PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1400550)

Clipboard (0)
None

Related Articles

1.  Pneumococcal Carriage and Antibiotic Resistance in Young Children before 13-Valent Conjugate Vaccine 
Background
We sought to measure trends in Streptococcus pneumoniae (SP) carriage and antibiotic resistance in young children in Massachusetts communities after widespread adoption of heptavalent pneumococcal conjugate vaccine (PCV7) and before the introduction of the 13-valent pneumococcal conjugate vaccine (PCV13).
Methods
We conducted a cross-sectional study including collection of questionnaire data and nasopharyngeal specimens among children <7 years in primary care practices from 8 Massachusetts communities during the winter season of 2008–9 and compared with to similar studies performed in 2001, 2003–4, and 2006–7. Antimicrobial susceptibility testing and serotyping were performed on pneumococcal isolates, and risk factors for colonization in recent seasons (2006–07 and 2008–09) were evaluated.
Results
We collected nasopharyngeal specimens from 1,011 children, 290 (29%) of whom were colonized with pneumococcus. Non-PCV7 serotypes accounted for 98% of pneumococcal isolates, most commonly 19A (14%), 6C (11%), and 15B/C (11%). In 2008–09, newly-targeted PCV13 serotypes accounted for 20% of carriage isolates and 41% of penicillin non-susceptible S. pneumoniae (PNSP). In multivariate models, younger age, child care, young siblings, and upper respiratory illness remained predictors of pneumococcal carriage, despite near-complete serotype replacement. Only young age and child care were significantly associated with PNSP carriage.
Conclusions
Serotype replacement post-PCV7 is essentially complete and has been sustained in young children, with the relatively virulent 19A being the most common serotype. Predictors of carriage remained similar despite serotype replacement. PCV13 may reduce 19A and decrease antibiotic-resistant strains, but monitoring for new serotype replacement is warranted.
doi:10.1097/INF.0b013e31824214ac
PMCID: PMC3288953  PMID: 22173142
Streptococcus pneumoniae; pneumococcal conjugate vaccine; antibiotic resistance; serotype; colonization
2.  Serotype-Specific Changes in Invasive Pneumococcal Disease after Pneumococcal Conjugate Vaccine Introduction: A Pooled Analysis of Multiple Surveillance Sites 
PLoS Medicine  2013;10(9):e1001517.
In a pooled analysis of data collected from invasive pneumococcal disease surveillance databases, Daniel Feikin and colleagues examine serotype replacement after the introduction of 7-valent pneumococcal conjugate vaccine (PCV7) into national immunization programs.
Please see later in the article for the Editors' Summary
Background
Vaccine-serotype (VT) invasive pneumococcal disease (IPD) rates declined substantially following introduction of 7-valent pneumococcal conjugate vaccine (PCV7) into national immunization programs. Increases in non-vaccine-serotype (NVT) IPD rates occurred in some sites, presumably representing serotype replacement. We used a standardized approach to describe serotype-specific IPD changes among multiple sites after PCV7 introduction.
Methods and Findings
Of 32 IPD surveillance datasets received, we identified 21 eligible databases with rate data ≥2 years before and ≥1 year after PCV7 introduction. Expected annual rates of IPD absent PCV7 introduction were estimated by extrapolation using either Poisson regression modeling of pre-PCV7 rates or averaging pre-PCV7 rates. To estimate whether changes in rates had occurred following PCV7 introduction, we calculated site specific rate ratios by dividing observed by expected IPD rates for each post-PCV7 year. We calculated summary rate ratios (RRs) using random effects meta-analysis. For children <5 years old, overall IPD decreased by year 1 post-PCV7 (RR 0·55, 95% CI 0·46–0·65) and remained relatively stable through year 7 (RR 0·49, 95% CI 0·35–0·68). Point estimates for VT IPD decreased annually through year 7 (RR 0·03, 95% CI 0·01–0·10), while NVT IPD increased (year 7 RR 2·81, 95% CI 2·12–3·71). Among adults, decreases in overall IPD also occurred but were smaller and more variable by site than among children. At year 7 after introduction, significant reductions were observed (18–49 year-olds [RR 0·52, 95% CI 0·29–0·91], 50–64 year-olds [RR 0·84, 95% CI 0·77–0·93], and ≥65 year-olds [RR 0·74, 95% CI 0·58–0·95]).
Conclusions
Consistent and significant decreases in both overall and VT IPD in children occurred quickly and were sustained for 7 years after PCV7 introduction, supporting use of PCVs. Increases in NVT IPD occurred in most sites, with variable magnitude. These findings may not represent the experience in low-income countries or the effects after introduction of higher valency PCVs. High-quality, population-based surveillance of serotype-specific IPD rates is needed to monitor vaccine impact as more countries, including low-income countries, introduce PCVs and as higher valency PCVs are used.
Please see later in the article for the Editors' Summary
Editors’ Summary
Background
Pneumococcal disease–a major cause of illness and death in children and adults worldwide–is caused by Streptococcus pneumoniae, a bacterium that often colonizes the nose and throat harmlessly. Unfortunately, S. pneumoniae occasionally spreads into the lungs, bloodstream, or covering of the brain, where it causes pneumonia, septicemia, and meningitis, respectively. These invasive pneumococcal diseases (IPDs) can usually be successfully treated with antibiotics but can be fatal. Consequently, it is better to avoid infection through vaccination. Vaccination primes the immune system to recognize and attack disease-causing organisms (pathogens) rapidly and effectively by exposing it to weakened or dead pathogens or to pathogen molecules that it recognizes as foreign (antigens). Because there are more than 90 S. pneumoniae variants or “serotypes,” each characterized by a different antigenic polysaccharide (complex sugar) coat, vaccines that protect against S. pneumoniae have to include multiple serotypes. Thus, the pneumococcal conjugate vaccine PCV7, which was introduced into the US infant immunization regimen in 2000, contains polysaccharides from the seven S. pneumoniae serotypes mainly responsible for IPD in the US at that time.
Why Was This Study Done?
Vaccination with PCV7 was subsequently introduced in several other high- and middle-income countries, and IPD caused by the serotypes included in the vaccine declined substantially in children and in adults (because of reduced bacterial transmission and herd protection) in the US and virtually all these countries. However, increases in IPD caused by non-vaccine serotypes occurred in some settings, presumably because of “serotype replacement.” PCV7 prevents both IPD caused by the serotypes it contains and carriage of these serotypes. Consequently, after vaccination, previously less common, non-vaccine serotypes can colonize the nose and throat, some of which can cause IPD. In July 2010, a World Health Organization expert consultation on serotype replacement called for a comprehensive analysis of the magnitude and variability of pneumococcal serotype replacement following PCV7 use to help guide the introduction of PCVs in low-income countries, where most pneumococcal deaths occur. In this pooled analysis of data from multiple surveillance sites, the researchers investigate serotype-specific changes in IPD after PCV7 introduction using a standardized approach.
What Did the Researchers Do and Find?
The researchers identified 21 databases that had data about the rate of IPD for at least 2 years before and 1 year after PCV7 introduction. They estimated whether changes in IPD rates had occurred after PCV7 introduction by calculating site-specific rate ratios–the observed IPD rate for each post-PCV7 year divided by the expected IPD rate in the absence of PCV7 extrapolated from the pre-PCV7 rate. Finally, they used a statistical approach (random effects meta-analysis) to estimate summary (pooled) rate ratios. For children under 5 years old, the overall number of observed cases of IPD in the first year after the introduction of PCV7 was about half the expected number; this reduction in IPD continued through year 7 after PCV7 introduction. Notably, the rate of IPD caused by the S. pneumonia serotypes in PCV7 decreased every year, but the rate of IPD caused by non-vaccine serotypes increased annually. By year 7, the number of cases of IPD caused by non-vaccine serotypes was 3-fold higher than expected, but was still smaller than the decrease in vaccine serotypes, thereby leading to the decrease in overall IPD. Finally, smaller decreases in overall IPD also occurred among adults but occurred later than in children 2 years or more after PCV7 introduction.
What Do These Findings Mean?
These findings show that consistent, rapid, and sustained decreases in overall IPD and in IPD caused by serotypes included in PCV7 occurred in children and thus support the use of PCVs. The small increases in IPD caused by non-vaccine serotypes that these findings reveal are likely to be the result of serotype replacement, but changes in antibiotic use and other factors may also be involved. These findings have several important limitations, however. For example, PCV7 is no longer made and extrapolation of these results to newer PCV10 and PCV13 formulations should be done cautiously. On the other hand, many of the serotypes causing serotype replacement after PCV7 are included in these higher valency vaccines. Moreover, because the data analyzed in this study mainly came from high-income countries, these findings may not be generalizable to low-income countries. Nevertheless, based on their analysis, the researchers make recommendations for the collection and analysis of IPD surveillance data that should allow valid interpretations of the effect of PCVs on IPD to be made, an important requisite for making sound policy decisions about vaccination against pneumococcal disease.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001517.
The US Centers for Disease Control and Prevention provides information for patients and health professionals on all aspects of pneumococcal disease and pneumococcal vaccination, including personal stories
Public Health England provides information on pneumococcal disease and on pneumococcal vaccines
The World Health Organization also provides information on pneumococcal vaccines
The not-for-profit Immunization Action Coalition has information on pneumococcal disease, including personal stories
MedlinePlus has links to further information about pneumococcal infections (in English and Spanish)
The International Vaccine Access Center at Johns Hopkins Bloomberg School of Public Health has more information on introduction of pneumococcal conjugate vaccines in low-income countries
doi:10.1371/journal.pmed.1001517
PMCID: PMC3782411  PMID: 24086113
3.  Effect of Seven-Valent Pneumococcal Conjugate Vaccine on Staphylococcus aureus Colonisation in a Randomised Controlled Trial 
PLoS ONE  2011;6(6):e20229.
Background
Heptavalent pneumococcal conjugate vaccine (PCV7) shifts nasopharyngeal colonisation with vaccine serotype pneumococci towards nonvaccine serotypes. Because of the reported negative association of vaccine serotype pneumococci and Staphylococcus aureus in the nasopharynx, we explored the effect of PCV7 on nasopharyngeal colonisation with S. aureus in children and parents.
