PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (745692)

Clipboard (0)
None

Related Articles

1.  Osbpl8 Deficiency in Mouse Causes an Elevation of High-Density Lipoproteins and Gender-Specific Alterations of Lipid Metabolism 
PLoS ONE  2013;8(3):e58856.
OSBP-related protein 8 (ORP8) encoded by Osbpl8 is an endoplasmic reticulum sterol sensor implicated in cellular lipid metabolism. We generated an Osbpl8−/− (KO) C57Bl/6 mouse strain. Wild-type and Osbpl8KO animals at the age of 13-weeks were fed for 5 weeks either chow or high-fat diet, and their plasma lipids/lipoproteins and hepatic lipids were analyzed. The chow-fed Osbpl8KO male mice showed a marked elevation of high-density lipoprotein (HDL) cholesterol (+79%) and phospholipids (+35%), while only minor increase of apolipoprotein A-I (apoA-I) was detected. In chow-fed female KO mice a less prominent increase of HDL cholesterol (+27%) was observed, while on western diet the HDL increment was prominent in both genders. The HDL increase was accompanied by an elevated level of HDL-associated apolipoprotein E in male, but not female KO animals. No differences between genotypes were observed in lecithin:cholesterol acyltransferase (LCAT) or hepatic lipase (HL) activity, or in the fractional catabolic rate of fluorescently labeled mouse HDL injected in chow-diet fed animals. The Osbpl8KO mice of both genders displayed reduced phospholipid transfer protein (PLTP) activity, but only on chow diet. These findings are consistent with a model in which Osbpl8 deficiency results in altered biosynthesis of HDL. Consistent with this hypothesis, ORP8 depleted mouse hepatocytes secreted an increased amount of nascent HDL into the culture medium. In addition to the HDL phenotype, distinct gender-specific alterations in lipid metabolism were detected: Female KO animals on chow diet showed reduced lipoprotein lipase (LPL) activity and increased plasma triglycerides, while the male KO mice displayed elevated plasma cholesterol biosynthetic markers cholestenol, desmosterol, and lathosterol. Moreover, modest gender-specific alterations in the hepatic expression of lipid homeostatic genes were observed. In conclusion, we report the first viable OsbplKO mouse model, demonstrating a HDL elevating effect of Osbpl8 knock-out and additional gender- and/or diet-dependent impacts on lipid metabolism.
doi:10.1371/journal.pone.0058856
PMCID: PMC3598917  PMID: 23554939
2.  A nonsynonymous SNP within PCDH15 is associated with lipid traits in familial combined hyperlipidemia 
Human Genetics  2009;127(1):83-89.
Familial combined hyperlipidemia (FCHL) is a common lipid disorder characterized by the presence of multiple lipoprotein phenotypes that increase the risk of premature coronary heart disease. In a previous study, we identified an intragenic microsatellite marker within the protocadherin 15 (PCDH15) gene to be associated with high triglycerides (TGs) in Finnish dyslipidemic families. In this study we analyzed all four known nonsynonymous SNPs within PCDH15 in 1,268 individuals from Finnish and Dutch multigenerational families with FCHL. Association analyses of quantitative traits for SNPs were performed using the QTDT test. The nonsynonymous SNP rs10825269 resulted in a P = 0.0006 for the quantitative TG trait. Additional evidence for association was observed with the same SNP for apolipoprotein B levels (apo-B) (P = 0.0001) and total cholesterol (TC) levels (P = 0.001). None of the other three SNPs tested showed a significant association with any lipid-related trait. We investigated the expression of PCDH15 in different human tissues and observed that PCDH15 is expressed in several tissues including liver and pancreas. In addition, we measured the plasma lipid levels in mice with loss-of-function mutations in Pcdh15 (Pcdh15av-Tg and Pcdh15av-3J) to investigate possible abnormalities in their lipid profile. We observed a significant difference in plasma TG and TC concentrations for the Pcdh15av-3J carriers when compared with the wild type (P = 0.013 and P = 0.044, respectively). Our study suggests that PCDH15 is associated with lipid abnormalities.
doi:10.1007/s00439-009-0749-z
PMCID: PMC2793376  PMID: 19816713
3.  ChIP Display: novel method for identification of genomic targets of transcription factors 
Nucleic Acids Research  2004;32(12):e104.
Novel protein–DNA interactions in mammalian cells are traditionally discovered in the course of promoter studies. The genomic era presents opportunities for the reverse; namely, the discovery of novel target genes for transcription factors of interest. Chromatin immunoprecipitation (ChIP) is typically used to test whether a protein binds to a candidate promoter in living cells. We developed a new method, ChIP Display (CD), which allows genome-wide unbiased identification of target genes occupied by transcription factors of interest. Initial CD experiments pursuing target genes for RUNX2, an osteoblast master transcription factor, have already resulted in the identification of four genes that had never been reported as targets of RUNX2. One of them, Osbpl8, was subjected to mRNA and promoter–reporter analyses, which provided functional proof for its regulation by RUNX2. CD will help to assemble the puzzle of interactions between transcription factors and the genome.
doi:10.1093/nar/gnh097
PMCID: PMC484196  PMID: 15252151
4.  Tumor-specific usage of alternative transcription start sites in colorectal cancer identified by genome-wide exon array analysis 
BMC Genomics  2011;12:505.
