PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (838310)

Clipboard (0)
None

Related Articles

1.  Lymphocyte adhesion through very late antigen 4: evidence for a novel binding site in the alternatively spliced domain of vascular cell adhesion molecule 1 and an additional alpha 4 integrin counter-receptor on stimulated endothelium 
The Journal of Experimental Medicine  1992;175(6):1433-1442.
Recent studies demonstrate that alternative splicing of mRNA from a single gene can produce two forms of vascular cell adhesion molecule 1 (VCAM-1): a six-immunoglobulin (Ig) domain form (VCAM-6D) and a seven- Ig domain form (VCAM-7D). Using a COS cell transient expression assay, we investigated whether VCAM-6D and VCAM-7D differ functionally in adhesion to the integrin VLA-4 (CD49d/CD29) on lymphoid cells. Binding of lymphoid cell lines and peripheral blood lymphocytes was completely blocked by VLA-4 monoclonal antibody (mAb) and one VCAM-1 mAb (4B9) to both VCAM-6D and VCAM-7D, whereas one VCAM-1 mAb (E1/6) completely blocked binding to VCAM-6D but only partially inhibited binding to VCAM- 7D. We conclude that there is one VLA-4 binding site in the six Ig domains shared between VCAM-6D and VCAM-7D, and that the alternatively spliced domain 4 present in VCAM-7D provides a second VLA-4 binding site that is blocked by 4B9 but not the E1/6 mAb. We compared the inhibitory effects of anti-VCAM-1 and anti-VLA-4 mAbs on lymphoid cell adhesion to cultured human umbilical vein endothelial cells (HUVEC). The anti-VCAM-1 mAb 4B9 blocked the binding of PBL and lymphoid tumor cells to stimulated HUVEC better than the anti-VCAM-1 mAb E1/6. Because VCAM-7D is the predominant form of VCAM-1 expressed by stimulated endothelial cells, this difference in VCAM-1 mAb inhibition is attributed to lymphoid cell binding to VCAM-7D on stimulated HUVEC. Although the anti-VLA-4 mAb and anti-VCAM-1 mAb 4B9 equally inhibited PBL binding to stimulated HUVEC, mAb 4B9 inhibited the binding of two lymphoid cell lines significantly less than anti-VLA-4 mAb. Combination of 4B9 mAb with function-blocking antiserum to human fibronectin, a second known ligand for VLA-4, also failed to inhibit as much as anti- VLA-4 mAb. These findings suggest that adhesion of lymphoid cell lines through VLA-4 or other alpha 4 integrins may involve inducible counter- receptor(s) on endothelium distinct from either VCAM-1 or fibronectin. Time course experiments indicate that the fraction of alpha 4 integrin- dependent binding that can be blocked by anti-VCAM-1 mAb E1/6 rises and peaks within 2 h of tumor necrosis factor (TNF) stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)
PMCID: PMC2119261  PMID: 1375259
2.  An alternative leukocyte homotypic adhesion mechanism, LFA-1/ICAM-1- independent, triggered through the human VLA-4 integrin 
The Journal of Cell Biology  1990;110(6):2157-2165.
The VLA-4 (CD49d/CD29) integrin is the only member of the VLA family expressed by resting lymphoid cells that has been involved in cell-cell adhesive interactions. We here describe the triggering of homotypic cell aggregation of peripheral blood T lymphocytes and myelomonocytic cells by mAbs specific for certain epitopes of the human VLA alpha 4 subunit. This anti-VLA-4-induced cell adhesion is isotype and Fc independent. Similar to phorbol ester-induced homotypic adhesion, cell aggregation triggered through VLA-4 requires the presence of divalent cations, integrity of cytoskeleton and active metabolism. However, both adhesion phenomena differed at their kinetics and temperature requirements. Moreover, cell adhesion triggered through VLA-4 cannot be inhibited by cell preincubation with anti-LFA-1 alpha (CD11a), LFA-1 beta (CD18), or ICAM-1 (CD54) mAb as opposed to that mediated by phorbol esters, indicating that it is a LFA-1/ICAM-1 independent process. Antibodies specific for CD2 or LFA-3 (CD58) did not affect the VLA-4-mediated cell adhesion. The ability to inhibit this aggregation by other anti-VLA-4-specific antibodies recognizing epitopes on either the VLA alpha 4 (CD49d) or beta (CD29) chains suggests that VLA-4 is directly involved in the adhesion process. Furthermore, the simultaneous binding of a pair of aggregation-inducing mAbs specific for distinct antigenic sites on the alpha 4 chain resulted in the abrogation of cell aggregation. These results indicate that VLA-4- mediated aggregation may constitute a novel leukocyte adhesion pathway.
PMCID: PMC2116145  PMID: 1693625
3.  In Vitro Studies on the Trafficking of Dendritic Cells Through Endothelial Cells and Extra-Cellular Matrix 
Developmental Immunology  2000;7(2-4):143-153.
Dendritic cells (DC) are antigen presenting cells (APC) with the unique ability to initiate an immune response. Immature DC are localized in peripheral tissues where they exert a sentinel function for incoming antigens (Ag). After Ag capture and exposure to inflammatory stimuli DC undergo maturation and migrate to regional lymph nodes where the presentation of antigenic peptides to T lymphocytes takes place. Thus their correct functioning as APC involves localization in tissues and trafficking via the lymph or blood to lymphoid organs. In the present study we have investigated the ability of DC to interact in vitro with human vascular endothelial cells (EC) and extracellular matrix (ECM). DC are differentiated from monocytes by in vitro exposure to GM-CSF and IL-13 for 7 days. In adhesion assays a considerable proportion of DC binds to resting EC monolayers and this adhesion is inhibited by anti-CD11a and CD11b, but not anti-CD11c mAbs. Binding to a natural ECM, derived from cultured EC involves VLA-4 and VLA-5 integrins. In a transmigration assay, 10 % of input cells are able to cross the EC monolayer in the absence of exogenous stimuli. The amount of DC transmigrated through a monolayer of EC was increased of 2-3 fold by C-C chemokines RANTES, MIP1α, and MIP-1β. Most importantly, in view of the trafficking pattern of these cells, a significant proportion of DC can migrate in a reverse transmigration assay, i.e. across the endothelial basement membrane and subsequently, across endothelial cells. Upon exposure to immune or inflammatory signals peripheral DC undergo maturation and migration to lymphoid organs. Functional maturation is associated with loss of responsiveness to chemokines present at sites of inflammation (e.g. MIP1α, MIP1β and RANTES) and acquisition of a receptor repertoire which renders these cells responsive to signals which guide their localization in lymphoid organs (e.g. MIP3β). A better understanding of the molecular basis of DC trafficking may provide molecular and conceptual tools to direct and modulate DC localization as a strategy to upregulate and orient specific immunity.
doi:10.1155/2000/39893
PMCID: PMC2276046  PMID: 11097208
dendritic cells; chemokines; chemotaxis; receptors; transendothelial migration; endothelial cells
4.  Increased binding of synovial T lymphocytes from rheumatoid arthritis to endothelial-leukocyte adhesion molecule-1 (ELAM-1) and vascular cell adhesion molecule-1 (VCAM-1). 
