PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1247142)

Clipboard (0)
None

Related Articles

1.  Associated inflammation or increased flow-mediated shear stress, but not pressure alone, disrupts endothelial caveolin-1 in infants with pulmonary hypertension 
Pulmonary Circulation  2012;2(4):492-500.
Endothelial caveolin-1 loss is an important feature of pulmonary hypertension (PH); the rescue of caveolin-1 abrogates experimental PH. Recent studies in human PH suggest that the endothelial caveolin-1 loss is followed by an enhanced expression of caveolin-1 in smooth muscle cells (SMC) with subsequent neointima formation. In order to evaluate caveolin-1 expression in infants with PH, we examined the available clinical histories, hemodynamic data, and the expression of caveolin-1, PECAM-1, vWF, and smooth muscle α-actin in the lung biopsy/autopsy specimens obtained from infants with congenital heart disease (CHD, n = 8) and lung disease (n = 9). In CHD group, PH associated with increased pulmonary blood flow exhibited loss of endothelial caveolin-1 and PECAM-1 in pulmonary arteries; additional vWF loss was associated with enhanced expression of caveolin-1 in SMC. In the absence of PH, increased or decreased pulmonary blood flow did not disrupt endothelial caveolin-1, PECAM-1, or vWF; nor was there any enhanced expression of caveolin-1 in SMC. In Lung Disease + PH group, caveolin-1, PECAM-1, and vWF were well preserved in seven infants, and importantly, SMC in these arteries did not exhibit enhanced caveolin-1 expression. Two infants with associated inflammatory disease exhibited loss of endothelial caveolin-1 and PECAM-1; additional loss of vWF was accompanied by enhanced expression of caveolin-1 in SMC. Thus, associated flow-induced shear stress or inflammation, but not elevated pulmonary artery pressure alone, disrupts endothelial caveolin-1. Subsequent vWF loss, indicative of extensive endothelial damage is associated with enhanced expression of caveolin-1 in SMC, which may worsen the disease.
doi:10.4103/2045-8932.105038
PMCID: PMC3555420  PMID: 23372934
congenital heart defect; endothelial cells; lung disease; smooth muscle cells
2.  Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this health technology assessment was to determine the effectiveness and cost-effectiveness of noninvasive ventilation for stable chronic obstructive pulmonary disease (COPD).
Clinical Need: Condition and Target Population
Noninvasive ventilation is used for COPD patients with chronic respiratory failure. Chronic respiratory failure in COPD patients may be due to the inability of the pulmonary system to coordinate ventilation, leading to adverse arterial levels of oxygen and carbon dioxide. Noninvasive ventilation in stable COPD patients has the potential to improve quality of life, prolong survival, and improve gas exchange and sleep quality in patients who are symptomatic after optimal therapy, have hypercapnia or nocturnal hypoventilation and mild hypercapnia, and are frequently hospitalized.
Technology
Noninvasive positive pressure ventilation (NPPV) is any form of positive ventilatory support without the use of an endotracheal tube. For stable COPD, the standard of care when using noninvasive ventilation is bilevel positive airway pressure (BiPAP). Bilevel positive airway pressure involves both inspiratory and expiratory pressure, high during inspiration and lower during expiration. It acts as a pressure support to accentuate a patient’s inspiratory efforts. The gradient between pressures maintains alveolar ventilation and helps to reduce carbon dioxide levels. Outpatients typically use BiPAP at night. Additional advantages of using BiPAP include resting of respiratory muscles, decreased work of breathing, and control of obstructive hypopnea.
Research Question
What is the effectiveness and cost-effectiveness of noninvasive ventilation, compared with no ventilation while receiving usual care, for stable COPD patients?
Research Methods
Literature Search
Search Strategy
A literature search was performed on December 3, 2010, using OVID MEDLINE, OVID MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Wiley Cochrane Library, and the Centre for Reviews and Dissemination database for studies published from January 1, 2004 to December 3, 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. When the reviewer was unsure of the eligibility of articles, a second clinical epidemiologist and then a group of epidemiologists reviewed these until consensus was reached.
Inclusion Criteria
full-text English language articles,
studies published between January 1, 2004 and December 3, 2010,
journal articles that report on the effectiveness or cost-effectiveness of noninvasive ventilation,
clearly described study design and methods, and
health technology assessments, systematic reviews, meta-analyses, randomized controlled trials (RCTs).
Exclusion Criteria
non-English papers
animal or in vitro studies
case reports, case series, or case-case studies
cross-over RCTs
studies on noninvasive negative pressure ventilation (e.g., iron lung)
studies that combine ventilation therapy with other regimens (e.g., daytime NPPV plus exercise or pulmonary rehabilitation)
studies on heliox with NPPV
studies on pulmonary rehabilitation with NPPV
Outcomes of Interest
mortality/survival
hospitalizations/readmissions
length of stay in hospital
forced expiratory volume
arterial partial pressure of oxygen
arterial partial pressure of carbon dioxide
dyspnea
exercise tolerance
health-related quality of life
Note: arterial pressure of oxygen and carbon dioxide are surrogate outcomes.
Statistical Methods
A meta-analysis and an analysis of individual studies were performed using Review Manager Version 5. For continuous data, a mean difference was calculated, and for dichotomous data, a relative risk ratio was calculated for RCTs. For continuous variables with mean baseline and mean follow-up data, a change value was calculated as the difference between the 2 mean values.
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Conclusions
The following conclusions refer to stable, severe COPD patients receiving usual care.
Short-Term Studies
Based on low quality of evidence, there is a beneficial effect of NPPV compared with no ventilation on oxygen gas exchange, carbon dioxide gas exchange, and exercise tolerance measured using the 6 Minute Walking Test.
Based on very low quality of evidence, there is no effect of NPPV therapy on lung function measured as forced expiratory volume in 1 second (Type II error not excluded).
Long-Term Studies
Based on moderate quality of evidence, there is no effect of NPPV therapy for the outcomes of mortality, lung function measured as forced expiratory volume in 1 second, and exercise tolerance measured using the 6 Minute Walking Test.
Based on low quality of evidence, there is no effect of NPPV therapy for the outcomes of oxygen gas exchange and carbon dioxide gas exchange (Type II error not excluded).
Qualitative Assessment
Based on low quality of evidence, there is a beneficial effect of NPPV compared with no ventilation for dyspnea based on reduced Borg score or Medical Research Council dyspnea score.
Based on moderate quality of evidence, there is no effect of NPPV therapy for hospitalizations.
Health-related quality of life could not be evaluated.
PMCID: PMC3384378  PMID: 23074437
3.  Long-Term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this health technology assessment was to determine the effectiveness, cost-effectiveness, and safety of long-term oxygen therapy (LTOT) for chronic obstructive pulmonary disease (COPD).
Clinical Need: Condition and Target Population
Oxygen therapy is used in patients with COPD with hypoxemia, or very low blood oxygen levels, because they may have difficulty obtaining sufficient oxygen from inspired air.
Technology
Long-term oxygen therapy is extended use of oxygen. Oxygen therapy is delivered as a gas from an oxygen source. Different oxygen sources are: 1) oxygen concentrators, electrical units delivering oxygen converted from room air; 2) liquid oxygen systems, which deliver gaseous oxygen stored as liquid in a tank; and 3) oxygen cylinders, which contain compressed gaseous oxygen. All are available in portable versions. Oxygen is breathed in through a nasal cannula or through a mask covering the mouth and nose. The treating clinician determines the flow rate, duration of use, method of administration, and oxygen source according to individual patient needs. Two landmark randomized controlled trials (RCTs) of patients with COPD established the role of LTOT in COPD. Questions regarding the use of LTOT, however, still remain.
Research Question
What is the effectiveness, cost-effectiveness, and safety of LTOT compared with no LTOT in patients with COPD, who are stratified by severity of hypoxemia?
Research Methods
Literature Search
Search Strategy
A literature search was performed on September 8, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, CINAHL, the Cochrane Library, and INAHTA for studies published from January 1, 2007 to September 8, 2010.
A single clinical epidemiologist reviewed the abstracts, obtained full-text articles for studies meeting the eligibility criteria, and examined reference lists for additional relevant studies not identified through the literature search. A second clinical epidemiologist and then a group of epidemiologists reviewed articles with an unknown eligibility until consensus was established.
Inclusion Criteria
patients with mild, moderate, or severe hypoxemia;
English-language articles published between January 1, 2007 and September 8, 2010;
journal articles reporting on effectiveness, cost-effectiveness, or safety for the comparison of interest;
clearly described study design and methods;
health technology assessments, systematic reviews, RCTs, or prospective cohort observational studies;
any type of observational study for the evaluation of safety.
Exclusion Criteria
no hypoxemia
non-English papers
animal or in vitro studies
case reports, case series, or case-case studies
studies comparing different oxygen therapy regimens
studies on nocturnal oxygen therapy
studies on short-burst, palliative, or ambulatory oxygen (supplemental oxygen during exercise or activities of daily living)
Outcomes of Interest
mortality/survival
hospitalizations
readmissions
forced expiratory volume in 1 second (FEV1)
forced vital capacity (FVC)
FEV1/FVC
pulmonary hypertension
arterial partial pressure of oxygen (PaO2)
arterial partial pressure of carbon dioxide (PaCO2)
end-exercise dyspnea score
endurance time
health-related quality of life
Note: Outcomes of interest were formulated according to existing studies, with arterial pressure of oxygen and carbon dioxide as surrogate outcomes.
Summary of Findings
Conclusions
Based on low quality of evidence, LTOT (~ 15 hours/day) decreases all-cause mortality in patients with COPD who have severe hypoxemia (PaO2 ~ 50 mm Hg) and heart failure.
The effect for all-cause mortality had borderline statistical significance when the control group was no LTOT: one study.
Based on low quality of evidence, there is no beneficial effect of LTOT on all-cause mortality at 3 and 7 years in patients with COPD who have mild-to-moderate hypoxemia (PaO2 ~ 59-65 mm Hg)1
Based on very low quality of evidence, there is some suggestion that LTOT may have a beneficial effect over time on FEV1 and PaCO2 in patients with COPD who have severe hypoxemia and heart failure: improved methods are needed.
Based on very low quality of evidence, there is no beneficial effect of LTOT on lung function or exercise factors in patients with COPD who have mild-to-moderate hypoxemia, whether survivors or nonsurvivors are assessed.
Based on low to very low quality of evidence, LTOT does not prevent readmissions in patients with COPD who have severe hypoxemia. Limited data suggest LTOT increases the risk of hospitalizations.
Limited work has been performed evaluating the safety of LTOT by severity of hypoxemia.
Based on low to very low quality of evidence, LTOT may have a beneficial effect over time on health-related quality of life in patients with COPD who have severe hypoxemia. Limited work using disease-specific instruments has been performed.
Ethical constraints of not providing LTOT to eligible patients with COPD prohibit future studies from examining LTOT outcomes in an ideal way.
PMCID: PMC3384376  PMID: 23074435
4.  Enhanced bronchial expression of vascular endothelial growth factor and receptors (Flk-1 and Flt-1) in patients with chronic obstructive pulmonary disease 
Thorax  2005;60(2):106-113.
Background: Ongoing inflammatory processes resulting in airway and vascular remodelling characterise chronic obstructive pulmonary disease (COPD). Vascular endothelial growth factor (VEGF) and its receptors VEGFR-1 (Flt-1) and VEGFR-2 (KDR/Flk-1) could play a role in tissue remodelling and angiogenesis in COPD.
Methods: The cellular expression pattern of VEGF, Flt-1, and KDR/Flk-1 was examined by immunohistochemistry in central and peripheral lung tissues obtained from ex-smokers with COPD (forced expiratory volume in 1 second (FEV1) <75% predicted; n = 14) or without COPD (FEV1 >85% predicted; n = 14). The immunohistochemical staining of each molecule was quantified using a visual scoring method with grades ranging from 0 (no) to 3 (intense).
Results: VEGF, Flt-1, and KDR/Flk-1 immunostaining was localised in vascular and airway smooth muscle (VSM and ASM) cells, bronchial, bronchiolar and alveolar epithelium, and macrophages. Pulmonary endothelial cells expressed Flt-1 and KDR/Flk-1 abundantly but not VEGF. Bronchial VEGF expression was higher in microvascular VSM cells and ASM cells of patients with COPD than in patients without COPD (1.7 and 1.6-fold, p<0.01, respectively). VEGF expression in intimal and medial VSM (1.7 and 1.3-fold, p<0.05) of peripheral pulmonary arteries associated with the bronchiolar airways was more intense in COPD, as was VEGF expression in the small pulmonary vessels in the alveolar region (1.5 and 1.7-fold, p<0.02). In patients with COPD, KDR/Flk-1 expression was enhanced in endothelial cells and in intimal and medial VSM (1.3, 1.9 and 1.5-fold, p<0.02) while endothelial Flt-1 expression was 1.7 times higher (p<0.03). VEGF expression was significantly increased in bronchiolar and alveolar epithelium as well as in bronchiolar macrophages (1.5-fold, p<0.001). The expression of VEGF in bronchial VSM and mucosal microvessels as well as bronchiolar epithelium was inversely correlated with FEV1 (r<–0.45; p<0.01).