Background
Approximately half of all human genes use alternative transcription start sites (TSSs) to control mRNA levels and broaden the transcriptional output in healthy tissues. Aberrant expression patterns promoting carcinogenesis, however, may arise from alternative promoter usage.
Results
By profiling 108 colorectal samples using exon arrays, we identified nine genes (TCF12, OSBPL1A, TRAK1, ANK3, CHEK1, UGP2, LMO7, ACSL5, and SCIN) showing tumor-specific alternative TSS usage in both adenoma and cancer samples relative to normal mucosa. Analysis of independent exon array data sets corroborated these findings. Additionally, we confirmed the observed patterns for selected mRNAs using quantitative real-time reverse-transcription PCR. Interestingly, for some of the genes, the tumor-specific TSS usage was not restricted to colorectal cancer. A comprehensive survey of the nine genes in lung, bladder, liver, prostate, gastric, and brain cancer revealed significantly altered mRNA isoform ratios for CHEK1, OSBPL1A, and TCF12 in a subset of these cancer types.
To identify the mechanism responsible for the shift in alternative TSS usage, we antagonized the Wnt-signaling pathway in DLD1 and Ls174T colorectal cancer cell lines, which remarkably led to a shift in the preferred TSS for both OSBPL1A and TRAK1. This indicated a regulatory role of the Wnt pathway in selecting TSS, possibly also involving TP53 and SOX9, as their transcription binding sites were enriched in the promoters of the tumor preferred isoforms together with their mRNA levels being increased in tumor samples.
Finally, to evaluate the prognostic impact of the altered TSS usage, immunohistochemistry was used to show deregulation of the total protein levels of both TCF12 and OSBPL1A, corresponding to the mRNA levels observed. Furthermore, the level of nuclear TCF12 had a significant correlation to progression free survival in a cohort of 248 stage II colorectal cancer samples.
Conclusions
Alternative TSS usage in colorectal adenoma and cancer samples has been shown for nine genes, and OSBPL1A and TRAK1 were found to be regulated in vitro by Wnt signaling. TCF12 protein expression was upregulated in cancer samples and correlated with progression free survival.
doi:10.1186/1471-2164-12-505
PMCID: PMC3208247  PMID: 21999571
5.  Oxysterol-binding Protein and Vesicle-associated Membrane Protein–associated Protein Are Required for Sterol-dependent Activation of the Ceramide Transport Protein 
Molecular Biology of the Cell  2006;17(6):2604-2616.
Sphingomyelin (SM) and cholesterol are coregulated metabolically and associate physically in membrane microdomains involved in cargo sorting and signaling. One mechanism for regulation of this metabolic interface involves oxysterol binding protein (OSBP) via high-affinity binding to oxysterol regulators of cholesterol homeostasis and activation of SM synthesis at the Golgi apparatus. Here, we show that OSBP regulation of SM synthesis involves the endoplasmic reticulum (ER)-to-Golgi ceramide transport protein (CERT). RNA interference (RNAi) experiments in Chinese hamster ovary (CHO)-K1 cells revealed that OSBP and vesicle-associated membrane protein–associated protein (VAP) were required for stimulation of CERT-dependent ceramide transport and SM synthesis by 25-hydroxycholesterol and cholesterol depletion in response to cyclodextrin. Additional RNAi experiments in human embryonic kidney 293 cells supported OSBP involvement in oxysterol-activated SM synthesis and also revealed a role for OSBP in basal SM synthesis. Activation of ER-to-Golgi ceramide transport in CHO-K1 cells required interaction of OSBP with the ER and Golgi apparatus, OSBP-dependent Golgi translocation of CERT, and enhanced CERT–VAP interaction. Regulation of CERT by OSBP, sterols, and VAP reveals a novel mechanism for integrating sterol regulatory signals with ceramide transport and SM synthesis in the Golgi apparatus.
doi:10.1091/mbc.E06-01-0060
PMCID: PMC1474796  PMID: 16571669
6.  Glucuronic Acid Epimerase Is Associated with Plasma Triglyceride and High Density Lipoprotein Cholesterol Levels in Turks 
Annals of human genetics  2011;75(3):398-417.
