PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1147528)

Clipboard (0)
None

Related Articles

1.  Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons 
Quantitative analysis of the cellular composition of rodent, primate, insectivore, and afrotherian brains has shown that non-neuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of artiodactyls, a group within the order Cetartiodactyla, believed to be a relatively recent radiation from the common Eutherian ancestor. We find that artiodactyls share non-neuronal scaling rules with all groups analyzed previously. Artiodactyls share with afrotherians and rodents, but not with primates, the neuronal scaling rules that apply to the cerebral cortex and cerebellum. The neuronal scaling rules that apply to the remaining brain areas are, however, distinct in artiodactyls. Importantly, we show that the folding index of the cerebral cortex scales with the number of neurons in the cerebral cortex in distinct fashions across artiodactyls, afrotherians, rodents, and primates, such that the artiodactyl cerebral cortex is more convoluted than primate cortices of similar numbers of neurons. Our findings suggest that the scaling rules found to be shared across modern afrotherians, glires, and artiodactyls applied to the common Eutherian ancestor, such as the relationship between the mass of the cerebral cortex as a whole and its number of neurons. In turn, the distribution of neurons along the surface of the cerebral cortex, which is related to its degree of gyrification, appears to be a clade-specific characteristic. If the neuronal scaling rules for artiodactyls extend to all cetartiodactyls, we predict that the large cerebral cortex of cetaceans will still have fewer neurons than the human cerebral cortex.
doi:10.3389/fnana.2014.00128
PMCID: PMC4228855  PMID: 25429261
evolution; cortical expansion; numbers of neurons; gyrification; brain size
2.  Updated Neuronal Scaling Rules for the Brains of Glires (Rodents/Lagomorphs) 
Brain, Behavior and Evolution  2011;78(4):302-314.
Brain size scales as different functions of its number of neurons across mammalian orders such as rodents, primates, and insectivores. In rodents, we have previously shown that, across a sample of 6 species, from mouse to capybara, the cerebral cortex, cerebellum and the remaining brain structures increase in size faster than they gain neurons, with an accompanying decrease in neuronal density in these structures [Herculano-Houzel et al.: Proc Natl Acad Sci USA 2006;103:12138–12143]. Important remaining questions are whether such neuronal scaling rules within an order apply equally to all pertaining species, and whether they extend to closely related taxa. Here, we examine whether 4 other species of Rodentia, as well as the closely related rabbit (Lagomorpha), conform to the scaling rules identified previously for rodents. We report the updated neuronal scaling rules obtained for the average values of each species in a way that is directly comparable to the scaling rules that apply to primates [Gabi et al.: Brain Behav Evol 2010;76:32–44], and examine whether the scaling relationships are affected when phylogenetic relatedness in the dataset is accounted for. We have found that the brains of the spiny rat, squirrel, prairie dog and rabbit conform to the neuronal scaling rules that apply to the previous sample of rodents. The conformity to the previous rules of the new set of species, which includes the rabbit, suggests that the cellular scaling rules we have identified apply to rodents in general, and probably to Glires as a whole (rodents/lagomorphs), with one notable exception: the naked mole-rat brain is apparently an outlier, with only about half of the neurons expected from its brain size in its cerebral cortex and cerebellum.
doi:10.1159/000330825
PMCID: PMC3237106  PMID: 21985803
Rodents; Brain size; Evolution; Neurons; Glia; Glires
3.  Greater addition of neurons to the olfactory bulb than to the cerebral cortex of eulipotyphlans but not rodents, afrotherians or primates 
The olfactory bulb is an evolutionarily old structure that antedates the appearance of a six-layered mammalian cerebral cortex. As such, the neuronal scaling rules that apply to scaling the mass of the olfactory bulb as a function of its number of neurons might be shared across mammalian groups, as we have found to be the case for the ensemble of non-cortical, non-cerebellar brain structures. Alternatively, the neuronal scaling rules that apply to the olfactory bulb might be distinct in those mammals that rely heavily on olfaction. The group previously referred to as Insectivora includes small mammals, some of which are now placed in Afrotheria, a base group in mammalian radiation, and others in Eulipotyphla, a group derived later, at the base of Laurasiatheria. Here we show that the neuronal scaling rules that apply to building the olfactory bulb differ across eulipotyphlans and other mammals such that eulipotyphlans have more neurons concentrated in an olfactory bulb of similar size than afrotherians, glires and primates. Most strikingly, while the cerebral cortex gains neurons at a faster pace than the olfactory bulb in glires, and afrotherians follow this trend, it is the olfactory bulb that gains neurons at a faster pace than the cerebral cortex in eulipotyphlans, which contradicts the common view that the cerebral cortex is the fastest expanding structure in brain evolution. Our findings emphasize the importance of not using brain structure size as a proxy for numbers of neurons across mammalian orders, and are consistent with the notion that different selective pressures have acted upon the olfactory system of eulipotyphlans, glires and primates, with eulipotyphlans relying more on olfaction for their behavior than glires and primates. Surprisingly, however, the neuronal scaling rules for primates predict that the human olfactory bulb has as many neurons as the larger eulipotyphlan olfactory bulbs, which questions the classification of humans as microsmatic.