Conclusions: VEGF and its receptors Flt-1 and KDR/Flk-1 may be involved in peripheral vascular and airway remodelling processes in an autocrine and/or paracrine manner. This system may also be associated with epithelial cell viability during airway wall remodelling in COPD.
doi:10.1136/thx.2004.023986
PMCID: PMC1747292  PMID: 15681497
5.  Experiences of Living and Dying With COPD 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-Term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective of Analysis
The objective of this analysis was to review empirical qualitative research on the experiences of patients with chronic obstructive pulmonary disease (COPD), informal caregivers (“carers”), and health care providers—from the point of diagnosis, through daily living and exacerbation episodes, to the end of life.
Clinical Need and Target Population
Qualitative empirical studies (from social sciences, clinical, and related fields) can offer important information about how patients experience their condition. This exploration of the qualitative literature offers insights into patients’ perspectives on COPD, their needs, and how interventions might affect their experiences. The experiences of caregivers are also explored.
Research Question
What do patients with COPD, their informal caregivers (“carers”), and health care providers experience over the course of COPD?
Research Methods
Literature Search
Search Strategy
Literature searches for studies published from January 1, 2000, to November 2010 were performed on November 29, 2010, using OVID MEDLINE; on November 26, 2010, using ISI Web of Science; and on November 28, 2010, using EBSCO Cumulative Index to Nursing and Allied Health Literature (CINAHL). Titles and abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. One additional report, highly relevant to the synthesis, appeared in early 2011 during the drafting of this analysis and was included post hoc.
Inclusion Criteria
English-language full reports
studies published between January 1, 2000, and November 2010
primary qualitative empirical research (using any descriptive or interpretive qualitative methodology, including the qualitative component of mixed-methods studies) and secondary syntheses of primary qualitative empirical research
studies addressing any aspect of the experiences of living or dying with COPD from the perspective of persons at risk, patients, health care providers, or informal carers; studies addressing multiple conditions were included if COPD was addressed explicitly
Exclusion Criteria
studies addressing topics other than the experiences of living or dying with COPD from the perspective of persons at risk, patients, health care providers, or informal carers
studies labelled “qualitative” but not using a qualitative descriptive or interpretive methodology (e.g., case studies, experiments, or observational analysis using qualitative categorical variables)
quantitative research (i.e., using statistical hypothesis testing, using primarily quantitative data or analyses, or expressing results in quantitative or statistical terms)
studies that did not pose an empirical research objective or question, or involve the primary or secondary analysis of empirical data
Outcomes of Interest
qualitative descriptions and interpretations (narrative or theoretical) of personal and social experiences of COPD
Summary of Findings
Experiences at Diagnosis
Patients typically seek initial treatment for an acute episode rather than for chronic early symptoms of COPD.
Many patients initially misunderstand terms such as COPD, chronic obstructive pulmonary disease, or exacerbation.
Patients may not realize that COPD is incurable and fatal; some physicians themselves do not consider early COPD to be a fatal disease.
Smokers may not readily understand or agree with the idea that smoking caused or worsens their COPD. Those who believe there is a causal link may feel regret or shame.
Experiences of Living Day to Day
COPD patients experience alternating good days and bad days. A roller-coaster pattern of ups and downs becomes apparent, and COPD becomes a way of life.
Patients use many means (social, psychological, medical, organizational) to control what they can, and to cope with what they cannot. Economic hardship, comorbidities, language barriers, and low health literacy can make coping more difficult.
Increasing vulnerability and unpredictable setbacks make patients dependent on others for practical assistance, but functional limitations, institutional living or self-consciousness can isolate patients from the people they need.
For smokers, medical advice to quit can conflict with increased desire to smoke as a coping strategy.
Many of the factors that isolate COPD patients from social contact also isolate them from health care.
Experiences of Exacerbations
Patients may not always attribute repeated exacerbations to advancing disease, instead seeing them as temporary setbacks caused by activities, environmental factors, faltering self-management, or infection.
Lack of confidence in community-based services leads some patients to seek hospital admission, but patients also feel vulnerable when hospitalized. They may feel dependent on others for care or traumatized by hospital care routines.
Upon hospital discharge following an exacerbation, patients may face new levels of uncertainty about their illness, prognosis, care providers, and supports.
Experiences of the End of Life
Patients tend to be poorly informed about the long-term prognosis of COPD and what to expect toward the end of life; this lack of understanding impairs quality of life as the disease progresses.
As the end of life approaches, COPD patients face the usual challenges of daily living, but in a context of increasing exacerbations and deepening dependency. Activities and mobility decrease, and life may become confined.
Some clinicians have difficulty identifying the beginning of “the end of life,” given the unpredictable course of COPD. Long-term physician-patient relationships, familiarity and understanding, trust, good communication skills, sensitivity, and secure discussion settings can help facilitate end-of-life discussions.
Divergent meanings and goals of palliative care in COPD lead to confusion about whether such services are the responsibility of home care, primary care, specialty care, or even critical care. Palliative end-of-life care may not be anticipated prior to referral for such care. A palliative care referral can convey the demoralizing message that providers have “given up.”
Experiences of Carers
Carers’ challenges often echo patients’ challenges, and include anxiety, uncertainty about the future, helplessness, powerlessness, depression, difficulties maintaining employment, loss of mobility and freedoms, strained relationships, and growing social isolation.
Carers feel pressured by their many roles, struggling to maintain patience when they feel overwhelmed, and often feeling guilty about not doing enough.
Carers often face their own health problems and may have difficulty sustaining employment.
Synthesis: A Disease Trajectory Reflecting Patient Experiences
The flux of needs in COPD calls for service continuity and flexibility to allow both health care providers and patients to respond to the unpredictable yet increasing demands of the disease over time.
PMCID: PMC3384365  PMID: 23074423
6.  Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this evidence-based analysis was to determine the effectiveness and cost-effectiveness of smoking cessation interventions in the management of chronic obstructive pulmonary disease (COPD).
Clinical Need: Condition and Target Population
Tobacco smoking is the main risk factor for COPD. It is estimated that 50% of older smokers develop COPD and more than 80% of COPD-associated morbidity is attributed to tobacco smoking. According to the Canadian Community Health Survey, 38.5% of Ontarians who smoke have COPD. In patients with a significant history of smoking, COPD is usually present with symptoms of progressive dyspnea (shortness of breath), cough, and sputum production. Patients with COPD who smoke have a particularly high level of nicotine dependence, and about 30.4% to 43% of patients with moderate to severe COPD continue to smoke. Despite the severe symptoms that COPD patients suffer, the majority of patients with COPD are unable to quit smoking on their own; each year only about 1% of smokers succeed in quitting on their own initiative.
Technology
Smoking cessation is the process of discontinuing the practice of inhaling a smoked substance. Smoking cessation can help to slow or halt the progression of COPD. Smoking cessation programs mainly target tobacco smoking, but may also encompass other substances that can be difficult to stop smoking due to the development of strong physical addictions or psychological dependencies resulting from their habitual use.
Smoking cessation strategies include both pharmacological and nonpharmacological (behavioural or psychosocial) approaches. The basic components of smoking cessation interventions include simple advice, written self-help materials, individual and group behavioural support, telephone quit lines, nicotine replacement therapy (NRT), and antidepressants. As nicotine addiction is a chronic, relapsing condition that usually requires several attempts to overcome, cessation support is often tailored to individual needs, while recognizing that in general, the more intensive the support, the greater the chance of success. Success at quitting smoking decreases in relation to:
a lack of motivation to quit,
a history of smoking more than a pack of cigarettes a day for more than 10 years,
a lack of social support, such as from family and friends, and
the presence of mental health disorders (such as depression).
Research Question
What are the effectiveness and cost-effectiveness of smoking cessation interventions compared with usual care for patients with COPD?
Research Methods
Literature Search
Search Strategy
A literature search was performed on June 24, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations (1950 to June Week 3 2010), EMBASE (1980 to 2010 Week 24), the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Cochrane Library, and the Centre for Reviews and Dissemination for studies published between 1950 and June 2010. A single reviewer reviewed the abstracts and obtained full-text articles for those studies meeting the eligibility criteria. Reference lists were also examined for any additional relevant studies not identified through the search. Data were extracted using a standardized data abstraction form.
Inclusion Criteria
English-language, full reports from 1950 to week 3 of June, 2010;
either randomized controlled trials (RCTs), systematic reviews and meta-analyses, or non-RCTs with controls;
a proven diagnosis of COPD;
adult patients (≥ 18 years);
a smoking cessation intervention that comprised at least one of the treatment arms;
≥ 6 months’ abstinence as an outcome; and
patients followed for ≥ 6 months.
Exclusion Criteria
case reports
case series
Outcomes of Interest
≥ 6 months’ abstinence
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Nine RCTs were identified from the literature search. The sample sizes ranged from 74 to 5,887 participants. A total of 8,291 participants were included in the nine studies. The mean age of the patients in the studies ranged from 54 to 64 years. The majority of studies used the Global Initiative for Chronic Obstructive Lung Disease (GOLD) COPD staging criteria to stage the disease in study subjects. Studies included patients with mild COPD (2 studies), mild-moderate COPD (3 studies), moderate–severe COPD (1 study) and severe–very severe COPD (1 study). One study included persons at risk of COPD in addition to those with mild, moderate, or severe COPD, and 1 study did not define the stages of COPD. The individual quality of the studies was high. Smoking cessation interventions varied across studies and included counselling or pharmacotherapy or a combination of both. Two studies were delivered in a hospital setting, whereas the remaining 7 studies were delivered in an outpatient setting. All studies reported a usual care group or a placebo-controlled group (for the drug-only trials). The follow-up periods ranged from 6 months to 5 years. Due to excessive clinical heterogeneity in the interventions, studies were first grouped into categories of similar interventions; statistical pooling was subsequently performed, where appropriate. When possible, pooled estimates using relative risks for abstinence rates with 95% confidence intervals were calculated. The remaining studies were reported separately.
Abstinence Rates
Table ES1 provides a summary of the pooled estimates for abstinence, at longest follow-up, from the trials included in this review. It also shows the respective GRADE qualities of evidence.
Summary of Results*
Abbreviations: CI, confidence interval; NRT, nicotine replacement therapy.
Statistically significant (P < 0.05).
One trial used in this comparison had 2 treatment arms each examining a different antidepressant.
Conclusions
Based on a moderate quality of evidence, compared with usual care, abstinence rates are significantly higher in COPD patients receiving intensive counselling or a combination of intensive counselling and NRT.
Based on limited and moderate quality of evidence, abstinence rates are significantly higher in COPD patients receiving NRT compared with placebo.
Based on a moderate quality of evidence, abstinence rates are significantly higher in COPD patients receiving the antidepressant bupropion compared to placebo.
PMCID: PMC3384371  PMID: 23074432
7.  Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients with Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this analysis was to compare hospital-at-home care with inpatient hospital care for patients with acute exacerbations of chronic obstructive pulmonary disease (COPD) who present to the emergency department (ED).
Clinical Need: Condition and Target Population
Acute Exacerbations of Chronic Obstructive Pulmonary Disease
Chronic obstructive pulmonary disease is a disease state characterized by airflow limitation that is not fully reversible. This airflow limitation is usually both progressive and associated with an abnormal inflammatory response of the lungs to noxious particles or gases. The natural history of COPD involves periods of acute-onset worsening of symptoms, particularly increased breathlessness, cough, and/or sputum, that go beyond normal day-to-day variations; these are known as acute exacerbations.
Two-thirds of COPD exacerbations are caused by an infection of the tracheobronchial tree or by air pollution; the cause in the remaining cases is unknown. On average, patients with moderate to severe COPD experience 2 or 3 exacerbations each year.
Exacerbations have an important impact on patients and on the health care system. For the patient, exacerbations result in decreased quality of life, potentially permanent losses of lung function, and an increased risk of mortality. For the health care system, exacerbations of COPD are a leading cause of ED visits and hospitalizations, particularly in winter.
Technology
Hospital-at-home programs offer an alternative for patients who present to the ED with an exacerbation of COPD and require hospital admission for their treatment. Hospital-at-home programs provide patients with visits in their home by medical professionals (typically specialist nurses) who monitor the patients, alter patients’ treatment plans if needed, and in some programs, provide additional care such as pulmonary rehabilitation, patient and caregiver education, and smoking cessation counselling.
There are 2 types of hospital-at-home programs: admission avoidance and early discharge hospital-at-home. In the former, admission avoidance hospital-at-home, after patients are assessed in the ED, they are prescribed the necessary medications and additional care needed (e.g., oxygen therapy) and then sent home where they receive regular visits from a medical professional. In early discharge hospital-at-home, after being assessed in the ED, patients are admitted to the hospital where they receive the initial phase of their treatment. These patients are discharged into a hospital-at-home program before the exacerbation has resolved. In both cases, once the exacerbation has resolved, the patient is discharged from the hospital-at-home program and no longer receives visits in his/her home.
In the models that exist to date, hospital-at-home programs differ from other home care programs because they deal with higher acuity patients who require higher acuity care, and because hospitals retain the medical and legal responsibility for patients. Furthermore, patients requiring home care services may require such services for long periods of time or indefinitely, whereas patients in hospital-at-home programs require and receive the services for a short period of time only.
Hospital-at-home care is not appropriate for all patients with acute exacerbations of COPD. Ineligible patients include: those with mild exacerbations that can be managed without admission to hospital; those who require admission to hospital; and those who cannot be safely treated in a hospital-at-home program either for medical reasons and/or because of a lack of, or poor, social support at home.
The proposed possible benefits of hospital-at-home for treatment of exacerbations of COPD include: decreased utilization of health care resources by avoiding hospital admission and/or reducing length of stay in hospital; decreased costs; increased health-related quality of life for patients and caregivers when treated at home; and reduced risk of hospital-acquired infections in this susceptible patient population.
