei Survival 
PLoS ONE  2013;8(11):e79364.
Regulation of eukaryotic cell cycle progression requires sequential activation and inactivation of cyclin-dependent kinases (CDKs). Activation of the cyclin B-cdc2 kinase complex is a pivotal step in mitotic initiation and the tyrosine kinase Wee1 is a key regulator of cell cycle sequence during G2/M transition and inhibits mitotic entry by phosphorylating the inhibitory tyrosine 15 on the cdc2 M-phase-inducing kinase. Wee1 degradation is essential for the exit from the G2 phase. In trypanosomatids, little is known about the genes that regulate cyclin B-cdc2 complexes at the G2/M transition of their cell cycle. Although canonical tyrosine kinases are absent in the genome of trypanosomatids, phosphorylation on protein tyrosine residues has been reported in Trypanosoma brucei. Here, we characterized a Wee1-like protein kinase gene from T. brucei. Expression of TbWee1 in a Schizosaccharomyces pombe strain null for Wee1 inhibited cell division and caused cell elongation. This demonstrates the lengthening of G2, which provided cells with extra time to grow before dividing. The Wee1-like protein kinase was expressed in the procyclic and bloodstream proliferative slender forms of T. brucei and the role of Wee1 in cell cycle progression was analyzed by generating RNA interference cell lines. In the procyclic form of T. brucei, the knock-down of TbWee1 expression by RNAi led to inhibition of parasite growth. Abnormal phenotypes showing an increase in the percentage of cells with 1N0K, 0N1K and 2N1K were observed in these RNAi cell lines. Using parasites with a synchronized cell cycle, we demonstrated that TbWee1 is linked to the G2/M phase. We also showed that TbWee1 is an essential gene necessary for proper cell cycle progression and parasite growth in T. brucei. Our results provide evidence for the existence of a functional Wee1 in T. brucei with a potential role in cell division at G2/M.
doi:10.1371/journal.pone.0079364
PMCID: PMC3818516  PMID: 24223931
15.  TFPP: An SVM-Based Tool for Recognizing Flagellar Proteins in Trypanosoma brucei 
PLoS ONE  2013;8(1):e54032.
Trypanosoma brucei is a unicellular flagellated eukaryotic parasite that causes African trypanosomiasis in human and domestic animals with devastating health and economic consequences. Recent studies have revealed the important roles of the single flagellum of T. brucei in many aspects, especially that the flagellar motility is required for the viability of the bloodstream form T. brucei, suggesting that impairment of the flagellar function may provide a promising cure for African sleeping sickness. Knowing the flagellum proteome is crucial to study the molecular mechanism of the flagellar functions. Here we present a novel computational method for identifying flagellar proteins in T. brucei, called trypanosome flagellar protein predictor (TFPP). TFPP was developed based on a list of selected discriminating features derived from protein sequences, and could predict flagellar proteins with ∼92% specificity at a ∼84% sensitivity rate. Applied to the whole T. brucei proteome, TFPP reveals 811 more flagellar proteins with high confidence, suggesting that the flagellar proteome covers ∼10% of the whole proteome. Comparison of the expression profiles of the whole T. brucei proteome at three typical life cycle stages found that ∼45% of the flagellar proteins were significantly changed in expression levels between the three life cycle stages, indicating life cycle stage-specific regulation of flagellar functions in T. brucei. Overall, our study demonstrated that TFPP is highly effective in identifying flagellar proteins and could provide opportunities to study the trypanosome flagellar proteome systematically. Furthermore, the web server for TFPP can be freely accessed at http:/wukong.tongji.edu.cn/tfpp.
doi:10.1371/journal.pone.0054032
PMCID: PMC3547966  PMID: 23349782
16.  Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi 
BMC Genomics  2005;6:127.
Background
The trypanosomatids Leishmania major, Trypanosoma brucei and Trypanosoma cruzi cause some of the most debilitating diseases of humankind: cutaneous leishmaniasis, African sleeping sickness, and Chagas disease. These protozoa possess complex life cycles that involve development in mammalian and insect hosts, and a tightly coordinated cell cycle ensures propagation of the highly polarized cells. However, the ways in which the parasites respond to their environment and coordinate intracellular processes are poorly understood. As a part of an effort to understand parasite signaling functions, we report the results of a genome-wide analysis of protein kinases (PKs) of these three trypanosomatids.