doi:10.3389/fnana.2014.00023
PMCID: PMC3990053  PMID: 24782719
olfactory bulb; cortical expansion; mosaic evolution; olfaction
4.  The Human Brain in Numbers: A Linearly Scaled-up Primate Brain  
The human brain has often been viewed as outstanding among mammalian brains: the most cognitively able, the largest-than-expected from body size, endowed with an overdeveloped cerebral cortex that represents over 80% of brain mass, and purportedly containing 100 billion neurons and 10× more glial cells. Such uniqueness was seemingly necessary to justify the superior cognitive abilities of humans over larger-brained mammals such as elephants and whales. However, our recent studies using a novel method to determine the cellular composition of the brain of humans and other primates as well as of rodents and insectivores show that, since different cellular scaling rules apply to the brains within these orders, brain size can no longer be considered a proxy for the number of neurons in the brain. These studies also showed that the human brain is not exceptional in its cellular composition, as it was found to contain as many neuronal and non-neuronal cells as would be expected of a primate brain of its size. Additionally, the so-called overdeveloped human cerebral cortex holds only 19% of all brain neurons, a fraction that is similar to that found in other mammals. In what regards absolute numbers of neurons, however, the human brain does have two advantages compared to other mammalian brains: compared to rodents, and probably to whales and elephants as well, it is built according to the very economical, space-saving scaling rules that apply to other primates; and, among economically built primate brains, it is the largest, hence containing the most neurons. These findings argue in favor of a view of cognitive abilities that is centered on absolute numbers of neurons, rather than on body size or encephalization, and call for a re-examination of several concepts related to the exceptionality of the human brain.
doi:10.3389/neuro.09.031.2009
PMCID: PMC2776484  PMID: 19915731
brain scaling; number of neurons; human; encephalization
5.  Brain Volume of the Newly-Discovered Species Rhynchocyon udzungwensis (Mammalia: Afrotheria: Macroscelidea): Implications for Encephalization in Sengis 
PLoS ONE  2013;8(3):e58667.
The Gray-faced Sengi (Rhynchocyon udzungwensis) is a newly-discovered species of sengi (elephant-shrew) and is the largest known extant representative of the order Macroscelidea. The discovery of R. udzungwensis provides an opportunity to investigate the scaling relationship between brain size and body size within Macroscelidea, and to compare this allometry among insectivorous species of Afrotheria and other eutherian insectivores. We performed a spin-echo magnetic resonance imaging (MRI) scan on a preserved adult specimen of R. udzungwensis using a 7-Tesla high-field MR imaging system. The brain was manually segmented and its volume was compiled into a dataset containing previously-published allometric data on 56 other species of insectivore-grade mammals including representatives of Afrotheria, Soricomorpha and Erinaceomorpha. Results of log-linear regression indicate that R. udzungwensis exhibits a brain size that is consistent with the allometric trend described by other members of its order. Inter-specific comparisons indicate that macroscelideans as a group have relatively large brains when compared with similarly-sized terrestrial mammals that also share a similar diet. This high degree of encephalization within sengis remains robust whether sengis are compared with closely-related insectivorous afrotheres, or with more-distantly-related insectivorous laurasiatheres.
doi:10.1371/journal.pone.0058667
PMCID: PMC3596274  PMID: 23516530
6.  Cellular scaling rules for the brain of afrotherians 
Quantitative analysis of the cellular composition of rodent, primate and eulipotyphlan brains has shown that non-neuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in evolution in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of afrotherians, believed to be the first clade to radiate from the common eutherian ancestor. We find that afrotherians share non-neuronal scaling rules with rodents, primates and eulipotyphlans, as well as the coordinated scaling of numbers of neurons in the cerebral cortex and cerebellum. Afrotherians share with rodents and eulipotyphlans, but not with primates, the scaling of number of neurons in the cortex and in the cerebellum as a function of the number of neurons in the rest of the brain. Afrotheria also share with rodents and eulipotyphlans the neuronal scaling rules that apply to the cerebral cortex. Afrotherians share with rodents, but not with eulipotyphlans nor primates, the neuronal scaling rules that apply to the cerebellum. Importantly, the scaling of the folding index of the cerebral cortex with the number of neurons in the cerebral cortex is not shared by either afrotherians, rodents, or primates. The sharing of some neuronal scaling rules between afrotherians and rodents, and of some additional features with eulipotyphlans and primates, raise the interesting possibility that these shared characteristics applied to the common eutherian ancestor. In turn, the clade-specific characteristics that relate to the distribution of neurons along the surface of the cerebral cortex and to its degree of gyrification suggest that these characteristics compose an evolutionarily plastic suite of features that may have defined and distinguished mammalian groups in evolution.
doi:10.3389/fnana.2014.00005
PMCID: PMC3925844  PMID: 24596544
evolution; glia-neuron ratio; numbers of neurons; cortical expansion; gyrification
7.  Cellular Scaling Rules for the Brains of an Extended Number of Primate Species 
Brain, Behavior and Evolution  2010;76(1):32-44.