Ontario Context
No hospital-at-home programs for the treatment of acute exacerbations of COPD were identified in Ontario. Patients requiring acute care for their exacerbations are treated in hospitals.
Research Question
What is the effectiveness, cost-effectiveness, and safety of hospital-at-home care compared with inpatient hospital care of acute exacerbations of COPD?
Research Methods
Literature Search
Search Strategy
A literature search was performed on August 5, 2010, using OVID MEDLINE, OVID MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Wiley Cochrane Library, and the Centre for Reviews and Dissemination database for studies published from January 1, 1990, to August 5, 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists and health technology assessment websites were also examined for any additional relevant studies not identified through the systematic search.
Inclusion Criteria
English language full-text reports;
health technology assessments, systematic reviews, meta-analyses, and randomized controlled trials (RCTs);
studies performed exclusively in patients with a diagnosis of COPD or studies including patients with COPD as well as patients with other conditions, if results are reported for COPD patients separately;
studies performed in patients with acute exacerbations of COPD who present to the ED;
studies published between January 1, 1990, and August 5, 2010;
studies comparing hospital-at-home and inpatient hospital care for patients with acute exacerbations of COPD;
studies that include at least 1 of the outcomes of interest (listed below).
Cochrane Collaboration reviews have defined hospital-at-home programs as those that provide patients with active treatment for their acute exacerbation in their home by medical professionals for a limited period of time (in this case, until the resolution of the exacerbation). If a hospital-at-home program had not been available, these patients would have been admitted to hospital for their treatment.
Exclusion Criteria
< 18 years of age
animal studies
duplicate publications
grey literature
Outcomes of Interest
Patient/clinical outcomes
mortality
lung function (forced expiratory volume in 1 second)
health-related quality of life
patient or caregiver preference
patient or caregiver satisfaction with care
complications
Health system outcomes
hospital readmissions
length of stay in hospital and hospital-at-home
ED visits
transfer to long-term care
days to readmission
eligibility for hospital-at-home
Statistical Methods
When possible, results were pooled using Review Manager 5 Version 5.1; otherwise, results were summarized descriptively. Data from RCTs were analyzed using intention-to-treat protocols. In addition, a sensitivity analysis was done assigning all missing data/withdrawals to the event. P values less than 0.05 were considered significant. A priori subgroup analyses were planned for the acuity of hospital-at-home program, type of hospital-at-home program (early discharge or admission avoidance), and severity of the patients’ COPD. Additional subgroup analyses were conducted as needed based on the identified literature. Post hoc sample size calculations were performed using STATA 10.1.
Quality of Evidence
The quality of each included study was assessed, taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Fourteen studies met the inclusion criteria and were included in this review: 1 health technology assessment, 5 systematic reviews, and 7 RCTs.
The following conclusions are based on low to very low quality of evidence. The reviewed evidence was based on RCTs that were inadequately powered to observe differences between hospital-at-home and inpatient hospital care for most outcomes, so there is a strong possibility of type II error. Given the low to very low quality of evidence, these conclusions must be considered with caution.
Approximately 21% to 37% of patients with acute exacerbations of COPD who present to the ED may be eligible for hospital-at-home care.
Of the patients who are eligible for care, some may refuse to participate in hospital-at-home care.
Eligibility for hospital-at-home care may be increased depending on the design of the hospital-at-home program, such as the size of the geographical service area for hospital-at-home and the hours of operation for patient assessment and entry into hospital-at-home.
Hospital-at-home care for acute exacerbations of COPD was associated with a nonsignificant reduction in the risk of mortality and hospital readmissions compared with inpatient hospital care during 2- to 6-month follow-up.
Limited, very low quality evidence suggests that hospital readmissions are delayed in patients who received hospital-at-home care compared with those who received inpatient hospital care (mean additional days before readmission comparing hospital-at-home to inpatient hospital care ranged from 4 to 38 days).
There is insufficient evidence to determine whether hospital-at-home care, compared with inpatient hospital care, is associated with improved lung function.
The majority of studies did not find significant differences between hospital-at-home and inpatient hospital care for a variety of health-related quality of life measures at follow-up. However, follow-up may have been too late to observe an impact of hospital-at-home care on quality of life.
A conclusion about the impact of hospital-at-home care on length of stay for the initial exacerbation (defined as days in hospital or days in hospital plus hospital-at-home care for inpatient hospital and hospital-at-home, respectively) could not be determined because of limited and inconsistent evidence.
Patient and caregiver satisfaction with care is high for both hospital-at-home and inpatient hospital care.
PMCID: PMC3384361  PMID: 23074420
8.  Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease (COPD) Using an Ontario Policy Model 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-Term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Background
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation throughout the airways, parenchyma, and pulmonary vasculature. The inflammation causes repeated cycles of injury and repair in the airway wall— inflammatory cells release a variety of chemicals and lead to cellular damage. The inflammation process also contributes to the loss of elastic recoil pressure in the lung, thereby reducing the driving pressure for expiratory flow through narrowed and poorly supported airways, in which airflow resistance is significantly increased. Expiratory flow limitation is the pathophysiological hallmark of COPD.
Exacerbations of COPD contribute considerably to morbidity and mortality, and impose a burden on the health care system. They are a leading cause of emergency room visits and hospitalizations, particularly in the winter. In Canada, the reported average cost for treating a moderate exacerbation is $641; for a major exacerbation, the cost is $10,086.
Objective
The objective of this study was to evaluate the cost-effectiveness and budget impact of the following interventions in moderate to very severe COPD, investigated in the Medical Advisory Secretariat Chronic Obstructive Pulmonary Disease Mega-Analysis Series:
smoking cessation programs in moderate COPD in an outpatient setting:
– intensive counselling (IC) versus usual care (UC)
– nicotine replacement therapy (NRT) versus UC
– IC + NRT versus placebo
– bupropion versus placebo
multidisciplinary care (MDC) teams versus UC in moderate to severe COPD in an outpatient setting
pulmonary rehabilitation (PR) versus UC following acute exacerbations in moderate to severe COPD
long-term oxygen therapy (LTOT) versus UC in severe hypoxemia in COPD in an outpatient setting
ventilation:
– noninvasive positive pressure ventilation (NPPV) + usual medical care versus usual medical care in acute respiratory failure due to an acute exacerbation in severe COPD in an inpatient setting
– weaning with NPPV versus weaning with invasive mechanical ventilation in acute respiratory failure due to an acute exacerbation in very severe COPD in an inpatient setting
Methods
A cost-utility analysis was conducted using a Markov probabilistic model. The model consists of different health states based on the Global Initiative for Chronic Obstructive Lung Disease COPD severity classification. Patients were assigned different costs and utilities depending on their severity health state during each model cycle. In addition to moving between health states, patients were at risk of acute exacerbations of COPD in each model cycle. During each cycle, patients could have no acute exacerbation, a minor acute exacerbation, or a major exacerbation. For the purposes of the model, a major exacerbation was defined as one that required hospitalization. Patients were assigned different costs and utilities in each model cycle, depending on whether they experienced an exacerbation, and its severity.
Starting cohorts reflected the various patient populations from the trials analyzed. Incremental cost-effectiveness ratios (ICERs)—that is, costs per quality-adjusted life-year (QALY)—were estimated for each intervention using clinical parameters and summary estimates of relative risks of (re)hospitalization, as well as mortality and abstinence rates, from the COPD mega-analysis evidence-based analyses.
A budget impact analysis was also conducted to project incremental costs already being incurred or resources already in use in Ontario. Using provincial data, medical literature, and expert opinion, health system impacts were calculated for the strategies investigated.
All costs are reported in Canadian dollars.
Results
All smoking cessation programs were dominant (i.e., less expensive and more effective overall). Assuming a base case cost of $1,041 and $1,527 per patient for MDC and PR, the ICER was calculated to be $14,123 per QALY and $17,938 per QALY, respectively. When the costs of MDC and PR were varied in a 1-way sensitivity analysis to reflect variation in resource utilization reported in the literature, the ICER increased to $55,322 per QALY and $56,270 per QALY, respectively. Assuming a base case cost of $2,261 per year per patient for LTOT as reported by data from the Ontario provincial program, the ICER was calculated to be $38,993 per QALY. Ventilation strategies were dominant (i.e., cheaper and more effective), as reflected by the clinical evidence of significant in-hospital days avoided in the study group.
Ontario currently pays for IC through physician billing (translating to a current burden of $8 million) and bupropion through the Ontario Drug Benefit program (translating to a current burden of almost $2 million). The burden of NRT was projected to be $10 million, with future expenditures of up to $1 million in Years 1 to 3 for incident cases.
Ontario currently pays for some chronic disease management programs. Based on the most recent Family Health Team data, the costs of MDC programs to manage COPD were estimated at $85 million in fiscal year 2010, with projected future expenditures of up to $51 million for incident cases, assuming the base case cost of the program. However, this estimate does not accurately reflect the current costs to the province because of lack of report by Family Health Teams, lack of capture of programs outside this model of care by any data set in the province, and because the resource utilization and frequency of visits/follow-up phone calls were based on the findings in the literature rather than the actual Family Health Team COPD management programs in place in Ontario. Therefore, MDC resources being utilized in the province are unknown and difficult to measure.
Data on COPD-related hospitalizations were pulled from Ontario administrative data sets and based on consultation with experts. Half of hospitalized patients will access PR resources at least once, and half of these will repeat the therapy, translating to a potential burden of $17 million to $32 million, depending on the cost of the program. These resources are currently being absorbed, but since utilization is not being captured by any data set in the province, it is difficult to quantify and estimate. Provincial programs may be under-resourced, and patients may not be accessing these services effectively.
Data from the LTOT provincial program (based on fiscal year 2006 information) suggested that the burden was $65 million, with potential expenditures of up to $0.2 million in Years 1 to 3 for incident cases.
From the clinical evidence on ventilation (i.e., reduction in length of stay in hospital), there were potential cost savings to the hospitals of $42 million and $12 million for NPPV and weaning with NPPV, respectively, if the study intervention were adopted. Future cost savings were projected to be up to $4 million and $1 million, respectively, for incident cases.
Conclusions
Currently, costs for most of these interventions are being absorbed by provider services, the Ontario Drug Benefit Program, the Assistive Devices Program, and the hospital global budget. The most cost-effective intervention for COPD will depend on decision-makers’ willingness to pay. Lack of provincial data sets capturing resource utilization for the various interventions poses a challenge for estimating current burden and future expenditures.
PMCID: PMC3384363  PMID: 23074422
9.  Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this evidence-based analysis was to determine the effectiveness and cost-effectiveness of multidisciplinary care (MDC) compared with usual care (UC, single health care provider) for the treatment of stable chronic obstructive pulmonary disease (COPD).
Clinical Need: Condition and Target Population
Chronic obstructive pulmonary disease is a progressive disorder with episodes of acute exacerbations associated with significant morbidity and mortality. Cigarette smoking is linked causally to COPD in more than 80% of cases. Chronic obstructive pulmonary disease is among the most common chronic diseases worldwide and has an enormous impact on individuals, families, and societies through reduced quality of life and increased health resource utilization and mortality.
The estimated prevalence of COPD in Ontario in 2007 was 708,743 persons.
Technology
Multidisciplinary care involves professionals from a range of disciplines, working together to deliver comprehensive care that addresses as many of the patient’s health care and psychosocial needs as possible.
Two variables are inherent in the concept of a multidisciplinary team: i) the multidisciplinary components such as an enriched knowledge base and a range of clinical skills and experiences, and ii) the team components, which include but are not limited to, communication and support measures. However, the most effective number of team members and which disciplines should comprise the team for optimal effect is not yet known.
Research Question
What is the effectiveness and cost-effectiveness of MDC compared with UC (single health care provider) for the treatment of stable COPD?
Research Methods
Literature Search
Search Strategy
A literature search was performed on July 19, 2010 using OVID MEDLINE, OVID MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Wiley Cochrane Library, and the Centre for Reviews and Dissemination database, for studies published from January 1, 1995 until July 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search.
Inclusion Criteria
health technology assessments, systematic reviews, or randomized controlled trials
studies published between January 1995 and July 2010;
COPD study population
studies comparing MDC (2 or more health care disciplines participating in care) compared with UC (single health care provider)
Exclusion Criteria
grey literature
duplicate publications
non-English language publications
study population less than 18 years of age
Outcomes of Interest
hospital admissions
emergency department (ED) visits
mortality
health-related quality of life
lung function
Quality of Evidence
The quality of each included study was assessed, taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Six randomized controlled trials were obtained from the literature search. Four of the 6 studies were completed in the United States. The sample size of the 6 studies ranged from 40 to 743 participants, with a mean study sample between 66 and 71 years of age. Only 2 studies characterized the study sample in terms of the Global Initiative for Chronic Obstructive Lung Disease (GOLD) COPD stage criteria, and in general the description of the study population in the other 4 studies was limited. The mean percent predicted forced expiratory volume in 1 second (% predicted FEV1) among study populations was between 32% and 59%. Using this criterion, 3 studies included persons with severe COPD and 2 with moderate COPD. Information was not available to classify the population in the sixth study.
Four studies had MDC treatment groups which included a physician. All studies except 1 reported a respiratory specialist (i.e., respiratory therapist, specialist nurse, or physician) as part of the multidisciplinary team. The UC group was comprised of a single health care practitioner who may or may not have been a respiratory specialist.
A meta-analysis was completed for 5 of the 7 outcome measures of interest including:
health-related quality of life,
lung function,
all-cause hospitalization,
COPD-specific hospitalization, and
mortality.