Journal of Clinical Investigation  1992;89(5):1445-1452.
The infiltration of the synovial membrane (SM) by mononuclear cells, mostly T cells, is a typical histopathological feature associated with rheumatoid arthritis (RA). The entry of T lymphocytes into the SM is believed to be mediated by a number of molecules in the endothelium that are induced in response to a series of inflammatory mediators. In this study, we have investigated the adhesion of synovial T cells from RA patients to two endothelial ligands: endothelial-leukocyte adhesion molecule-1 (ELAM-1), the only selectin known to function as a vascular addressin for T cells, and vascular cell adhesion molecule-1 (VCAM-1), the cellular ligand of VLA-4. Our results clearly demonstrate that synovial T cells isolated from both SM and synovial fluid (SF), bearing an activated and memory phenotype, displayed an enhanced capacity to interact with these two endothelial molecules as compared with T cells from peripheral blood (PB) either of the same RA patients or healthy donors. A further enhancement of VLA-4-mediated T cell binding to VCAM-1 and fibronectin could be observed when already in vivo-activated synovial T cells were stimulated in vitro with phorbol esters, suggesting the existence of several cellular affinity levels for both very late activation-4 (VLA-4) ligands. Moreover, both PB and synovial T cells from RA patients exhibited strong proliferative responses when they were cultured with either fibronectin or VCAM-1 in combination with submitogenic doses of anti-CD3 mAb. This increased endothelial binding ability of synovial T lymphocytes together with their proliferation in response to the interaction with VCAM-1 and fibronectin may represent important mechanisms in the regulation of T cell penetration and persistence in the chronically inflamed SM of RA.
Images
PMCID: PMC443014  PMID: 1373738
5.  A monoclonal antibody to beta 1 integrin (CD29) stimulates VLA- dependent adherence of leukocytes to human umbilical vein endothelial cells and matrix components 
The Journal of Cell Biology  1992;116(2):499-509.
The leukocyte beta 1 integrin receptor very late activation antigen-4 (VLA-4) (alpha 4 beta 1, CD49d/CD29) binds to vascular cell adhesion molecule-1 (VCAM-1) expressed on cytokine-activated endothelium. A mAb designated 8A2 was identified that stimulated the binding of U937 cells to CHO cells transfected with VCAM-1 cDNA but not endothelial-leukocyte adhesion molecule or CD4 cDNA. mAb 8A2 also rapidly stimulated the adherence of peripheral blood lymphocytes (PBLs) to VCAM-1-transfected CHO cells or recombinant human tumor necrosis factor-treated human umbilical vein endothelial cells. mAb 8A2-stimulated binding of PBL was inhibited by mAbs to VLA-4 or VCAM-1. Surface expression of VLA-4 was not altered by mAb 8A2 treatment and monovalent Fab fragments of mAb 8A2 were active. Immunoprecipitation studies reveal that mAb 8A2 recognizes beta 1-subunit (CD29) of integrin receptors. In contrast to mAbs directed to VLA-4 alpha-subunit (alpha 4, CD49d), mAb 8A2 did not induce homotypic aggregation of PBL. Additionally, mAb 8A2 stimulated adherence of PBL and hematopoietic cell lines to purified matrix components laminin and fibronectin. This binding was blocked by mAbs to the VLA alpha-subunits alpha 6 (CD49f), or alpha 5 (CD49e) and alpha 4 (CD49d), respectively. We conclude that mAb 8A2 modulates the affinity of VLA-4 and other leukocyte beta 1 integrins, and should prove useful in studying the regulation of beta 1 integrin function.
PMCID: PMC2289280  PMID: 1370496
6.  ICAM-3 regulates lymphocyte morphology and integrin-mediated T cell interaction with endothelial cell and extracellular matrix ligands 
The Journal of Cell Biology  1994;127(3):867-878.
Leukocyte activation is a complex process that involves multiple cross- regulated cell adhesion events. In this report, we investigated the role of intercellular adhesion molecule-3 (ICAM-3), the third identified ligand for the beta 2 integrin leukocyte function-associated antigen-1 (LFA-1), in the regulation of leukocyte adhesion to ICAM-1, vascular cell adhesion molecule-1 (VCAM-1), and the 38- and 80-kD fragments of fibronectin (FN40 and FN80). The activating anti-ICAM-3 HP2/19, but not other anti-ICAM-3 mAb, was able to enhance T lymphoblast adhesion to these proteins when combined with very low doses of anti-CD3 mAb, which were unable by themselves to induce this phenomenon. In contrast, anti-ICAM-1 mAb did not enhance T cell attachment to these substrata. T cell adhesion to ICAM-1, VCAM-1, FN40, and FN80 was specifically blocked by anti-LFA-1, anti-VLA alpha 4, and anti-VLA alpha 5 mAb, respectively. The activating anti-ICAM-3 HP2/19 was also able to specifically enhance the VLA-4- and VLA-5-mediated binding of leukemic T Jurkat cells to VCAM-1, FN40, and FN80, even in the absence of cooccupancy of the CD3-TcR complex. We also studied the localization of ICAM-3, LFA-1, and the VLA beta 1 integrin, by immunofluorescence microscopy, on cells interacting with ICAM-1, VCAM-1 and FN80. We found that the anti-ICAM-3 HP2/19 mAb specifically promoted a dramatic change on the morphology of T lymphoblasts when these cells were allowed to interact with those adhesion ligands. Under these conditions, it was observed that a large cell contact area from which an uropod-like structure (heading uropod) was projected toward the outer milieu. However, when T blasts were stimulated with other adhesion promoting agents as the activating anti-VLA beta 1 TS2/16 mAb or phorbol esters, this structure was not detected. The anti-ICAM-3 TP1/24 mAb was also unable to induce this phenomenon. Notably, a striking cell redistribution of ICAM-3 was induced specifically by the HP2/19 mAb, but not by the other anti-ICAM-3 mAb or the other adhesion promoting agents. Thus, ICAM-3 was almost exclusively concentrated in the most distal portion of the heading uropod whereas either LFA-1 or the VLA beta 1 integrin were uniformly distributed all over the large contact area. Moreover, this phenomenon was also observed when T cells were specifically stimulated with the HP2/19 mAb to interact with TNF alpha-activated endothelial cells.(ABSTRACT TRUNCATED AT 400 WORDS)
PMCID: PMC2120223  PMID: 7525599
7.  Role of the CS1 adhesion motif of fibronectin in T cell adhesion to synovial membrane and peripheral lymph node endothelium. 