What are the rules relating the size of the brain and its structures to the number of cells that compose them and their average sizes? We have shown previously that the cerebral cortex, cerebellum and the remaining brain structures increase in size as a linear function of their numbers of neurons and non-neuronal cells across 6 species of primates. Here we describe that the cellular composition of the same brain structures of 5 other primate species, as well as humans, conform to the scaling rules identified previously, and that the updated power functions for the extended sample are similar to those determined earlier. Accounting for phylogenetic relatedness in the combined dataset does not affect the scaling slopes that apply to the cerebral cortex and cerebellum, but alters the slope for the remaining brain structures to a value that is similar to that observed in rodents, which raises the possibility that the neuronal scaling rules for these structures are shared among rodents and primates. The conformity of the new set of primate species to the previous rules strongly suggests that the cellular scaling rules we have identified apply to primates in general, including humans, and not only to particular subgroups of primate species. In contrast, the allometric rules relating body and brain size are highly sensitive to the particular species sampled, suggesting that brain size is neither determined by body size nor together with it, but is rather only loosely correlated with body size.
doi:10.1159/000319872
PMCID: PMC2980814  PMID: 20926854
Allometry; Brain size; Evolution; Glia, number; Neurons, number; Primates
8.  Gorilla and Orangutan Brains Conform to the Primate Cellular Scaling Rules: Implications for Human Evolution 
Brain, Behavior and Evolution  2011;77(1):33-44.
Gorillas and orangutans are primates at least as large as humans, but their brains amount to about one third of the size of the human brain. This discrepancy has been used as evidence that the human brain is about 3 times larger than it should be for a primate species of its body size. In contrast to the view that the human brain is special in its size, we have suggested that it is the great apes that might have evolved bodies that are unusually large, on the basis of our recent finding that the cellular composition of the human brain matches that expected for a primate brain of its size, making the human brain a linearly scaled-up primate brain in its number of cells. To investigate whether the brain of great apes also conforms to the primate cellular scaling rules identified previously, we determine the numbers of neuronal and other cells that compose the orangutan and gorilla cerebella, use these numbers to calculate the size of the brain and of the cerebral cortex expected for these species, and show that these match the sizes described in the literature. Our results suggest that the brains of great apes also scale linearly in their numbers of neurons like other primate brains, including humans. The conformity of great apes and humans to the linear cellular scaling rules that apply to other primates that diverged earlier in primate evolution indicates that prehistoric Homo species as well as other hominins must have had brains that conformed to the same scaling rules, irrespective of their body size. We then used those scaling rules and published estimated brain volumes for various hominin species to predict the numbers of neurons that composed their brains. We predict that Homo heidelbergensis and Homo neanderthalensis had brains with approximately 80 billion neurons, within the range of variation found in modern Homo sapiens. We propose that while the cellular scaling rules that apply to the primate brain have remained stable in hominin evolution (since they apply to simians, great apes and modern humans alike), the Colobinae and Pongidae lineages favored marked increases in body size rather than brain size from the common ancestor with the Homo lineage, while the Homo lineage seems to have favored a large brain instead of a large body, possibly due to the metabolic limitations to having both.
doi:10.1159/000322729
PMCID: PMC3064932  PMID: 21228547
Allometry; Brain size; Great apes; Human; Evolution, human; Neurons, number
9.  More Novel Hantaviruses and Diversifying Reservoir Hosts — Time for Development of Reservoir-Derived Cell Culture Models? 
Viruses  2014;6(3):951-967.
Due to novel, improved and high-throughput detection methods, there is a plethora of newly identified viruses within the genus Hantavirus. Furthermore, reservoir host species are increasingly recognized besides representatives of the order Rodentia, now including members of the mammalian orders Soricomorpha/Eulipotyphla and Chiroptera. Despite the great interest created by emerging zoonotic viruses, there is still a gross lack of in vitro models, which reflect the exclusive host adaptation of most zoonotic viruses. The usually narrow host range and genetic diversity of hantaviruses make them an exciting candidate for studying virus-host interactions on a cellular level. To do so, well-characterized reservoir cell lines covering a wide range of bat, insectivore and rodent species are essential. Most currently available cell culture models display a heterologous virus-host relationship and are therefore only of limited value. Here, we review the recently established approaches to generate reservoir-derived cell culture models for the in vitro study of virus-host interactions. These successfully used model systems almost exclusively originate from bats and bat-borne viruses other than hantaviruses. Therefore we propose a parallel approach for research on rodent- and insectivore-borne hantaviruses, taking the generation of novel rodent and insectivore cell lines from wildlife species into account. These cell lines would be also valuable for studies on further rodent-borne viruses, such as orthopox- and arenaviruses.
doi:10.3390/v6030951
PMCID: PMC3970132  PMID: 24576845
hantavirus; cell culture; zoonoses; reservoir host; virus-host interaction
10.  Different scaling of white matter volume, cortical connectivity, and gyrification across rodent and primate brains 
Expansion of the cortical gray matter in evolution has been accompanied by an even faster expansion of the subcortical white matter volume and by folding of the gray matter surface, events traditionally considered to occur homogeneously across mammalian species. Here we investigate how white matter expansion and cortical folding scale across species of rodents and primates as the gray matter gains neurons. We find very different scaling rules of white matter expansion across the two orders, favoring volume conservation and smaller propagation times in primates. For a similar number of cortical neurons, primates have a smaller connectivity fraction and less white matter volume than rodents; moreover, as the cortex gains neurons, there is a much faster increase in white matter volume and in its ratio to gray matter volume in rodents than in primates. Order-specific scaling of the white matter can be attributed to different scaling of average fiber caliber and neuronal connectivity in rodents and primates. Finally, cortical folding increases as different functions of the number of cortical neurons in rodents and primates, scaling faster in the latter than in the former. While the neuronal rules that govern gray and white matter scaling are different across rodents and primates, we find that they can be explained by the same unifying model, with order-specific exponents. The different scaling of the white matter has implications for the scaling of propagation time and computational capacity in evolution, and calls for a reappraisal of developmental models of cortical expansion in evolution.
doi:10.3389/fnana.2013.00003
PMCID: PMC3620553  PMID: 23576961
white matter; number of neurons; allometry; brain size; cortical expansion; gyrification
11.  Ensemble Composition and Activity Levels of Insectivorous Bats in Response to Management Intensification in Coffee Agroforestry Systems 
PLoS ONE  2011;6(1):e16502.