Summary
We narrowed chromosome 15q21-23 linkage to plasma high density lipoprotein cholesterol (HDL-C) levels in atherogenic dyslipidemic Turkish families by fine mapping, then focused on glucuronic acid epimerase (GLCE), a heparan sulfate proteoglycan (HSPG) biosynthesis enzyme. HSPGs participate in lipid metabolism along with apolipoprotein (apo) E. Of 31 SNPs in the GLCE locus, nine analyzed by haplotype were associated with plasma HDL-C and triglyceride levels (permuted p = 0.006 and 0.013, respectively) in families. Of five tagging GLCE SNPs in two cohorts of unrelated subjects, three (rs16952868, rs11631403, rs3865014) were associated with triglyceride and HDL-C levels in males (non-permuted p < 0.05). The association was stronger in APOE 2/3 subjects (apoE2 has reduced binding to HSPGs) and reached multiple-testing significance (p < 0.05) in both males and females (n = 2612). Similar results were obtained in the second cohort (n = 1164). Interestingly, at the GLCE locus, bounded by recombination hotspots, Turks had a minor allele frequency of SNPs resembling Chinese more than European ancestry; adjoining regions on chromosome 15 resembled the European pattern. Studies of glce+/–apoe–/– mice fed a chow or high-fat diet supported a role for GLCE in lipid metabolism. Thus, SNPs in GLCE are associated with triglyceride and HDL-C levels in Turks, and mouse studies support a role for glce in lipid metabolism.
doi:10.1111/j.1469-1809.2011.00644.x
PMCID: PMC3538863  PMID: 21488854
7.  Galanin preproprotein is associated with elevated plasma triglycerides 
Objective
There is increasing physiological evidence in rodents connecting the neuropeptide galanin to triglyceride (TG) levels. We hypothesized that variation in the galanin preproprotein (GAL) gene may contribute to hypertriglyceridemia (HTG) in humans.
Methods and Results
We investigated GAL as a TG candidate gene by genotyping four tagSNPs in Dutch, Finnish and Mexican familial combined hyperlipidemia (FCHL) families as well as in Caucasian combined hyperlipidemia cases/controls (n=2,471). The common allele of rs2187331, residing in the promoter region of GAL, was significantly associated with HTG (p-value=0.00038). In an unascertained population sample of 4,463 Finnish males, the rare allele of rs2187331 was associated with higher TGs (p-value=0.0028−0.00016). We also observed an allele specific difference with rs2187331 in reporter gene expression and nuclear factor binding in vitro. Furthermore, we detected differential expression of many key lipid genes in adipose tissue based on rs2187331 genotypes.
Conclusions
The SNP rs2187331 is associated with HTG in FCHL and Caucasian combined hyperlipidemia cases/controls and influences TG levels in the population. Further studies are warranted to elucidate the allelic difference observed between FCHL and the general population. Functional evidence shows that rs2187331 has an allele specific cis-regulatory function and influences the expression of lipid related genes in adipose.
doi:10.1161/ATVBAHA.108.178533
PMCID: PMC2650822  PMID: 18988886
8.  Translocation of oxysterol binding protein to Golgi apparatus triggered by ligand binding 
The Journal of Cell Biology  1992;116(2):307-319.
A cDNA encoding a cytoplasmic oxysterol binding protein was expressed at high levels by transfection in animal cells. This protein binds oxysterols such as 25-hydroxycholesterol that regulate sterol metabolism by transcriptional and posttranscriptional effects. In the transfected cells, some of the oxysterol binding protein (OSBP) was distributed diffusely in the cytoplasm, and some was bound to small vesicles near the nucleus, as revealed by indirect immunofluorescence. Upon addition of 25-hydroxycholesterol, most of the OSBP became concentrated in large perinuclear structures that stained with lentil lectin, a protein that stains the Golgi apparatus. The structures that contained OSBP were disrupted by brefeldin A, confirming their identification as Golgi. A mutant OSBP lacking the COOH-terminal oxysterol binding domain localized to the Golgi spontaneously, suggesting that this domain normally occludes the domain that binds to the Golgi and that sterols relieve this occlusion. The previously noted potential leucine zipper sequence in OSBP was not required for Golgi localization, nor was it essential for homodimer formation. We conclude that OSBP is triggered to bind extrinsically to Golgi membranes when it binds oxysterols and speculate that this translocation may play a role in the transport, metabolism, or regulatory actions of oxysterols.
PMCID: PMC2289278  PMID: 1730758
9.  Application of statistical and functional methodologies for the investigation of genetic determinants of coronary heart disease biomarkers: lipoprotein lipase genotype and plasma triglycerides as an exemplar 
Human Molecular Genetics  2010;19(20):3936-3947.
Genome-wide association studies have proved very successful in identifying novel single-nucleotide polymorphisms (SNPs) associated with disease or traits, but the related, functional SNP is usually unknown. In this paper, we describe a methodology to locate and validate candidate functional SNPs using lipoprotein lipase (LPL), a gene previously associated with triglyceride levels, as an exemplar. Two thousand seven hundred and eighty-six healthy middle-aged men from the NPHSII UK prospective study (with up to six measures of plasma lipid levels) were genotyped for 20 LPL tagging (t)SNPs using Illumina Bead technology. Using model-selection procedures and haplotypes, we identified eight SNPs that consistently maximized the fit of the model to the phenotype. Fifteen SNPs in high linkage disequilibrium with these were identified, and functional assays were carried out on all 23 SNPs. Electrophoretic mobility shift assay (EMSA) was used to identify SNPs that had the potential to alter DNA–protein interactions, reducing the number to eight possible candidate SNPs. These were examined for ability to alter expression using a luciferase reporter assay, and two regulatory SNPs, showing genotype differences, rs327 and rs3289, were identified. Finally, multiplexed-competitor-EMSA (MC-EMSA) and supershift EMSA identified FOXA2 to rs327T, and CREB-binding protein (CBP) and CCAAT displacement protein (CDP) to rs3289C as the factors responsible for transcription binding. We have identified two novel candidate functional SNPs in LPL and presented a procedure aimed to efficiently detect SNPs potentially causal to genetic association. We believe that this methodology could be successfully applied to future re-sequencing data.
doi:10.1093/hmg/ddq308
PMCID: PMC2947402  PMID: 20650961
10.  Genome-Wide Linkage Scan to Identify Loci Associated with Type 2 Diabetes and Blood Lipid Phenotypes in the Sikh Diabetes Study 
PLoS ONE  2011;6(6):e21188.