Results
Bioinformatic searches of the trypanosomatid genomes for eukaryotic PKs (ePKs) and atypical PKs (aPKs) revealed a total of 176 PKs in T. brucei, 190 in T. cruzi and 199 in L. major, most of which are orthologous across the three species. This is approximately 30% of the number in the human host and double that of the malaria parasite, Plasmodium falciparum. The representation of various groups of ePKs differs significantly as compared to humans: trypanosomatids lack receptor-linked tyrosine and tyrosine kinase-like kinases, although they do possess dual-specificity kinases. A relative expansion of the CMGC, STE and NEK groups has occurred. A large number of unique ePKs show no strong affinity to any known group. The trypanosomatids possess few ePKs with predicted transmembrane domains, suggesting that receptor ePKs are rare. Accessory Pfam domains, which are frequently present in human ePKs, are uncommon in trypanosomatid ePKs.
Conclusion
Trypanosomatids possess a large set of PKs, comprising approximately 2% of each genome, suggesting a key role for phosphorylation in parasite biology. Whilst it was possible to place most of the trypanosomatid ePKs into the seven established groups using bioinformatic analyses, it has not been possible to ascribe function based solely on sequence similarity. Hence the connection of stimuli to protein phosphorylation networks remains enigmatic. The presence of numerous PKs with significant sequence similarity to known drug targets, as well as a large number of unusual kinases that might represent novel targets, strongly argue for functional analysis of these molecules.
doi:10.1186/1471-2164-6-127
PMCID: PMC1266030  PMID: 16164760
17.  The F0F1-ATP Synthase Complex Contains Novel Subunits and Is Essential for Procyclic Trypanosoma brucei 
PLoS Pathogens  2009;5(5):e1000436.
The mitochondrial F0F1 ATP synthase is an essential multi-subunit protein complex in the vast majority of eukaryotes but little is known about its composition and role in Trypanosoma brucei, an early diverged eukaryotic pathogen. We purified the F0F1 ATP synthase by a combination of affinity purification, immunoprecipitation and blue-native gel electrophoresis and characterized its composition and function. We identified 22 proteins of which five are related to F1 subunits, three to F0 subunits, and 14 which have no obvious homology to proteins outside the kinetoplastids. RNAi silencing of expression of the F1 α subunit or either of the two novel proteins showed that they are each essential for the viability of procyclic (insect stage) cells and are important for the structural integrity of the F0F1-ATP synthase complex. We also observed a dramatic decrease in ATP production by oxidative phosphorylation after silencing expression of each of these proteins while substrate phosphorylation was not severely affected. Our procyclic T. brucei cells were sensitive to the ATP synthase inhibitor oligomycin even in the presence of glucose contrary to earlier reports. Hence, the two novel proteins appear essential for the structural organization of the functional complex and regulation of mitochondrial energy generation in these organisms is more complicated than previously thought.
Author Summary
African trypanosomes (Trypanosoma brucei and related subspecies) are unicellular parasites that cause the devastating disease of African sleeping sickness in man and nagana in livestock. Both of these diseases are lethal, killing thousands of people each year and causing major economical complications in the developing world, thus affecting the lives of millions. Furthermore, available drugs are obsolete, difficult to administer and have many undesirable side-effects. Therefore, there is a reinvigorated effort to design new drugs against these parasites. From the pharmacological perspective, unique metabolic processes and protein complexes with singular structure, composition and essential function are of particular interest. One such remarkable protein complex is the mitochondrial F0F1-ATP synthase/ATPase. Here we show that F0F1-ATP synthase complex is essential for viability of procyclic T. brucei cells and it possesses unique and novel subunits. The three F0F1-ATP synthase subunits that were tested were shown to be crucial for the structural integrity of the F0F1-ATP synthase complex and its activities. The compositional and functional characterization of the F0F1-ATP synthase in T. brucei represents a major step towards deciphering the unique and essential properties of the respiratory chain of both an early diverged eukaryote and a lethal human parasite.
doi:10.1371/journal.ppat.1000436
PMCID: PMC2674945  PMID: 19436713
18.  A novel DNA nucleotide in Trypanosoma brucei only present in the mammalian phase of the life-cycle. 
Nucleic Acids Research  1991;19(8):1745-1751.