Shade coffee plantations have received attention for their role in biodiversity conservation. Bats are among the most diverse mammalian taxa in these systems; however, previous studies of bats in coffee plantations have focused on the largely herbivorous leaf-nosed bats (Phyllostomidae). In contrast, we have virtually no information on how ensembles of aerial insectivorous bats – nearly half the Neotropical bat species – change in response to habitat modification. To evaluate the effects of agroecosystem management on insectivorous bats, we studied their diversity and activity in southern Chiapas, Mexico, a landscape dominated by coffee agroforestry. We used acoustic monitoring and live captures to characterize the insectivorous bat ensemble in forest fragments and coffee plantations differing in the structural and taxonomic complexity of shade trees. We captured bats of 12 non-phyllostomid species; acoustic monitoring revealed the presence of at least 12 more species of aerial insectivores. Richness of forest bats was the same across all land-use types; in contrast, species richness of open-space bats increased in low shade, intensively managed coffee plantations. Conversely, only forest bats demonstrated significant differences in ensemble structure (as measured by similarity indices) across land-use types. Both overall activity and feeding activity of forest bats declined significantly with increasing management intensity, while the overall activity, but not feeding activity, of open-space bats increased. We conclude that diverse shade coffee plantations in our study area serve as valuable foraging and commuting habitat for aerial insectivorous bats, and several species also commute through or forage in low shade coffee monocultures.
doi:10.1371/journal.pone.0016502
PMCID: PMC3027674  PMID: 21298059
12.  Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size 
Enough species have now been subject to systematic quantitative analysis of the relationship between the morphology and cellular composition of their brain that patterns begin to emerge and shed light on the evolutionary path that led to mammalian brain diversity. Based on an analysis of the shared and clade-specific characteristics of 41 modern mammalian species in 6 clades, and in light of the phylogenetic relationships among them, here we propose that ancestral mammal brains were composed and scaled in their cellular composition like modern afrotherian and glire brains: with an addition of neurons that is accompanied by a decrease in neuronal density and very little modification in glial cell density, implying a significant increase in average neuronal cell size in larger brains, and the allocation of approximately 2 neurons in the cerebral cortex and 8 neurons in the cerebellum for every neuron allocated to the rest of brain. We also propose that in some clades the scaling of different brain structures has diverged away from the common ancestral layout through clade-specific (or clade-defining) changes in how average neuronal cell mass relates to numbers of neurons in each structure, and how numbers of neurons are differentially allocated to each structure relative to the number of neurons in the rest of brain. Thus, the evolutionary expansion of mammalian brains has involved both concerted and mosaic patterns of scaling across structures. This is, to our knowledge, the first mechanistic model that explains the generation of brains large and small in mammalian evolution, and it opens up new horizons for seeking the cellular pathways and genes involved in brain evolution.
doi:10.3389/fnana.2014.00077
PMCID: PMC4127475  PMID: 25157220
numbers of neurons; brain size; cortical expansion; evolution; cell size
13.  Spatio-temporal extension in site of origin for cortical calretinin neurons in primates 
The vast majority of cortical GABAergic neurons can be defined by parvalbumin, somatostatin or calretinin expression. In most mammalians, parvalbumin and somatostatin interneurons have constant proportions, each representing 5–7% of the total neuron number. In contrast, there is a threefold increase in the proportion of calretinin interneurons, which do not exceed 4% in rodents and reach 12% in higher order areas of primate cerebral cortex. In rodents, almost all parvalbumin and somatostatin interneurons originate from the medial part of the subpallial proliferative structure, the ganglionic eminence (GE), while almost all calretinin interneurons originate from its caudal part. The spatial pattern of cortical GABAergic neurons origin from the GE is preserved in the monkey and human brain. However, it could be expected that the evolution is changing developmental rules to enable considerable expansion of calretinin interneuron population. During the early fetal period in primates, cortical GABAergic neurons are almost entirely generated in the subpallium, as in rodents. Already at that time, the primate caudal ganglionic eminence (CGE) shows a relative increase in size and production of calretinin interneurons. During the second trimester of gestation, that is the main neurogenetic stage in primates without clear correlates found in rodents, the pallial production of cortical GABAergic neurons together with the extended persistence of the GE is observed. We propose that the CGE could be the main source of calretinin interneurons for the posterior and lateral cortical regions, but not for the frontal cortex. The associative granular frontal cortex represents around one third of the cortical surface and contains almost half of cortical calretinin interneurons. The majority of calretinin interneurons destined for the frontal cortex could be generated in the pallium, especially in the newly evolved outer subventricular zone that becomes the main pool of cortical progenitors.