There was only 1 study contributing to the outcome of all-cause and COPD-specific ED visits which precluded pooling data for these outcomes. Subgroup analyses were not completed either because heterogeneity was not significant or there were a small number of studies that were meta-analysed for the outcome.
Quality of Life
Three studies reported results of quality of life assessment based on the St. George’s Respiratory Questionnaire (SGRQ). A mean decrease in the SGRQ indicates an improvement in quality of life while a mean increase indicates deterioration in quality of life. In all studies the mean change score from baseline to the end time point in the MDC treatment group showed either an improvement compared with the control group or less deterioration compared with the control group. The mean difference in change scores between MDC and UC groups was statistically significant in all 3 studies. The pooled weighted mean difference in total SGRQ score was −4.05 (95% confidence interval [CI], −6.47 to 1.63; P = 0.001). The GRADE quality of evidence was assessed as low for this outcome.
Lung Function
Two studies reported results of the FEV1 % predicted as a measure of lung function. A negative change from baseline infers deterioration in lung function and a positive change from baseline infers an improvement in lung function. The MDC group showed a statistically significant improvement in lung function up to 12 months compared with the UC group (P = 0.01). However this effect is not maintained at 2-year follow-up (P = 0.24). The pooled weighted mean difference in FEV1 percent predicted was 2.78 (95% CI, −1.82 to −7.37). The GRADE quality of evidence was assessed as very low for this outcome indicating that an estimate of effect is uncertain.
Hospital Admissions
All-Cause
Four studies reported results of all-cause hospital admissions in terms of number of persons with at least 1 admission during the follow-up period. Estimates from these 4 studies were pooled to determine a summary estimate. There is a statistically significant 25% relative risk (RR) reduction in all-cause hospitalizations in the MDC group compared with the UC group (P < 0.001). The index of heterogeneity (I2) value is 0%, indicating no statistical heterogeneity between studies. The GRADE quality of evidence was assessed as moderate for this outcome, indicating that further research may change the estimate of effect.
COPD-Specific Hospitalization
Three studies reported results of COPD-specific hospital admissions in terms of number of persons with at least 1 admission during the follow-up period. Estimates from these 3 studies were pooled to determine a summary estimate. There is a statistically significant 33% RR reduction in all-cause hospitalizations in the MDC group compared with the UC group (P = 0.002). The I2 value is 0%, indicating no statistical heterogeneity between studies. The GRADE quality of evidence was assessed as moderate for this outcome, indicating that further research may change the estimate of effect.
Emergency Department Visits
All-Cause
Two studies reported results of all-cause ED visits in terms of number of persons with at least 1 visit during the follow-up period. There is a statistically nonsignificant reduction in all-cause ED visits when data from these 2 studies are pooled (RR, 0.64; 95% CI, 0.31 to −1.33; P = 0.24). The GRADE quality of evidence was assessed as very low for this outcome indicating that an estimate of effect is uncertain.
COPD-Specific
One study reported results of COPD-specific ED visits in terms of number of persons with at least 1 visit during the follow-up period. There is a statistically significant 41% reduction in COPD-specific ED visits when the data from these 2 studies are pooled (RR, 0.59; 95% CI, 0.43−0.81; P < 0.001). The GRADE quality of evidence was assessed as moderate for this outcome.
Mortality
Three studies reported the mortality during the study follow-up period. Estimates from these 3 studies were pooled to determine a summary estimate. There is a statistically nonsignificant reduction in mortality between treatment groups (RR, 0.81; 95% CI, 0.52−1.27; P = 0.36). The I2 value is 19%, indicating low statistical heterogeneity between studies. All studies had a 12-month follow-up period. The GRADE quality of evidence was assessed as low for this outcome.
Conclusions
Significant effect estimates with moderate quality of evidence were found for all-cause hospitalization, COPD-specific hospitalization, and COPD-specific ED visits (Table ES1). A significant estimate with low quality evidence was found for the outcome of quality of life (Table ES2). All other outcome measures were nonsignificant and supported by low or very low quality of evidence.
Summary of Dichotomous Data
Abbreviations: CI, confidence intervals; COPD, chronic obstructive pulmonary disease; n, number.
Summary of Continuous Data
Abbreviations: CI, confidence intervals; FEV1, forced expiratory volume in 1 second; n, number; SGRQ, St. George’s Respiratory Questionnaire.
PMCID: PMC3384374  PMID: 23074433
10.  REDUCED EXPRESSION OF ANGIOTENSIN I-CONVERTING ENZYME IN CAVEOLIN-1 KNOCKOUT MOUSE LUNGS 
Microvascular research  2010;80(2):250-257.
Reduced lung capillary expression of angiotensin I-converting enzyme (ACE), a key enzyme in cardiovascular pathophysiology, and of caveolin-1, an important regulator of endothelial cell signalling, has been demonstrated in various models of pulmonary arterial hypertension (PAH). We addressed the relationship between PAH and ACE expression in caveolin-1 knockout mice (Cav1−/−), which have moderate PAH. Tissue ACE activity was reduced by 50% in lungs from 3- month old Cav1−/− mice compared to wild type (WT). A similar reduction in lung endothelial ACE expression was observed by measuring the lung uptake of 125I-labeled monoclonal anti-ACE antibody and by quantitative immunohistochemistry. These alterations in ACE are limited to capillary segments of the pulmonary circulation. Functionally, the increase in pulmonary artery pressure (PAP) in response to ACE conversion of angiotensin I to angiotensin II in isolated, perfused mouse lungs was reduced significantly in Cav1−/− mice compared to WT. Thus, these complementary approaches demonstrate the dependence of lung microvascular endothelial cell ACE protein expression on caveolin-1 expression and underscore the vital role of caveolin-1-regulated pulmonary vascular homeostasis on endothelial ACE expression and activity. In summary, we have revealed a novel role of caveolin-1 in the regulation of ACE expression in pulmonary capillary endothelial cells. Further understanding of the mechanism by which reduced caveolin-1 expression leads altered pulmonary vascular development, PAH, and reduced ACE expression may have important clinical implications in patients with these severe lung diseases.
doi:10.1016/j.mvr.2010.04.008
PMCID: PMC2919634  PMID: 20430040
pulmonary hypertension; endothelial dysfunction; anti-ACE monoclonal antibody
11.  Pulmonary Rehabilitation for Patients With Chronic Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this evidence-based review was to determine the effectiveness and cost-effectiveness of pulmonary rehabilitation in the management of chronic obstructive pulmonary disease (COPD).
Technology
Pulmonary rehabilitation refers to a multidisciplinary program of care for patients with chronic respiratory impairment that is individually tailored and designed to optimize physical and social performance and autonomy. Exercise training is the cornerstone of pulmonary rehabilitation programs, though they may also include components such as patient education and psychological support. Pulmonary rehabilitation is recommended as the standard of care in the treatment and rehabilitation of patients with COPD who remain symptomatic despite treatment with bronchodilators.
For the purpose of this review, the Medical Advisory Secretariat focused on pulmonary rehabilitation programs as defined by the Cochrane Collaboration—that is, any inpatient, outpatient, or home-based rehabilitation program lasting at least 4 weeks that includes exercise therapy with or without any form of education and/or psychological support delivered to patients with exercise limitations attributable to COPD.
Research Questions
What is the effectiveness and cost-effectiveness of pulmonary rehabilitation compared with usual care (UC) for patients with stable COPD?
Does early pulmonary rehabilitation (within 1 month of hospital discharge) in patients who had an acute exacerbation of COPD improve outcomes compared with UC (or no rehabilitation)?
Do maintenance or postrehabilitation programs for patients with COPD who have completed a pulmonary rehabilitation program improve outcomes compared with UC?
Research Methods
Literature Search
Search Strategy
For Research Questions 1and 2, a literature search was performed on August 10, 2010 for studies published from January 1, 2004 to July 31, 2010. For Research Question 3, a literature search was performed on February 3, 2011 for studies published from January 1, 2000 to February 3, 2011. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists and health technology assessment websites were also examined for any additional relevant studies not identified through the systematic search.
Inclusion Criteria
Research questions 1 and 2:
published between January 1, 2004 and July 31, 2010
randomized controlled trials, systematic reviews, and meta-analyses
COPD study population
studies comparing pulmonary rehabilitation with UC (no pulmonary rehabilitation)
duration of pulmonary rehabilitation program ≥ 6 weeks
pulmonary rehabilitation program had to include at minimum exercise training
Research question 3:
published between January 1, 2000 and February 3, 2011
randomized controlled trials, systematic reviews, and meta-analyses
COPD study population
studies comparing a maintenance or postrehabilitation program with UC (standard follow-up)
duration of pulmonary rehabilitation program ≥ 6 weeks
initial pulmonary rehabilitation program had to include at minimum exercise training
Exclusion Criteria
Research questions 1, 2, and 3:
grey literature
duplicate publications
non-English language publications
study population ≤ 18 years of age
studies conducted in a palliative population
studies that did not report primary outcome of interest
Additional exclusion criteria for research question 3:
studies with ≤ 2 sessions/visits per month
Outcomes of Interest
The primary outcomes of interest for the stable COPD population were exercise capacity and health-related quality of life (HRQOL). For the COPD population following an exacerbation, the primary outcomes of interest were hospital readmissions and HRQOL. The primary outcomes of interest for the COPD population undertaking maintenance programs were functional exercise capacity and HRQOL.
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Research Question 1: Effect of Pulmonary Rehabilitation on Outcomes in Stable COPD
Seventeen randomized controlled trials met the inclusion criteria and were included in this review.
The following conclusions are based on moderate quality of evidence.
Pulmonary rehabilitation including at least 4 weeks of exercise training leads to clinically and statistically significant improvements in HRQOL in patients with COPD.1
Pulmonary rehabilitation also leads to a clinically and statistically significant improvement in functional exercise capacity2 (weighted mean difference, 54.83 m; 95% confidence interval, 35.63–74.03; P < 0.001).
Research Question 2: Effect of Pulmonary Rehabilitation on Outcomes Following an Acute Exacerbation of COPD
Five randomized controlled trials met the inclusion criteria and are included in this review. The following conclusion is based on moderate quality of evidence.
Pulmonary rehabilitation (within 1 month of hospital discharge) after acute exacerbation significantly reduces hospital readmissions (relative risk, 0.50; 95% confidence interval, 0.33–0.77; P = 0.001) and leads to a statistically and clinically significant improvement in HRQOL.3
Research Question 3: Effect of Pulmonary Rehabilitation Maintenance Programs on COPD Outcomes
Three randomized controlled trials met the inclusion criteria and are included in this review. The conclusions are based on a low quality of evidence and must therefore be considered with caution.
Maintenance programs have a nonsignificant effect on HRQOL and hospitalizations.
Maintenance programs have a statistically but not clinically significant effect on exercise capacity (P = 0.01). When subgrouped by intensity and quality of study, maintenance programs have a statistically and marginally clinically significant effect on exercise capacity.
PMCID: PMC3384375  PMID: 23074434
12.  Clinical Utility of Echocardiography for the Diagnosis and Management of Pulmonary Vascular Disease in Young Children With Chronic Lung Disease 
Pediatrics  2008;121(2):317-325.
Objective
The goal was to determine the clinical utility of Doppler echocardiography in predicting the presence and severity of pulmonary hypertension in patients with chronic lung disease who subsequently underwent cardiac catheterization.
Methods
A retrospective review of data for all patients <2 years of age with a diagnosis of bronchopulmonary dysplasia, congenital diaphragmatic hernia, or lung hypoplasia who underwent echocardiography and subsequently underwent cardiac catheterization for evaluation of pulmonary hypertension was performed. The accuracy of echocardiography in diagnosing pulmonary hypertension, on the basis of estimated systolic pulmonary artery pressure, was compared with the detection of pulmonary hypertension with the standard method of cardiac catheterization.
Results
Thirty-one linked measurements for 25 children were analyzed. Systolic pulmonary artery pressure could be estimated in 61% of studies, but there was poor correlation between echocardiography and cardiac catheterization measures of systolic pulmonary artery pressure in these infants. Compared with cardiac catheterization measurements, echocardiographic estimates of systolic pulmonary artery pressure diagnosed correctly the presence or absence of pulmonary hypertension in 79% of the studies in which systolic pulmonary artery pressure was estimated but determined the severity of pulmonary hypertension (severe pulmonary hypertension was defined as pulmonary/systemic pressure ratio of ≥0.67) correctly in only 47% of those studies. Seven (58%) of 12 children without estimated systolic pulmonary artery pressure demonstrated pulmonary hypertension during subsequent cardiac catheterization. In the absence of estimated systolic pulmonary artery pressure, qualitative echocardiographic findings, either alone or in combination, had worse predictive value for the diagnosis of pulmonary hypertension.
Conclusion
As used in clinical practice, echocardiography often identifies pulmonary hypertension in young children with chronic lung disease; however, estimates of systolic pulmonary artery pressure were not obtained consistently and were not reliable for determining the severity of pulmonary hypertension.
doi:10.1542/peds.2007-1583
PMCID: PMC3121163  PMID: 18245423
chronic lung disease; bronchopulmonary dysplasia; pulmonary hypertension; echocardiography; cardiac catheterization
13.  Decreased Neprilysin and Pulmonary Vascular Remodeling in Chronic Obstructive Pulmonary Disease 
Rationale: Studies with genetically engineered mice showed that decreased expression of the transmembrane peptidase neprilysin (NEP) increases susceptibility to hypoxic pulmonary vascular remodeling and hypertension; in hypoxic wild-type mice, expression is decreased early in distal pulmonary arteries, where prominent vascular remodeling occurs. Therefore, in humans with smoke- and hypoxia-induced vascular remodeling, as in chronic obstructive pulmonary disease (COPD), pulmonary activity/expression of NEP may likewise be decreased.
