Search tips
Search criteria

Results 1-25 (950339)

Clipboard (0)

Related Articles

1.  Type 2 Diabetes Can Be Prevented With Early Pharmacological Intervention 
Diabetes Care  2011;34(Suppl 2):S202-S209.
In the U.S., ∼21 × 106 individuals have type 2 diabetes, and twice as many have impaired glucose tolerance (IGT). Approximately 40–50% of individuals with IGT will progress to type 2 diabetes over their lifetime. Therefore, treatment of high-risk individuals with IGT to prevent type 2 diabetes has important medical, economic, social, and human implications. Weight loss, although effective in reducing the conversion of IGT to type 2 diabetes, is difficult to achieve and maintain. Moreover, 40–50% of IGT subjects progress to type 2 diabetes despite successful weight reduction. In contrast, pharmacological treatment of IGT with oral antidiabetic agents that improve insulin sensitivity and preserve β-cell function—the characteristic pathophysiological abnormalities present in IGT and type 2 diabetes—uniformly have been shown to prevent progression of IGT to type 2 diabetes. The most consistent results have been observed with the thiazolidinediones (Troglitazone in the Prevention of Diabetes [TRIPOD], Pioglitazone in the Prevention of Diabetes [PIPOD], Diabetes Reduction Assessment with Ramipril and Rosiglitazone Medication [DREAM], and Actos Now for the Prevention of Diabetes [ACT NOW]), with a 50–70% reduction in IGT conversion to diabetes. Metformin in the U.S. Diabetes Prevention Program (DPP) reduced the development of type 2 diabetes by 31% and has been recommended by the American Diabetes Association (ADA) for treating high-risk individuals with IGT. The glucagon-like peptide-1 analogs, which augment insulin secretion, preserve β-cell function, and promote weight loss, also would be expected to be efficacious in preventing the progression of IGT to type 2 diabetes. Because individuals in the upper tertile of IGT are maximally/near-maximally insulin resistant, have lost 70–80% of their β-cell function, and have an ∼10% incidence of diabetic retinopathy, pharmacological intervention, in combination with diet plus exercise, should be instituted.
PMCID: PMC3632162  PMID: 21525456
2.  Effects of Growth Hormone and Pioglitazone in Viscerally Obese Adults with Impaired Glucose Tolerance: A Factorial Clinical Trial 
PLoS Clinical Trials  2007;2(5):e21.
Recombinant human growth hormone (GH) and pioglitazone (PIO) in abdominally obese adults with impaired glucose tolerance were evaluated under the hypothesis that the combination attenuates GH-induced increases in glucose concentrations, reduces visceral adipose tissue (VAT), and improves insulin sensitivity over time.
Randomized, double-blind, placebo-controlled, 2 × 2 factorial design.
Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States.
62 abdominally obese adults aged 40–75 with impaired glucose tolerance.
GH (8 μg/kg/d, or placebo) and pioglitazone (30 mg/d, or placebo) for 40 wk.
Outcome Measures:
Baseline and after 40 wk of treatment, VAT content was quantified by CT scan, glucose tolerance was assessed using a 75-g oral glucose tolerance test, and insulin sensitivity was measured using steady-state plasma glucose levels obtained during insulin suppression test.
Baseline: body mass index (BMI), plasma glucose, and visceral fat content were similar. 40 wk: visceral fat area declined 23.9 ± 7.4 cm2 in GH group, mean difference from placebo: −28.1 cm2 (95% CI −49.9 to −6.3 cm2; p = 0.02). Insulin resistance declined 52 ± 11.8 mg/dl with PIO, mean difference from placebo of −58.8 mg/dl (95% CI −99.7 to −18.0 mg/dl; p = 0.01). VAT and SSPG declined with GH and PIO combined, mean differences from placebo of −31.4 cm2 (95% CI −56.5 cm2 to −6.3 cm2; p = 0.02) and −55.3 mg/dl (95% CI −103.9 to −6.7 mg/dl; p = 0.02), respectively. Fasting plasma glucose increased transiently in GH group. No significant changes in BMI were observed.
Addition of PIO to GH attenuated the short-term diabetogenic effect of GH; the drug combination reduced VAT and insulin resistance over time. GH plus PIO may have added benefit on body composition and insulin sensitivity in the metabolic syndrome.