Methodology/Principal Findings
This study was part of a randomised controlled trial on the effect of PCV7 on pneumococcal carriage, enrolling healthy newborns who were randomly assigned (1∶1∶1) to receive PCV7 (1) at 2 and 4 months of age (2) at 2, 4 and 11 months or (3) no PCV7 (controls). Nasopharyngeal colonisation of S. aureus was a planned secondary outcome. Nasopharyngeal swabs were obtained from all children over a 2-year period with 6-months interval and from one parent at the child's age of 12 and 24 months and cultured for Streptococcus pneumoniae and S. aureus. Between July 2005 and February 2006, 1005 children were enrolled and received either 2-doses of PCV7 (n = 336), 2+1-doses (336) or no dose (n = 333) before PCV7 implementation in the Dutch national immunization program. S. aureus colonisation had doubled in children in the 2+1-dose group at 12 months of age compared with unvaccinated controls (10.1% versus 5.0%; p = 0.019). A negative association for co-colonisation of S. pneumoniae and S. aureus was observed for both vaccine serotype (adjusted odds ratio (aOR) 0.53, 95% confidence interval (CI) 0.38–0.74) and nonvaccine serotype pneumococci (aOR 0.67, 95% CI 0.52–0.88).
Conclusions/Significance
PCV7 induces a temporary increase in S. aureus colonisation in children around 12 months of age after a 2+1-dose PCV7 schedule. The potential clinical consequences are unknown and monitoring is warranted.
Trial Registration
ClinicalTrials.gov NCT00189020
doi:10.1371/journal.pone.0020229
PMCID: PMC3112202  PMID: 21695210
4.  Effect of Pneumococcal Conjugate Vaccination on Serotype-Specific Carriage and Invasive Disease in England: A Cross-Sectional Study 
PLoS Medicine  2011;8(4):e1001017.
A cross sectional study by Stefan Flasche and coworkers document the serotype replacement of Streptococcus pneumoniae that has occurred in England since the introduction of PCV7 vaccination.
Background
We investigated the effect of the 7-valent pneumococcal conjugate vaccine (PCV7) programme in England on serotype-specific carriage and invasive disease to help understand its role in serotype replacement and predict the impact of higher valency vaccines.
Methods and Findings
Nasopharyngeal swabs were taken from children <5 y old and family members (n = 400) 2 y after introduction of PCV7 into routine immunization programs. Proportions carrying Streptococcus pneumoniae and serotype distribution among carried isolates were compared with a similar population prior to PCV7 introduction. Serotype-specific case∶carrier ratios (CCRs) were estimated using national data on invasive disease. In vaccinated children and their contacts vaccine-type (VT) carriage decreased, but was offset by an increase in non-VT carriage, with no significant overall change in carriage prevalence, odds ratio 1.06 (95% confidence interval 0.76–1.49). The lower CCRs of the replacing serotypes resulted in a net reduction in invasive disease in children. The additional serotypes covered by higher valency vaccines had low carriage but high disease prevalence. Serotype 11C emerged as predominant in carriage but caused no invasive disease whereas 8, 12F, and 22F emerged in disease but had very low carriage prevalence.
Conclusion
Because the additional serotypes included in PCV10/13 have high CCRs but low carriage prevalence, vaccinating against them is likely to significantly reduce invasive disease with less risk of serotype replacement. However, a few serotypes with high CCRs could mitigate the benefits of higher valency vaccines. Assessment of the effect of PCV on carriage as well as invasive disease should be part of enhanced surveillance activities for PCVs.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Pneumococcal diseases—major causes of illness and death in children and adults worldwide—are caused by Streptococcus pneumoniae, a bacterium that often colonizes the nasopharynx (the area of the throat behind the nose). Carriage of S. pneumoniae bacteria does not necessarily cause disease. However, these bacteria can cause local, noninvasive diseases such as ear infections and sinusitis and, more rarely, they can spread into the lungs, the bloodstream, or the covering of the brain, where they cause pneumonia, septicemia, and meningitis, respectively. Although these invasive pneumococcal diseases (IPDs) can be successfully treated if administered early, they can be fatal. Consequently, it is better to protect people against IPDs through vaccination than risk infection. Vaccination primes the immune system to recognize and attack disease-causing organisms (pathogens) rapidly and effectively by exposing it to weakened or dead pathogens or to pathogen molecules (antigens) that it recognizes as foreign.
Why Was This Study Done?
There are more than 90 S. pneumoniae variants or “serotypes” characterized by different polysaccharide (complex sugar) coats, which trigger the immune response against S. pneumoniae and determine each serotype's propensity to cause IPD. The pneumococcal conjugate vaccine PCV7 contains polysaccharides (linked to a protein carrier) from the seven serotypes mainly responsible for IPD in the US in 2000 when routine childhood PCV7 vaccination was introduced in that country. PCV7 prevents both IPD caused by the serotypes it contains and carriage of these serotypes, which means that, after vaccination, previously uncommon, nonvaccine serotypes can colonize the nasopharynx. If these serotypes have a high invasiveness potential, then “serotype replacement” could reduce the benefits of vaccination. In this cross-sectional study (a study that investigates the relationship between a disease and an intervention in a population at one time point), the researchers investigate the effect of the UK PCV7 vaccination program (which began in 2006) on serotype-specific carriage and IPD in England to understand the role of PCV7 in serotype replacement and to predict the likely impact of vaccines containing additional serotypes (higher valency vaccines).
What Did the Researchers Do and Find?
The researchers examined nasopharyngeal swabs taken from PCV7-vaccinated children and their families for S. pneumoniae, determined the serotype of any bacteria they found, and compared the proportion of people carrying S. pneumoniae (carrier prevalence) and the distribution of serotypes in this study population and in a similar population that was studied in 2000/2001, before the PCV vaccination program began. Overall, there was no statistically significant change in carrier prevalence, but carriage of vaccine serotypes decreased in vaccinated children and their contacts whereas carriage of nonvaccine serotypes increased. The serotype-specific case-to-carrier ratios (CCRs; a measure of serotype invasiveness that was estimated using national IPD data) of the replacing serotypes were generally lower than those of the original serotypes, which resulted in a net reduction in IPD in children. Moreover, before PCV7 vaccination began, PCV7-included serotypes were responsible for similar proportions of pneumococcal carriage and disease; afterwards, the additional serotypes present in the higher valency vaccines PVC10 and PVC13 were responsible for a higher proportion of disease than carriage. Finally, three serotypes not present in the higher valency vaccines with outstandingly high CCRs (high invasiveness potential) are identified.
What Do These Findings Mean?
These findings document the serotype replacement of S. pneumoniae that has occurred in England since the introduction of PCV7 vaccination and highlight the importance of assessing the effects of pneumococcal vaccines on carriage as well as on IPDs. Because the additional serotypes included in PCV10 and PCV13 have high CCRs but low carriage prevalence and because most of the potential replacement serotypes have low CCRs, these findings suggest that the introduction of higher valency vaccines should further reduce the occurrence of invasive disease with limited risk of additional serotype replacement. However, the emergence of a few serotypes that have high CCRs but are not included in PCV10 and PCV13 might mitigate the benefits of higher valency vaccines. In other words, although the recent introduction of PCV13 into UK vaccination schedules is likely to have an incremental benefit on the reduction of IPD compared to PCV7, this benefit might be offset by increases in the carriage of some high CCR serotypes. These serotypes should be considered for inclusion in future vaccines.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001017.
The US Centers for Disease Control and Prevention provides information for patients and health professionals on all aspects of pneumococcal disease and pneumococcal vaccination
The US National Foundation for Infectious Diseases has a fact sheet on pneumococcal diseases
The UK Health Protection Agency provides information on pneumococcal disease and on pneumococcal vaccines
The World Health Organization also provides information on pneumococcal vaccines
MedlinePlus has links to further information about pneumococcal infections (in English and Spanish)
doi:10.1371/journal.pmed.1001017
PMCID: PMC3071372  PMID: 21483718
5.  Decrease in Pneumococcal Co-Colonization following Vaccination with the Seven-Valent Pneumococcal Conjugate Vaccine 
PLoS ONE  2012;7(1):e30235.
Understanding the epidemiology of pneumococcal co-colonization is important for monitoring vaccine effectiveness and the occurrence of horizontal gene transfer between pneumococcal strains. In this study we aimed to evaluate the impact of the seven-valent pneumococcal conjugate vaccine (PCV7) on pneumococcal co-colonization among Portuguese children. Nasopharyngeal samples from children up to 6 years old yielding a pneumococcal culture were clustered into three groups: pre-vaccine era (n = 173), unvaccinated children of the vaccine era (n = 169), and fully vaccinated children (4 doses; n = 150). Co-colonization, serotype identification, and relative serotype abundance were detected by analysis of DNA of the total bacterial growth of the primary culture plate using the plyNCR-RFLP method and a molecular serotyping microarray-based strategy. The plyNCR-RFLP method detected an overall co-colonization rate of 20.1%. Microarray analysis confirmed the plyNCR-RFLP results. Vaccination status was the only factor found to be significantly associated with co-colonization: co-colonization rates were significantly lower (p = 0.004; Fisher's exact test) among fully vaccinated children (8.0%) than among children from the pre-PCV7 era (17.3%) or unvaccinated children of the PCV7 era (18.3%). In the PCV7 era there were significantly less non-vaccine type (NVT) co-colonization events than would be expected based on the NVT distribution observed in the pre-PCV7 era (p = 0.024). In conclusion, vaccination with PCV7 resulted in a lower co-colonization rate due to an asymmetric distribution between NVTs found in single and co-colonized samples. We propose that some NVTs prevalent in the PCV7 era are more competitive than others, hampering their co-existence in the same niche. This result may have important implications since a decrease in co-colonization events is expected to translate in decreased opportunities for horizontal gene transfer, hindering pneumococcal evolution events such as acquisition of antibiotic resistance determinants or capsular switch. This might represent a novel potential benefit of conjugate vaccines.
doi:10.1371/journal.pone.0030235
PMCID: PMC3257259  PMID: 22253924
6.  Association between Respiratory Syncytial Virus Activity and Pneumococcal Disease in Infants: A Time Series Analysis of US Hospitalization Data 
PLoS Medicine  2015;12(1):e1001776.