Annals of the Rheumatic Diseases  1993;52(9):672-676.
OBJECTIVES--It has previously been shown that the very late antigen-4/vascular cell adhesion molecule-1 (VLA-4/VCAM-1) pathway functions as a receptor/ligand interaction system mediating the recruitment of activated lymphocytes to inflamed synovium of patients with rheumatoid arthritis. This study was performed to determine whether VLA-4 also affects lymphocyte adhesion to inflamed synovium through interaction with the alternatively spliced CS1 domain of fibronectin. METHODS--The effect of the synthetic peptide CS1 on lymphocyte binding to human synovial and peripheral lymph node high endothelial venules (HEVs) was measured in an in vitro frozen section assay. RESULTS--In the presence of the CS1 peptide or antibody to fibronectin, significant inhibition of binding was observed (54 and 51% respectively). Blocking with antibody to VCAM-1 yielded inhibition of binding to 46% of the control value. Maximum inhibition of binding was obtained with a combination of antibody to VCAM-1 and CS1 (65%) and with antibody to VLA-4 alpha (68%). Blocking the classical fibronectin receptor with antibody to VLA-5 alpha gave a slightly lower inhibition at 42%. In normal peripheral lymph nodes, the synthetic peptide CS1 and antibodies to fibronectin and VLA-5 also partially inhibited T cell binding to HEVs (45, 47, and 52% respectively). CONCLUSION--These results show that fibronectin mediates lymphocyte-HEV interactions not only through its classical VLA-5 receptor, but also through its CS1 adhesion motif in inflamed synovium and peripheral lymph nodes.
Images
PMCID: PMC1005145  PMID: 8239762
8.  Adhesion of T and B lymphocytes to extracellular matrix and endothelial cells can be regulated through the beta subunit of VLA 
The Journal of Cell Biology  1992;117(2):461-470.
Investigating the regulation of very late antigen (VLA)-mediated functions, we found that TS2/16, a mAb directed against the beta chain of the VLA group of integrins, can induce binding of resting peripheral blood lymphocytes, cloned T lymphocytes, and Epstein Barr virus- transformed B cells to extracellular matrix components, fibronectin, laminin, and collagen, but not to fibrinogen. The antibody stimulates VLA-4-, VLA-5-, and VLA-6-mediated binding. Furthermore, it induces VLA- 4-mediated binding to vascular cell adhesion molecule-1 expressed by rTNF-alpha-stimulated endothelial cells, but it does not stimulate homotypic aggregation of cells as described for a number of anti-VLA-4 alpha antibodies (Bednarczyk, J.L., and B. W. McIntyre. 1990. J. Immunol. 144: 777-784; Campanero, M. R., R. Pulido, M. A. Ursa, M. Rodriguez-Moya, M. O. de Landazuri, and F. Sanchez-Madrid. 1990. J. Cell Biol. 110:2157-2165). Therefore, the stimulating activity of this anti-beta 1 antibody clearly contrasts with that of the anti-VLA-4 alpha antibodies, which induce homotypic cell aggregation, but not binding of cells to extracellular matrix components or endothelial cells, indicating that TS2/16 may generate different signals. The observation that also F(ab')2 or Fab fragments of this anti-beta 1 antibody stimulate binding to extracellular matrix components and endothelial cells excludes the possibility that binding requires receptor crosslinking, or is Fc receptor mediated. Induction of this adhesion is cation and energy dependent and requires an intact cytoskeleton. Although changes in the conformation of VLA integrins induced by this antibody may regulate their functional activity, the dependence on metabolic energy indicates that intracellular processes may also play a role.
PMCID: PMC2289428  PMID: 1560035
9.  Ligation of VLA-4 on T cells stimulates tyrosine phosphorylation of a 105-kD protein 
The Journal of Experimental Medicine  1992;175(4):1045-1053.
The VLA/integrins are a family of heterodimeric adhesion receptors shown to be involved in cell-to-cell and cell-to-extracellular matrix (ECM) interactions. Given recent evidence that VLA molecules can synergize with the CD3/T cell receptor (TCR) pathway to activate T cells, it is important to identify biochemical event(s) generated by these molecules. Here, we report that the engagement of VLA-4 on T cells with specific antibodies or its ligand activates protein-tyrosine kinase (PTK) activity as detected by antiphosphotyrosine immunoblotting. The crosslinking of VLA-beta 1 (CD29) with a specific monoclonal antibody (mAb) (anti-4B4) plus anti-mouse immunoglobulin resulted in the rapid tyrosine phosphorylation of a 105-kD protein (pp105) in the human T cell line H9, as well as in peripheral resting T cells. The increase in tyrosine phosphorylation of pp105 was specifically mediated by VLA-4, since mAbs against alpha 4, but not against other VLA alpha chains, could induce this phosphorylation. In addition, the binding of T cells with the CS1 alternatively spliced segment of fibronectin (the binding site recognized by VLA-4) induced pp105 tyrosine phosphorylation. Crosslinking the CD3 complex or VLA-4 molecules with mAbs demonstrated that each of these molecules stimulated the tyrosine phosphorylation of unique sets of proteins with different kinetics, suggesting that these two receptor systems are coupled to distinct PTKs. Since tyrosine phosphorylation of cellular proteins has been shown to be a crucial biochemical event in cell growth, our findings suggest that the induction of pp105 tyrosine phosphorylation via VLA-4 may play a role in the transduction of activation signals through this molecule.