Editorial Commentary
Background: People who are overweight are at higher risk of developing type 2 diabetes, particularly if they have impaired glucose tolerance (IGT). When an individual has IGT, their cells are not able to respond properly to insulin in the blood, which means that blood sugar levels can remain high, and fat cells do not take up fatty acids from blood at the rate they should. The term prediabetes is often used to refer to these linked characteristics. However, if such individuals are able to lose weight they can reduce their chances of becoming diabetic in the future. In particular, loss of a particular type of fat, the visceral fat (packed in around the internal organs, as opposed to fat immediately under the skin), is thought to be beneficial for people at risk of developing type 2 diabetes. Some researchers have suggested that giving human growth hormone (GH) to people who are overweight might help reduce their levels of visceral fat. At the same time, drugs known as thiazolidinediones are currently used, in combination with other drugs, diet, and exercise, as a treatment for type 2 diabetes. The researchers carrying out this study wanted to find out whether combining treatment with human GH and a thiazolidinedione, pioglitazone (PIO), would reduce levels of visceral fat and improve glucose metabolism in overweight adults with IGT. The researchers specifically planned to compare the changes in these primary outcomes amongst people receiving both human GH and PIO for 40 weeks with the changes in individuals receiving placebo only; additional comparisons were also done for individuals receiving either drug alone, as compared to placebo.
What this trial shows: A total of 76 participants were randomized and received the treatment allocated to them, but only 62 participants were included in the final analyses due to losses to follow-up. The primary outcomes being compared at baseline and after 40 weeks of treatment were the change in visceral fat levels and change in individuals' sensitivity to insulin. Individuals receiving GH experienced a drop in visceral fat area over the 40 weeks of the trial, as compared to placebo, whilst PIO alone did not seem to have an effect on visceral fat area. Individuals receiving both GH and PIO, however, also showed a decrease in visceral fat area. When examining the effect on insulin resistance, GH alone did not seem to have an effect on the ability to respond to insulin. However, administration of PIO alone did bring about a decrease in insulin resistance levels, as compared to placebo, and individuals receiving both GH and PIO together also experienced a drop in insulin resistance. The trial was not designed to detect statistically significant differences in side effects between the groups studied, but some side effects, such as build-up of fluid in the limbs and joint stiffness, seemed to be more common in the groups receiving drug treatment than in the placebo group.
Strengths and limitations: Although the trial was small, enough participants were recruited to detect statistically significant changes in the primary outcomes. Strengths of the trial include the use of appropriate techniques to conceal the randomization sequence from investigators recruiting participants into the trial and blinding of both participants and investigators to the treatments that an individual would receive. However, one limitation includes the fact that the likelihood of developing diabetes was not directly measured as an outcome in this trial, and it is therefore not possible to conclude from these results that administration of GH, PIO, or both combined, will help prevent diabetes amongst overweight people with IGT. Finally, this trial compared the drug interventions directly with placebo and not with behavioral interventions such as diet and exercise, which are normally recommended for the prevention of diabetes amongst overweight people. It would be important to further investigate the efficacy, harms, and costs of these drugs directly against nondrug interventions before making any recommendations about their clinical use.
Contribution to the evidence: Other studies have shown that PIO administration has beneficial effects on insulin sensitivity in people with type 2 diabetes. This study adds evidence confirming that PIO is likely to have similar effects in people who are not diabetic but who are overweight and who have IGT. The study also adds data regarding the effect of PIO and GH combined in such populations; giving both drugs together seemed to have beneficial effects on visceral fat area and insulin sensitivity, as compared to placebo.
PMCID: PMC1865086  PMID: 17479164
3.  Effects of Acarbose to Delay Progression of Carotid Intima-Media Thickness in Early Diabetes 
The antidiabetic agent acarbose reduces postprandial glucose excursions. We have evaluated the effect of randomized treatment with acarbose on the progression of carotid intima-media thickness (IMT) in early diabetes.