Daniel Weinberger and colleagues examine a possible interaction between two serious respiratory infections in children under 2 years of age.
Please see later in the article for the Editors' Summary
Background
The importance of bacterial infections following respiratory syncytial virus (RSV) remains unclear. We evaluated whether variations in RSV epidemic timing and magnitude are associated with variations in pneumococcal disease epidemics and whether changes in pneumococcal disease following the introduction of seven-valent pneumococcal conjugate vaccine (PCV7) were associated with changes in the rate of hospitalizations coded as RSV.
Methods and Findings
We used data from the State Inpatient Databases (Agency for Healthcare Research and Quality), including >700,000 RSV hospitalizations and >16,000 pneumococcal pneumonia hospitalizations in 36 states (1992/1993–2008/2009). Harmonic regression was used to estimate the timing of the average seasonal peak of RSV, pneumococcal pneumonia, and pneumococcal septicemia. We then estimated the association between the incidence of pneumococcal disease in children and the activity of RSV and influenza (where there is a well-established association) using Poisson regression models that controlled for shared seasonal variations. Finally, we estimated changes in the rate of hospitalizations coded as RSV following the introduction of PCV7. RSV and pneumococcal pneumonia shared a distinctive spatiotemporal pattern (correlation of peak timing: ρ = 0.70, 95% CI: 0.45, 0.84). RSV was associated with a significant increase in the incidence of pneumococcal pneumonia in children aged <1 y (attributable percent [AP]: 20.3%, 95% CI: 17.4%, 25.1%) and among children aged 1–2 y (AP: 10.1%, 95% CI: 7.6%, 13.9%). Influenza was also associated with an increase in pneumococcal pneumonia among children aged 1–2 y (AP: 3.2%, 95% CI: 1.7%, 4.7%). Finally, we observed a significant decline in RSV-coded hospitalizations in children aged <1 y following PCV7 introduction (−18.0%, 95% CI: −22.6%, −13.1%, for 2004/2005–2008/2009 versus 1997/1998–1999/2000). This study used aggregated hospitalization data, and studies with individual-level, laboratory-confirmed data could help to confirm these findings.
Conclusions
These analyses provide evidence for an interaction between RSV and pneumococcal pneumonia. Future work should evaluate whether treatment for secondary bacterial infections could be considered for pneumonia cases even if a child tests positive for RSV.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Respiratory infections—bacterial and viral infections of the lungs and the airways (the tubes that take oxygen-rich air to the lungs)—are major causes of illness and death in children worldwide. Pneumonia (infection of the lungs) alone is responsible for about 15% of all child deaths. The leading cause of bacterial pneumonia in children is Streptococcus pneumoniae, which is transmitted through contact with infected respiratory secretions. S. pneumoniae usually causes noninvasive diseases such as bronchitis, but sometimes the bacteria invade the lungs, the bloodstream, or the covering of the brain, where they cause pneumonia, septicemia, or meningitis, respectively. These potentially fatal invasive pneumococcal diseases can be treated with antibiotics but can also be prevented by vaccination with pneumococcal conjugate vaccines such as PCV7. The leading cause of viral pneumonia is respiratory syncytial virus (RSV), which is also readily transmitted through contact with infected respiratory secretions. Almost all children have an RSV infection before their second birthday—RSV usually causes a mild cold-like illness. However, some children infected with RSV develop pneumonia and have to be admitted to hospital for supportive care such as the provision of supplemental oxygen; there is no specific treatment for RSV infection.
Why Was This Study Done?
Co-infections with bacteria and viruses can sometimes have a synergistic effect and lead to more severe disease than an infection with either type of pathogen (disease-causing organism) alone. For example, influenza infections increase the risk of invasive pneumococcal disease. But does pneumococcal disease also interact with RSV infection? It is important to understand the interaction between pneumococcal disease and RSV to improve the treatment of respiratory infections in young children, but the importance of bacterial infections following RSV infection is currently unclear. Here, the researchers undertake a time series analysis of US hospitalization data to investigate the association between RSV activity and pneumococcal disease in infants. Time series analysis uses statistical methods to analyze data collected at successive, evenly spaced time points.
What Did the Researchers Do and Find?
For their analysis, the researchers used data collected between 1992/1993 and 2008/2009 by the State Inpatient Databases on more than 700,000 hospitalizations for RSV and more than 16,000 hospitalizations for pneumococcal pneumonia or septicemia among children under two years old in 36 US states. Using a statistical technique called harmonic regression to measure seasonal variations in disease incidence (the rate of occurrence of new cases of a disease), the researchers show that RSV and pneumococcal pneumonia shared a distinctive spatiotemporal pattern over the study period. Next, using Poisson regression models (another type of statistical analysis), they show that RSV was associated with significant increases (increases unlikely to have happened by chance) in the incidence of pneumococcal disease. Among children under one year old, 20.3% of pneumococcal pneumonia cases were associated with RSV activity; among children 1–2 years old, 10.1% of pneumococcal pneumonia cases were associated with RSV activity. Finally, the researchers report that following the introduction of routine vaccination in the US against S. pneumoniae with PCV7 in 2000, there was a significant decline in hospitalizations for RSV among children under one year old.
What Do These Findings Mean?
These findings provide evidence for an interaction between RSV and pneumococcal pneumonia and indicate that RSV is associated with increases in the incidence of pneumococcal pneumonia, particularly in young infants. Notably, the finding that RSV hospitalizations declined after the introduction of routine pneumococcal vaccination suggests that some RSV hospitalizations may have a joint viral–bacterial etiology (cause), although it is possible that PCV7 vaccination reduced the diagnosis of RSV because fewer children were hospitalized with pneumococcal disease and subsequently tested for RSV. Because this is an ecological study (an observational investigation that looks at risk factors and outcomes in temporally and geographically defined populations), these findings do not provide evidence for a causal link between hospitalizations for RSV and pneumococcal pneumonia. The similar spatiotemporal patterns for the two infections might reflect another unknown factor shared by the children who were hospitalized for RSV or pneumococcal pneumonia. Moreover, because pooled hospitalization discharge data were used in this study, these results need to be confirmed through analysis of individual-level, laboratory-confirmed data. Importantly, however, these findings support the initiation of studies to determine whether treatment for bacterial infections should be considered for children with pneumonia even if they have tested positive for RSV.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001776.
The US National Heart, Lung, and Blood Institute provides information about the respiratory system and about pneumonia
The US Centers for Disease Control and Prevention provides information on all aspects of pneumococcal disease and pneumococcal vaccination, including personal stories and information about RSV infection
The UK National Health Service Choices website provides information about pneumonia (including a personal story) and about pneumococcal diseases
KidsHealth, a website provided by the US-based non-profit Nemours Foundation, includes information on pneumonia and on RSV (in English and Spanish)
MedlinePlus provides links to other resources about pneumonia, RSV infections, and pneumococcal infections (in English and Spanish)
HCUPnet provides aggregated hospitalization data from the State Inpatient Databases used in this study
doi:10.1371/journal.pmed.1001776
PMCID: PMC4285401  PMID: 25562317
7.  Key Role for Clumping Factor B in Staphylococcus aureus Nasal Colonization of Humans 
PLoS Medicine  2008;5(1):e17.
Background
Staphylococcus aureus permanently colonizes the vestibulum nasi of one-fifth of the human population, which is a risk factor for autoinfection. The precise mechanisms whereby S. aureus colonizes the nose are still unknown. The staphylococcal cell-wall protein clumping factor B (ClfB) promotes adhesion to squamous epithelial cells in vitro and might be a physiologically relevant colonization factor.
Methods and Findings
We define the role of the staphylococcal cytokeratin-binding protein ClfB in the colonization process by artificial inoculation of human volunteers with a wild-type strain and its single locus ClfB knock-out mutant. The wild-type strain adhered to immobilized recombinant human cytokeratin 10 (CK10) in a dose-dependent manner, whereas the ClfB− mutant did not. The wild-type strain, when grown to the stationary phase in a poor growth medium, adhered better to CK10, than when the same strain was grown in a nutrient-rich environment. Nasal cultures show that the mutant strain is eliminated from the nares significantly faster than the wild-type strain, with a median of 3 ± 1 d versus 7 ± 4 d (p = 0.006). Furthermore, the wild-type strain was still present in the nares of 3/16 volunteers at the end of follow-up, and the mutant strain was not.
Conclusions
The human colonization model, in combination with in vitro data, shows that the ClfB protein is a major determinant of nasal-persistent S. aureus carriage and is a candidate target molecule for decolonization strategies.
Heiman Wertheim and colleagues investigate the role ofStaphylococcus aureus clumping factor B, a cell wall protein, in bacterial adherence to epithelial cells and persistent colonization of human nostrils.
Editors' Summary
Background.
Staphylococcus aureus are common bacteria that normally live on the skin. They also colonize the nostrils of about one in five adults permanently and another one in three adults intermittently. Although these bacteria usually coexist peacefully with their human carriers, they can cause minor infections such as pimples and boils if they enter the skin through a cut or a sore. They can also cause potentially life-threatening infections such as blood poisoning and pneumonia. These serious, invasive infections are often “autoinfections.” That is, they are caused by strains of S. aureus that are present in the patient's nose before they become ill. Minor S. aureus infections can be treated without antibiotics—by draining a boil, for example. Invasive infections are usually treated with antibiotics such as flucloxacillin.
Why Was This Study Done?
There is no effective vaccine against S. aureus infections and these bacteria are becoming increasingly resistant to flucloxacillin, methicillin, and other antibiotics. Worryingly, although methicillin-resistant S. aureus (MRSA) infections occur most frequently among people in health-care facilities who have weakened immune systems, community-acquired MRSA infections among otherwise healthy people are increasingly common. Consequently, new ways to avoid S. aureus infections are urgently needed. Because persistent nasal carriers of S. aureus have an increased risk of infection, one strategy might be to prevent nasal colonization with S. aureus. How these bacteria colonize the nose is poorly understood, but is likely to involve interactions between molecules expressed on the surface of the bacteria and molecules expressed on the surface of the cells lining the nostrils. In this study, the researchers use a new human nasal colonization assay to investigate the involvement of a bacterial surface protein called clumping factor B (ClfB) in the survival of S. aureus in the human nose. ClfB binds to cytokeratin 10, a protein expressed by cells lining the human nose, and has been implicated in the colonization of mouse noses by S. aureus.