In this investigation, we have carried out an autosomal genome-wide linkage analysis to map genes associated with type 2 diabetes (T2D) and five quantitative traits of blood lipids including total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, very low-density lipoprotein (VLDL) cholesterol, and triglycerides in a unique family-based cohort from the Sikh Diabetes Study (SDS). A total of 870 individuals (526 male/344 female) from 321 families were successfully genotyped using 398 polymorphic microsatellite markers with an average spacing of 9.26 cM on the autosomes. Results of non-parametric multipoint linkage analysis using Sall statistics (implemented in Merlin) did not reveal any chromosomal region to be significantly associated with T2D in this Sikh cohort. However, linkage analysis for lipid traits using QTL-ALL analysis revealed promising linkage signals with p≤0.005 for total cholesterol, LDL cholesterol, and HDL cholesterol at chromosomes 5p15, 9q21, 10p11, 10q21, and 22q13. The most significant signal (p = 0.0011) occurred at 10q21.2 for HDL cholesterol. We also observed linkage signals for total cholesterol at 22q13.32 (p = 0.0016) and 5p15.33 (p = 0.0031) and for LDL cholesterol at 10p11.23 (p = 0.0045). Interestingly, some of linkage regions identified in this Sikh population coincide with plausible candidate genes reported in recent genome-wide association and meta-analysis studies for lipid traits. Our study provides the first evidence of linkage for loci associated with quantitative lipid traits at four chromosomal regions in this Asian Indian population from Punjab. More detailed examination of these regions with more informative genotyping, sequencing, and functional studies should lead to rapid detection of novel targets of therapeutic importance.
doi:10.1371/journal.pone.0021188
PMCID: PMC3116872  PMID: 21698157
11.  Replication of Association Between Working Memory and Reelin, a Potential Modifier Gene in Schizophrenia 
Biological psychiatry  2009;67(10):983-991.
Background:
The challenges in gene identification for psychiatric disorders have awakened interest toward quantitative traits and endophenotypes that are potentially more closely related to the underlying biology and provide more power in the linkage and association analyses. Previously, we successfully replicated schizophrenia linkage on chromosome 7q21-32 in Finnish families and demonstrated that an intragenic short tandem repeat (STR) allele of the regional Reelin (RELN) gene is associated with multiple cognitive traits representing central cognitive functions regarded as valid endophenotypes for schizophrenia.
Methods:
Here, we used an extended sample of 290 Finnish families with schizophrenia and 375 control subjects in an association analysis between 96 SNPs and three STRs in RELN and diagnostic categories, clinical disorder features, as well as central cognitive functions impaired in schizophrenia.
Results:
We replicated the original association between RELN intragenic STR allele and working memory in individuals (n = 342) not overlapping with the previous study. This risk allele remained central in the whole study sample by being associated with impaired cognitive functioning and more severe positive and negative symptoms of schizophrenia (p = .0005–.00002). Additionally, multiple SNPs indicated association with the severity of positive symptoms of schizophrenia and together showed potential additive effect on the severity of the symptoms (p = .0000001). However, no significant associations with clinical diagnostic categories emerged.
Conclusions:
The strongest effects on cognitive functions were detected among the affected individuals. We thus propose a particular role for RELN as a modifier gene of the pathogenesis of schizophrenia.
doi:10.1016/j.biopsych.2009.09.026
PMCID: PMC3083525  PMID: 19922905
Endophenotype; memory; neuropsychology; psychiatry; RELN; schizophrenia
12.  Characterization of the oxysterol-binding protein gene family in the yellow fever mosquito, Aedes aegypti 
Insect molecular biology  2011;20(4):541-552.
The oxysterol-binding protein (OSBP) and related proteins (ORPs) are sterol-binding proteins that may be involved in cellular sterol transportation, sterol metabolism and signal transduction pathways. Four ORP genes were cloned from Aedes aegypti. Based on amino acid sequence homology to human proteins, they are AeOSBP, AeORP1, AeORP8 and AeORP9. Splicing variants of AeOSBP and AeORP8 were identified. The temporal and spatial transcription patterns of members of the AeOSBP gene family through developmental stages and the gonotrophic cycle were profiled. AeORP1 transcription seemed to be head tissue-specific, whereas AeOSBP and AeORP9 expressions were induced by a blood meal. Furthermore, over-expression of AeORPs facilitated [3H]-cholesterol uptake in Aedes aegypti cultured Aag-2 cells.
doi:10.1111/j.1365-2583.2011.01087.x
PMCID: PMC3139008  PMID: 21699592
Oxysterol-binding protein; cholesterol; gene expression; sterol transport
13.  Genome-wide scan on plasma triglyceride and high density lipoprotein cholesterol levels, accounting for the effects of correlated quantitative phenotypes 
BMC Genetics  2003;4(Suppl 1):S47.