The Early Diabetes Intervention Program (EDIP) was a randomized trial of acarbose versus placebo, in 219 participants with early diabetes characterized by glucose values over 11.1 mmol/L 2 hours after a 75g oral glucose load, and mean HbA1c 6.3%. IMT was measured at baseline and yearly. Follow-up was discontinued if participants progressed to the study glucose endpoints; IMT readings were available for a median of 2 years, with 72 subjects followed for 5 years.
Progressive increases in IMT were seen in both treatment groups, but this was reduced in participants randomized to acarbose (p=0.047). In age, sex and smoking-adjusted analyses IMT progression was associated with greater fasting and OGTT-excursion glucose, fasting insulin, cholesterol, and glycated LDL concentrations. IMT progression was reduced with study-related changes in weight, insulin, and nonesterified fatty acids; these features were more strongly associated with reduced IMT progression than acarbose treatment. Despite strong associations of baseline glycemia with IMT progression, study-related changes in glucose were not important determinants of IMT progression.
Acarbose can delay progression of carotid intima-media thickness in early diabetes defined by an oral glucose tolerance test. Glucose, weight, insulin and lipids contributed to risk of progression but reductions in glycemia were not major determinants of reduced rate of IMT progression. Vascular benefits of acarbose may be independent of its glycemic effects.
PMCID: PMC4062388  PMID: 23908125
Diabetes; Acarbose; Atherosclerosis; Intima-Media Thickness
4.  Pioglitazone Improves In Vitro Viability and Function of Endothelial Progenitor Cells from Individuals with Impaired Glucose Tolerance 
PLoS ONE  2012;7(11):e48283.
Evidence suggests that the PPARγ-agonist insulin sensitizer pioglitazone, may provide potential beneficial cardiovascular (CV) effects beyond its anti-hyperglycaemic function. A reduced endothelial progenitor cell (EPC) number is associated with impaired glucose tolerance (IGT) or diabetes, conditions characterised by increased CV risk.
To evaluate whether pioglitazone can provide benefit in vitro in EPCs obtained from IGT subjects.
Materials and Methods
Early and late-outgrowth EPCs were obtained from peripheral blood mononuclear cells of 14 IGT subjects. The in vitro effect of pioglitazone (10 µM) with/without PPARγ-antagonist GW9662 (1 µM) was assessed on EPC viability, apoptosis, ability to form tubular-like structures and pro-inflammatory molecule expression.
Pioglitazone increased early and late-outgrowth EPC viability, with negligible effects on apoptosis. The capacity of EPCs to form tubular-like structures was improved by pioglitazone in early (mean increase 28%; p = 0.005) and late-outgrowth (mean increase 30%; p = 0.037) EPCs. Pioglitazone reduced ICAM-1 and VCAM-1 adhesion molecule expression in both early (p = 0.001 and p = 0.012 respectively) and late-outgrowth (p = 0.047 and p = 0.048, respectively) EPCs. Similarly, pioglitazone reduced TNFα gene and protein expression in both early (p = 0.034;p = 0.022) and late-outgrowth (p = 0.026;p = 0.017) EPCs compared to control. These effects were prevented by incubation with the PPARγ-antagonist GW9662.
Pioglitazone exerts beneficial effects in vitro on EPCs isolated from IGT subjects, supporting the potential implication of pioglitazone as a CV protective agents.
PMCID: PMC3489677  PMID: 23139771
5.  Hypoglycemia Assessed by Continuous Glucose Monitoring Is Associated with Preclinical Atherosclerosis in Individuals with Impaired Glucose Tolerance 
PLoS ONE  2011;6(12):e28312.