What Did the Researchers Do and Find?
The researchers introduced a strain of S. aureus that made ClfB and an otherwise identical, mutant strain that lacked ClfB into the nostrils of healthy human volunteers and measured how long the two strains survived. For safety reasons, the S. aureus strains used in this study have an additional defect that makes them less likely to colonize and persist in the human nose than the strains found in natural S. aureus carriers. Although both strains grew equally well in the laboratory, the mutant strain was eliminated from human noses much quicker than the strain that made ClfB. Mutant bacteria lacking ClfB were cleared from the nostrils of all the volunteers within two weeks, whereas the bacteria that made ClfB were still present in some of the volunteers four weeks after their introduction. When the researchers investigated how well the two strains stuck to a layer of human cytokeratin 10 in a plastic dish, they found that the bacteria that made ClfB stuck to the human protein but the mutant bacteria did not. Furthermore, the strain with ClfB stuck particularly well to cytokeratin 10 when the bacteria had been grown in conditions where nutrients were limiting, a situation that mimics bacterial growth in the human nose.
What Do These Findings Mean?
These findings show that ClfB is an important factor in the establishment of human nasal colonization by S. aureus and suggest that ClfB might be a target for S. aureus decolonization strategies. Furthermore, although ClfB is clearly important in human nasal colonization by S. aureus, it is likely that additional bacterial factors will also be involved in this process. The human nasal colonization model used in this study may be useful in the identification of these additional factors and also as a test bed for potential S. aureus decolonization strategies.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050017.
The MedlinePlus encyclopedia has a page on Staphylococcus aureus and MRSA (in English and Spanish)
The US Centers for Disease Control and Prevention provides information on community-associated MRSA (in English and Spanish)
The UK National Health Service's health website (NHS Direct) provides information about staphylococcal infections and about MRSA
The UK Health Protection Agency provides information about Staphylococcus aureus
doi:10.1371/journal.pmed.0050017
PMCID: PMC2194749  PMID: 18198942
8.  Community-Acquired Methicillin-Resistant Staphylococcus aureus: Prevalence and Risk Factors  
Journal of Athletic Training  2006;41(3):337-340.
Reference/Citation: Salgado CD, Farr BM, Calfee DP. Community-acquired methicillin-resistant Staphylococcus aureus: a meta-analysis of prevalence and risk factors. Clin Infect Dis.20033613113912522744.
Clinical Question: What are the prevalence rates and risk factors associated with community-acquired methicillin-resistant Staphylococcus aureus (MRSA)?
Data Sources: Studies were identified by searching MEDLINE (January 1966–February 2002) and abstracts from scientific meetings (1996–2001). Reviews of citations and reference lists were performed to identify additional eligible studies. The search terms included Staphylococcus aureus , infection, colonization, methicillin resistance, community-acquired, community-onset, prevalence, frequency, and risk factors.
Study Selection: The search was limited to English-language investigations identified from the electronic and manual searches. Studies were divided into 2 groups, as follows: group 1, retrospective or prospective studies that reported the prevalence of community-acquired MRSA (CA-MRSA) among hospital patients who were colonized (presence of bacteria without infection) or infected with MRSA; and group 2, studies that reported the prevalence of MRSA colonization in the community. The studies were evaluated independently by 2 authors, and case reports were excluded.
Data Extraction: Data extraction and study quality assessment procedures were not fully explained. The outcome measures for hospital patients were definitions of CA-MRSA used in the study, prevalence of CA-MRSA, sample size, number and type of risk factors assessed, and number of patients with ≥1 health care–associated risk factor. The studies were grouped based on type, retrospective or prospective. The pooled prevalence of CA-MRSA was calculated for each group (retrospective or prospective) and was limited to the prevalence among patients with MRSA. The proportion of patients who reported ≥1 health care–associated risk factor was also calculated. The outcome measures among community members were prevalence of MRSA, sample size, number and type of risk factors assessed, number of members with ≥1 risk factor, and MRSA strain type, when available. The studies were grouped based on the population surveyed (surveillance cultures, contacts with MRSA-colonized individuals, or sport team members or day care contacts). The pooled prevalence of MRSA colonization and the proportion of members with ≥1 reported risk factor were calculated for each of the study populations listed above. The proportion of CA-MRSA strains that represented typical nosocomial (infection that develops in the hospital) strains was also determined. Chi-square analysis was performed to compare proportions and to determine heterogeneity among the studies.
Main Results: Specific search criteria identified 104 studies for review, of which 57 met inclusion and exclusion criteria. Thirty-nine studies focused on CA-MRSA among hospital patients who were colonized or infected with MRSA. Of these, 32 groups (27 retrospective, 5 prospective) reported the prevalence of CA-MRSA using clinical specimens. Seven groups identified risk factors of CA-MRSA among patients previously diagnosed with MRSA. Thirteen different definitions of CA-MRSA were used in 31 of these studies, and 8 groups did not report the definitions used. The isolation of MRSA within 48 hours of hospital admission, with or without recent admission to a hospital or long-term care facility, or previous history of MRSA colonization were the most common definitions in the studies.
The risk factors included recent hospitalization (range, 1–24 months before identification of MRSA infection or colonization), recent outpatient visit (usually within 12 months), recent nursing home admission (usually within 12 months), recent antibiotic exposure (range, 1–12 months), chronic illness (eg, end-stage renal disease, diabetes, or malignancy), injection drug use, and close contact with a person who had risk factor(s) for MRSA acquisition. The presence of health care–associated risk factors was examined in 17 of the retrospective studies, and the median number of factors studied was 2 (range, 1–6). Among 4121 patients in these studies, 86.1% were found to have ≥1 health care–associated risk factor. All authors of prospective studies (5) examined health care–associated risk factors, and the median number of factors studied was 4 (range, 2–4). Among the 636 patients, 86.9% had ≥1 health care–associated risk factor. In the 7 studies with 515 patients previously diagnosed with MRSA, 84.7% had ≥1 health care–associated risk factor. The most common risk factors assessed in the 17 retrospective studies were recent hospitalization and chronic illness requiring health care visits.
The pooled CA-MRSA prevalence was 30.2% (range, 1.9%– 96%) among 5932 patients from the 27 retrospective studies and 37.3% (range, 18.2%–51.2%) among 636 patients from the 5 prospective studies. Eighteen groups reported the prevalence of MRSA colonization in the community. Ten of these reported MRSA prevalence using surveillance cultures, 4 examined colonization status of household contacts with discharged hospital patients with nosocomial MRSA colonization, and 4 reported colonization status of sports team members or day care contacts of persons colonized with MRSA. In the 10 surveillance studies, the pooled MRSA colonization prevalence was 1.3% (95% confidence interval [CI], 1.04%–1.53%; range, 0.2%– 7.4%) among 8350 community members. Nine of these studies were stratified based on culture samples taken before the assessment of risk factors, and among 4825 people, the pooled MRSA colonization prevalence was 2.1%. When examining health care–associated risk factors, the median number of factors studied was 5 (range, 1–10), and 47.5% with MRSA had ≥1 health care–associated risk factor. The risk factors included those previously identified. In the remaining surveillance study, the MRSA colonization prevalence was 0.20% among 3525 people without prior health care contact. Compared with subjects in the 9 stratified studies with a health care contact, subjects in this study were 90% less likely to have MRSA (relative risk, 0.10; 95% CI, 0.05–0.21). Cultures for 3898 subjects in 7 of the 10 surveillance studies were obtained at the time of a hospital admission, an outpatient clinic visit, or an emergency department visit, and the pooled prevalence of MRSA colonization was 1.8%. In 3 studies in which cultures were obtained outside of a health care facility (schools, day care centers, homeless shelters, or military bases), the pooled MRSA colonization prevalence among 4452 subjects was reported to be 0.76%. Therefore, subjects in a health care facility were 2.35 times more likely to carry MRSA than were subjects outside of a health care facility (95% CI, 1.56–3.53). In one study examining 94 subjects in a semiclosed community, the prevalence of MRSA colonization was 7.4%. These subjects were 36 times more likely to carry MRSA than were subjects who were not in a semiclosed community (95% CI, 13.7–94.7).
The studies also identified 70 MRSA isolates (pure form of an organism in a microbial culture) from subjects who reported no health care–associated risk factors. Strain typing was performed with 32 isolates, and 29 (91%) isolates were similar to strains identified in hospitals. The colonization status of 191 household contacts of 93 patients with nosocomial MRSA colonization discharged from the hospital was examined in 4 studies. The results demonstrated that 17.8% of the contact subjects were colonized with a strain of MRSA having the same antibiogram (record of the susceptibility of bacteria to antibiotics) as the index case (initial individual with the strain). The authors reported that subjects who had household contacts with MRSA-colonized patients were 14 times more likely to be colonized than were community subjects without a known MRSA contact (95% CI, 9.8–20.1). In 4 studies examining 517 sports team members or day care contacts of persons known to be colonized with MRSA, 5.4% demonstrated colonization of MRSA with the same strain as the index case.
Conclusions: Based on the available data, the prevalence of MRSA among community members without health care–associated risk factors was relatively low. However, 85% of hospital patients diagnosed with CA-MRSA and 47.5% of healthy community members colonized with MRSA were found to have ≥1 health care–associated risk factor. The risk factors identified were recent hospitalization, outpatient visit, nursing home admission, antibiotic exposure, chronic illness, injection drug use, and close contact with a person with risk factor(s). Most MRSA colonization occurred among community members who had health care–associated risk factors or contact with persons with risk factors. The evidence indicated that control of MRSA in the community may require control of MRSA in the health care setting (hospital, health care office, and nursing home). The absence of a standardized definition for CA-MRSA and questions regarding the actual site of colonization versus acquisition should be considered in the interpretation of these findings.