Background
Plasma triglyceride and high density lipoprotein cholesterol levels are inversely correlated and both are genetically related. Two correlated traits may be influenced both by shared and unshared genes. The power to detect unshared trait-specific genes may be increased by incorporating correlated traits as covariates. The power to localize the shared genes may be improved by bivariate analysis. Univariate genome scans were carried out on triglyceride (high density lipoprotein cholesterol) with and without using high density lipoprotein cholesterol (triglyceride) as a covariate, and bivariate linkage analysis on triglyceride and high density lipoprotein cholesterol using the 330 Framingham pedigrees of the Genetic Analysis Workshop 13 data. The results of five genome scans were compared to determine the chromosomal regions which may harbor the genes influencing variation specific to triglycerides, specific to high density lipoprotein cholesterol, or the covariation of both triglyceride and high density lipoprotein cholesterol.
Results
The results of our five genome scans identified some chromosomal regions with possible quantitative trait loci (QTL) that may specifically influence one trait, such as the regions on chromosome 1 (at 1 cM near marker 280we5), on high density lipoprotein cholesterol, or control the covariation of both traits, such as the regions on chromosome 7 (at 169 cM near marker GATA30D09), chromosome 12 (at 3 cM near marker GATA4H03), chromosome 20 (at 49 cM near marker GATA29F06), chromosome 2 (at 146 cM near marker GATA8H05), and chromosome 6 (at 148 cM near marker GATA184A08) on triglyceride and high density lipoprotein cholesterol. The one on chromosome 6 had a LOD score of 3.1 with the bivariate linkage analysis.
Conclusion
There is strong evidence for a QTL on chromosome 6 near marker GATA184A08 appearing to influence the variation of high density lipoprotein cholesterol and triglycerides in the Framingham population.
doi:10.1186/1471-2156-4-S1-S47
PMCID: PMC1866483  PMID: 14975115
14.  Linkage and association analyses identify a candidate region for apoB level on chromosome 4q32.3 in FCHL families 
Human genetics  2010;127(6):705-719.
Familial combined hyperlipidemia (FCHL) is a complex trait leading to cardiovascular disease (CVD) risk. Elevated levels and size of apolipoprotein B (apoB) and low-density lipoprotein (LDL) are associated with FCHL, which is genetically heterogeneous and is likely caused by rare variants. We carried out a linkage-based genome scan of four large FCHL pedigrees for apoB level that is independent of LDL: apoB level that is adjusted for LDL level and size. Follow-up included SNP genotyping in the region with the strongest evidence of linkage. Several regions with the evidence of linkage in individual pedigrees support the rare variant model. Evidence of linkage was strongest on chromosome 4q, with multipoint analysis in one pedigree giving LOD = 3.1 with a parametric model, and a log Bayes Factor = 1.5 from a Bayesian oligogenic approach. Of the 293 SNPs spanning the implicated region on 4q, rs6829588 completely explained the evidence of linkage. This SNP accounted for 39% of the apoB phenotypic variance, with heterozygotes for this SNP having a trait value that was ~30% higher than that of the high-frequency homozygote, thus identifying and considerably refining a strong candidate region. These results illustrate the advantage of using large pedigrees in the search for rare variants: reduced genetic heterogeneity within single pedigrees coupled with the large number of individuals segregating otherwise-rare single variants leads to high power to implicate such variants.
doi:10.1007/s00439-010-0819-2
PMCID: PMC2877194  PMID: 20383777
15.  Oxysterol Binding Protein–related Protein 9 (ORP9) Is a Cholesterol Transfer Protein That Regulates Golgi Structure and Function 
Molecular Biology of the Cell  2009;20(5):1388-1399.
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a large gene family that differentially localize to organellar membranes, reflecting a functional role in sterol signaling and/or transport. OSBP partitions between the endoplasmic reticulum (ER) and Golgi apparatus where it imparts sterol-dependent regulation of ceramide transport and sphingomyelin synthesis. ORP9L also is localized to the ER–Golgi, but its role in secretion and lipid transport is unknown. Here we demonstrate that ORP9L partitioning between the trans-Golgi/trans-Golgi network (TGN), and the ER is mediated by a phosphatidylinositol 4-phosphate (PI-4P)-specific PH domain and VAMP-associated protein (VAP), respectively. In vitro, both OSBP and ORP9L mediated PI-4P–dependent cholesterol transport between liposomes, suggesting their primary in vivo function is sterol transfer between the Golgi and ER. Depletion of ORP9L by RNAi caused Golgi fragmentation, inhibition of vesicular somatitus virus glycoprotein transport from the ER and accumulation of cholesterol in endosomes/lysosomes. Complete cessation of protein transport and cell growth inhibition was achieved by inducible overexpression of ORP9S, a dominant negative variant lacking the PH domain. We conclude that ORP9 maintains the integrity of the early secretory pathway by mediating transport of sterols between the ER and trans-Golgi/TGN.