The existence of an unusual form of DNA modification in the bloodstream form of the African trypanosome Trypanosoma brucei has been inferred from partial resistance to cleavage of nuclear DNA with PstI and PvuII (Bernards et al, 1984; Pays et al, 1984). This putative modification is correlated with the shut-off of telomeric Variant-specific Surface Glycoprotein (VSG) gene expression sites (ESs). The modification only affects inactive VSG genes with a telomeric location, and it is absent in procyclic (insect form) trypanosomes in which no VSG is made at all. Previous attempts to detect unusual nucleosides in T.brucei DNA were unsuccessful, but we now report the detection of two unusual nucleotides, called pdJ and pdV, in T.brucei DNA, using the 32P-postlabeling technique. Nucleotide pdV was present in both bloodstream form and procyclic T.brucei DNA and co-migrated in two different two-dimensional thin layer chromatography (2D-TLC) systems with hydroxymethyldeoxyuridine 5'-monophosphate (pHOMedU). In contrast, nucleotide pdJ was exclusively present in bloodstream form trypanosomal DNA. Levels of pdJ were higher in DNA enriched for telomeric sequences than in total genomic DNA and pdJ was also detected in other Kinetoplastida species exhibiting antigenic variation. Postlabeling and 2D-TLC analyses showed base J to be different from the known eukaryotic unusual DNA bases 5-methylcytosine, N6-methyladenine and hydroxymethyluracil, and also from (glucosylated) hydroxymethylcytosine, uracil, alpha-putrescinylthymine, 5-dihydroxypentyluracil and N6-carbamoylmethyladenine. We conclude that pdJ is a novel eukaryotic DNA nucleotide and that it is probably responsible for the partial resistance to cleavage by PvuII and PstI of inactive telomeric VSG genes. It may therefore be involved in the regulation of ES activity in bloodstream form trypanosomes.
Images
PMCID: PMC328099  PMID: 1674368
19.  Role of expression site switching in the development of resistance to human Trypanosome Lytic Factor-1 in Trypanosoma brucei brucei 
Graphical abstract
Resistance to Trypanosome Lytic Factor-1 is largely independent of the expressed variant surface glycoprotein (VSG) gene.
Highlight
► Resistance to TLF-1 killing correlates with the loss of HpHbR expression. ► Changes in VSG expression were found to correlate with TLF-1 susceptibility. ► TLF-1 resistance in T. b. brucei is largely independent of the expressed VSG or ESAGs.
Human high-density lipoproteins (HDLs) play an important role in human innate immunity to infection by African trypanosomes with a minor subclass, Trypanosome Lytic Factor-1 (TLF-1), displaying highly selective cytotoxicity to the veterinary pathogen Trypanosoma brucei brucei but not against the human sleeping sickness pathogens Trypanosoma brucei gambiense or Trypanosoma brucei rhodesiense. T. b. rhodesiense has evolved the serum resistance associated protein (SRA) that binds and confers resistance to TLF-1 while T. b. gambiense lacks the gene for SRA indicating that these parasites have diverse mechanisms of resistance to TLF-1. Recently, we have shown that T. b. gambiense (group 1) resistance to TLF-1 correlated with the loss of the haptoglobin/hemoglobin receptor (HpHbR) expression, the protein responsible for high affinity binding and uptake of TLF-1. In the course of these studies we also examined TLF-1 resistant T. b. brucei cell lines, generated by long-term in vitro selection. We found that changes in TLF-1 susceptibility in T. b. brucei correlated with changes in variant surface glycoprotein (VSG) expression in addition to reduced TLF-1 binding and uptake. To determine whether the expressed VSG or expression site associated genes (ESAGs) contribute to TLF-1 resistance we prepared a TLF-1 resistant T. b. brucei with a selectable marker in a silent bloodstream expression site (BES). Drug treatment allowed rapid selection of trypanosomes that activated the tagged BES. These studies show that TLF-1 resistance in T. b. brucei is largely independent of the expressed VSG or ESAGs further supporting the central role of HpHbR expression in TLF-1 susceptibility in these cells.
doi:10.1016/j.molbiopara.2011.12.004
PMCID: PMC3343262  PMID: 22226682
BES, bloodstream expression site; ESAG, expression site associated gene; VSG, variant surface glycoprotein; TLF, Trypanosome Lytic Factor; Hygro, hygromycin; MITat, Molteno institute trypanosome antigen type; HpHbR, haptoglobin hemoglobin receptor; ApoA-1, apolipoprotein A-1; ApoL-1, apolipoprotein L-1; Hpr, haptoglobin related protein; SRA, serum resistance associated; Innate immunity; High density lipoprotein; Human serum resistance; Trypanosome Lytic Factor; Haptoglobin/hemoglobin receptor; Expression site, Variant surface glycoprotein
20.  Nuclear DBF-2-related Kinases Are Essential Regulators of Cytokinesis in Bloodstream Stage Trypanosoma brucei* 
The Journal of Biological Chemistry  2010;285(20):15356-15368.