PMCID: PMC2119183  PMID: 1372641
10.  Regulation of the VLA integrin-ligand interactions through the beta 1 subunit 
The Journal of Cell Biology  1992;117(3):659-670.
Integrins from the very late activation antigen (VLA) subfamily are involved in cellular attachment to extracellular matrix (ECM) proteins and in intercellular adhesions. It is known that the interaction of integrin proteins with their ligands can be regulated during cellular activation. We have investigated the regulation of different VLA- mediated adhesive interactions through the common beta 1 chain. We have found that certain anti-beta 1 antibodies strongly enhance binding of myelomonocytic U-937 cells to fibronectin. This beta 1-mediated regulatory effect involved both VLA-4 and VLA-5 fibronectin receptors. Moreover, anti-beta 1 mAb also induced VLA-4-mediated binding to a recombinant soluble form of its endothelial cell ligand VCAM-1. Non- activated peripheral blood T lymphocytes, unable to mediate VLA-4 interactions with fibronectin or VCAM-1, acquired the ability to bind these ligands in the presence of anti-beta 1 mAb. The anti-beta 1- mediated changes in the affinities of beta 1 integrin for their ligands were comparable to those triggered by different lymphocyte activation agents such as anti-CD3 mAb or phorbol ester. Adhesion of melanoma cells to other ECM proteins such as laminin or collagen as well as that of alpha 2-transfected K-562 cells to collagen, was also strongly enhanced by anti-beta 1 mAb. These beta 1-mediated regulatory effects on different VLA-ligand interactions do not involve changes in cell surface membrane expression of different VLA heterodimers. The anti- beta 1-mediated functional effects required an active metabolism, cytoskeleton integrity and the existence of physiological levels of intracellular calcium as well as a functional Na+/H+ antiporter. Beta 1 antibodies not only increased cell attachment but also promoted spreading and cytoplasmic extension of endothelial cells on plates coated with either fibronectin, collagen, or laminin as well as induced the rapid appearance of microspikes in U-937 cells on fibronectin. Moreover, both beta 1 integrin and the cytoskeletal protein talin colocalized in the anti-beta 1 induced microspikes. These results emphasize the central role of the common beta 1 chain in regulating different adhesive functions mediated by VLA integrins as well as cellular morphology.
PMCID: PMC2289434  PMID: 1374069
11.  Tailored enrichment strategy detects low abundant small noncoding RNAs in HIV-1 infected cells 
Retrovirology  2012;9:27.
Background
The various classes of small noncoding RNAs (sncRNAs) are important regulators of gene expression across divergent types of organisms. While a rapidly increasing number of sncRNAs has been identified over recent years, the isolation of sncRNAs of low abundance remains challenging. Virally encoded sncRNAs, particularly those of RNA viruses, can be expressed at very low levels. This is best illustrated by HIV-1 where virus encoded sncRNAs represent approximately 0.1-1.0% of all sncRNAs in HIV-1 infected cells or were found to be undetected. Thus, we applied a novel, sequence targeted enrichment strategy to capture HIV-1 derived sncRNAs in HIV-1 infected primary CD4+ T-lymphocytes and macrophages that allows a greater than 100-fold enrichment of low abundant sncRNAs.
Results
Eight hundred and ninety-two individual HIV-1 sncRNAs were cloned and sequenced from nine different sncRNA libraries derived from five independent experiments. These clones represent up to 90% of all sncRNA clones in the generated libraries. Two hundred and sixteen HIV-1 sncRNAs were distinguishable as unique clones. They are spread throughout the HIV-1 genome, however, forming certain clusters, and almost 10% show an antisense orientation. The length of HIV-1 sncRNAs varies between 16 and 89 nucleotides with an unexpected peak at 31 to 50 nucleotides, thus, longer than cellular microRNAs or short-interfering RNAs (siRNAs). Exemplary HIV-1 sncRNAs were also generated in cells infected with different primary HIV-1 isolates and can inhibit HIV-1 replication.
Conclusions
HIV-1 infected cells generate virally encoded sncRNAs, which might play a role in the HIV-1 life cycle. Furthermore, the enormous capacity to enrich low abundance sncRNAs in a sequence specific manner highly recommends our selection strategy for any type of investigation where origin or target sequences of the sought-after sncRNAs are known.
doi:10.1186/1742-4690-9-27
PMCID: PMC3341194  PMID: 22458358
HIV-1; Small noncoding RNA; Antisense RNA; Hybridization capture
12.  The L1 adhesion molecule is a cellular ligand for VLA-5 
The Journal of Cell Biology  1995;131(6):1881-1891.
The L1 adhesion molecule is a member of the immunoglobulin superfamily shared by neural and immune cells. In the nervous system L1 can mediate cell binding by a homophilic mechanism. To analyze its function on leukocytes we studied whether L1 could interact with integrins. Here we demonstrate that VLA-5, an RGD-specific fibronectin receptor on a wide variety of cell types, can bind to murine L1. Mouse ESb-MP cells expressing VLA-5 and L1 could be induced to aggregate in the presence of specific mAbs to CD24 (heat-stable antigen), a highly and heterogeneously glycosylated glycophosphatidylinositol-linked differentiation antigen of hematopoietic and neural cells. The aggregation was blocked by both mAbs to L1 and VLA-5, respectively. Aggregation was blocked also by a synthetic RGD-containing peptide derived from the Ig-domain VI of the L1 protein. ESb-MP subclones with low L1 expression could not aggregate. In heterotypic binding assays mouse bone marrow cells could adhere in an L1-dependent fashion to platelets that expressed VLA-5. Also purified L1 coated to polystyrene beads could bind to platelets. The binding of L1-beads was again inhibited by mAbs to L1 and VLA-5, by soluble L1 and the L1-RGD peptide in a dose-dependent manner. Thymocytes or human Nalm-6 tumor cells expressing VLA-5 could adhere to affinity-purified L1 and to the L1- derived RGD-containing peptide coated to glass slides. The adhesion was strongly enhanced in the presence of Mn(2+)-ions and blocked by mAbs to VLA-5. We also demonstrate a direct L1-VLA-5 protein interaction. Our results suggest a novel binding pathway, in which the VLA-5 integrin binds to L1 on adjacent cells. Given its rapid downregulation on lymphocytes after induction of cell proliferation, L1 may be important in integrin-mediated and activation-regulated cell-cell interactions.