doi:10.1091/mbc.E08-09-0905
PMCID: PMC2649274  PMID: 19129476
16.  Genome-Wide Linkage Scan for Prostate Cancer Susceptibility in Finland: Evidence for a Novel Locus on 2q37.3 and confirmation of signal on 17q21-q22 
Genome-wide linkage studies have been used to localize rare and highly penetrant prostate cancer (PRCA) susceptibility genes. Linkage studies performed in different ethnic backgrounds and populations have been somewhat disparate, resulting in multiple, often irreproducible signals because of genetic heterogeneity and high sporadic background of the disease. Our first genome-wide linkage study and subsequent fine-mapping study of Finnish hereditary prostate cancer (HPC) families gave evidence of linkage to one region. Here, we conducted subsequent scans with microsatellites and SNPs in a total of 69 Finnish HPC families. GENEHUNTER-PLUS was used for parametric and non-parametric analyses. Our microsatellite genome-wide linkage study provided evidence of linkage to 17q12-q23, with a heterogeneity LOD (HLOD) score of 3.14 in a total of 54 of the 69 families. Genome-wide SNP analysis of 59 of the 69 families gave a highest HLOD score of 3.40 at 2q37.3 under a dominant high penetrance model. Analyzing all 69 families by combining microsatellite and SNP maps also yielded HLOD scores of > 3.3 in two regions (2q37.3 and 17q12-q21.3). These significant linkage peaks on chromosome 2 and 17 confirm previous linkage evidence of a locus on 17q from other populations and provide a basis for continued research into genetic factors involved in PRCA. Fine-mapping analysis of these regions is ongoing and candidate genes at linked loci are currently under analysis.
doi:10.1002/ijc.25906
PMCID: PMC3137914  PMID: 21207418
Prostate cancer; genome-wide linkage; Finland; 17q; 2q
17.  Genome-wide association analysis of metabolic traits in a birth cohort from a founder population 
Nature genetics  2008;41(1):35-46.
Genome-wide association studies (GWAS) of longitudinal birth cohorts enable joint investigation of environmental and genetic influences on complex traits. We report GWAS results for nine quantitative metabolic traits (triglycerides, high-density lipoprotein, low-density lipoprotein, glucose, insulin, C-reactive protein, body mass index, and systolic and diastolic blood pressure) in the Northern Finland Birth Cohort 1966 (NFBC1966), drawn from the most genetically isolated Finnish regions. We replicate most previously reported associations for these traits and identify nine new associations, several of which highlight genes with metabolic functions: high-density lipoprotein with NR1H3 (LXRA), low-density lipoprotein with AR and FADS1-FADS2, glucose with MTNR1B, and insulin with PANK1. Two of these new associations emerged after adjustment of results for body mass index. Gene-environment interaction analyses suggested additional associations, which will require validation in larger samples. The currently identified loci, together with quantified environmental exposures, explain little of the trait variation in NFBC1966. The association observed between low-density lipoprotein and an infrequent variant in AR suggests the potential of such a cohort for identifying associations with both common, low-impact and rarer, high-impact quantitative trait loci.
doi:10.1038/ng.271
PMCID: PMC2687077  PMID: 19060910
18.  A Systems Genetics Approach Implicates USF1, FADS3, and Other Causal Candidate Genes for Familial Combined Hyperlipidemia 
PLoS Genetics  2009;5(9):e1000642.
We hypothesized that a common SNP in the 3' untranslated region of the upstream transcription factor 1 (USF1), rs3737787, may affect lipid traits by influencing gene expression levels, and we investigated this possibility utilizing the Mexican population, which has a high predisposition to dyslipidemia. We first associated rs3737787 genotypes in Mexican Familial Combined Hyperlipidemia (FCHL) case/control fat biopsies, with global expression patterns. To identify sets of co-expressed genes co-regulated by similar factors such as transcription factors, genetic variants, or environmental effects, we utilized weighted gene co-expression network analysis (WGCNA). Through WGCNA in the Mexican FCHL fat biopsies we identified two significant Triglyceride (TG)-associated co-expression modules. One of these modules was also associated with FCHL, the other FCHL component traits, and rs3737787 genotypes. This USF1-regulated FCHL-associated (URFA) module was enriched for genes involved in lipid metabolic processes. Using systems genetics procedures we identified 18 causal candidate genes in the URFA module. The FCHL causal candidate gene fatty acid desaturase 3 (FADS3) was associated with TGs in a recent Caucasian genome-wide significant association study and we replicated this association in Mexican FCHL families. Based on a USF1-regulated FCHL-associated co-expression module and SNP rs3737787, we identify a set of causal candidate genes for FCHL-related traits. We then provide evidence from two independent datasets supporting FADS3 as a causal gene for FCHL and elevated TGs in Mexicans.