Nuclear DBF-2-related (NDR) kinases are essential regulators of cell cycle progression, growth, and development in many organisms and are activated by the binding of an Mps One Binder (MOB) protein partner, autophosphorylation, and phosphorylation by an upstream STE20 family kinase. In the protozoan parasite, Trypanosoma brucei, the causative agent of human African trypanosomiasis, the NDR kinase, PK50, is expressed in proliferative life cycle stages and was shown to complement a yeast NDR kinase mutant cell line. However, the function of PK50 and a second NDR kinase, PK53, in T. brucei has not been determined to date, although trypanosome MOB1 is known to be essential for cytokinesis, suggesting the NDR kinases may also be involved in this process. Here, we show that specific depletion of PK50 or PK53 from bloodstream stage trypanosomes resulted in the rapid accumulation of cells with two nuclei and two kinetoplasts, indicating that cytokinesis was specifically inhibited. This led to a deregulation of the cell cycle and cell death and provides genetic validation of these kinases as potential novel drug targets for human African trypanosomiasis. Recombinant active PK50 and PK53 were produced and biochemically characterized. Both enzymes autophosphorylated, were able to trans-phosphorylate generic kinase substrates in vitro, and were active in the absence of phosphorylation by an upstream kinase. Additionally, both enzymes were active in the absence of MOB1 binding, which was also demonstrated to likely be a feature of the kinases in vivo. Biochemical characterization of recombinant PK50 and PK53 has revealed key kinetic differences between them, and the identification of in vitro peptide substrates in this study paves the way for high throughput inhibitor screening of these kinases.
doi:10.1074/jbc.M109.074591
PMCID: PMC2865264  PMID: 20231285
Phosphorylation/Kinases/Serine-Threonine; Signal Transduction/Protein Kinases/Serine/Threonine; Cell Division; Enzyme Kinetics; Parasitology; RNA Interference (RNAi); Trypanosoma brucei; Cytokinesis; Drug Target; NDR Kinase
21.  Ribose 5-Phosphate Isomerase B Knockdown Compromises Trypanosoma brucei Bloodstream Form Infectivity 
Ribose 5-phosphate isomerase is an enzyme involved in the non-oxidative branch of the pentose phosphate pathway, and catalyzes the inter-conversion of D-ribose 5-phosphate and D-ribulose 5-phosphate. Trypanosomatids, including the agent of African sleeping sickness namely Trypanosoma brucei, have a type B ribose-5-phosphate isomerase. This enzyme is absent from humans, which have a structurally unrelated ribose 5-phosphate isomerase type A, and therefore has been proposed as an attractive drug target waiting further characterization. In this study, Trypanosoma brucei ribose 5-phosphate isomerase B showed in vitro isomerase activity. RNAi against this enzyme reduced parasites' in vitro growth, and more importantly, bloodstream forms infectivity. Mice infected with induced RNAi clones exhibited lower parasitaemia and a prolonged survival compared to control mice. Phenotypic reversion was achieved by complementing induced RNAi clones with an ectopic copy of Trypanosoma cruzi gene. Our results present the first functional characterization of Trypanosoma brucei ribose 5-phosphate isomerase B, and show the relevance of an enzyme belonging to the non-oxidative branch of the pentose phosphate pathway in the context of Trypanosoma brucei infection.