doi:10.3389/fnana.2014.00050
PMCID: PMC4072090  PMID: 25018702
interneurons; calretinin; ganglionic eminence; ventricular zone; GABA; epilepsy
14.  The adaptive significance of adult neurogenesis: an integrative approach 
Adult neurogenesis in mammals is predominantly restricted to two brain regions, the dentate gyrus (DG) of the hippocampus and the olfactory bulb (OB), suggesting that these two brain regions uniquely share functions that mediate its adaptive significance. Benefits of adult neurogenesis across these two regions appear to converge on increased neuronal and structural plasticity that subserves coding of novel, complex, and fine-grained information, usually with contextual components that include spatial positioning. By contrast, costs of adult neurogenesis appear to center on potential for dysregulation resulting in higher risk of brain cancer or psychological dysfunctions, but such costs have yet to be quantified directly. The three main hypotheses for the proximate functions and adaptive significance of adult neurogenesis, pattern separation, memory consolidation, and olfactory spatial, are not mutually exclusive and can be reconciled into a simple general model amenable to targeted experimental and comparative tests. Comparative analysis of brain region sizes across two major social-ecological groups of primates, gregarious (mainly diurnal haplorhines, visually-oriented, and in large social groups) and solitary (mainly noctural, territorial, and highly reliant on olfaction, as in most rodents) suggest that solitary species, but not gregarious species, show positive associations of population densities and home range sizes with sizes of both the hippocampus and OB, implicating their functions in social-territorial systems mediated by olfactory cues. Integrated analyses of the adaptive significance of adult neurogenesis will benefit from experimental studies motivated and structured by ecologically and socially relevant selective contexts.
doi:10.3389/fnana.2013.00021
PMCID: PMC3712125  PMID: 23882188
adult neurogenesis; adaptive significance; evolution; pattern separation; olfaction
15.  Scaling of Brain Metabolism with a Fixed Energy Budget per Neuron: Implications for Neuronal Activity, Plasticity and Evolution 
PLoS ONE  2011;6(3):e17514.
It is usually considered that larger brains have larger neurons, which consume more energy individually, and are therefore accompanied by a larger number of glial cells per neuron. These notions, however, have never been tested. Based on glucose and oxygen metabolic rates in awake animals and their recently determined numbers of neurons, here I show that, contrary to the expected, the estimated glucose use per neuron is remarkably constant, varying only by 40% across the six species of rodents and primates (including humans). The estimated average glucose use per neuron does not correlate with neuronal density in any structure. This suggests that the energy budget of the whole brain per neuron is fixed across species and brain sizes, such that total glucose use by the brain as a whole, by the cerebral cortex and also by the cerebellum alone are linear functions of the number of neurons in the structures across the species (although the average glucose consumption per neuron is at least 10× higher in the cerebral cortex than in the cerebellum). These results indicate that the apparently remarkable use in humans of 20% of the whole body energy budget by a brain that represents only 2% of body mass is explained simply by its large number of neurons. Because synaptic activity is considered the major determinant of metabolic cost, a conserved energy budget per neuron has several profound implications for synaptic homeostasis and the regulation of firing rates, synaptic plasticity, brain imaging, pathologies, and for brain scaling in evolution.
doi:10.1371/journal.pone.0017514
PMCID: PMC3046985  PMID: 21390261
16.  Comparative aspects of trophoblast development and placentation 
Based on the number of tissues separating maternal from fetal blood, placentas are classified as epitheliochorial, endotheliochorial or hemochorial. We review the occurrence of these placental types in the various orders of eutherian mammals within the framework of the four superorders identified by the techniques of molecular phylogenetics. The superorder Afrotheria diversified in ancient Africa and its living representatives include elephants, sea cows, hyraxes, aardvark, elephant shrews and tenrecs. Xenarthra, comprising armadillos, anteaters and sloths, diversified in South America. All placentas examined from members of these two oldest superorders are either endotheliochorial or hemochorial. The superorder Euarchontoglires includes two sister groups, Glires and Euarchonta. The former comprises rodents and lagomorphs, which typically have hemochorial placentas. The most primitive members of Euarchonta, the tree shrews, have endotheliochorial placentation. Flying lemurs and all higher primates have hemochorial placentas. However, the lemurs and lorises are exceptional among primates in having epitheliochorial placentation. Laurasiatheria, the last superorder to arise, includes several orders with epitheliochorial placentation. These comprise whales, camels, pigs, ruminants, horses and pangolins. In contrast, nearly all carnivores have endotheliochorial placentation, whilst bats have endotheliochorial or hemochorial placentas. Also included in Laurasiatheria are a number of insectivores that have many conserved morphological characters; none of these has epitheliochorial placentation. Consideration of placental type in relation to the findings of molecular phylogenetics suggests that the likely path of evolution in Afrotheria was from endotheliochorial to hemochorial placentation. This is also a likely scenario for Xenarthra and the bats. We argue that a definitive epitheliochorial placenta is a secondary specialization and that it evolved twice, once in the Laurasiatheria and once in the lemurs and lorises.
doi:10.1186/1477-7827-2-46
PMCID: PMC455692  PMID: 15236656
17.  The Relative Influence of Competition and Prey Defenses on the Phenotypic Structure of Insectivorous Bat Ensembles in Southern Africa 
PLoS ONE  2008;3(11):e3715.