PMCID: PMC2120661  PMID: 8557754
13.  Prolonged impairment of very late activating antigen-mediated T cell proliferation via the CD3 pathway after T cell-depleted allogeneic bone marrow transplantation. 
Journal of Clinical Investigation  1994;94(2):481-488.
One of the major obstacles in allogeneic bone marrow transplantation (allo-BMT) is prolonged T cell dysfunction resulting in a variety of infectious complications in the months to years after hematologic engraftment. We previously showed that immobilized extracellular matrix (ECM) proteins such as fibronectin (FN), the CS-1 domain of FN, or collagen (CO) acted synergistically with immobilized anti-CD3 to induce T cell proliferation. In addition, the comitogenic effect of ECMs could be mimicked by immobilized mAb reactive with a common beta 1 chain (CD29) of very late activating (VLA) antigens which include ECM receptors. Since the interaction of T cells with ECMs appears to play an important role in the process of T cell reconstitution following allo-BMT, we examined the expression of VLA antigens (alpha 1-alpha 6, beta 1) and their functional roles in CD3-mediated T cell proliferation at various times after T cell depleted allo-BMT. VLA beta 1 as well as VLA alpha 4, alpha 5, and alpha 6 expression was lower than normal controls during the first 3 mo after allo-BMT and auto-BMT, whereas these expressions returned to normal levels by 4 mo after allo-BMT and auto-BMT. Although alpha 1 and alpha 2 were not expressed on lymphocytes from normal controls, these antigens were expressed on lymphocytes at the detectable levels (5-15%) from patients after allo-BMT and auto-BMT. Both CD29 and CD3 were expressed at normal levels on lymphocytes from patients > 3 mo after allo-BMT, whereas T cell interaction with ECM through VLA proteins or crosslinking of VLA beta 1 expressed by T cells with anti-CD29 mAb results in poor induction of CD3-mediated T cell proliferation for a prolonged period (> 1 yr) after allo-BMT. In contrast, T cell proliferation induced by crosslinking of anti-CD2 or anti-CD26 with anti-CD3 was almost fully recovered by 1 yr post-allo-BMT. After autologous BMT, impaired VLA-mediated T cell proliferation via the CD3 pathway after auto-BMT returned to normal levels within 1 yr despite no significant difference in CD3 and CD29 expression following either allo- or auto-BMT. The adhesion of T cells from post-allo-BMT patients to FN-coated plate was normal or increased compared to that of normal controls. Moreover, the induction of the tyrosine phosphorylation of pp105 protein by the ligation of VLA molecules was not impaired in allo-BMT patients. These results suggest that there are some other defects in the process of VLA-mediated signal transduction in such patients. Our results imply that disturbance of VLA function could explain, at least in part, the persistent immunoincompetent state after allo-BMT and may be involved in susceptibility to opportunistic infections after allo-BMT.
Images
PMCID: PMC295109  PMID: 7518837
14.  Vascular cell adhesion molecule-1 and the integrin VLA-4 mediate adhesion of human B cell precursors to cultured bone marrow adherent cells. 
Journal of Clinical Investigation  1991;88(3):995-1004.
Adhesion of B cell precursors to accessory cells in the bone marrow microenvironment may be required for normal early B cell development. Human bone marrow B cell precursors adhere more avidly than mature B cells to bone marrow-derived fibroblasts. To determine the mechanism of this adhesion, expression of adhesion proteins on human B precursor cells and cell lines was measured by flow cytometry. The very late antigen (VLA) integrins VLA-4 and VLA-5 were the only adhesion proteins expressed at higher levels in B cell precursors than mature B cells. Antibodies to the alpha and beta chains of VLA-4, but not VLA-5, significantly blocked binding to bone marrow-derived fibroblasts of immature B cells and cell lines. Although fibronectin is a ligand for VLA-4, anti-fibronectin antibody and a soluble fibronectin fragment containing the VLA-4 binding domain did not block adhesion, suggesting that VLA-4 is involved in adhesion of B cell precursors, but not as a fibronectin receptor. Vascular cell adhesion molecule-1 (VCAM-1), the other known counterreceptor for VLA-4, was identified on bone marrow-derived fibroblasts, and anti-VCAM-1 significantly blocked adhesion of normal B cell precursors to bone marrow-derived fibroblasts, indicating that VLA-4/VCAM-1 interactions are important in adhesion of B cell precursors to the bone marrow microenvironment.
Images
PMCID: PMC295504  PMID: 1715889
15.  Fibroblast-like synoviocytes support B-cell pseudoemperipolesis via a stromal cell–derived factor-1– and CD106 (VCAM-1)–dependent mechanism 
Journal of Clinical Investigation  2001;107(3):305-315.
B-cell accumulation and formation of ectopic germinal centers are characteristic changes in the diseased joints of patients with rheumatoid arthritis (RA). Earlier studies suggested that interactions between B lymphocytes and specialized synovial “nurse-like” cells peculiar to the RA synovium may be responsible for the homing and sustained survival of B cells in the synovium. However, in this study, we found that B cells spontaneously migrate beneath ordinary fibroblast-like synoviocytes (FLSs) and then experience prolonged survival. FLSs isolated from joints of patients with osteoarthritis also supported this activity, termed B-cell pseudoemperipolesis. We found that FLSs constitutively expressed the chemokine stromal cell–derived factor-1 (SDF-1), and that pertussis toxin or antibodies to the SDF-1 receptor (CXCR4) could inhibit B-cell pseudoemperipolesis. However, expression of SDF-1 is not sufficient, as dermal fibroblasts also expressed this chemokine but were unable to support B-cell pseudoemperipolesis unless previously stimulated with IL-4 to express CD106 (VCAM-1), a ligand for the α4β1 integrin, very-late-antigen-4 (VLA-4 or CD49d). Furthermore, mAb’s specific for CD49d and CD106, or the synthetic CS1 fibronectin peptide, could inhibit B-cell pseudoemperipolesis. We conclude that ordinary FLSs can support B-cell pseudoemperipolesis via a mechanism dependent upon fibroblast expression of SDF-1 and CD106.
PMCID: PMC199194  PMID: 11160154
16.  Dual Role of H-Ras in Regulation of Lymphocyte Function Antigen-1 Activity by Stromal Cell-derived Factor-1α: Implications for Leukocyte Transmigration 
Molecular Biology of the Cell  2001;12(10):3074-3086.