Author Summary
Within the non-oxidative branch of the pentose phosphate pathway, ribose 5-phosphate isomerase catalyzes the inter-conversion of ribose 5-phosphate and ribulose 5-phosphate. There are two types of ribose 5-phosphate isomerase, namely A and B. The presence of type B in Trypanosoma brucei, and its absence in humans, make this protein a promising drug target. African sleeping sickness is a serious parasitic disease that relies on limited chemotherapeutic options for control. In our study, a functional characterization of Trypanosoma brucei ribose 5-phosphate isomerase B is reported. Biochemical studies confirmed enzyme isomerase activity and its downregulation by RNAi affected mainly parasites infectivity in vivo. Overall this study shows that ribose 5-phosphate isomerase depletion is detrimental for parasites infectivity under host pressure.
doi:10.1371/journal.pntd.0003430
PMCID: PMC4287489  PMID: 25568941
22.  PhosTryp: a phosphorylation site predictor specific for parasitic protozoa of the family trypanosomatidae 
BMC Genomics  2011;12:614.
Background
Protein phosphorylation modulates protein function in organisms at all levels of complexity. Parasites of the Leishmania genus undergo various developmental transitions in their life cycle triggered by changes in the environment. The molecular mechanisms that these organisms use to process and integrate these external cues are largely unknown. However Leishmania lacks transcription factors, therefore most regulatory processes may occur at a post-translational level and phosphorylation has recently been demonstrated to be an important player in this process. Experimental identification of phosphorylation sites is a time-consuming task. Moreover some sites could be missed due to the highly dynamic nature of this process or to difficulties in phospho-peptide enrichment.
Results
Here we present PhosTryp, a phosphorylation site predictor specific for trypansomatids. This method uses an SVM-based approach and has been trained with recent Leishmania phosphosproteomics data. PhosTryp achieved a 17% improvement in prediction performance compared with Netphos, a non organism-specific predictor. The analysis of the peptides correctly predicted by our method but missed by Netphos demonstrates that PhosTryp captures Leishmania-specific phosphorylation features. More specifically our results show that Leishmania kinases have sequence specificities which are different from their counterparts in higher eukaryotes. Consequently we were able to propose two possible Leishmania-specific phosphorylation motifs.
We further demonstrate that this improvement in performance extends to the related trypanosomatids Trypanosoma brucei and Trypanosoma cruzi. Finally, in order to maximize the usefulness of PhosTryp, we trained a predictor combining all the peptides from L. infantum, T. brucei and T. cruzi.
Conclusions
Our work demonstrates that training on organism-specific data results in an improvement that extends to related species. PhosTryp is freely available at http://phostryp.bio.uniroma2.it
doi:10.1186/1471-2164-12-614
PMCID: PMC3285042  PMID: 22182631
23.  Polo-Like Kinase Is Expressed in S/G2/M Phase and Associated with the Flagellum Attachment Zone in both Procyclic and Bloodstream Forms of Trypanosoma brucei▿  
Eukaryotic Cell  2008;7(9):1582-1590.
Trypanosoma brucei, the etiologic agent of African sleeping sickness, divides into insect (procyclic) and bloodstream forms. These two forms are subject to distinct cell cycle regulations, with cytokinesis controlled primarily by basal body/kinetoplast segregation in the procyclic form but by mitosis in the bloodstream form. Polo-like kinases (PLKs), known to play essential roles in regulating both mitosis and cytokinesis among eukaryotes, have a homologue in T. brucei, TbPLK, which regulates only cytokinesis. In our previous study, overexpressed triply hemagglutinin-tagged TbPLK (TbPLK-3HA) in the procyclic form localized to a mid-dorsal point and the anterior tip of the cell along the flagellum attachment zone (FAZ). In our current study, TbPLK-3HA expressed at the endogenous level was identified at the same dorsal location of both procyclic and bloodstream forms, albeit it was no longer detectable at the anterior tip of the cell. Endogenously expressed TbPLK fused with an enhanced yellow fluorescent protein (EYFP) localized to the same dorsal location along the FAZs in living procyclic and bloodstream cells. Fluorescence-activated cell sorter analysis of hydroxyurea-synchronized procyclic cells revealed that TbPLK-EYFP emerges during S phase, persists through G2/M phase, and vanishes in G1 phase. An indicated TbPLK-EYFP association with the FAZs of G2/M cells may thus represent a timely localization to a potential initiation site of cytokinesis, which agrees with the recognized role of TbPLK in cytokinetic initiation.
doi:10.1128/EC.00150-08
PMCID: PMC2547065  PMID: 18621923
24.  Glycogen Synthase Kinase 3 Is a Potential Drug Target for African Trypanosomiasis Therapy▿  
Antimicrobial Agents and Chemotherapy  2008;52(10):3710-3717.