Deterministic filters such as competition and prey defences should have a strong influence on the community structure of animals such as insectivorous bats that have life histories characterized by low fecundity, low predation risk, long life expectancy, and stable populations. We investigated the relative influence of these two deterministic filters on the phenotypic structure of insectivorous bat ensembles in southern Africa. We used null models to simulate the random phenotypic patterns expected in the absence of competition or prey defences and analysed the deviations of the observed phenotypic pattern from these expected random patterns. The phenotypic structure at local scales exhibited non-random patterns consistent with both competition and prey defense hypotheses. There was evidence that competition influenced body size distribution across ensembles. Competition also influenced wing and echolocation patterns in ensembles and in functional foraging groups with high species richness or abundance. At the same time, prey defense filters influenced echolocation patterns in two species-poor ensembles. Non-random patterns remained evident even after we removed the influence of body size from wing morphology and echolocation parameters taking phylogeny into account. However, abiotic filters such as geographic distribution ranges of small and large-bodied species, extinction risk, and the physics of flight and sound probably also interacted with biotic filters at local and/or regional scales to influence the community structure of sympatric bats in southern Africa. Future studies should investigate alternative parameters that define bat community structure such as diet and abundance to better determine the influence of competition and prey defences on the structure of insectivorous bat ensembles in southern Africa.
doi:10.1371/journal.pone.0003715
PMCID: PMC2579324  PMID: 19005563
18.  Coordinated Scaling of Cortical and Cerebellar Numbers of Neurons 
While larger brains possess concertedly larger cerebral cortices and cerebella, the relative size of the cerebral cortex increases with brain size, but relative cerebellar size does not. In the absence of data on numbers of neurons in these structures, this discrepancy has been used to dispute the hypothesis that the cerebral cortex and cerebellum function and have evolved in concert and to support a trend towards neocorticalization in evolution. However, the rationale for interpreting changes in absolute and relative size of the cerebral cortex and cerebellum relies on the assumption that they reflect absolute and relative numbers of neurons in these structures across all species – an assumption that our recent studies have shown to be flawed. Here I show for the first time that the numbers of neurons in the cerebral cortex and cerebellum are directly correlated across 19 mammalian species of four different orders, including humans, and increase concertedly in a similar fashion both within and across the orders Eulipotyphla (Insectivora), Rodentia, Scandentia and Primata, such that on average a ratio of 3.6 neurons in the cerebellum to every neuron in the cerebral cortex is maintained across species. This coordinated scaling of cortical and cerebellar numbers of neurons provides direct evidence in favor of concerted function, scaling and evolution of these brain structures, and suggests that the common notion that equates cognitive advancement with neocortical expansion should be revisited to consider in its stead the coordinated scaling of neocortex and cerebellum as a functional ensemble.
doi:10.3389/fnana.2010.00012
PMCID: PMC2839851  PMID: 20300467
brain size; brain scaling; mosaic evolution; numbers of neurons; cerebral cortex; cerebellum
19.  All brains are made of this: a fundamental building block of brain matter with matching neuronal and glial masses 
How does the size of the glial and neuronal cells that compose brain tissue vary across brain structures and species? Our previous studies indicate that average neuronal size is highly variable, while average glial cell size is more constant. Measuring whole cell sizes in vivo, however, is a daunting task. Here we use chi-square minimization of the relationship between measured neuronal and glial cell densities in the cerebral cortex, cerebellum, and rest of brain in 27 mammalian species to model neuronal and glial cell mass, as well as the neuronal mass fraction of the tissue (the fraction of tissue mass composed by neurons). Our model shows that while average neuronal cell mass varies by over 500-fold across brain structures and species, average glial cell mass varies only 1.4-fold. Neuronal mass fraction varies typically between 0.6 and 0.8 in all structures. Remarkably, we show that two fundamental, universal relationships apply across all brain structures and species: (1) the glia/neuron ratio varies with the total neuronal mass in the tissue (which in turn depends on variations in average neuronal cell mass), and (2) the neuronal mass per glial cell, and with it the neuronal mass fraction and neuron/glia mass ratio, varies with average glial cell mass in the tissue. We propose that there is a fundamental building block of brain tissue: the glial mass that accompanies a unit of neuronal mass. We argue that the scaling of this glial mass is a consequence of a universal mechanism whereby numbers of glial cells are added to the neuronal parenchyma during development, irrespective of whether the neurons composing it are large or small, but depending on the average mass of the glial cells being added. We also show how evolutionary variations in neuronal cell mass, glial cell mass and number of neurons suffice to determine the most basic characteristics of brain structures, such as mass, glia/neuron ratio, neuron/glia mass ratio, and cell densities.
doi:10.3389/fnana.2014.00127
PMCID: PMC4228857  PMID: 25429260
allometry; glia/neuron ratio; number of neurons; number of glial cells; cell size; brain size
20.  Photoperiod Mediated Changes in Olfactory Bulb Neurogenesis and Olfactory Behavior in Male White-Footed Mice (Peromyscus leucopus) 
PLoS ONE  2012;7(8):e42743.
Brain plasticity, in relation to new adult mammalian neurons generated in the subgranular zone of the hippocampus, has been well described. However, the functional outcome of new adult olfactory neurons born in the subventricular zone of the lateral ventricles is not clearly defined, as manipulating neurogenesis through various methods has given inconsistent and conflicting results in lab mice. Several small rodent species, including Peromyscus leucopus, display seasonal (photoperiodic) brain plasticity in brain volume, hippocampal function, and hippocampus-dependent behaviors; plasticity in the olfactory system of photoperiodic rodents remains largely uninvestigated. We exposed adult male P. leucopus to long day lengths (LD) and short day lengths (SD) for 10 to 15 weeks and then examined olfactory bulb cell proliferation and survival using the thymidine analog BrdU, olfactory bulb granule cell morphology using Golgi-Cox staining, and behavioral investigation of same-sex conspecific urine. SD mice did not differ from LD counterparts in granular cell morphology of the dendrites or in dendritic spine density. Although there were no differences due to photoperiod in habituation to water odor, SD mice rapidly habituated to male urine, whereas LD mice did not. In addition, short day induced changes in olfactory behavior were associated with increased neurogenesis in the caudal plexiform and granule cell layers of the olfactory bulb, an area known to preferentially respond to water-soluble odorants. Taken together, these data demonstrate that photoperiod, without altering olfactory bulb neuronal morphology, alters olfactory bulb neurogenesis and olfactory behavior in Peromyscus leucopus.
doi:10.1371/journal.pone.0042743
PMCID: PMC3415390  PMID: 22912730
21.  Influence of Landscape Structure and Human Modifications on Insect Biomass and Bat Foraging Activity in an Urban Landscape 
PLoS ONE  2012;7(6):e38800.