Author Summary
By integrating a genetic polymorphism with genome-wide gene expression levels, we were able to attribute function to a genetic polymorphism in the USF1 gene. The USF1 gene has previously been associated with a common dyslipidemia, FCHL. FCHL is characterized by elevated levels of total cholesterol, triglycerides, or both. We demonstrate that this genetic polymorphism in USF1 contributes to FCHL disease risk by modulating the expression of a group of genes functionally related to lipid metabolism, and that this modulation is mediated by USF1. One of the genes whose expression is modulated by USF1 is FADS3, which was also implicated in a recent genome-wide association study for lipid traits. We demonstrated that a genetic polymorphism from the FADS3 region, which was associated with triglycerides in a GWAS study of Caucasians, was also associated with triglycerides in Mexican FCHL families. Our analysis provides novel insight into the gene expression profile contributing to FCHL disease risk, and identifies FADS3 as a new gene for FCHL in Mexicans.
doi:10.1371/journal.pgen.1000642
PMCID: PMC2730565  PMID: 19750004
19.  Comparison of univariate and multivariate linkage analysis of traits related to hypertension 
BMC Proceedings  2009;3(Suppl 7):S99.
Complex traits are often manifested by multiple correlated traits. One example of this is hypertension (HTN), which is measured on a continuous scale by systolic blood pressure (SBP). Predisposition to HTN is predicted by hyperlipidemia, characterized by elevated triglycerides (TG), low-density lipids (LDL), and high-density lipids (HDL). We hypothesized that the multivariate analysis of TG, LDL, and HDL would be more powerful for detecting HTN genes via linkage analysis compared with univariate analysis of SBP. We conducted linkage analysis of four chromosomal regions known to contain genes associated with HTN using SBP as a measure of HTN in univariate Haseman-Elston regression and using the correlated traits TG, LDL, and HDL in multivariate Haseman-Elston regression. All analyses were conducted using the Framingham Heart Study data. We found that multivariate linkage analysis was better able to detect chromosomal regions in which the angiotensinogen, angiotensin receptor, guanine nucleotide-binding protein 3, and prostaglandin I2 synthase genes reside. Univariate linkage analysis only detected the AGT gene. We conclude that multivariate analysis is appropriate for the analysis of multiple correlated phenotypes, and our findings suggest that it may yield new linkage signals undetected by univariate analysis.
PMCID: PMC2796003  PMID: 20018096
20.  Fine Mapping Study Reveals Novel Candidate Genes for Carotid Intima-Media Thickness in Dominican Families 
Background
Carotid intima-media thickness (CIMT) is a subclinical measure for atherosclerosis. Previously, we have mapped quantitative trait loci (QTLs) for CIMT to chromosomes 7p (MLOD=3.1) and to 14q (MLOD=2.3). We sought to identify the underlying genetic variants within those QTLs,
Methods and Results
Using the 100 extended Dominican Republican (DR) families (N=1312) used in the original linkage study, we fine mapped the QTLs with 2031 tagging single nucleotide polymorphisms (SNPs). Promising SNPs in the family dataset were examined in an independent population-based subcohort comprised of DR individuals (N=553) from the Northern Manhattan Study. Among the families, evidence for association (P<0.001) was found in multiple genes (ANLN, AOAH, FOXN3, CCDC88C, PRiMA1, and an intergenic SNP rs1667498), with the strongest association at PRiMA1 (P=0.00007, corrected P=0.047). Additional analyses revealed that the association at these loci, except PRiMA1, was highly significant (P= 0.00004~0.00092) in families with evidence for linkage but not in the rest of families (P=0.13~0.80) and the population-based cohort, suggesting the genetic effects at these SNPs are limited to a subgroup of families. In contrast, the association at PRiMA1 was significant in both families with and without evidence for linkage (P=0.002 and 0.019, respectively), and the population-based subcohort (P=0.047), supporting a robust association.
Conclusions
We identified several candidate genes for CIMT in DR families. Some of the genes manifest genetic effects within a specific subgroup and others were generalized to all groups. Future studies are needed to further evaluate the contribution of these genes to atherosclerosis.
doi:10.1161/CIRCGENETICS.111.961763
PMCID: PMC3341091  PMID: 22423143
21.  Oxysterol-binding protein-1 (OSBP1) modulates processing and trafficking of the amyloid precursor protein 
Background
Evidence from biochemical, epidemiological and genetic findings indicates that cholesterol levels are linked to amyloid-β (Aβ) production and Alzheimer's disease (AD). Oxysterols, which are cholesterol-derived ligands of the liver X receptors (LXRs) and oxysterol binding proteins, strongly regulate the processing of amyloid precursor protein (APP). Although LXRs have been studied extensively, little is known about the biology of oxysterol binding proteins. Oxysterol-binding protein 1 (OSBP1) is a member of a family of sterol-binding proteins with roles in lipid metabolism, regulation of secretory vesicle generation and signal transduction, and it is thought that these proteins may act as sterol sensors to control a variety of sterol-dependent cellular processes.