Development of a safe, effective, and inexpensive therapy for African trypanosomiasis is an urgent priority. In this study, we evaluated the validity of Trypanosoma brucei glycogen synthase kinase 3 (GSK-3) as a potential drug target. Interference with the RNA of either of two GSK-3 homologues in bloodstream-form T. brucei parasites led to growth arrest and altered parasite morphology, demonstrating their requirement for cell survival. Since the growth arrest after RNA interference appeared to be more profound for T. brucei GSK-3 “short” (Tb10.161.3140) than for T. brucei GSK-3 “long” (Tb927.7.2420), we focused on T. brucei GSK-3 short for further studies. T. brucei GSK-3 short with an N-terminal maltose-binding protein fusion was cloned, expressed, and purified in a functional form. The potency of a GSK-3-focused inhibitor library against the recombinant enzyme of T. brucei GSK-3 short, as well as bloodstream-form parasites, was evaluated with the aim of determining if compounds that inhibit enzyme activity could also block the parasites' growth and proliferation. Among the compounds active against the cell, there was an excellent correlation between activity inhibiting the T. brucei GSK-3 short enzyme and the inhibition of T. brucei growth. Thus, there is reasonable genetic and chemical validation of GSK-3 short as a drug target for T. brucei. Finally, selective inhibition may be required for therapy targeting the GSK-3 enzyme, and a molecular model of the T. brucei GSK-3 short enzyme suggests that compounds that selectively inhibit T. brucei GSK-3 short over the human GSK-3 enzymes can be found.
doi:10.1128/AAC.00364-08
PMCID: PMC2565902  PMID: 18644955
25.  The Transcriptome of the Human Pathogen Trypanosoma brucei at Single-Nucleotide Resolution 
PLoS Pathogens  2010;6(9):e1001090.
The genome of Trypanosoma brucei, the causative agent of African trypanosomiasis, was published five years ago, yet identification of all genes and their transcripts remains to be accomplished. Annotation is challenged by the organization of genes transcribed by RNA polymerase II (Pol II) into long unidirectional gene clusters with no knowledge of how transcription is initiated. Here we report a single-nucleotide resolution genomic map of the T. brucei transcriptome, adding 1,114 new transcripts, including 103 non-coding RNAs, confirming and correcting many of the annotated features and revealing an extensive heterogeneity of 5′ and 3′ ends. Some of the new transcripts encode polypeptides that are either conserved in T. cruzi and Leishmania major or were previously detected in mass spectrometry analyses. High-throughput RNA sequencing (RNA-Seq) was sensitive enough to detect transcripts at putative Pol II transcription initiation sites. Our results, as well as recent data from the literature, indicate that transcription initiation is not solely restricted to regions at the beginning of gene clusters, but may occur at internal sites. We also provide evidence that transcription at all putative initiation sites in T. brucei is bidirectional, a recently recognized fundamental property of eukaryotic promoters. Our results have implications for gene expression patterns in other important human pathogens with similar genome organization (Trypanosoma cruzi, Leishmania sp.) and revealed heterogeneity in pre-mRNA processing that could potentially contribute to the survival and success of the parasite population in the insect vector and the mammalian host.
Author Summary
Identifying genes essential for survival in the host is fundamental to unraveling the biology of human pathogens and understanding mechanisms of pathogenesis. The protozoan parasite Trypanosoma brucei causes devastating diseases in humans and animals in sub-Saharan Africa, and the publication in 2005 of the genome sequence provided the first glance at the coding potential of this organism. Although at present there is a catalogue of predicted protein coding genes, the challenge remains to identify all authentic genes, including their boundaries. We used next generation RNA sequencing (RNA-Seq) to map transcribed regions and RNA polymerase II transcription initiation sites on a genome-wide scale. This approach allowed us to improve and correct the current annotation, to reveal a widespread heterogeneity of RNA processing sites (trans-splicing and polyadenylation) and to estimate that most genes are expressed at levels corresponding to 1 to 10 mRNAs per cell. Our data indicate that different transcript forms representing the same gene are present stochastically within the mRNA population. This unanticipated scenario may contribute to determining gene expression landscapes to adapt to different environments in the parasite life cycle.
doi:10.1371/journal.ppat.1001090
PMCID: PMC2936537  PMID: 20838601

Results 1-25 (814606)