Objectives: To test whether NEP activity and expression are reduced in COPD lungs and pulmonary arterial smooth muscle cells (SMCs) exposed to cigarette smoke extract or hypoxia and begin to investigate mechanisms involved.
Methods: Control and advanced COPD lung lysates (n = 13–14) were analyzed for NEP activity and protein and mRNA expression. As a control, dipeptidyl peptidase IV activity was analyzed. Lung sections were assessed for vascular remodeling and oxidant damage. Human pulmonary arterial SMCs were exposed to cigarette smoke extract, hypoxia, or H2O2, and incubated with antioxidants or lysosomal/proteasomal inhibitors.
Measurements and Main Results: COPD lungs demonstrated areas of vascular rarification, distal muscularization, and variable intimal and prominent medial/adventitial thickening. NEP activity was reduced by 76%; NEP protein expression was decreased in alveolar walls and distal vessels; mRNA expression was also decreased. In SMCs exposed to cigarette smoke extract, hypoxia, and H2O2, NEP activity and expression were also reduced. Reactive oxygen species inactivated NEP activity; NEP protein degradation appeared to be substantially induced.
Conclusions: Mechanisms responsible for reduced NEP activity and protein expression include oxidative reactions and protein degradation. Maintaining or increasing lung NEP may protect against pulmonary vascular remodeling in response to chronic smoke and hypoxia.
doi:10.1164/rccm.201002-0154OC
PMCID: PMC3056229  PMID: 20813891
pulmonary hypertension; smooth muscle cell; smoking; oxidative stress; protein degradation
14.  Plasma N-terminal Pro-brain Natriuretic Peptide: A Prognostic Marker in Patients with Chronic Obstructive Pulmonary Disease 
Lung  2012;190(3):271-276.
Background
Plasma N-terminal pro-brain natriuretic peptide (NT-proBNP) levels are elevated in patients with secondary pulmonary hypertension and chronic lung disease with right ventricular overload. The aim of the present study was to investigate the use of plasma NT-proBNP levels as a prognostic marker of severe COPD with chronic respiratory failure and latent pulmonary hypertension.
Methods
Plasma NT-proBNP levels were measured in 61 patients with stable COPD. Plasma NT-proBNP levels, pulmonary function, PaO2, and PaCO2 levels and systolic pulmonary artery pressure were compared according to COPD severity. In addition, we examined correlations between plasma NT-proBNP levels and pulmonary function, PaO2, PaCO2, and systolic pulmonary artery pressure.
Results
The levels of plasma NT-proBNP significantly increased in patients with stage IV and stage III COPD compared to individuals with stage II COPD according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification. The area under the receiver-operating characteristic curve of plasma NT-proBNP for severe to very severe COPD (FEV1 < 50%) was 0.707 (95% confidence interval [CI] 0.566–0.847, P = 0.008). Plasma NT-proBNP levels significantly correlated with %FEV1 (r = −0.557; P < 0.001), arterial blood gas parameters such as PaCO2 (r = 0.476; P < 0.001) and PaO2 (r = −0.347; P = 0.031), and systolic pulmonary artery pressure (r = 0.435; P = 0.001).
Conclusions
Plasma NT-proBNP levels increased significantly with disease severity, progression of chronic respiratory failure, and secondary pulmonary hypertension in patients with stable COPD. These results suggest that plasma NT-proBNP can be a useful prognostic marker to monitor COPD progression and identify cases of secondary pulmonary hypertension in patients with stable COPD.
doi:10.1007/s00408-011-9363-7
PMCID: PMC3339052  PMID: 22246552
Chronic obstructive pulmonary disease; NT-proBNP; Prognosis; Medicine & Public Health; Pneumology/Respiratory System
15.  Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this evidence-based analysis was to examine the effectiveness, safety, and cost-effectiveness of noninvasive positive pressure ventilation (NPPV) in the following patient populations: patients with acute respiratory failure (ARF) due to acute exacerbations of chronic obstructive pulmonary disease (COPD); weaning of COPD patients from invasive mechanical ventilation (IMV); and prevention of or treatment of recurrent respiratory failure in COPD patients after extubation from IMV.
Clinical Need and Target Population
Acute Hypercapnic Respiratory Failure
Respiratory failure occurs when the respiratory system cannot oxygenate the blood and/or remove carbon dioxide from the blood. It can be either acute or chronic and is classified as either hypoxemic (type I) or hypercapnic (type II) respiratory failure. Acute hypercapnic respiratory failure frequently occurs in COPD patients experiencing acute exacerbations of COPD, so this is the focus of this evidence-based analysis. Hypercapnic respiratory failure occurs due to a decrease in the drive to breathe, typically due to increased work to breathe in COPD patients.
Technology
There are several treatment options for ARF. Usual medical care (UMC) attempts to facilitate adequate oxygenation and treat the cause of the exacerbation, and typically consists of supplemental oxygen, and a variety of medications such as bronchodilators, corticosteroids, and antibiotics. The failure rate of UMC is high and has been estimated to occur in 10% to 50% of cases.
The alternative is mechanical ventilation, either invasive or noninvasive. Invasive mechanical ventilation involves sedating the patient, creating an artificial airway through endotracheal intubation, and attaching the patient to a ventilator. While this provides airway protection and direct access to drain sputum, it can lead to substantial morbidity, including tracheal injuries and ventilator-associated pneumonia (VAP).
While both positive and negative pressure noninvasive ventilation exists, noninvasive negative pressure ventilation such as the iron lung is no longer in use in Ontario. Noninvasive positive pressure ventilation provides ventilatory support through a facial or nasal mask and reduces inspiratory work. Noninvasive positive pressure ventilation can often be used intermittently for short periods of time to treat respiratory failure, which allows patients to continue to eat, drink, talk, and participate in their own treatment decisions. In addition, patients do not require sedation, airway defence mechanisms and swallowing functions are maintained, trauma to the trachea and larynx are avoided, and the risk for VAP is reduced. Common complications are damage to facial and nasal skin, higher incidence of gastric distension with aspiration risk, sleeping disorders, and conjunctivitis. In addition, NPPV does not allow direct access to the airway to drain secretions and requires patients to cooperate, and due to potential discomfort, compliance and tolerance may be low.
In addition to treating ARF, NPPV can be used to wean patients from IMV through the gradual removal of ventilation support until the patient can breathe spontaneously. Five to 30% of patients have difficultly weaning. Tapering levels of ventilatory support to wean patients from IMV can be achieved using IMV or NPPV. The use of NPPV helps to reduce the risk of VAP by shortening the time the patient is intubated.
Following extubation from IMV, ARF may recur, leading to extubation failure and the need for reintubation, which has been associated with increased risk of nosocomial pneumonia and mortality. To avoid these complications, NPPV has been proposed to help prevent ARF recurrence and/or to treat respiratory failure when it recurs, thereby preventing the need for reintubation.
Research Questions
What is the effectiveness, cost-effectiveness, and safety of NPPV for the treatment of acute hypercapnic respiratory failure due to acute exacerbations of COPD compared with
usual medical care, and
invasive mechanical ventilation?
What is the effectiveness, cost-effectiveness, and safety of NPPV compared with IMV in COPD patients after IMV for the following purposes:
weaning COPD patients from IMV,
preventing ARF in COPD patients after extubation from IMV, and
treating ARF in COPD patients after extubation from IMV?
Research Methods
Literature Search
A literature search was performed on December 3, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), Wiley Cochrane, and the Centre for Reviews and Dissemination/International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2004 until December 3, 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search.
Since there were numerous studies that examined the effectiveness of NPPV for the treatment of ARF due to exacerbations of COPD published before 2004, pre-2004 trials which met the inclusion/exclusion criteria for this evidence-based review were identified by hand-searching reference lists of included studies and systematic reviews.
Inclusion Criteria
English language full-reports;
health technology assessments, systematic reviews, meta-analyses, and randomized controlled trials (RCTs);
studies performed exclusively in patients with a diagnosis of COPD or studies performed with patients with a mix of conditions if results are reported for COPD patients separately;
patient population: (Question 1) patients with acute hypercapnic respiratory failure due to an exacerbation of COPD; (Question 2a) COPD patients being weaned from IMV; (Questions 2b and 2c) COPD patients who have been extubated from IMV.
Exclusion Criteria
< 18 years of age
animal studies
duplicate publications
grey literature
studies examining noninvasive negative pressure ventilation
studies comparing modes of ventilation
studies comparing patient-ventilation interfaces
studies examining outcomes not listed below, such as physiologic effects including heart rate, arterial blood gases, and blood pressure
Outcomes of Interest
mortality
intubation rates
length of stay (intensive care unit [ICU] and hospital)
health-related quality of life
breathlessness
duration of mechanical ventilation
weaning failure
complications
NPPV tolerance and compliance
Statistical Methods
When possible, results were pooled using Review Manager 5 Version 5.1, otherwise, the results were summarized descriptively. Dichotomous data were pooled into relative risks using random effects models and continuous data were pooled using weighted mean differences with a random effects model. Analyses using data from RCTs were done using intention-to-treat protocols; P values < 0.05 were considered significant. A priori subgroup analyses were planned for severity of respiratory failure, location of treatment (ICU or hospital ward), and mode of ventilation with additional subgroups as needed based on the literature. Post hoc sample size calculations were performed using STATA 10.1.
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
NPPV for the Treatment of ARF due to Acute Exacerbations of COPD
NPPV Plus Usual Medical Care Versus Usual Medical Care Alone for First Line Treatment
A total of 1,000 participants were included in 11 RCTs1; the sample size ranged from 23 to 342. The mean age of the participants ranged from approximately 60 to 72 years of age. Based on either the Global Initiative for Chronic Obstructive Lung Disease (GOLD) COPD stage criteria or the mean percent predicted forced expiratory volume in 1 second (FEV1), 4 of the studies included people with severe COPD, and there was inadequate information to classify the remaining 7 studies by COPD severity. The severity of the respiratory failure was classified into 4 categories using the study population mean pH level as follows: mild (pH ≥ 7.35), moderate (7.30 ≤ pH < 7.35), severe (7.25 ≤ pH < 7.30), and very severe (pH < 7.25). Based on these categories, 3 studies included patients with a mild respiratory failure, 3 with moderate respiratory failure, 4 with severe respiratory failure, and 1 with very severe respiratory failure.
The studies were conducted either in the ICU (3 of 11 studies) or general or respiratory wards (8 of 11 studies) in hospitals, with patients in the NPPV group receiving bilevel positive airway pressure (BiPAP) ventilatory support, except in 2 studies, which used pressure support ventilation and volume cycled ventilation, respectively. Patients received ventilation through nasal, facial, or oronasal masks. All studies specified a protocol or schedule for NPPV delivery, but this varied substantially across the studies. For example, some studies restricted the amount of ventilation per day (e.g., 6 hours per day) and the number of days it was offered (e.g., maximum of 3 days); whereas, other studies provided patients with ventilation for as long as they could tolerate it and recommended it for much longer periods of time (e.g., 7 to 10 days). These differences are an important source of clinical heterogeneity between the studies. In addition to NPPV, all patients in the NPPV group also received UMC. Usual medical care varied between the studies, but common medications included supplemental oxygen, bronchodilators, corticosteroids, antibiotics, diuretics, and respiratory stimulators.
The individual quality of the studies ranged. Common methodological issues included lack of blinding and allocation concealment, and small sample sizes.
Need for Endotracheal Intubation
Eleven studies reported the need for endotracheal intubation as an outcome. The pooled results showed a significant reduction in the need for endotracheal intubation in the NPPV plus UMC group compared with the UMC alone group (relative risk [RR], 0.38; 95% confidence interval [CI], 0.28−0.50). When subgrouped by severity of respiratory failure, the results remained significant for the mild, severe, and very severe respiratory failure groups.
GRADE: moderate
Inhospital Mortality
Nine studies reported inhospital mortality as an outcome. The pooled results showed a significant reduction in inhospital mortality in the NPPV plus UMC group compared with the UMC group (RR, 0.53; 95% CI, 0.35−0.81). When subgrouped by severity of respiratory failure, the results remained significant for the moderate and severe respiratory failure groups.
GRADE: moderate
Hospital Length of Stay
Eleven studies reported hospital length of stay (LOS) as an outcome. The pooled results showed a significant decrease in the mean length of stay for the NPPV plus UMC group compared with the UMC alone group (weighted mean difference [WMD], −2.68 days; 95% CI, −4.41 to −0.94 days). When subgrouped by severity of respiratory failure, the results remained significant for the mild, severe, and very severe respiratory failure groups.
GRADE: moderate
Complications
Five studies reported complications. Common complications in the NPPV plus UMC group included pneumonia, gastrointestinal disorders or bleeds, skin abrasions, eye irritation, gastric insufflation, and sepsis. Similar complications were observed in the UMC group including pneumonia, sepsis, gastrointestinal disorders or bleeds, pneumothorax, and complicated endotracheal intubations. Many of the more serious complications in both groups occurred in those patients who required endotracheal intubation. Three of the studies compared complications in the NPPV plus UMC and UMC groups. While the data could not be pooled, overall, the NPPV plus UMC group experienced fewer complications than the UMC group.