PMCID: PMC1569547  PMID: 17043704
infectious diseases
9.  New Patterns in the Otopathogens Causing Acute Otitis Media Six to Eight Years After Introduction of Pneumococcal Conjugate Vaccine 
Objective
To describe NP and AOM otopathogens during the time frame 2007-2009, six to eight years after the introduction of 7-valent pneumococcal conjugate (PCV7) in the US and to compare nasopharyngeal (NP) colonization and acute otitis media (AOM) microbiology in children 6 to 36 months of age having 1st and 2nd AOM episodes with children who are otitis prone.
Methods
Prospectively, the microbiology of NP colonization and AOM episodes was determined in 120 children with absent or infrequent AOM episodes. NP samples were collected at 7 routine visits between 6 and 30 months of age and at the time of AOM. For 1st and subsequent AOM episodes, middle ear fluid (MEF) was obtained by tympanocentesis. Eighty otitis prone children were comparatively studied. All 200 children received age-appropriate doses of PCV7.
Results
We found PCV7 serotypes were virtually absent: (0.9% isolated from both NP and MEF) in both study groups. However, non-PCV7 serotypes replaced PCV serotypes such that the frequency of isolation of S. pneumoniae (Spn) was nearly equal to that of non-typeable Haemophilus influenzae (NTHi). M. catarrhalis (Mcat) was less common and Staphylococcus aureus infrequent in the NP and MEF from the two groups. The proportion of Spn, NTHi and Mcat causing AOM was similar in children with 1st and 2nd AOM episodes compared to otitis prone children. However, oxacillin-resistant Spn isolated from the NP and MEF was 19% for the absent/infrequent and 58% for the otitis prone groups, p<0.0001. Beta-lactamase producing NTHi occurred more frequently in the otitis prone group, p=0.04.
Conclusions
Six to 8 years after widespread use of PCV7, Spn strains expressing vaccine-type serotypes have virtually disappeared from the NP and MEF of vaccinated children. NP colonization and AOM has changed to non-PCV7 strains of Spn. NTHi continues to be a major AOM pathogen. The otopathogens in 1st and 2nd AOM and in otitis prone children are very similar although Spn and NTHi are more often antibiotic resistant in the otitis prone.
doi:10.1097/INF.0b013e3181c1bc48
PMCID: PMC3959886  PMID: 19935445
Nasopharyngeal; AOM; S. pneumoniae; H. influenzae; M. catarrhalis
10.  Factors Associated with Nasal Colonization of Methicillin-Resistant Staphylococcus aureus among Healthy Children in Taiwan▿  
Journal of Clinical Microbiology  2010;49(1):131-137.
Methicillin-resistant Staphylococcus aureus (MRSA) has been identified as a major cause of community-associated (CA) S. aureus infections in the past decade. The main reservoir in the community for MRSA and the factors contributing to its worldwide spread remain poorly defined. Between July 2005 and June 2008, a total of 6,057 healthy children 2 to 60 months of age were screened for carriage of S. aureus and Streptococcus pneumoniae in Taiwan. The prevalence and epidemiological factors influencing MRSA carriage were determined. MRSA strains were tested for antimicrobial susceptibility and underwent molecular characterization. The overall prevalences of MRSA and S. aureus carriage were 7.8% and 23.2%, respectively. A majority (88%) of MRSA isolates belonged to a common Asian-Pacific CA-MRSA lineage, multilocus sequence type 59, and were resistant to multiple non-beta-lactam antibiotics. The carriage rate of MRSA was higher among subjects 2 to 6 months old (P < 0.0001), residing in northern Taiwan (P = 0.0003), and enrolled later in the study (P < 0.0001). MRSA colonization was associated with the number of children in the family (adjusted odds ratio [aOR], 1.114; 95% confidence interval [CI], 1.002 to 1.240; P = 0.0463) and day care attendance (aOR, 1.530; 95% CI, 1.201 to 1.949; P = 0.0006). Breast feeding (P < 0.0001) and colonization with S. pneumoniae (P = 0.0170) were protective against MRSA colonization. We concluded that epidemic CA-MRSA strains increasingly colonized Taiwanese children between 2005 and 2008. The carriage rate varied significantly across different demographical features. Crowding was an independent environmental risk factor that might accelerate CA-MRSA transmission in the community.
doi:10.1128/JCM.01774-10
PMCID: PMC3020448  PMID: 21084507
11.  Effects of Community-Wide Vaccination with PCV-7 on Pneumococcal Nasopharyngeal Carriage in The Gambia: A Cluster-Randomized Trial 
PLoS Medicine  2011;8(10):e1001107.
In a cluster-randomized trial conducted in Gambian villages, Anna Roca and colleagues find that vaccination of children with pneumococcal conjugate vaccines reduced vaccine-type pneumococcal carriage even among nonvaccinated older children and adults.
Background
Introduction of pneumococcal conjugate vaccines (PCVs) of limited valency is justified in Africa by the high burden of pneumococcal disease. Long-term beneficial effects of PCVs may be countered by serotype replacement. We aimed to determine the impact of PCV-7 vaccination on pneumococcal carriage in rural Gambia.
Methods and Findings
A cluster-randomized (by village) trial of the impact of PCV-7 on pneumococcal nasopharyngeal carriage was conducted in 21 Gambian villages between December 2003 to June 2008 (5,441 inhabitants in 2006). Analysis was complemented with data obtained before vaccination. Because efficacy of PCV-9 in young Gambian children had been shown, it was considered unethical not to give PCV-7 to young children in all of the study villages. PCV-7 was given to children below 30 mo of age and to those born during the trial in all study villages. Villages were randomized (older children and adults) to receive one dose of PCV-7 (11 vaccinated villages) or meningococcal serogroup C conjugate vaccine (10 control villages). Cross-sectional surveys (CSSs) to collect nasopharyngeal swabs were conducted before vaccination (2,094 samples in the baseline CSS), and 4–6, 12, and 22 mo after vaccination (1,168, 1,210, and 446 samples in CSS-1, -2, and -3, respectively).
A time trend analysis showed a marked fall in the prevalence of vaccine-type pneumococcal carriage in all age groups following vaccination (from 23.7% and 26.8% in the baseline CSS to 7.1% and 8.5% in CSS-1, in vaccinated and control villages, respectively). The prevalence of vaccine-type pneumococcal carriage was lower in vaccinated than in control villages among older children (5 y to <15 y of age) and adults (≥15 y of age) at CSS-2 (odds ratio [OR] = 0.15 [95% CI 0.04–0.57] and OR = 0.32 [95% CI 0.10–0.98], respectively) and at CSS-3 (OR = 0.37 [95% CI 0.15–0.90] for older children, and 0% versus 7.6% for adults in vaccinated and control villages, respectively). Differences in the prevalence of non-vaccine-type pneumococcal carriage between vaccinated and control villages were small.
Conclusions
Vaccination of Gambian children reduced vaccine-type pneumococcal carriage across all age groups, indicating a “herd effect” in non-vaccinated older children and adults. No significant serotype replacement was detected.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
The prevention of pneumococcal disease, especially in children in developing countries, is a major international public health priority. Despite all the international attention on the UN's Millennium Development Goal 4—to reduce deaths in children under five years by two-thirds between 1990 and 2015—pneumonia, sepsis, and meningitis together compose more than 25% of the 10 million deaths occurring in children less than five years of age. Streptococcus pneumoniae is a leading bacterial cause of these diseases, and the World Health Organization estimates that approximately 800,000 children die each year of invasive pneumococcal disease.
Pneumococcal conjugate vaccines are currently available and protect against the serotypes that most commonly cause invasive pneumococcal disease in young children in North America and Europe. Such vaccines have been highly successful in reducing the incidence of invasive pneumococcal disease in both vaccinated children and in the non-vaccinated older population by reducing nasopharyngeal carriage (presence of pneumococcal bacteria in the back of the nose) in vaccinated infants, resulting in decreased transmission to contacts—the so-called herd effect. However, few countries with the highest burden of invasive pneumococcal disease, especially those in sub-Saharan Africa, have introduced the vaccine into their national immunization programs.
Why Was This Study Done?
The features of pneumococcal nasopharyngeal carriage and invasive pneumococcal disease in sub-Saharan Africa are different than in other regions. Therefore, careful evaluation of the immune effects of vaccination requires long-term, longitudinal studies. As an alternative to such long-term observational studies, and to anticipate the potential long-term effects of the introduction of pneumococcal conjugate vaccination in sub-Saharan Africa, the researchers conducted a cluster-randomized (by village) trial in The Gambia in which the whole populations of some villages were immunized with the vaccine PCV-7, and other villages received a control.
What Did the Researchers Do and Find?
With full consent from communities, the researchers randomized 21 similar villages in a rural region of western Gambia to receive pneumococcal conjugate vaccine or a control—meningococcal serogroup C conjugated vaccine, which is unlikely to affect pneumococcal carriage rates. For ethical reasons, the researchers only randomized residents aged over 30 months—all young infants received PCV-7, as a similar vaccine had already been shown to be effective in young infants. Before immunization began, the researchers took nasopharyngeal swabs from a random selection of village residents to determine the baseline pneumococcal carriage rates of both the serotypes of pneumococci covered by the vaccine (vaccine types, VTs) and the serotypes of pneumococci not covered in the vaccine (non-vaccine types, NVTs). The researchers then took nasopharyngeal swabs from a random sample of 1,200 of village residents in both groups of villages in cross-sectional surveys at 4–6, 12, and 22 months after vaccination. Villagers and laboratory staff were unaware of which vaccine was which (that is, they were blinded).
Before immunization, the overall prevalence of pneumococcal carriage in both groups was high, at 71.1%, and decreased with age. After vaccination, the overall prevalence of pneumococcal carriage in all three surveys was similar between vaccinated and control villages, showing a marked fall. However, the prevalence of carriage of VT pneumococci was significantly lower in vaccinated than in control villages in all surveys for all age groups. The prevalence of carriage of NVT pneumococci was similar in vaccinated and in control villages, except for a slightly higher prevalence of NVT pneumococci among vaccinated communities in adults at 4–6 months after vaccination. The researchers also found that the overall prevalence of pneumococcal carriage fell markedly after vaccination and reached minimum levels at 12 months in both study arms and in all age groups.