Results
We investigated whether OSBP1 was involved in regulating APP processing and found that overexpression of OSBP1 downregulated the amyloidogenic processing of APP, while OSBP1 knockdown had the opposite effect. In addition, we found that OSBP1 altered the trafficking of APP-Notch2 dimers by causing their accumulation in the Golgi, an effect that could be reversed by treating cells with OSBP1 ligand, 25-hydroxycholesterol.
Conclusion
These results suggest that OSBP1 could play a role in linking cholesterol metabolism with intracellular APP trafficking and Aβ production, and more importantly indicate that OSBP1 could provide an alternative target for Aβ-directed therapeutic.
doi:10.1186/1750-1326-3-5
PMCID: PMC2323375  PMID: 18348724
22.  MYO9B polymorphisms in multiple sclerosis 
Single-nucleotide polymorphisms (SNPs) in the 3′ region of myosin IXB (MYO9B) gene have recently been reported to associate with different inflammatory or autoimmune diseases. We monitored for the association of MYO9B variants to multiple sclerosis (MS) in four Northern European populations. First, 18 SNPs including 6 SNPs with previous evidence for association to immune disorders, were tested in 730 Finnish MS families, but no linkage or family-based association was observed. To ensure the power to detect variants with a modest effect size, we further analyzed 10 variants in 899 Finnish cases and 1325 controls, and in a total of 1521 cases and 1476 controls from Denmark, Norway and Sweden, but found no association. Our results thereby do not support a major function of the tested MYO9B variants in MS.
doi:10.1038/ejhg.2008.251
PMCID: PMC2685895  PMID: 19142207
MYO9B; multiple sclerosis; autoimmunity
23.  MYO9B polymorphisms in multiple sclerosis 
Single-nucleotide polymorphisms (SNPs) in the 3′ region of myosin IXB (MYO9B) gene have recently been reported to associate with different inflammatory or autoimmune diseases. We monitored for the association of MYO9B variants to multiple sclerosis (MS) in four Northern European populations. First, 18 SNPs including 6 SNPs with previous evidence for association to immune disorders, were tested in 730 Finnish MS families, but no linkage or family-based association was observed. To ensure the power to detect variants with a modest effect size, we further analyzed 10 variants in 899 Finnish cases and 1325 controls, and in a total of 1521 cases and 1476 controls from Denmark, Norway and Sweden, but found no association. Our results thereby do not support a major function of the tested MYO9B variants in MS.
doi:10.1038/ejhg.2008.251
PMCID: PMC2685895  PMID: 19142207
MYO9B; multiple sclerosis; autoimmunity
24.  Role of Oxysterol Binding Protein in Hepatitis C Virus infection▿ †  
Journal of Virology  2009;83(18):9237-9246.
Hepatitis C virus (HCV) RNA genome replicates within the ribonucleoprotein (RNP) complex in the modified membranous structures extended from endoplasmic reticulum. A proteomic analysis of HCV RNP complexes revealed the association of oxysterol binding protein (OSBP) as one of the components of these complexes. OSBP interacted with the N-terminal domain I of the HCV NS5A protein and colocalized to the Golgi compartment with NS5A. An OSBP-specific short hairpin RNA that partially downregulated OSBP expression resulted in a decrease of the HCV particle release in culture supernatant with little effect on viral RNA replication. The pleckstrin homology (PH) domain located in the N-terminal region of OSBP targeted this protein to the Golgi apparatus. OSBP deletion mutation in the PH (ΔPH) domain failed to localize to the Golgi apparatus and inhibited the HCV particle release. These studies suggest a possible functional role of OSBP in the HCV maturation process.
doi:10.1128/JVI.00958-09
PMCID: PMC2738263  PMID: 19570870
25.  The ATF6-Met[67]Val substitution is associated with increased plasma cholesterol levels 
Objective
Activating Transcription Factor 6 (ATF6) is a sensor of the endoplasmic reticulum stress response and regulates expression of several key lipogenic genes. We utilized a two-stage design to investigate whether ATF6 polymorphisms are associated with lipids in subjects at increased risk for cardiovascular disease (CVD).
Methods and Results
In stage 1, 13 tag-SNPs were tested for association in Dutch samples ascertained for Familial Combined Hyperlipidemia (FCHL) or increased risk for CVD (CVR). In stage 2, we further investigated the SNP with the strongest association from stage 1, a Methionine/Valine substitution at amino-acid 67, in Finnish FCHL families and in subjects with CVR from METSIM, a Finnish population-based cohort. The combined analysis of both stages reached region-wide significance (P=9×10−4), but this association was not seen in the entire METSIM cohort. Our functional analysis demonstrated that Valine at position 67 augments ATF6 protein and its targets Grp78 and Grp94 as well as increases luciferase expression through Grp78 promoter.
Conclusions
A common nonsynonymous variant in ATF6 increases ATF6 protein levels and is associated with cholesterol levels in subjects at increased risk for CVD, but this association was not seen in a population-based cohort. Further replication is needed to confirm this variant's role in lipids.
doi:10.1161/ATVBAHA.108.180240
PMCID: PMC2756089  PMID: 19667116
Activating Transcription Factor 6; cardiovascular risk; cholesterol; association; lipids

Results 1-25 (745692)