GRADE: low
Tolerance/Compliance
Eight studies reported patient tolerance or compliance with NPPV as an outcome. NPPV intolerance ranged from 5% to 29%. NPPV tolerance was generally higher for patients with more severe respiratory failure. Compliance with the NPPV protocol was reported by 2 studies, which showed compliance decreases over time, even over short periods such as 3 days.
NPPV Versus IMV for the Treatment of Patients Who Failed Usual Medical Care
A total of 205 participants were included in 2 studies; the sample sizes of these studies were 49 and 156. The mean age of the patients was 71 to 73 years of age in 1 study, and the median age was 54 to 58 years of age in the second study. Based on either the GOLD COPD stage criteria or the mean percent predicted FEV1, patients in 1 study had very severe COPD. The COPD severity could not be classified in the second study. Both studies had study populations with a mean pH less than 7.23, which was classified as very severe respiratory failure in this analysis. One study enrolled patients with ARF due to acute exacerbations of COPD who had failed medical therapy. The patient population was not clearly defined in the second study, and it was not clear whether they had to have failed medical therapy before entry into the study.
Both studies were conducted in the ICU. Patients in the NPPV group received BiPAP ventilatory support through nasal or full facial masks. Patients in the IMV group received pressure support ventilation.
Common methodological issues included small sample size, lack of blinding, and unclear methods of randomization and allocation concealment. Due to the uncertainty about whether both studies included the same patient population and substantial differences in the direction and significance of the results, the results of the studies were not pooled.
Mortality
Both studies reported ICU mortality. Neither study showed a significant difference in ICU mortality between the NPPV and IMV groups, but 1 study showed a higher mortality rate in the NPPV group (21.7% vs. 11.5%) while the other study showed a lower mortality rate in the NPPV group (5.1% vs. 6.4%). One study reported 1-year mortality and showed a nonsignificant reduction in mortality in the NPPV group compared with the IMV group (26.1% vs. 46.1%).
GRADE: low to very low
Intensive Care Unit Length of Stay
Both studies reported LOS in the ICU. The results were inconsistent. One study showed a statistically significant shorter LOS in the NPPV group compared with the IMV group (5 ± 1.35 days vs. 9.29 ± 3 days; P < 0.001); whereas, the other study showed a nonsignificantly longer LOS in the NPPV group compared with the IMV group (22 ± 19 days vs. 21 ± 20 days; P = 0.86).
GRADE: very low
Duration of Mechanical Ventilation
Both studies reported the duration of mechanical ventilation (including both invasive and noninvasive ventilation). The results were inconsistent. One study showed a statistically significant shorter duration of mechanical ventilation in the NPPV group compared with the IMV group (3.92 ± 1.08 days vs. 7.17 ± 2.22 days; P < 0.001); whereas, the other study showed a nonsignificantly longer duration of mechanical ventilation in the NPPV group compared with the IMV group (16 ± 19 days vs. 15 ± 21 days; P = 0.86). GRADE: very low
Complications
Both studies reported ventilator-associated pneumonia and tracheotomies. Both showed a reduction in ventilator-associated pneumonia in the NPPV group compared with the IMV group, but the results were only significant in 1 study (13% vs. 34.6%, P = 0.07; and 6.4% vs. 37.2%, P < 0.001, respectively). Similarly, both studies showed a reduction in tracheotomies in the NPPV group compared with the IMV group, but the results were only significant in 1 study (13% vs. 23.1%, P = 0.29; and 6.4% vs. 34.6%; P < 0.001).
GRADE: very low
Other Outcomes
One of the studies followed patients for 12 months. At the end of follow-up, patients in the NPPV group had a significantly lower rate of needing de novo oxygen supplementation at home. In addition, the IMV group experienced significant increases in functional limitations due to COPD, while no increase was seen in the NPPV group. Finally, no significant differences were observed for hospital readmissions, ICU readmissions, and patients with an open tracheotomy, between the NPPV and IMV groups.
NPPV for Weaning COPD Patients From IMV
A total of 80 participants were included in the 2 RCTs; the sample sizes of the studies were 30 and 50 patients. The mean age of the participants ranged from 58 to 69 years of age. Based on either the GOLD COPD stage criteria or the mean percent predicted FEV1, both studies included patients with very severe COPD. Both studies also included patients with very severe respiratory failure (mean pH of the study populations was less than 7.23). Chronic obstructive pulmonary disease patients receiving IMV were enrolled in the study if they failed a T-piece weaning trial (spontaneous breathing test), so they could not be directly extubated from IMV.
Both studies were conducted in the ICU. Patients in the NPPV group received weaning using either BiPAP or pressure support ventilation NPPV through a face mask, and patients in the IMV weaning group received pressure support ventilation. In both cases, weaning was achieved by tapering the ventilation level.
The individual quality of the studies ranged. Common methodological problems included unclear randomization methods and allocation concealment, lack of blinding, and small sample size.
Mortality
Both studies reported mortality as an outcome. The pooled results showed a significant reduction in ICU mortality in the NPPV group compared with the IMV group (RR, 0.47; 95% CI, 0.23−0.97; P = 0.04).
GRADE: moderate
Intensive Care Unit Length of Stay
Both studies reported ICU LOS as an outcome. The pooled results showed a nonsignificant reduction in ICU LOS in the NPPV group compared with the IMV group (WMD, −5.21 days; 95% CI, −11.60 to 1.18 days).
GRADE: low
Duration of Mechanical Ventilation
Both studies reported duration of mechanical ventilation (including both invasive and noninvasive ventilation) as an outcome. The pooled results showed a nonsignificant reduction in duration of mechanical ventilation (WMD, −3.55 days; 95% CI, −8.55 to 1.44 days).
GRADE: low
Nosocomial Pneumonia
Both studies reported nosocominal pneumonia as an outcome. The pooled results showed a significant reduction in nosocomial pneumonia in the NPPV group compared with the IMV group (RR, 0.14; 95% CI, 0.03−0.71; P = 0.02).
GRADE: moderate
Weaning Failure
One study reported a significant reduction in weaning failure in the NPPV group compared with the IMV group, but the results were not reported in the publication. In this study, 1 of 25 patients in the NPPV group and 2 of 25 patients in the IMV group could not be weaned after 60 days in the ICU.
NPPV After Extubation of COPD Patients From IMV
The literature was reviewed to identify studies examining the effectiveness of NPPV compared with UMC in preventing recurrence of ARF after extubation from IMV or treating acute ARF which has recurred after extubation from IMV. No studies that included only COPD patients or reported results for COPD patients separately were identified for the prevention of ARF postextubation.
One study was identified for the treatment of ARF in COPD patients that recurred within 48 hours of extubation from IMV. This study included 221 patients, of whom 23 had COPD. A post hoc subgroup analysis was conducted examining the rate of reintubation in the COPD patients only. A nonsignificant reduction in the rate of reintubation was observed in the NPPV group compared with the UMC group (7 of 14 patients vs. 6 of 9 patients, P = 0.67). GRADE: low
Conclusions
NPPV Plus UMC Versus UMC Alone for First Line Treatment of ARF due to Acute Exacerbations of COPD
Moderate quality of evidence showed that compared with UMC, NPPV plus UMC significantly reduced the need for endotracheal intubation, inhospital mortality, and the mean length of hospital stay.
Low quality of evidence showed a lower rate of complications in the NPPV plus UMC group compared with the UMC group.
NPPV Versus IMV for the Treatment of ARF in Patients Who Have Failed UMC
Due to inconsistent and low to very low quality of evidence, there was insufficient evidence to draw conclusions on the comparison of NPPV versus IMV for patients who failed UMC.
NPPV for Weaning COPD Patients From IMV
Moderate quality of evidence showed that weaning COPD patients from IMV using NPPV results in significant reductions in mortality, nosocomial pneumonia, and weaning failure compared with weaning with IMV.
Low quality of evidence showed a nonsignificant reduction in the mean LOS and mean duration of mechanical ventilation in the NPPV group compared with the IMV group.
NPPV for the Treatment of ARF in COPD Patients After Extubation From IMV
Low quality of evidence showed a nonsignificant reduction in the rate of reintubation in the NPPV group compared with the UMC group; however, there was inadequate evidence to draw conclusions on the effectiveness of NPPV for the treatment of ARF in COPD patients after extubation from IMV
PMCID: PMC3384377  PMID: 23074436
16.  Pulmonary artery smooth muscle cell senescence is a pathogenic mechanism for pulmonary hypertension in chronic lung disease 
Circulation Research  2011;109(5):543-553.
Rationale
Senescence of pulmonary artery-smooth muscle cells (PA-SMCs) caused by telomere shortening or oxidative stress may contribute to pulmonary hypertension (PH) associated with chronic lung diseases.
Objective
To investigate whether cell senescence contributes to pulmonary vessel remodeling and PH in chronic obstructive pulmonary disease (COPD).
Methods and results
In 124 patients with COPD, investigated by right heart catheterization, we found a negative correlation between leukocyte telomere length and PH severity. In-depth investigations of lung vessels and derived cultured PA-SMCs showed greater severity of remodeling and increases in senescent p16- and p21-positive PA-SMCs and proliferating Ki67-stained cells in 14 patients with COPD compared to 13 age- and sex-matched control smokers. Cultured PA-SMCs from COPD patients displayed accelerated senescence, with fewer cell-population doublings, an increased percentage of beta-galactosidase-positive cells, shorter telomeres, and higher p16 protein levels at an early cell passage, compared to PA-SMCs from controls. Both in situ and in vitro PA-SMC senescence criteria correlated closely with the degree of pulmonary vessel wall hypertrophy. Because senescent PA-SMCs stained for p16 and p21 were virtually confined to the media near the Ki67-positive cells, which predominated in the neointima and hypertrophied media, we evaluated whether senescent cells affected normal PA-SMC functions. We found that senescent PA-SMCs stimulated the growth and migration of normal target PA-SMCs through the production and release of paracrine soluble and insoluble factors.
Conclusion
PA-SMC senescence is an important contributor to the process of pulmonary vascular remodeling that underlies PH in chronic lung disease.
doi:10.1161/CIRCRESAHA.111.241299
PMCID: PMC3375237  PMID: 21719760
Aged; Cell Aging; physiology; Cells, Cultured; Female; Humans; Male; Middle Aged; Muscle, Smooth, Vascular; pathology; physiopathology; Myocytes, Smooth Muscle; pathology; physiology; Pulmonary Artery; pathology; physiopathology; Pulmonary Disease, Chronic Obstructive; etiology; pathology; physiopathology; pulmonary hypertension; senescence; smooth muscle cells; remodeling
17.  Effect of Serotonin Reuptake Inhibitors on Pulmonary Hemodynamics in Humans 
Background
Serotonin promotes pulmonary arterial vasoconstriction and pulmonary arterial smooth muscle cell proliferation, thereby having the potential to increase pulmonary arterial blood pressure. Although serotonin reuptake inhibitors (SRIs) might inhibit further deterioration in patients with manifest pulmonary arterial hypertension, they may induce pulmonary hypertension in healthy newborns after fetal exposure. As it is unclear whether treatment with SRIs affects pulmonary hemodynamics in adults without pulmonary hypertension, the aim of the present study was to investigate the effect of SRIs on pulmonary hemodynamics in such subjects.
Methods
Sixteen patients with stable angina pectoris scheduled for first time coronary artery bypass grafting were included in the study. Of these 8 were currently treated with an SRI (the SRI group) and 8 were not (the control group). Pulmonary arterial pressures were measured before induction of anesthesia by means of a pulmonary artery catheter. Serotonin transporter and 5-HT2A receptor gene polymorphisms and platelet 5-HT2A receptor expression were studied to elucidate their possible role as modifying factors.
Results
No patients in any of the groups had pulmonary arterial hypertension. Mean pulmonary artery pressure was 15.0 mmHg in the SRI group and 14.5 mmHg in the control group (P = 0.50; 95% confidence interval for the difference, -2.9 to +3.9 mmHg). Neither were there any significant differences between the groups for any of the other hemodynamic variables studied. The various gene polymorphisms and the extent of platelet 5-HT2A receptor expression did not influence the hemodynamic variables.
Conclusions
SRI treatment did not significantly influence pulmonary hemodynamics in patients without pulmonary hypertension.