What Do These Findings Mean?
These findings show that vaccination of young Gambian children reduced carriage of VT pneumococci in vaccinated children but also in vaccinated and non-vaccinated older children and adults, revealing a potential herd effect from vaccination of young children. Furthermore, the immunological pressure induced by vaccinating whole communities did not lead to a community-wide increase in carriage of NVT pneumococci during a two-year period after vaccination. The researchers plan to conduct more long-term follow-up studies to determine nasopharyngeal carriage in these communities.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001107.
The World Health Organization has information about pneumococcus
The US Centers for Disease Control and Prevention provides information about pneumococcal conjugate vaccination
doi:10.1371/journal.pmed.1001107
PMCID: PMC3196470  PMID: 22028630
12.  Clonal Evolution Leading to Maintenance of Antibiotic Resistance Rates among Colonizing Pneumococci in the PCV7 Era in Portugal ▿  
Journal of Clinical Microbiology  2011;49(8):2810-2817.
The introduction of the seven-valent pneumococcal conjugate vaccine (PCV7) in Portugal led to extensive serotype replacement among carriers of pneumococci, with a marked decrease of PCV7 types. Although antimicrobial resistance was traditionally associated with PCV7 types, no significant changes in the rates of nonsusceptibility to penicillin, resistance to macrolides, or multidrug resistance were observed. This study aimed to investigate the mechanisms leading to maintenance of antimicrobial resistance, despite marked serotype replacement. We compared, through molecular typing, 252 antibiotic-resistant pneumococci recovered from young carriers in 2006 and 2007 (era of high PCV7 uptake) with collections of isolates from 2002 and 2003 (n=374; low-PCV7-uptake era) and 1996 to 2001 (n=805; pre-PCV7 era). We observed that the group of clones that has accounted for antimicrobial resistance since 1996 is essentially the same as the one identified in the PCV7 era. The relative proportions of such clones have, however, evolved substantially overtime. Notably, widespread use of PCV7 led to an expansion of two Pneumococcal Molecular Epidemiology Network (PMEN) clones expressing non-PCV7 capsular variants of the original strains: Sweden15AST63 (serotypes 15A and 19A) and Denmark14ST230 (serotypes 19A and 24F). These variants were already in circulation in the pre-PCV7 era, although they have now become increasingly abundant. Emergence of novel clones and de novo acquisition of resistance contributed little to the observed scenario. No evidence of capsular switch events occurring after PCV7 introduction was found. In the era of PCVs, antimicrobial resistance remains a problem among the carried pneumococci. Continuous surveillance is warranted to evaluate serotype and clonal shifts leading to maintenance of antimicrobial resistance.
doi:10.1128/JCM.00517-11
PMCID: PMC3147772  PMID: 21632898
13.  Nasopharyngeal Colonization Elicits Antibody Responses to Staphylococcal and Pneumococcal Proteins That Are Not Associated with a Reduced Risk of Subsequent Carriage 
Infection and Immunity  2012;80(6):2186-2193.
Knowledge of the immunological correlates of Staphylococcus aureus and Streptococcus pneumoniae colonization is required for the search for future protein vaccines. We evaluated natural antibody levels against pneumococcal and staphylococcal proteins in relation to previous bacterial colonization with both pathogens. In a randomized controlled trial, nasopharyngeal samples were obtained from children at 1.5, 6, 12, 18, and 24 months and cultured for S. aureus and S. pneumoniae. Approximately 50% of the children were PCV7 vaccinated. Serum IgG against 18 pneumococcal and 40 staphylococcal proteins was semiquantified by Luminex technology from 111 12 month olds and 158 24 month olds. Previous culture-proven S. aureus colonization was associated with higher IgG levels against 6/40 staphylococcal proteins (ClfB, ClfA, Efb, CHIPS, LukD, and LukF [P ≤ 0.001]) compared to noncarriers. Previous pneumococcal colonization was associated with increased IgG levels against 12/18 pneumococcal proteins compared to noncarriers (P ≤ 0.003). Increasing age was associated with higher levels of antibodies to most pneumococcal proteins and lower levels of antibodies to over half the staphylococcal proteins, reflecting natural colonization dynamics. Anti-S. pneumoniae and anti-S. aureus protein antibodies at the age of 12 months were not negatively correlated with subsequent colonization with the homologous species in the following year and did not differ between PCV7-vaccinated and nonvaccinated children. Colonization with S. aureus and S. pneumoniae induces serum IgG against many proteins, predominantly proteins with immune-modulating functions, irrespective of PCV7 vaccination. None of them appeared to be protective against new acquisition with both pathogens, possibly due to the polymorphic nature of those proteins in the circulating bacterial population.
doi:10.1128/IAI.00037-12
PMCID: PMC3370583  PMID: 22451514
14.  Staphylococcus aureus Colonization Among Household Contacts of Patients With Skin Infections: Risk Factors, Strain Discordance, and Complex Ecology 
Among 350 households of patients with Staphylococcus aureus skin infections, extra-nasal S. aureus colonization was common. USA300 MRSA appeared more transmissible among household members than other S. aureus strain types. Multiple S. aureus genetic backgrounds were present in many households.
Background. The USA300 methicillin resistant Staphylococcus aureus (MRSA) genetic background has rapidly emerged as the predominant cause of community-associated S. aureus infections in the U.S. However, epidemiologic characteristics of S. aureus household transmission are poorly understood.
Methods. We performed a cross-sectional study of adults and children with S. aureus skin infections and their household contacts in Los Angeles and Chicago. Subjects were surveyed for S. aureus colonization of the nares, oropharynx, and inguinal region and risk factors for S. aureus disease. All isolates underwent genetic typing.
Results. We enrolled 1162 persons (350 index patients and 812 household members). The most common infection isolate characteristic was ST8/SCCmec IV, PVL+ MRSA (USA300) (53%). S. aureus colonized 40% (137/350) of index patients and 50% (405/812) of household contacts. A nares-only survey would have missed 48% of S. aureus and 51% of MRSA colonized persons. Sixty-five percent of households had >1 S. aureus genetic background identified and 26% of MRSA isolates in household contacts were discordant with the index patients' infecting MRSA strain type. Factors independently associated (P < .05) with the index strain type colonizing household contacts were recent skin infection, recent cephalexin use, and USA300 genetic background.
Conclusions. In our study population, USA300 MRSA appeared more transmissible among household members compared with other S. aureus genetic backgrounds. Strain distribution was complex; >1 S. aureus genetic background was present in many households. S. aureus decolonization strategies may need to address extra-nasal colonization and the consequences of eradicating S. aureus genetic backgrounds infrequently associated with infection.
doi:10.1093/cid/cis213
PMCID: PMC3348950  PMID: 22474221
15.  Prevalence and factors associated with wound colonization by Staphylococcus spp. and Staphylococcus aureus in hospitalized patients in inland northeastern Brazil: a cross-sectional study 
BMC Infectious Diseases  2014;14:328.
Background
Infections by Staphylococcus spp. are often associated with wounds, especially in hospitalized patients. Wounds may be the source of bacteria causing cross-contamination, and are a risk factor for methicillin-resistant Staphylococcus aureus (MRSA) infection. The aim of this study was to investigate the prevalence of wound colonization by Staphylococcus spp., especially S. aureus and MRSA, in hospitalized patients, and to identify the factors associated with such colonization.
Methods
This cross-sectional study enrolled patients with wounds who were hospitalized in a remote and underdeveloped inland region of northeastern Brazil with extreme poverty. Samples were collected using sterile swabs with 0.85% saline solution, and coagulase-negative Staphylococcus spp., S. aureus, and MRSA were identified using standard laboratory procedures. Data regarding the sociodemographic characteristics, antibiotic use, and comorbidities of the patients were collected using the medical records and a questionnaire.
Results
A total of 125 wounds were analyzed. The patients had a mean age of 63.88 years and a mean 3.84 years of school education. Eighty-one wounds (64.80%) were colonized by Staphylococcus spp. Twenty-five wounds (20%) were colonized by S. aureus, 32% of which were colonized by MRSA. Wound colonization by Staphylococcus spp. was associated with pneumonia or other respiratory disease (p = 0.03). Wound colonization by S. aureus was associated with nasal colonization by S. aureus (p < 0.001), fewer days of prior antibiotic use (p = 0.04), admission to a medical ward (p = 0.02), and age >65 years (p = 0.05). Among patients with wound colonization by MRSA, 37.50% had a history of prior antibiotic use, 75% had two or more comorbidities, 25% had cancer or diabetes, 50% had cardiovascular disease, and 50% died.
Conclusions
Wounds can be the source of Staphylococcus spp. infection, and high proportions of wounds are colonized by S. aureus and MRSA. Nasal colonization by S. aureus may be a source for wound colonization by S. aureus, illustrating the importance of preventing cross-contamination in hospital environments, especially among elderly patients. Wounds should be carefully managed to prevent microbial spread, thereby assisting patient recovery and reducing healthcare costs.
doi:10.1186/1471-2334-14-328
PMCID: PMC4065078  PMID: 24925025
Staphylococcus spp; Staphylococcus aureus; MRSA; Wounds; Hospitalization
16.  Prevalence and Risk Factor Analysis for Methicillin-Resistant Staphylococcus aureus Nasal Colonization in Children Attending Child Care Centers▿ 
Journal of Clinical Microbiology  2011;49(3):1041-1047.