Urban landscapes are often located in biologically diverse, productive regions. As such, urbanization may have dramatic consequences for this diversity, largely due to changes in the structure and function of urban communities. We examined the influence of landscape productivity (indexed by geology), housing density and vegetation clearing on the spatial distribution of nocturnal insect biomass and the foraging activity of insectivorous bats in the urban landscape of Sydney, Australia. Nocturnal insect biomass (g) and bat foraging activity were sampled from 113 sites representing backyard, open space, bushland and riparian landscape elements, across urban, suburban and vegetated landscapes within 60 km of Sydney's Central Business District. We found that insect biomass was at least an order of magnitude greater within suburban landscapes in bushland and backyard elements located on the most fertile shale influenced geologies (both p<0.001) compared to nutrient poor sandstone landscapes. Similarly, the feeding activity of bats was greatest in bushland, and riparian elements within suburbs on fertile geologies (p = 0.039). Regression tree analysis indicated that the same three variables explained the major proportion of the variation in insect biomass and bat foraging activity. These were ambient temperature (positive), housing density (negative) and the percent of fertile shale geologies (positive) in the landscape; however variation in insect biomass did not directly explain bat foraging activity. We suggest that prey may be unavailable to bats in highly urbanized areas if these areas are avoided by many species, suggesting that reduced feeding activity may reflect under-use of urban habitats by bats. Restoration activities to improve ecological function and maintain the activity of a diversity of bat species should focus on maintaining and restoring bushland and riparian habitat, particularly in areas with fertile geology as these were key bat foraging habitats.
doi:10.1371/journal.pone.0038800
PMCID: PMC3369849  PMID: 22685608
22.  Filoviruses are ancient and integrated into mammalian genomes 
Background
Hemorrhagic diseases from Ebolavirus and Marburgvirus (Filoviridae) infections can be dangerous to humans because of high fatality rates and a lack of effective treatments or vaccine. Although there is evidence that wild mammals are infected by filoviruses, the biology of host-filovirus systems is notoriously poorly understood. Specifically, identifying potential reservoir species with the expected long-term coevolutionary history of filovirus infections has been intractable. Integrated elements of filoviruses could indicate a coevolutionary history with a mammalian reservoir, but integration of nonretroviral RNA viruses is thought to be nonexistent or rare for mammalian viruses (such as filoviruses) that lack reverse transcriptase and replication inside the nucleus. Here, we provide direct evidence of integrated filovirus-like elements in mammalian genomes by sequencing across host-virus gene boundaries and carrying out phylogenetic analyses. Further we test for an association between candidate reservoir status and the integration of filoviral elements and assess the previous age estimate for filoviruses of less than 10,000 years.
Results
Phylogenetic and sequencing evidence from gene boundaries was consistent with integration of filoviruses in mammalian genomes. We detected integrated filovirus-like elements in the genomes of bats, rodents, shrews, tenrecs and marsupials. Moreover, some filovirus-like elements were transcribed and the detected mammalian elements were homologous to a fragment of the filovirus genome whose expression is known to interfere with the assembly of Ebolavirus. The phylogenetic evidence strongly indicated that the direction of transfer was from virus to mammal. Eutherians other than bats, rodents, and insectivores (i.e., the candidate reservoir taxa for filoviruses) were significantly underrepresented in the taxa with detected integrated filovirus-like elements. The existence of orthologous filovirus-like elements shared among mammalian genera whose divergence dates have been estimated suggests that filoviruses are at least tens of millions of years old.
Conclusions
Our findings indicate that filovirus infections have been recorded as paleoviral elements in the genomes of small mammals despite extranuclear replication and a requirement for cooption of reverse transcriptase. Our results show that the mammal-filovirus association is ancient and has resulted in candidates for functional gene products (RNA or protein).
doi:10.1186/1471-2148-10-193
PMCID: PMC2906475  PMID: 20569424
23.  Faster scaling of visual neurons in cortical areas relative to subcortical structures in non-human primate brains 
Brain structure & function  2012;218(3):805-816.
Cortical expansion, both in absolute terms and in relation to subcortical structures, is considered a major trend in mammalian brain evolution with important functional implications, given that cortical computations should add complexity and flexibility to information processing. Here, we investigate the numbers of neurons that compose 4 structures in the visual pathway across 11 non-human primate species to determine the scaling relationships that apply to these structures and among them. We find that primary visual cortex, area V1, as well as the superior colliculus (SC) and lateral geniculate nucleus scale in mass faster than they gain neurons. Areas V1 and MT gain neurons proportionately to the entire cerebral cortex, and represent fairly constant proportions of all cortical neurons (36 and 3 %, respectively), while V1 gains neurons much faster than both subcortical structures examined. Larger primate brains therefore have increased ratios of cortical to subcortical neurons involved in processing visual information, as observed in the auditory pathway, but have a constant proportion of cortical neurons dedicated to the primary visual representation, and a fairly constant ratio of about 45 times more neurons in primary visual than in primary auditory cortical areas.
doi:10.1007/s00429-012-0430-5
PMCID: PMC3727908  PMID: 22684638
Superior colliculus; Visual cortex; Lateral geniculate nucleus; V1; Area MT; Thalamus; Allometry; Brain size; Evolution
24.  Sex-specific processing of social cues in the medial amygdala 
eLife  2014;3:e02743.