Keywords
Serotonin; Selective serotonin reuptake inhibitors; Pulmonary hemodynamics; Pulmonary hypertension
doi:10.4021/jocmr654w
PMCID: PMC3279484  PMID: 22383910
18.  Pulmonary arterial hypertension 
Pulmonary arterial hypertension (PAH) is a chronic and progressive disease leading to right heart failure and ultimately death if untreated. The first classification of PH was proposed in 1973. In 2008, the fourth World Symposium on PH held in Dana Point (California, USA) revised previous classifications. Currently, PH is devided into five subgroups. Group 1 includes patients suffering from idiopathic or familial PAH with or without germline mutations. Patients with a diagnosis of PAH should systematically been screened regarding to underlying mutations of BMPR2 gene (bone morphogenetic protein receptor type 2) or more rarely of ACVRL1 (activine receptor-like kinase type 1), ENG (endogline) or Smad8 genes. Pulmonary veno occusive disease and pulmonary capillary hemagiomatosis are individualized and designated as clinical group 1'. Group 2 'Pulmonary hypertension due to left heart diseases' is divided into three sub-groups: systolic dysfonction, diastolic dysfonction and valvular dysfonction. Group 3 'Pulmonary hypertension due to respiratory diseases' includes a heterogenous subgroup of respiratory diseases like PH due to pulmonary fibrosis, COPD, lung emphysema or interstitial lung disease for exemple. Group 4 includes chronic thromboembolic pulmonary hypertension without any distinction of proximal or distal forms. Group 5 regroup PH patients with unclear multifactorial mechanisms. Invasive hemodynamic assessment with right heart catheterization is requested to confirm the definite diagnosis of PH showing a resting mean pulmonary artery pressure (mPAP) of ≥ 25 mmHg and a normal pulmonary capillary wedge pressure (PCWP) of ≤ 15 mmHg. The assessment of PCWP may allow the distinction between pre-capillary and post-capillary PH (PCWP > 15 mmHg). Echocardiography is an important tool in the management of patients with underlying suspicion of PH. The European Society of Cardiology and the European Respiratory Society (ESC-ERS) guidelines specify its role, essentially in the screening proposing criteria for estimating the presence of PH mainly based on tricuspid regurgitation peak velocity and systolic artery pressure (sPAP). The therapy of PAH consists of non-specific drugs including oral anticoagulation and diuretics as well as PAH specific therapy. Diuretics are one of the most important treatment in the setting of PH because right heart failure leads to fluid retention, hepatic congestion, ascites and peripheral edema. Current recommendations propose oral anticoagulation aiming for targeting an International Normalized Ratio (INR) between 1.5-2.5. Target INR for patients displaying chronic thromboembolic PH is between 2–3. Better understanding in pathophysiological mechanisms of PH over the past quarter of a century has led to the development of medical therapeutics, even though no cure for PAH exists. Several specific therapeutic agents were developed for the medical management of PAH including prostanoids (epoprostenol, trepoprostenil, iloprost), endothelin receptor antagonists (bosentan, ambrisentan) and phosphodiesterase type 5 inhibitors (sildenafil, tadalafil). This review discusses the current state of art regarding to epidemiologic aspects of PH, diagnostic approaches and the current classification of PH. In addition, currently available specific PAH therapy is discussed as well as future treatments.
doi:10.1186/1750-1172-8-97
PMCID: PMC3750932  PMID: 23829793
19.  CAVEOLINS AND LUNG FUNCTION 
The primary function of the mammalian lung is to facilitate diffusion of oxygen to venous blood and to ventilate carbon dioxide produced by catabolic reactions within cells. However, it is also responsible for a variety of other important functions, including host defense and production of vasoactive agents to regulate not only systemic blood pressure, but also water, electrolyte and acid-base balance. Caveolin-1 is highly expressed in the majority of cell types in the lung, including epithelial, endothelial, smooth muscle, connective tissue cells, and alveolar macrophages. Deletion of caveolin-1 in these cells results in major functional aberrations, suggesting that caveolin-1 may be crucial to lung homeostasis and development. Furthermore, generation of mutant mice that under-express caveolin-1 results in severe functional distortion with phenotypes covering practically the entire spectrum of known lung diseases, including pulmonary hypertension, fibrosis, increased endothelial permeability, and immune defects. In this Chapter, we outline the current state of knowledge regarding caveolin-1-dependent regulation of pulmonary cell functions and discuss recent research findings on the role of caveolin-1 in various pulmonary disease states, including obstructive and fibrotic pulmonary vascular and inflammatory diseases.
doi:10.1007/978-1-4614-1222-9_11
PMCID: PMC3449096  PMID: 22411320
20.  Study design and rationale for investigating phosphodiesterase type 5 inhibition for the treatment of pulmonary hypertension due to chronic obstructive lung disease: the TADA-PHiLD (TADAlafil for Pulmonary Hypertension associated with chronic obstructive Lung Disease) trial 
Pulmonary Circulation  2013;3(4):889-897.
In patients with chronic obstructive pulmonary disease (COPD), moderate or severe pulmonary hypertension (COPD-PH) is associated with increased rates of morbidity and mortality. Despite this, approaches to treatment and the efficacy of phosphodiesterase type 5 inhibition (PDE-5i) in COPD-PH are unresolved. We present the clinical rationale and study design to assess the effect of oral tadalafil on exercise capacity, cardiopulmonary hemodynamics, and clinical outcome measures in COPD-PH patients. Male and female patients 40–85 years old with GOLD stage 2 COPD or higher and pulmonary hypertension diagnosed on the basis of invasive cardiac hemodynamic assessment (mean pulmonary artery pressure [mPAP] >30 mmHg, pulmonary vascular resistance [PVR] >2.5 Wood units, and pulmonary capillary wedge pressure ≤18 mmHg at rest) will be randomized at a 1∶1 ratio to receive placebo or oral PDE-5i with tadalafil (40 mg daily for 12 months). The primary end point is change from baseline in 6-minute walk distance at 12 months. The secondary end points are change from baseline in PVR and mPAP at 6 months and change from baseline in peak volume of oxygen consumption () during exercise at 12 months. Changes in systemic blood pressure and/or oxyhemoglobin saturation (Sao2) at rest and during exercise will function as safety outcome measures. TADA-PHiLD (TADAlafil for Pulmonary Hypertension assocIated with chronic obstructive Lung Disease) is the first sufficiently powered randomized clinical trial testing the effect of PDE-5i on key clinical and drug safety outcome measures in patients with at least moderate PH due to COPD.
doi:10.1086/674759
PMCID: PMC4070834  PMID: 25006405
clinical trial; pulmonary hypertension; tadalafil; phosphodiesterase inhibitor
21.  Increased oxidative stress and severe arterial remodeling induced by permanent high-flow challenge in experimental pulmonary hypertension 
Respiratory Research  2011;12(1):119.
Background
Involvement of inflammation in pulmonary hypertension (PH) has previously been demonstrated and recently, immune-modulating dendritic cells (DCs) infiltrating arterial lesions in patients suffering from idiopathic pulmonary arterial hypertension (IPAH) and in experimental monocrotaline-induced PH have been reported. Occurrence of perivascular inflammatory cells could be linked to local increase of oxidative stress (OS), as it has been shown for systemic atherosclerosis. The impact of OS on vascular remodeling in PH is still to be determined. We hypothesized, that augmented blood-flow could increase OS and might thereby contribute to DC/inflammatory cell-recruitment and smooth-muscle-cell-proliferation.
Methods
We applied a monocrotaline-induced PH-model and combined it with permanent flow-challenge. Thirty Sprague-Dawley rats were assigned to following groups: control, monocrotaline-exposure (MCT), monocrotaline-exposure/pneumonectomy (MCT/PE).
Results
Hemodynamic exploration demonstrated most severe effects in MCT/PE, corresponding in histology to exuberant medial and adventitial remodeling of pulmonary muscular arteries, and intimal remodeling of smaller arterioles; lung-tissue PCR evidenced increased expression of DCs-specific fascin, CD68, proinflammatory cytokines (IL-6, RANTES, fractalkine) in MCT/PE and to a lesser extent in MCT. Major OS enzyme NOX-4 was maximal in MCT/PE. Antioxidative stress enzymes Mn-SOD and glutathion-peroxidase-1 were significantly elevated, while HO-1 showed maximal expression in MCT with significant decrease in MCT/PE. Catalase was decreased in MCT and MCT/PE. Expression of NOX-4, but also of MN-SOD in MCT/PE was mainly attributed to a highly increased number of interstitial and perivascular CXCR4/SDF1 pathway-recruited mast-cells. Stress markers malonedialdehyde and nitrotyrosine were produced in endothelial cells, medial smooth muscle and perivascular leucocytes of hypertensive vasculature. Immunolabeling for OX62, CD68 and actin revealed adventitial and medial DC- and monocyte-infiltration; in MCT/PE, medial smooth muscle cells were admixed with CD68+/vimentin+ cells.
Conclusion
Our experimental findings support a new concept of immunologic responses to increased OS in MCT/PE-induced PAH, possibly linking recruitment of dendritic cells and OS-producing mast-cells to characteristic vasculopathy.
doi:10.1186/1465-9921-12-119
PMCID: PMC3189121  PMID: 21906276
22.  Exhaled and arterial levels of endothelin-1 are increased and correlate with pulmonary systolic pressure in COPD with pulmonary hypertension 
Background
Endothelin-1 (ET-1) and Nitric Oxide (NO) are crucial mediators for establishing pulmonary artery hypertension (PAH). We tested the hypothesis that their imbalance might also occur in COPD patients with PAH.
Methods
The aims of the study were to measure exhaled breath condensate (EBC) and circulating levels of ET-1, as well as exhaled NO (FENO) levels by, respectively, a specific enzyme immunoassay kit, and by chemiluminescence analysis in 3 groups of subjects: COPD with PAH (12), COPD only (36), and healthy individuals (15). In order to evaluate pulmonary-artery systolic pressure (PaPs), all COPD patients underwent Echo-Doppler assessment.
Results
Significantly increased exhaled and circulating levels of ET-1 were found in COPD with PAH compared to both COPD (p < 0.0001) only, and healthy controls (p < 0.0001). In COPD with PAH, linear regression analysis showed good correlation between ET-1 in EBC and PaPs (r = 0.621; p = 0.031), and between arterial levels of ET-1 and PaPs (r = 0.648; p = 0.022), while arterial levels of ET-1 inversely correlated with FEV1%, (r = -0.59, p = 0.043), and PaPs negatively correlated to PaO2 (r = -0.618; p = 0.032). Significantly reduced levels of FENO were found in COPD associated with PAH, compared to COPD only (22.92 ± 11.38 vs.35.07 ± 17.53 ppb; p = 0.03). Thus, we observed an imbalanced output in the breath between ET-1 and NO, as expression of pulmonary endothelium and epithelium impairment, in COPD with PAH compared to COPD only. Whether this imbalance is an early cause or result of PAH due to COPD is still unknown and deserves further investigations.
doi:10.1186/1471-2466-8-20
PMCID: PMC2564898  PMID: 18822124
23.  Beta-estradiol attenuates hypoxic pulmonary hypertension by stabilizing the expression of p27kip1 in rats 
Respiratory Research  2010;11(1):182.
Background
Pulmonary vascular structure remodeling (PVSR) is a hallmark of pulmonary hypertension. P27kip1, one of critical cyclin-dependent kinase inhibitors, has been shown to mediate anti-proliferation effects on various vascular cells. Beta-estradiol (β-E2) has numerous biological protective effects including attenuation of hypoxic pulmonary hypertension (HPH). In the present study, we employed β-E2 to investigate the roles of p27kip1 and its closely-related kinase (Skp-2) in the progression of PVSR and HPH.
Methods
Sprague-Dawley rats treated with or without β-E2 were challenged by intermittent chronic hypoxia exposure for 4 weeks to establish hypoxic pulmonary hypertension models, which resemble moderate severity of hypoxia-induced PH in humans. Subsequently, hemodynamic and pulmonary pathomorphology data were gathered. Additionally, pulmonary artery smooth muscle cells (PASMCs) were cultured to determine the anti-proliferation effect of β-E2 under hypoxia exposure. Western blotting or reverse transcriptional polymerase chain reaction (RT-PCR) were adopted to test p27kip1, Skp-2 and Akt-P changes in rat lung tissue and cultured PASMCs.
Results
Chronic hypoxia significantly increased right ventricular systolic pressures (RVSP), weight of right ventricle/left ventricle plus septum (RV/LV+S) ratio, medial width of pulmonary arterioles, accompanied with decreased expression of p27kip1 in rats. Whereas, β-E2 treatment repressed the elevation of RVSP, RV/LV+S, attenuated the PVSR of pulmonary arterioles induced by chronic hypoxia, and stabilized the expression of p27kip1. Study also showed that β-E2 application suppressed the proliferation of PASMCs and elevated the expression of p27kip1 under hypoxia exposure. In addition, experiments both in vivo and in vitro consistently indicated an escalation of Skp-2 and phosphorylated Akt under hypoxia condition. Besides, all these changes were alleviated in the presence of β-E2.
Conclusions
Our results suggest that β-E2 can effectively attenuate PVSR and HPH. The underlying mechanism may partially be through the increased p27kip1 by inhibiting Skp-2 through Akt signal pathway. Therefore, targeting up-regulation of p27kip1 or down-regulation of Skp-2 might provide new strategies for treatment of HPH.
doi:10.1186/1465-9921-11-182
PMCID: PMC3022723  PMID: 21182801
24.  Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients with Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this analysis was to determine the effectiveness of the influenza vaccination and the pneumococcal vaccination in patients with chronic obstructive pulmonary disease (COPD) in reducing the incidence of influenza-related illness or pneumococcal pneumonia.
Clinical Need: Condition and Target Population
Influenza Disease
Influenza is a global threat. It is believed that the risk of a pandemic of influenza still exists. Three pandemics occurred in the 20th century which resulted in millions of deaths worldwide. The fourth pandemic of H1N1 influenza occurred in 2009 and affected countries in all continents.
Rates of serious illness due to influenza viruses are high among older people and patients with chronic conditions such as COPD. The influenza viruses spread from person to person through sneezing and coughing. Infected persons can transfer the virus even a day before their symptoms start. The incubation period is 1 to 4 days with a mean of 2 days. Symptoms of influenza infection include fever, shivering, dry cough, headache, runny or stuffy nose, muscle ache, and sore throat. Other symptoms such as nausea, vomiting, and diarrhea can occur.
Complications of influenza infection include viral pneumonia, secondary bacterial pneumonia, and other secondary bacterial infections such as bronchitis, sinusitis, and otitis media. In viral pneumonia, patients develop acute fever and dyspnea, and may further show signs and symptoms of hypoxia. The organisms involved in bacterial pneumonia are commonly identified as Staphylococcus aureus and Hemophilus influenza. The incidence of secondary bacterial pneumonia is most common in the elderly and those with underlying conditions such as congestive heart disease and chronic bronchitis.