Children attending child care centers (CCCs) are at increased risk for infections, including those caused by methicillin-resistant Staphylococcus aureus (MRSA). Nasal colonization often precedes infection, and MRSA colonization has been associated with increased infection risk. Community-associated MRSA (CA-MRSA) has caused increased MRSA infections in the general population, including children. Little is known about the frequency of MRSA nasal colonization in young children, particularly in those attending CCCs where disease transmission is common. We sampled the nares of 1,163 children in 200 classrooms from 24 CCCs in North Carolina and Virginia to assess S. aureus colonization. MRSA strains were molecularly analyzed for staphylococcal cassette chromosome mec (SCCmec) type, Panton-Valentine leukocidin status, and multilocus sequence type. A case-control study was performed to identify risk factors for MRSA colonization. We found that 18.1% children were colonized with S. aureus and 1.3% with MRSA. Molecular analysis of the MRSA strains identified 47% as CA-MRSA and 53% as health care-associated MRSA (HA-MRSA). Although two centers had multiple children colonized with MRSA, genotyping indicated that no transmission had occurred within classrooms. The case-control study did not detect statistically significant risk factors for MRSA colonization. However, MRSA-colonized children were more likely to be nonwhite and to have increased exposure to antibiotics and skin infections in the home. Both CA-MRSA and HA-MRSA strains were found colonizing the nares of children attending CCCs. The low frequency of colonization observed highlights the need for a large multicenter study to determine risk factors for MRSA colonization and subsequent infection in this highly susceptible population.
doi:10.1128/JCM.02235-10
PMCID: PMC3067749  PMID: 21191058
17.  Continued Impact of Pneumococcal Conjugate Vaccine on Carriage in Young Children 
Pediatrics  2009;124(1):e1-11.
OBJECTIVES
The goals were to assess serial changes in Streptococcus pneumoniae serotypes and antibiotic resistance in young children and to evaluate whether risk factors for carriage have been altered by heptavalent pneumococcal conjugate vaccine (PCV7).
METHODS
Nasopharyngeal specimens and questionnaire/medical record data were obtained from children 3 months to <7 years of age in primary care practices in 16 Massachusetts communities during the winter seasons of 2000–2001 and 2003–2004 and in 8 communities in 2006–2007. Antimicrobial susceptibility testing and serotyping were performed with S pneumoniae isolates.
RESULTS
We collected 678, 988, and 972 specimens during the sampling periods in 2000–2001, 2003–2004, and 2006–2007, respectively. Carriage of non-PCV7 serotypes increased from 15% to 19% and 29% (P < .001), with vaccine serotypes decreasing to 3% of carried serotypes in 2006–2007. The relative contribution of several non-PCV7 serotypes, including 19A, 35B, and 23A, increased across sampling periods. By 2007, commonly carried serotypes included 19A (16%), 6A (12%), 15B/C (11%), 35B (9%), and 11A (8%), and high-prevalence serotypes seemed to have greater proportions of penicillin nonsusceptibility. In multivariate models, common predictors of pneumococcal carriage, such as child care attendance, upper respiratory tract infection, and the presence of young siblings, persisted.
CONCLUSIONS
The virtual disappearance of vaccine serotypes in S pneumoniae carriage has occurred in young children, with rapid replacement with penicillin-nonsusceptible nonvaccine serotypes, particularly 19A and 35B. Except for the age group at highest risk, previous predictors of carriage, such as child care attendance and the presence of young siblings, have not been changed by the vaccine.
doi:10.1542/peds.2008-3099
PMCID: PMC2782668  PMID: 19564254
Streptococcus pneumoniae; pneumococcal conjugate vaccine; antibiotic resistance; serotype; colonization
18.  Long-Term Effects of Pneumococcal Conjugate Vaccine on Nasopharyngeal Carriage of S. pneumoniae, S. aureus, H. influenzae and M. catarrhalis 
PLoS ONE  2012;7(6):e39730.
Background
Shifts in pneumococcal serotypes following introduction of 7-valent pneumococcal conjugate vaccine (PCV-7) may alter the presence of other bacterial pathogens co-inhabiting the same nasopharyngeal niche.
Methodology/Principal Findings
Nasopharyngeal prevalence rates of S. pneumoniae, S. aureus, H. influenzae and M. catarrhalis were investigated before, 3 and 4.5 years after introduction of PCV-7 in the national immunisation program in children at 11 and 24 months of age, and parents of 24-month-old children (n≈330/group) using conventional culture methods. Despite a virtual disappearance of PCV-7 serotypes over time, similar overall pneumococcal rates were observed in all age groups, except for a significant reduction in the 11-month-old group (adjusted Odds Ratio after 4.5 years 0.48, 95% Confidence Interval 0.34–0.67). Before, 3 and 4.5 years after PCV-7 implementation, prevalence rates of S. aureus were 5%, 9% and 14% at 11 months of age (3.59, 1.90–6.79) and 20%, 32% and 34% in parents (1.96, 1.36–2.83), but remained similar at 24 months of age, respectively. Prevalence rates of H. influenzae were 46%, 65% and 65% at 11 months (2.22, 1.58–3.13), 52%, 73% and 76% at 24 months of age (2.68, 1.88–3.82) and 23%, 30% and 40% in parents (2.26, 1.58–3.33), respectively. No consistent changes in M. catarrhalis carriage rates were observed over time.
Conclusions/Significance
In addition to large shifts in pneumococcal serotypes, persistently higher nasopharyngeal prevalence rates of S. aureus and H. influenzae were observed among young children and their parents after PCV-7 implementation. These findings may have implications for disease incidence and antibiotic treatment in the post-PCV era.
doi:10.1371/journal.pone.0039730
PMCID: PMC3382588  PMID: 22761879
19.  Epidemiology of Streptococcus pneumoniae and Staphylococcus aureus colonization in healthy Venezuelan children 
Streptococcus pneumoniae and Staphylococcus aureus cause significant morbidity and mortality worldwide. We investigated both the colonization and co-colonization characteristics for these pathogens among 250 healthy children from 2 to 5 years of age in Merida, Venezuela, in 2007. The prevalence of S. pneumoniae colonization, S. aureus colonization, and S. pneumoniae–S. aureus co-colonization was 28%, 56%, and 16%, respectively. Pneumococcal serotypes 6B (14%), 19F (12%), 23F (12%), 15 (9%), 6A (8%), 11 (8%), 23A (6%), and 34 (6%) were the most prevalent. Non-respiratory atopy was a risk factor for S. aureus colonization (p = 0.017). Vaccine serotypes were negatively associated with preceding respiratory infection (p = 0.02) and with S. aureus colonization (p = 0.03). We observed a high prevalence of pneumococcal resistance against trimethoprim–sulfamethoxazole (40%), erythromycin (38%), and penicillin (14%). Semi-quantitative measurement of pneumococcal colonization density showed that children with young siblings and low socioeconomic status were more densely colonized (p = 0.02 and p = 0.02, respectively). In contrast, trimethoprim–sulfamethoxazole- and multidrug-resistant-pneumococci colonized children sparsely (p = 0.03 and p = 0.01, respectively). Our data form an important basis to monitor the future impact of pneumococcal vaccination on bacterial colonization, as well as to recommend a rationalized and restrictive antimicrobial use in our community.
doi:10.1007/s10096-010-1044-6
PMCID: PMC2998637  PMID: 20803226
20.  Impact of a Pneumococcal Conjugate Vaccination Program on Carriage among Children in Norway▿  
In July 2006, the seven-valent pneumococcal conjugate vaccine (PCV7) was introduced in Norway with a reduced (2 doses + 1 boost) dose schedule. Post-PCV7 shifts in pneumococcal reservoirs were assessed by two point prevalence studies of nasopharyngeal colonization among children in day care centers, before (2006) and after (2008) widespread use of PCV7. Nasopharyngeal swabs were obtained from 1,213 children, 611 in 2006 and 602 in 2008. A total of 1,102 pneumococcal isolates were recovered. Serotyping, multilocus sequence typing, and antimicrobial drug susceptibility testing were performed on all isolates. Although carriage of PCV7 serotypes decreased among both vaccinated and unvaccinated children, the overall prevalence of pneumococcal carriage remained high (80.4%) after vaccine introduction. The pneumococcal populations were diverse, and in the shift toward non-PCV7 serotypes, expansion of a limited number of established clonal complexes was observed. While non-antimicrobial-susceptible clones persisted among PCV7 serotypes, antimicrobial resistance did not increase among non-PCV7 serotypes. Direct and indirect protection of PCV7 against nasopharyngeal colonization was inferred from an overall decrease in carriage of PCV7 serotypes. No preference was found for nonsusceptible clones among the replacing non-PCV7 serotypes.
doi:10.1128/CVI.00435-09
PMCID: PMC2837970  PMID: 20107006
21.  High incidence of antimicrobial resistant organisms including extended spectrum beta-lactamase producing Enterobacteriaceae and methicillin-resistant Staphylococcus aureus in nasopharyngeal and blood isolates of HIV-infected children from Cape Town, South Africa 
Background
There is little information on nasopharyngeal (NP) flora or bacteremia in HIV-infected children. Our aim was to describe the organisms and antimicrobial resistance patterns in children enrolled in a prospective study comparing daily and three times weekly trimethoprim-sulfamethoxazole (TMP-SMX) and isoniazid (INH) or placebo prophylaxis.
Methods
NP swabs were taken at baseline from HIV-infected children enrolled in the study. Standard microbiological techniques were used. Children were grouped according to previous or current exposure to TMP-SMX and whether enrolled to the study during a period of hospitalization. Blood culture results were also recorded within 12 months of baseline.
Results
Two hundred and three children, median age 1.8 (Interquartile [IQ]: 0.7–4) years had NP swabs submitted for culture. One hundred and eighty-four (90.7%) had either stage B or C HIV disease. One hundred and forty-one (69.8%) were receiving TMP-SMX and 19 (9.4%) were on antiretroviral therapy. The majority, 168 (82%) had a history of hospitalization and 91 (44.8%) were enrolled during a period of hospitalization. Thirty-two subjects (16.2%) died within 12 months of study entry.
One hundred and eighty-one potential pathogens were found in 167 children. The most commonly isolated organisms were Streptococcus pneumoniae (48: 22.2%), Gram-negative respiratory organisms (Haemophilus influenzae and Moraxella catarrhalis) (47: 21.8%), Staphylococcus aureus (44: 20.4%), Enterobacteriaceae 32 (14.8%) and Pseudomonas 5 (2.3%).