We investigated the role of H-Ras in chemokine-induced integrin regulation in leukocytes. Stimulation of Jurkat T cells with the CXC chemokine stromal cell-derived factor-1α (SDF-1α) resulted in a rapid increase in the phosphorylation, i.e., activation of extracellular signal receptor-activated kinase (ERK) but not c-Jun NH2-terminal kinase or p38 kinase, and phosphorylation of Akt, reflecting phosphatidylinositol 3-kinase (PI3-K) activation. Phosphorylation of ERK in Jurkat cells was enhanced and attenuated by expression of dominant active (D12) or inactive (N17) forms of H-Ras, respectively, while N17 H-Ras abrogated SDF-1α-induced Akt phosphorylation. SDF-1α triggered a transient regulation of adhesion to intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 mediated by lymphocyte function antigen-1 (LFA-1) and very late antigen-4 (VLA-4), respectively, and a rapid increase in LFA-1 binding to soluble ICAM-1.Ig, which was inhibited by D12 but not N17 H-Ras. Both D12 and N17 H-Ras abrogated the regulation of LFA-1 but not VLA-4 avidity, and impaired LFA-1–mediated transendothelial chemotaxis but not VLA-4–dependent transmigration induced by SDF-1α. Analysis of the mutant Jurkat J19 clone revealed LFA-1 with constitutively high affinity and reduced ERK phosphorylation, which were partially restored by expression of active H-Ras. Inhibition of PI3-K blocked the up-regulation of Jurkat cell adhesion to ICAM-1 by SDF-1α, whereas inhibition of mitogen-activated protein kinase kinase impaired the subsequent down-regulation and blocking both pathways abrogated LFA-1 regulation. Our data suggest that inhibition of initial PI3-K activation by inactive H-Ras or sustained activation of an inhibitory ERK pathway by active H-Ras prevail to abolish LFA-1 regulation and transendothelial migration induced by SDF-1α in leukocytes, establishing a complex and bimodal involvement of H-Ras.
PMCID: PMC60156  PMID: 11598192
17.  Lymphocyte function-associated antigen 1 dominates very late antigen 4 in binding of activated T cells to endothelium 
Lymphocyte function-associated antigen 1/intercellular adhesion molecule 1 (LFA-1/ICAM-1)-and very late antigen 4/vascular cell adhesion molecule 1 (VLA-4/VCAM-1)-mediated adhesion of T lymphocytes to endothelial cells (EC) can be regulated by increased expression of ICAM-1 and VCAM-1 upon cytokine treatment of EC, or by activation of the integrin molecules LFA-1 and VLA-4 on T cells. Here, we provide evidence that preferential usage of LFA-1 over VLA-4 is yet another mechanism to control T cell adhesion. We observed that binding of activated T lymphocytes, as opposed to resting T cells, to EC is essentially mediated through LFA-1 and not through VLA-4. VLA-4- mediated adhesion of T cells to EC is only found when LFA-1 is not expressed or not functional, as observed for several T cell leukemia cell lines. These results suggest that LFA-1-mediated adhesion dominates and may downregulate VLA-4-mediated adhesion through an unidentified mechanism.
PMCID: PMC2190855  PMID: 7678112
18.  Mechanisms of eosinophil adherence to cultured vascular endothelial cells. Eosinophils bind to the cytokine-induced ligand vascular cell adhesion molecule-1 via the very late activation antigen-4 integrin receptor. 
We have examined the mechanisms involved in the adherence of normal peripheral blood eosinophils to cultured human umbilical vein endothelial cells (HEC) under three conditions: (a) adherence in the absence of treatment of HEC or eosinophils with activating agents (basal adherence); (b) adherence induced by stimulation of eosinophils with phorbol ester (eosinophil-dependent adherence); and (c) adherence induced by pretreatment of HEC with LPS, tumor necrosis factor (TNF), or IL-1 (endothelial-dependent adherence). A mechanism was identified that was equally active in basal, eosinophil-dependent, and endothelial-dependent adherence. This mechanism was optimally active in the presence of both Ca++ and Mg++, and reduced in the presence of Ca++ only or Mg++ only. Furthermore, like the other mechanisms of eosinophil adherence, it was active at 37 degrees C but not at 4 degrees C. A second mechanism of adherence was involved in eosinophil- and in endothelial-dependent adherence. This mechanism was dependent on the CD11/CD18 adhesion complex of eosinophils (i.e., inhibited by anti-CD18 MAb) and it was active in the presence of Ca++ and Mg++ or Mg++ only, but not Ca++ only. The third mechanism of adherence was specific for endothelial-dependent adherence. It involved the endothelial ligand vascular cell adhesion molecule-1 (VCAM-1) and the eosinophil receptor very late activation antigen-4 (VLA-4, CD49d/CD29, i.e., inhibited by anti-VCAM-1 MAb or anti-VLA-4 MAb). This mechanism was active in the presence of Ca++ and Mg++ but not of Ca++ only or Mg++ only, and was not up- or downregulated when eosinophils were stimulated with phorbol ester. In contrast, the endothelial leukocyte adhesion molecule-1 (ELAM-1), that binds neutrophils and monocytes, was not involved in eosinophil adherence to LPS-, TNF-, or IL-1-stimulated HEC (i.e., not inhibited by anti-ELAM-1 MAb). We conclude that eosinophils, like monocytes and lymphocytes, bind to the cytokine-induced endothelial ligand VCAM-1 via the integrin receptor VLA-4.
PMCID: PMC295997  PMID: 1711540
19.  Anchorage on fibronectin via VLA‐5 (α5β1 integrin) protects rheumatoid synovial cells from Fas‐induced apoptosis 
Annals of the Rheumatic Diseases  2005;65(6):721-727.
Background
Rheumatoid synovial cells are resistant to apoptosis induction in vivo, whereas, fibroblast‐like synovial cells in rheumatoid arthritis (RA‐FLS) are vulnerable to Fas‐induced apoptosis in vitro.
Objective
To clarify this discrepancy by studying the contribution of the interaction between cellular integrin and matrix fibronectin (Fn), which is significantly increased in the rheumatoid joints, to the induction of apoptosis in RA‐FLS.