Healthy people usually recover within one week but in very young or very old people and those with underlying medical conditions such as COPD, heart disease, diabetes, and cancer, influenza is associated with higher risks and may lead to hospitalization and in some cases death. The cause of hospitalization or death in many cases is viral pneumonia or secondary bacterial pneumonia. Influenza infection can lead to the exacerbation of COPD or an underlying heart disease.
Streptococcal Pneumonia
Streptococcus pneumoniae, also known as pneumococcus, is an encapsulated Gram-positive bacterium that often colonizes in the nasopharynx of healthy children and adults. Pneumococcus can be transmitted from person to person during close contact. The bacteria can cause illnesses such as otitis media and sinusitis, and may become more aggressive and affect other areas of the body such as the lungs, brain, joints, and blood stream. More severe infections caused by pneumococcus are pneumonia, bacterial sepsis, meningitis, peritonitis, arthritis, osteomyelitis, and in rare cases, endocarditis and pericarditis.
People with impaired immune systems are susceptible to pneumococcal infection. Young children, elderly people, patients with underlying medical conditions including chronic lung or heart disease, human immunodeficiency virus (HIV) infection, sickle cell disease, and people who have undergone a splenectomy are at a higher risk for acquiring pneumococcal pneumonia.
Technology
Influenza and Pneumococcal Vaccines
Trivalent Influenza Vaccines in Canada
In Canada, 5 trivalent influenza vaccines are currently authorized for use by injection. Four of these are formulated for intramuscular use and the fifth product (Intanza®) is formulated for intradermal use.
The 4 vaccines for intramuscular use are:
Fluviral (GlaxoSmithKline), split virus, inactivated vaccine, for use in adults and children ≥ 6 months;
Vaxigrip (Sanofi Pasteur), split virus inactivated vaccine, for use in adults and children ≥ 6 months;
Agriflu (Novartis), surface antigen inactivated vaccine, for use in adults and children ≥ 6 months; and
Influvac (Abbott), surface antigen inactivated vaccine, for use in persons ≥ 18 years of age.
FluMist is a live attenuated virus in the form of an intranasal spray for persons aged 2 to 59 years. Immunization with current available influenza vaccines is not recommended for infants less than 6 months of age.
Pneumococcal Vaccine
Pneumococcal polysaccharide vaccines were developed more than 50 years ago and have progressed from 2-valent vaccines to the current 23-valent vaccines to prevent diseases caused by 23 of the most common serotypes of S pneumoniae. Canada-wide estimates suggest that approximately 90% of cases of pneumococcal bacteremia and meningitis are caused by these 23 serotypes. Health Canada has issued licenses for 2 types of 23-valent vaccines to be injected intramuscularly or subcutaneously:
Pneumovax 23® (Merck & Co Inc. Whitehouse Station, NJ, USA), and
Pneumo 23® (Sanofi Pasteur SA, Lion, France) for persons 2 years of age and older.
Other types of pneumococcal vaccines licensed in Canada are for pediatric use. Pneumococcal polysaccharide vaccine is injected only once. A second dose is applied only in some conditions.
Research Questions
What is the effectiveness of the influenza vaccination and the pneumococcal vaccination compared with no vaccination in COPD patients?
What is the safety of these 2 vaccines in COPD patients?
What is the budget impact and cost-effectiveness of these 2 vaccines in COPD patients?
Research Methods
Literature search
Search Strategy
A literature search was performed on July 5, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2000 to July 5, 2010. The search was updated monthly through the AutoAlert function of the search up to January 31, 2011. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Articles with an unknown eligibility were reviewed with a second clinical epidemiologist and then a group of epidemiologists until consensus was established. Data extraction was carried out by the author.
Inclusion Criteria
studies comparing clinical efficacy of the influenza vaccine or the pneumococcal vaccine with no vaccine or placebo;
randomized controlled trials published between January 1, 2000 and January 31, 2011;
studies including patients with COPD only;
studies investigating the efficacy of types of vaccines approved by Health Canada;
English language studies.
Exclusion Criteria
non-randomized controlled trials;
studies investigating vaccines for other diseases;
studies comparing different variations of vaccines;
studies in which patients received 2 or more types of vaccines;
studies comparing different routes of administering vaccines;
studies not reporting clinical efficacy of the vaccine or reporting immune response only;
studies investigating the efficacy of vaccines not approved by Health Canada.
Outcomes of Interest
Primary Outcomes
Influenza vaccination: Episodes of acute respiratory illness due to the influenza virus.
Pneumococcal vaccination: Time to the first episode of community-acquired pneumonia either due to pneumococcus or of unknown etiology.
Secondary Outcomes
rate of hospitalization and mechanical ventilation
mortality rate
adverse events
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses. The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Efficacy of the Influenza Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The influenza vaccination was associated with significantly fewer episodes of influenza-related acute respiratory illness (ARI). The incidence density of influenza-related ARI was:
All patients: vaccine group: (total of 4 cases) = 6.8 episodes per 100 person-years; placebo group: (total of 17 cases) = 28.1 episodes per 100 person-years, (relative risk [RR], 0.2; 95% confidence interval [CI], 0.06−0.70; P = 0.005).
Patients with severe airflow obstruction (forced expiratory volume in 1 second [FEV1] < 50% predicted): vaccine group: (total of 1 case) = 4.6 episodes per 100 person-years; placebo group: (total of 7 cases) = 31.2 episodes per 100 person-years, (RR, 0.1; 95% CI, 0.003−1.1; P = 0.04).
Patients with moderate airflow obstruction (FEV1 50%−69% predicted): vaccine group: (total of 2 cases) = 13.2 episodes per 100 person-years; placebo group: (total of 4 cases) = 23.8 episodes per 100 person-years, (RR, 0.5; 95% CI, 0.05−3.8; P = 0.5).
Patients with mild airflow obstruction (FEV1 ≥ 70% predicted): vaccine group: (total of 1 case) = 4.5 episodes per 100 person-years; placebo group: (total of 6 cases) = 28.2 episodes per 100 person-years, (RR, 0.2; 95% CI, 0.003−1.3; P = 0.06).
The Kaplan-Meier survival analysis showed a significant difference between the vaccinated group and the placebo group regarding the probability of not acquiring influenza-related ARI (log-rank test P value = 0.003). Overall, the vaccine effectiveness was 76%. For categories of mild, moderate, or severe COPD the vaccine effectiveness was 84%, 45%, and 85% respectively.
With respect to hospitalization, fewer patients in the vaccine group compared with the placebo group were hospitalized due to influenza-related ARIs, although these differences were not statistically significant. The incidence density of influenza-related ARIs that required hospitalization was 3.4 episodes per 100 person-years in the vaccine group and 8.3 episodes per 100 person-years in the placebo group (RR, 0.4; 95% CI, 0.04−2.5; P = 0.3; log-rank test P value = 0.2). Also, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD.
Fewer patients in the vaccine group compared with the placebo group required mechanical ventilation due to influenza-related ARIs. However, these differences were not statistically significant. The incidence density of influenza-related ARIs that required mechanical ventilation was 0 episodes per 100 person-years in the vaccine group and 5 episodes per 100 person-years in the placebo group (RR, 0.0; 95% CI, 0−2.5; P = 0.1; log-rank test P value = 0.4). In addition, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD. The effectiveness of the influenza vaccine in preventing influenza-related ARIs and influenza-related hospitalization was not related to age, sex, severity of COPD, smoking status, or comorbid diseases.
safety
Overall, significantly more patients in the vaccine group than the placebo group experienced local adverse reactions (vaccine: 17 [27%], placebo: 4 [6%]; P = 0.002). Significantly more patients in the vaccine group than the placebo group experienced swelling (vaccine 4, placebo 0; P = 0.04) and itching (vaccine 4, placebo 0; P = 0.04). Systemic reactions included headache, myalgia, fever, and skin rash and there were no significant differences between the 2 groups for these reactions (vaccine: 47 [76%], placebo: 51 [81%], P = 0.5).
With respect to lung function, dyspneic symptoms, and exercise capacity, there were no significant differences between the 2 groups at 1 week and at 4 weeks in: FEV1, maximum inspiratory pressure at residual volume, oxygen saturation level of arterial blood, visual analogue scale for dyspneic symptoms, and the 6 Minute Walking Test for exercise capacity.
There was no significant difference between the 2 groups with regard to the probability of not acquiring total ARIs (influenza-related and/or non-influenza-related); (log-rank test P value = 0.6).
Summary of Efficacy of the Pneumococcal Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The Kaplan-Meier survival analysis showed no significant differences between the group receiving the penumoccocal vaccination and the control group for time to the first episode of community-acquired pneumonia due to pneumococcus or of unknown etiology (log-rank test 1.15; P = 0.28). Overall, vaccine efficacy was 24% (95% CI, −24 to 54; P = 0.33).
With respect to the incidence of pneumococcal pneumonia, the Kaplan-Meier survival analysis showed a significant difference between the 2 groups (vaccine: 0/298; control: 5/298; log-rank test 5.03; P = 0.03).
Hospital admission rates and median length of hospital stays were lower in the vaccine group, but the difference was not statistically significant. The mortality rate was not different between the 2 groups.
Subgroup Analysis
The Kaplan-Meier survival analysis showed significant differences between the vaccine and control groups for pneumonia due to pneumococcus and pneumonia of unknown etiology, and when data were analyzed according to subgroups of patients (age < 65 years, and severe airflow obstruction FEV1 < 40% predicted). The accumulated percentage of patients without pneumonia (due to pneumococcus and of unknown etiology) across time was significantly lower in the vaccine group than in the control group in patients younger than 65 years of age (log-rank test 6.68; P = 0.0097) and patients with a FEV1 less than 40% predicted (log-rank test 3.85; P = 0.0498).
Vaccine effectiveness was 76% (95% CI, 20−93; P = 0.01) for patients who were less than 65 years of age and −14% (95% CI, −107 to 38; P = 0.8) for those who were 65 years of age or older. Vaccine effectiveness for patients with a FEV1 less than 40% predicted and FEV1 greater than or equal to 40% predicted was 48% (95% CI, −7 to 80; P = 0.08) and −11% (95% CI, −132 to 47; P = 0.95), respectively. For patients who were less than 65 years of age (FEV1 < 40% predicted), vaccine effectiveness was 91% (95% CI, 35−99; P = 0.002).
Cox modelling showed that the effectiveness of the vaccine was dependent on the age of the patient. The vaccine was not effective in patients 65 years of age or older (hazard ratio, 1.53; 95% CI, 0.61−a2.17; P = 0.66) but it reduced the risk of acquiring pneumonia by 80% in patients less than 65 years of age (hazard ratio, 0.19; 95% CI, 0.06−0.66; P = 0.01).
safety
No patients reported any local or systemic adverse reactions to the vaccine.
PMCID: PMC3384373  PMID: 23074431
25.  Development of Occlusive Neointimal Lesions in Distal Pulmonary Arteries of Endothelin B Receptor–Deficient Rats: A New Model of Severe Pulmonary Arterial Hypertension 
Circulation  2005;111(22):2988-2996.
Background
Human pulmonary arterial hypertension (PAH) is characterized by proliferation of vascular smooth muscle and, in its more severe form, by the development of occlusive neointimal lesions. However, few animal models of pulmonary neointimal proliferation exist, thereby limiting a complete understanding of the pathobiology of PAH. Recent studies of the endothelin (ET) system demonstrate that deficiency of the ETB receptor predisposes adult rats to acute and chronic hypoxic PAH, yet these animals fail to develop neointimal lesions. Herein, we determined and thereafter showed that exposure of ETB receptor–deficient rats to the endothelial toxin monocrotaline (MCT) leads to the development of neointimal lesions that share hallmarks of human PAH.
Methods and Results
The pulmonary hemodynamic and morphometric effects of 60 mg/kg MCT in control (MCT+/+) and ETB receptor–deficient (MCTsl/sl) rats at 6 weeks of age were assessed. MCTsl/sl rats developed more severe PAH, characterized by elevated pulmonary artery pressure, diminished cardiac output, and right ventricular hypertrophy. In MCTsl/sl rats, morphometric evaluation revealed the presence of neointimal lesions within small distal pulmonary arteries, increased medial wall thickness, and decreased arterial-to-alveolar ratio. In keeping with this, barium angiography revealed diminished distal pulmonary vasculature of MCTsl/sl rat lungs. Cells within neointimal lesions expressed smooth muscle and endothelial cell markers. Moreover, cells within neointimal lesions exhibited increased levels of proliferation and were located in a tissue microenvironment enriched with vascular endothelial growth factor, tenascin-C, and activated matrix metalloproteinase-9, factors already implicated in human PAH. Finally, assessment of steady state mRNA showed that whereas expression of ETB receptors was decreased in MCTsl/sl rat lungs, ETA receptor expression increased.
Conclusions
Deficiency of the ETB receptor markedly accelerates the progression of PAH in rats treated with MCT and enhances the appearance of cellular and molecular markers associated with the pathobiology of PAH. Collectively, these results suggest an overall antiproliferative effect of the ETB receptor in pulmonary vascular homeostasis.
doi:10.1161/CIRCULATIONAHA.104.491456
PMCID: PMC1934986  PMID: 15927975
arteriosclerosis; endothelin; metalloproteinases; nitric oxide; pediatrics

Results 1-25 (1247142)