Resistance to TMP-SMX occurred in > 80% of pathogens except for M. catarrhalis (2: 18.2% of tested organisms). TMP-SMX resistance tended to be higher in those receiving it at baseline (p = 0.065). Carriage of Methicillin resistant S. aureus (MRSA) was significantly associated with being on TMP-SMX at baseline (p = 0.002). Minimal inhibitory concentrations (MIC) to penicillin were determined for 18 S. pneumoniae isolates: 7 (38.9%) were fully sensitive (MIC ≤ 0.06 μg/ml), 9 (50%) had intermediate resistance (MIC 0.12 – 1 μg/ml) and 2 (11.1%) had high level resistance (MIC ≥2 μg/ml). Fifty percent of Enterobacteriaceae produced extended spectrum beta-lactamases (ESBL) (resistant to third generation cephalosporins) and 56% were resistant to gentamicin. Seventy-seven percent of S. aureus were MRSA. Carriage of resistant organisms was not associated with hospitalization.
On multivariate logistic regression, risk factors for colonization with Enterobacteriaceae were age ≤ one year (Odds ratio 4.4; 95% Confidence Interval 1.9–10.9; p = 0.0008) and CDC stage C disease (Odds ratio 3.6; 95% Confidence Interval 1.5–8.6; p = 0.005)
Nineteen (9.4%) subjects had 23 episodes of bacteremia. Enterobacteriaceae were most commonly isolated (13 of 25 isolates), of which 6 (46%) produced ESBL and were resistant to gentamicin.
Conclusion
HIV-infected children are colonized with potential pathogens, most of which are resistant to commonly used antibiotics. TMP-SMX resistance is extremely common. Antibiotic resistance is widespread in colonizing organisms and those causing invasive disease. Antibiotic recommendations should take cognizance of resistance patterns. Antibiotics appropriate for ESBL-producing Enterobacteriaceae and MRSA should be used for severely ill HIV-infected children in our region. Further study of antibiotic resistance patterns in HIV-infected children from other areas is needed.
doi:10.1186/1471-2334-8-40
PMCID: PMC2329621  PMID: 18380900
22.  Prevalence of Community-Acquired Methicillin-Resistant Staphylococcus aureus Nasal Colonization Among Children 
Background: Invasive infections from community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) are increasingly being encountered in healthy children. Nasal colonization of MRSA is associated with increased risk for acquiring invasive disease. The objective of this study was to determine prevalence and risk factors for CA-MRSA nasal colonization among a healthy paediatric population and to determine antibiotic susceptibilities of S. aureus isolates.
Materials and Methods: Using a cross-sectional study design, children aged 1mnth-17y attending well-child clinic at an academic hospital and a local public school in Mangalore, India were screened for S. aureus colonization via nasal swabs. A questionnaire was administered and data on risk factors for nasal colonization was collected. Samples were obtained from the anterior nares and cultured quantitatively. S. aureus isolates were confirmed by growth on selective media and coagulase testing. Disk diffusion antibiotic susceptibility tests were performed according to Clinical and Laboratory Standard Institute guidelines.
Results: Of the 500 children included in the study, S. aureus was isolated from the anterior nares in 126 (25%) children; four (3%) isolates were classified as CA-MRSA. Factors associated with S. aureus nasal colonization were children <6 y old (p=0.030) and members of joint families (p=0.044). Resistance to many classes of antibiotics were noted among S. aureus isolates including trimethoprim-sulfamethoxazole (39%), ciprofloxacin (16%), erythromycin (19%) and clindamycin (5%). Inducible clindamycin resistance (positive D test) was detected in 11 of the erythromycin-resistant strains not already classified as resistant to clindamycin. No resistance to vancomycin was observed.
Conclusion: Children in India have a high rate of nasal colonization of S. aureus. Nasal colonization of community-associated methicillin-resistant S. aureus exists but is still low among healthy children. The high rate of resistance to many classes of antibiotics among S. aureus strains is of great concern warranting continued surveillance and antimicrobial stewardship.
doi:10.7860/JCDR/2014/9986.5276
PMCID: PMC4316252  PMID: 25653946
Children; Disk diffusion test; Karnataka; Nasal carriage; Staphylococcus aureus
23.  Increasing Prevalence of Nasal and Rectal Colonization with Methicillin-Resistant Staphylococcus aureus in Children with Cancer 
Pediatric blood & cancer  2010;55(7):1317-1322.
Background
Infections with methicillin-resistant Staphylococcus aureus (MRSA), in community-settings, especially with strains carrying the Panton-Valentine Leukocidin (PVL) genes, have increased markedly in recent years. Colonization with S.aureus is a risk factor for infection. However, there are few studies that examine colonization and infection with PVL-positive strains of MRSA in cancer patients.
Procedure
The epidemiology of colonization and infection with MRSA was studied in children with cancer during two time periods: 2000/2001 and 2006/2007. PVL genes were screened and spa typing performed on the isolates.
Results
The prevalence of colonization with MRSA increased from 0.6% in 2000/2001 to 2.9% in 2006/2007(p=0.0003). MRSA colonization at admission was associated with infection (p<0.0001; RR 38.32; 95% CI: 23.36 - 62.84). The prevalence of infection increased from 0.99% in 2000/2001 to 3.78% in 2006-2007 (p=0.0002). Of the 32 colonized patients, 18 (56%) had infection. None of the 14 colonized but non-infected patients had dual colonization of nares and rectum, while 8 of the 18 infected patients had colonization of both of these sites (p=0.004). Ten patients (31%) were colonized with PVL-positive strains. Patients colonized with PVL-positive strains were more likely to be colonized both in the nares and rectum (p=0.005), and more likely to have infection (p=0.001). Recurrent MRSA infections were seen in 22% of patients.
Conclusion
An increasing prevalence of colonization with MRSA was observed in children with cancer at our institution. Colonization with MRSA especially with PVL-positive strains was associated with infection.
doi:10.1002/pbc.22815
PMCID: PMC2965815  PMID: 20830777
Colonization; Methicillin-resistant Staphylococcus aureus; Children; Cancer; Panton-Valentine Leukocidin
24.  Staphylococcus aureus Colonization in Children with Community-Associated Staphylococcus aureus Skin Infections and Their Household Contacts 
Objectives
To measure prevalence of Staphylococcus aureus colonization in household contacts of children with acute S. aureus skin and soft tissue infections (SSTI), determine risk factors for S. aureus colonization in household contacts, and assess anatomic sites of S. aureus colonization in patients and household contacts.
Design
Cross-sectional study.
Setting
St. Louis Children’s Hospital Emergency Department and ambulatory wound center and nine community pediatric practices affiliated with a practice-based research network.
Participants
Patients with community-associated S. aureus SSTI and S. aureus colonization (in the nose, axilla, and/or inguinal folds) and their household contacts.
Outcome Measures
Colonization of household contacts of pediatric patients with S. aureus colonization and SSTI.
Results
Of 183 index patients, 61% were colonized with methicillin-resistant S. aureus (MRSA), 30% with methicillin-sensitive S. aureus (MSSA), and 9% with both MRSA and MSSA. Of 609 household contacts, 323 (53%) were colonized with S. aureus: 115 (19%) with MRSA, 195 (32%) with MSSA, and 13 (2%) with both. Parents were more likely than other household contacts to be colonized with MRSA (OR 1.72, 95% CI 1.12, 2.63). MRSA colonized the inguinal folds more frequently than MSSA (OR 1.67, 95% CI 1.16, 2.41), and MSSA colonized the nose more frequently than MRSA (OR 1.75, 95% CI 1.19, 2.56).
Conclusions
Household contacts of children with S. aureus SSTI had a high rate of MRSA colonization compared to the general population. The inguinal fold is a prominent site of MRSA colonization, which may be an important consideration for active surveillance programs in hospitals.
doi:10.1001/archpediatrics.2011.900
PMCID: PMC3596005  PMID: 22665030
25.  Otitis media in children vaccinated during consecutive 7-valent or 10-valent pneumococcal conjugate vaccination schedules 
BMC Pediatrics  2014;14:200.
Background
In 2001 when 7-valent pneumococcal conjugate vaccine (PCV7) was introduced, almost all (90%) young Australian Indigenous children living in remote communities had some form of otitis media (OM), including 24% with tympanic membrane perforation (TMP). In late 2009, the Northern Territory childhood vaccination schedule replaced PCV7 with 10-valent pneumococcal Haemophilus influenzae protein D conjugate vaccine (PHiD-CV10).
Methods
We conducted regular surveillance of all forms of OM in children in remote Indigenous communities between September 2008 and December 2012. This analysis compares children less than 36 months of age who received a primary course of at least two doses of PCV7 or PHiD-CV10, and not more than one dose of another pneumococcal vaccine.
Results
Mean ages of 444 PCV7- and 451 PHiD-CV10-vaccinated children were 20 and 18 months, respectively. Bilaterally normal middle ears were detected in 7% and 9% respectively. OM with effusion was diagnosed in 41% and 51% (Risk Difference 10% [95% Confidence Interval 3 to 17] p = 0.002), any suppurative OM (acute OM or any TMP) in 51% versus 39% (RD −12% [95% CI −19 to −5] p = 0.0004], and TMP in 17% versus 14% (RD −3% [95% CI −8 to 2] p = 0.2), respectively. Multivariate analyses described a similar independent negative association between suppurative OM and PHiD-CV10 compared to PCV7 (Odds Ratio = 0.6 [95% CI 0.4 to 0.8] p = 0.001). Additional children in the household were a risk factor for OM (OR = 2.4 [95% CI 2 to 4] p = 0.001 for the third additional child), and older age and male gender were associated with less disease. Other measured risk factors were non-significant. Similar clinical results were found for children who had received non-mixed PCV schedules.
Conclusions
Otitis media remains a significant health and social issue for Australian Indigenous children despite PCV vaccination. Around 90% of young children have some form of OM. Children vaccinated in with PHiD-CV10 had less suppurative OM than children vaccinated with PCV7. Ongoing surveillance during the PCV13 era, and trials of early intervention including earlier and mixed vaccine schedules are warranted.
doi:10.1186/1471-2431-14-200
PMCID: PMC4149294  PMID: 25109288
Otitis media; Child; Indigenous; Pneumococcal vaccines; Prevalence; Public health; Surveillance; Risk factors

Results 1-25 (1400550)