Animal–animal recognition within, and across species, is essential for predator avoidance and social interactions. Despite its essential role in orchestrating responses to animal cues, basic principles of information processing by the vomeronasal system are still unknown. The medial amygdala (MeA) occupies a central position in the vomeronasal pathway, upstream of hypothalamic centers dedicated to defensive and social responses. We have characterized sensory responses in the mouse MeA and uncovered emergent properties that shed new light onto the transformation of vomeronasal information into sex- and species-specific responses. In particular, we show that the MeA displays a degree of stimulus selectivity and a striking sexually dimorphic sensory representation that are not observed in the upstream relay of the accessory olfactory bulb (AOB). Furthermore, our results demonstrate that the development of sexually dimorphic circuits in the MeA requires steroid signaling near the time of puberty to organize the functional representation of sensory stimuli.
DOI: http://dx.doi.org/10.7554/eLife.02743.001
eLife digest
Many animals emit and detect chemicals known as pheromones to communicate with other members of their own species. Animals also rely on chemical signals from other species to warn them, for example, that a predator is nearby. Many of these chemical signals—which are present in sweat, tears, urine, and saliva—are detected by a structure called the vomeronasal organ, which is located at the base of the nasal cavity.
When this organ detects a particular chemical signal, it broadcasts this information to a network of brain regions that generates an appropriate behavioral response. Two structures within this network, the accessory olfactory bulb and the medial amygdala, play an important role in modifying this signal before it reaches its final destination—a region of the brain called the hypothalamus. Activation of the hypothalamus by the signal triggers changes in the animal's behavior. Although the anatomical details of this pathway have been widely studied, it is not clear how information is actually transmitted along it.
Now, Bergan et al. have provided insights into this process by recording signals in the brains of anesthetized mice exposed to specific stimuli. Whereas neurons in the accessory olfactory bulb responded similarly in male and female mice, those in the medial amygdala showed a preference for female urine in male mice, and a preference for male urine in the case of females. This is the first direct demonstration of differences in sensory processing in the brains of male and female mammals.
These differences are thought to result from the actions of sex hormones, particularly estrogen, on brain circuits during development. Consistent with this, neurons in the medial amygdala of male mice with reduced levels of estrogen showed a reduced preference for female urine compared to control males. Similarly, female mice that had been previously exposed to high levels of estrogen as pups showed a reduced preference for male urine compared to controls.
In addition to increasing understanding of how chemical signals—including pheromones—influence the responses of rodents to other animals, the work of Bergan et al. has provided clues to the neural mechanisms that underlie sex-specific differences in behaviors.
DOI: http://dx.doi.org/10.7554/eLife.02743.002
doi:10.7554/eLife.02743
PMCID: PMC4038839  PMID: 24894465
medial amygdala; sensory representation; sexual dimorphism; vomeronasal system; pheromones; behavior; mouse
25.  Genetic Basis of Neuronal Individuality in the Mammalian Brain 
Journal of Neurogenetics  2013;27(3):97-105.
The mammalian brain is a complex multicellular system involving enormous numbers of neurons. The neuron is the basic functional unit of the brain, and neurons are organized by specialized intercellular connections into circuits with many other neurons. Physiological studies have revealed that individual neurons have remarkably selective response properties, and this individuality is a fundamental requirement for building complex and functionally diverse neural networks. Recent molecular biological studies have revealed genetic bases for neuronal individuality in the mammalian brain. For example, in the rodent olfactory epithelium, individual olfactory neurons express only one type of odorant receptor (OR) out of the over 1000 ORs encoded in the genome. The expressed OR determines the neuron's selective chemosensory response and specifies its axonal targeting to a particular olfactory glomerulus in the olfactory bulb. Neuronal diversity can also be generated in individual cells by the independent and stochastic expression of autosomal alleles, which leads to functional heterozygosity among neurons. Among the many genes that show autosomal stochastic monoallelic expression, approximately 50 members of the clustered protocadherins (Pcdhs) are stochastically expressed in individual neurons in distinct combinations. The clustered Pcdhs belong to a large subfamily of the cadherin superfamily of homophilic cell-adhesion proteins. Loss-of-function analyses show that the clustered Pcdhs have critical functions in the accuracy of axonal projections, synaptic formation, dendritic arborization, and neuronal survival. In addition, cis-tetramers, composed of heteromultimeric clustered Pcdh members, represent selective binding units for cell-cell interactions, and provide exponential numbers of possible cell-surface relationships between individual neurons. The extensive molecular diversity of neuronal cell-surface proteins affects neurons’ individual properties and connectivities. The molecular features of the diverse clustered Pcdh molecules suggest that they provide a genetic basis for neuronal individuality and appropriate neuronal wiring in the brain.
doi:10.3109/01677063.2013.801969
PMCID: PMC3852966  PMID: 23808929
epigenetic; neural network; protocadherin; stochastic expression

Results 1-25 (1147528)