Methods
Integrin and Fas mRNAs were measured by reverse transcription‐polymerase chain reaction in RA‐FLS. Integrins expressed in rheumatoid synovial tissues were analysed by immunohistochemistry. RA‐FLS plated either on Fn or on control poly‐l‐lysine were incubated with agonistic anti‐Fas monoclonal antibodies (mAbs). Apoptosis induction was evaluated using terminal deoxynucleotidyl transferase mediated UTP nick end labelling (TUNEL) and immunoblotting for caspase‐3 and poly (ADP‐ribose) polymerase in the presence or absence of anti‐VLA‐5 mAb.
Results
VLA‐5 (α5β1 integrin), a major integrin expressed on RA‐FLS, was required for the adhesion of RA‐FLS on Fn. RA‐FLS plated on Fn were more resistant to Fas‐induced apoptosis than those plated on control poly‐l‐lysine. This protection by Fn was reversed by anti‐VLA‐5 mAb.
Conclusion
Anchorage of RA‐FLS on matrix Fn via VLA‐5 protects RA‐FLS from Fas‐induced apoptosis, and Fn abundantly present in rheumatoid synovium appears to afford RA‐FLS resistance against apoptosis induction in vivo.
doi:10.1136/ard.2005.041707
PMCID: PMC1798166  PMID: 16249227
integrin; apoptosis; Fas; rheumatoid synovial cell; rheumatoid arthritis; fibronectin
20.  Receptor functions for the integrin VLA-3: fibronectin, collagen, and laminin binding are differentially influenced by Arg-Gly-Asp peptide and by divalent cations 
The Journal of Cell Biology  1991;112(1):169-181.
The capability of the integrin VLA-3 to function as a receptor for collagen (Coll), laminin (Lm), and fibronectin (Fn) was addressed using both whole cell adhesion assays and ligand affinity columns. Analysis of VLA-3-mediated cell adhesion was facilitated by the use of a small cell lung carcinoma line (NCI-H69), which expresses VLA-3 but few other integrins. While VLA-3 interaction with Fn was often low or undetectable in cells having both VLA-3 and VLA-5, NCI-H69 cells readily attached to Fn in a VLA-3-dependent manner. Both Arg-Gly-Asp (RGD) peptide inhibition studies, and Fn fragment affinity columns suggested that VLA-3, like VLA-5, may bind to the RGD site in human Fn. However, unlike Fn, both Coll and Lm supported VLA-3-mediated adhesion that was not inhibited by RGD peptide, and was totally unaffected by the presence of VLA-5. In addition, VLA-3-mediated binding to Fn was low in the presence of Ca++, but was increased 6.6-fold with Mg++, and 30-fold in the presence of Mn++. In contrast, binding to Coll was increased only 1.2-fold with Mg++, and 1.7-fold in Mn++, as compared to the level seen with Ca++. Together, these experiments indicate that VLA- 3 can bind Coll, Lm, and Fn, and also show that (a) VLA-3 can recognize both RGD-dependent and RGD-independent ligands, and (b) different VLA-3 ligands have distinctly dissimilar divalent cation sensitivities.
PMCID: PMC2288801  PMID: 1986004
21.  Neutrophil Migration across Tight Junctions Is Mediated by Adhesive Interactions between Epithelial Coxsackie and Adenovirus Receptor and a Junctional Adhesion Molecule-like Protein on Neutrophils 
Molecular Biology of the Cell  2005;16(6):2694-2703.
Neutrophil (polymorphonuclear leukocytes [PMN]) transepithelial migration during inflammatory episodes involves a complex series of adhesive interactions and signaling events. Previous studies have shown that key adhesive interactions between leukocyte CD11b/CD18 and basally expressed fucosylated glycoproteins followed by binding to desmosomal-associated JAM-C are key elements of the transmigration response. Here we provide the first evidence that PMN-expressed junctional adhesion molecule-like protein (JAML) regulates transmigration via binding interactions with epithelial coxsackie and adenovirus receptor (CAR). Experiments with a JAML fusion protein revealed specific binding of JAML to epithelial CAR expressed at tight junctions in T84 cell monolayers and normal human colonic mucosa. Furthermore, JAML-CAR binding is mediated via the membrane distal immunoglobulin (Ig) loop of CAR and the membrane proximal Ig loop of JAML. PMN bound to immobilized CAR but not JAML in a divalent cation-independent manner. Lastly, in assays of PMN transepithelial migration, JAML/CAR fusion proteins and their antibodies significantly inhibited transmigration in a specific manner. Taken together, these results indicate that JAML and CAR are a novel pair of adhesion molecules that play an important role in modulating PMN migration cross epithelial tight junctions. These findings add a new element to a multistep model of PMN transepithelial migration and may provide new targets for anti-inflammatory therapies.
doi:10.1091/mbc.E05-01-0036
PMCID: PMC1142417  PMID: 15800062
22.  Very late activation antigens on rheumatoid synovial fluid T lymphocytes. Association with stages of T cell activation. 
Journal of Clinical Investigation  1986;78(3):696-702.
Lymphocytes from the synovial fluid of eight out of eight rheumatoid arthritis (RA) patients had elevated very late activation antigen-1 (VLA-1) expression (10-36% positive cells), whereas peripheral blood lymphocytes (PBL) from RA patients and healthy controls had low VLA-1 expression (0-6% positive cells). During 1-2 wk of in vitro culture, VLA-1 increased on synovial fluid cells but remained low on PBL. In comparison, the interleukin 2 receptor (IL-2 R) was less prominent than VLA-1 on fresh synovial fluid cells, did not increase on cultured synovial fluid T cells, but did increase greatly on cultured PBL. The mitogen PHA reversed or prevented the appearance of VLA-1+, IL-2 R- synovial fluid cells during in vitro culture, thus giving IL-2 R+, VLA-1- cells. These results emphasize that VLA-1+ SF cells are different from resting cells or IL-2 R+ activated PBL T cells, and VLA-1 on synovial fluid T cells may be incompatible with mitogen stimulation. In addition, the VLA-2 heterodimer (165,000/130,000 relative molecular mass [Mr]) was regulated opposite to the VLA-1 heterodimer (130,000/210,000 Mr) on synovial lymphocytes, and thus the VLA-1/VLA-2 ratio is another indicator of the stage of T cell activation.
Images
PMCID: PMC423654  PMID: 3018043
23.  VLA-4 integrin can mediate CD11/CD18-independent transendothelial migration of human monocytes. 
Journal of Clinical Investigation  1993;92(6):2768-2777.
The migration of human monocytes across unactivated and activated human umbilical vein endothelium (HUVE) in response to chemotactic factors was studied, and the adhesion molecules involved were characterized. Migration of blood monocytes or U937 cell line-derived monocytes across unactivated HUVE induced by C5a, was partially inhibited (by 75%) by mAbs (R15.7 or 60.3) to CD18 of the CD11/CD18 complex on the monocyte. However, when the HUVE was pretreated for 5 h with IL-1 alpha (0.1 ng/ml), TNF-alpha (100 U/ml), or LPS (1 ng/ml), migration induced by C5a was no longer inhibited; i.e., migration became CD18 independent. The monocyte CD18-independent migration was completely blocked by mAbs against alpha 4 or beta 1 integrin chains of VLA-4. This migration was also partially inhibited by mAbs against vascular cell adhesion molecule-1 (VCAM-1), a major counter-receptor on HUVE for VLA-4, but not by mAbs to E-selectin or intercellular adhesion molecule-1. The significant CD18-independent migration across "unactivated" HUVE was also inhibited by mAbs against alpha 4 or beta 1 chains of VLA-4, although mAbs against VCAM-1 did not inhibit under these conditions. Finally, considerable VLA-4-dependent transendothelial migration to C5a was also observed with monocytes from a patient with CD18 deficiency (leukocyte adhesion deficiency). These results suggest that (a) there is a major CD18-independent component in monocyte chemotactic factor-dependent migration across activated and unactivated endothelium; (b) that VLA-4 integrin on the monocyte has a major role in this migration; and (c) that VCAM-1 on activated endothelium functions as a counter-receptor in this process, but other ligands for VLA-4, especially on unactivated endothelium, may also be involved.
Images
PMCID: PMC288476  PMID: 7902847
24.  Role of vascular cell adhesion molecule 1/very late activation antigen 4 and intercellular adhesion molecule 1/lymphocyte function-associated antigen 1 interactions in antigen-induced eosinophil and T cell recruitment into the tissue 
The Journal of Experimental Medicine  1994;179(4):1145-1154.
To determine the role of vascular cell adhesion molecule 1 (VCAM- 1)/very late activation antigen 4 (VLA-4) and intercellular adhesion molecule 1 (ICAM-1)/lymphocyte function-associated antigen 1 (LFA-1) interactions in causing antigen-induced eosinophil and T cell recruitment into the tissue, we studied the effect of the in vivo blocking of VCAM-1, ICAM-1, VLA-4, and LFA-1 by pretreatment with monoclonal antibodies (mAb) to these four adhesion molecules on the eosinophil and T cell infiltration of the trachea induced by antigen inhalation in mice. The in vivo blocking of VCAM-1 and VLA-4, but not of ICAM-1 and LFA-1, prevented antigen-induced eosinophil infiltration into the mouse trachea. On the contrary, the in vivo blocking of VCAM-1 and VLA-4, but not of ICAM-1 and LFA-1, increased blood eosinophil counts after antigen challenge, but did not affect blood eosinophil counts without antigen challenge in sensitized mice. Furthermore, the expression of VCAM-1 but not ICAM-1 was strongly induced on the endothelium of the trachea after antigen challenge. In addition, pretreatment with anti-IL-4 mAb decreased the antigen-induced VCAM-1 expression only by 27% and had no significant effect on antigen-induced eosinophil infiltration into the trachea. The in vivo blocking of VCAM- 1 and VLA-4 inhibited antigen-induced CD4+ and CD8+ T cell infiltration into the trachea more potently than that of ICAM-1 and LFA-1. In contrast, regardless of antigen challenge, the in vivo blocking of LFA- 1, but not of ICAM-1, increased blood lymphocyte counts more than that of VCAM-1 and VLA-4. These results indicate that VCAM-1/VLA-4 interaction plays a predominant role in controlling antigen-induced eosinophil and T cell recruitment into the tissue and that the induction of VCAM-1 expression on the endothelium at the site of allergic inflammation regulates this eosinophil and T cell recruitment.
PMCID: PMC2191449  PMID: 7511681
25.  VCAM-1 and VLA-4 Modulate Dendritic Cell IL-12p40 Production in Experimental Visceral Leishmaniasis 
PLoS Pathogens  2008;4(9):e1000158.
Vascular cell adhesion molecule-1 (VCAM-1) interacts with its major ligand very late antigen-4 (VLA-4) to mediate cell adhesion and transendothelial migration of leukocytes. We report an important role for VCAM-1/VLA-4 interactions in the generation of immune responses during experimental visceral leishmaniasis caused by Leishmania donovani. Our studies demonstrate that these molecules play no direct role in the recruitment of leukocytes to the infected liver, but instead contribute to IL-12p40-production by splenic CD8+ dendritic cells (DC). Blockade of VCAM-1/VLA-4 interactions using whole antibody or anti-VCAM-1 Fab′ fragments reduced IL-12p40 mRNA accumulation by splenic DC 5 hours after L. donovani infection. This was associated with reduced anti-parasitic CD4+ T cell activation in the spleen and lowered hepatic IFNγ, TNF and nitric oxide production by 14 days post infection. Importantly, these effects were associated with enhanced parasite growth in the liver in studies with either anti-VCAM-1 or anti-VLA-4 antibodies. These data indicate a role for VCAM-1 and VLA-4 in DC activation during infectious disease.
Author Summary
VCAM-1 and its major ligand VLA-4 are adhesion molecules required for the recruitment and movement of leukocytes within tissue. In this study, we have investigated the role of these molecules during an experimental infection with Leishmania donovani, a protozoan parasite that causes a chronic disease called visceral leishmaniasis. Surprisingly, we showed that VCAM-1 and VLA-4 were not required for leukocyte migration into the liver, a site of acute L. donovani infection. Instead, there was a requirement for these molecules to initiate cell-mediated immune responses in the spleen within the first 5 hours of infection. When VCAM-1 was blocked during infection, early dendritic cell production of IL-12p40, a potent pro-inflammatory cytokine required for control of L. donovani, was suppressed, associated with a reduced parasite-specific T cell response in the spleen, and impaired immunity and parasite clearance in the liver. These results are important because they identify a novel role for VCAM-1 and VLA-4 in the regulation of dendritic cell activation during infectious disease.
doi:10.1371/journal.ppat.1000158
PMCID: PMC2528938  PMID: 18802456

Results 1-25 (838310)