Hypoglycemia is associated with increased risk of cardiovascular adverse clinical outcomes. There is evidence that impaired glucose tolerance (IGT) is associated with cardiovascular morbidity and mortality. Whether IGT individuals have asymptomatic hypoglycemia under real-life conditions that are related to early atherosclerosis is unknown. To this aim, we measured episodes of hypoglycemia during continuous interstitial glucose monitoring (CGM) and evaluated their relationship with early manifestation of vascular atherosclerosis in glucose tolerant and intolerant individuals. An oral glucose tolerance test (OGTT) was performed in 79 non-diabetic subjects. Each individual underwent continuous glucose monitoring for 72 h. Cardiovascular risk factors and ultrasound measurement of carotid intima-media thickness (IMT) were evaluated. IGT individuals had a worse cardiovascular risk profile, including higher IMT, and spent significantly more time in hypoglycemia than glucose-tolerant individuals. IMT was significantly correlated with systolic (r = 0.22; P = 0.05) and diastolic blood pressure (r = 0.28; P = 0.01), total (r = 0.26; P = 0.02) and LDL cholesterol (r = 0.27; P = 0.01), 2-h glucose (r = 0.39; P<0.0001), insulin sensitivity (r = −0.26; P = 0.03), and minutes spent in hypoglycemia (r = 0.45; P<0.0001). In univariate analyses adjusted for gender, minutes spent in hypoglycemia were significantly correlated with age (r = 0.26; P = 0.01), waist circumference (r = 0.33; P = 0.003), 2-h glucose (r = 0.58; P<0.0001), and 2-h insulin (r = 0.27; P = 0.02). In a stepwise multivariate regression analysis, the variables significantly associated with IMT were minutes spent in hypoglycemia (r2 = 0.252; P<0.0001), and ISI index (r2 = 0.089; P = 0.004), accounting for 34.1% of the variation. Episodes of hypoglycemia may be considered as a new potential cardiovascular risk factor for IGT individuals.
PMCID: PMC3229545  PMID: 22164268
6.  Report of the Committee on the Classification and Diagnostic Criteria of Diabetes Mellitus 
Concept of Diabetes Mellitus:
Diabetes mellitus is a group of diseases associated with various metabolic disorders, the main feature of which is chronic hyperglycemia due to insufficient insulin action. Its pathogenesis involves both genetic and environmental factors. The long‐term persistence of metabolic disorders can cause susceptibility to specific complications and also foster arteriosclerosis. Diabetes mellitus is associated with a broad range of clinical presentations, from being asymptomatic to ketoacidosis or coma, depending on the degree of metabolic disorder.
Classification (Tables 1 and 2, and Figure 1):
 Etiological classification of diabetes mellitus and glucose metabolism disorders
Note: Those that cannot at present be classified as any of the above are called unclassifiable.
The occurrence of diabetes‐specific complications has not been confirmed in some of these conditions.
 Diabetes mellitus and glucose metabolism disorders due to other specific mechanisms and diseases
The occurrence of diabetes‐specific complications has not been confirmed in some of these conditions.
 A scheme of the relationship between etiology (mechanism) and patho‐physiological stages (states) of diabetes mellitus. Arrows pointing right represent worsening of glucose metabolism disorders (including onset of diabetes mellitus). Among the arrow lines, indicates the condition classified as ‘diabetes mellitus’. Arrows pointing left represent improvement in the glucose metabolism disorder. The broken lines indicate events of low frequency. For example, in type 2 diabetes mellitus, infection can lead to ketoacidosis and require temporary insulin treatment for survival. Also, once diabetes mellitus has developed, it is treated as diabetes mellitus regardless of improvement in glucose metabolism, therefore, the arrow lines pointing left are filled in black. In such cases, a broken line is used, because complete normalization of glucose metabolism is rare.
The classification of glucose metabolism disorders is principally derived from etiology, and includes staging of pathophysiology based on the degree of deficiency of insulin action. These disorders are classified into four groups: (i) type 1 diabetes mellitus; (ii) type 2 diabetes mellitus; (iii) diabetes mellitus due to other specific mechanisms or diseases; and (iv) gestational diabetes mellitus. Type 1 diabetes is characterized by destruction of pancreatic β‐cells. Type 2 diabetes is characterized by combinations of decreased insulin secretion and decreased insulin sensitivity (insulin resistance). Glucose metabolism disorders in category (iii) are divided into two subgroups; subgroup A is diabetes in which a genetic abnormality has been identified, and subgroup B is diabetes associated with other pathologic disorders or clinical conditions. The staging of glucose metabolism includes normal, borderline and diabetic stages depending on the degree of hyperglycemia occurring as a result of the lack of insulin action or clinical condition. The diabetic stage is then subdivided into three substages: non‐insulin‐ requiring, insulin‐requiring for glycemic control, and insulin‐dependent for survival. The two former conditions are called non‐insulin‐dependent diabetes and the latter is known as insulin‐dependent diabetes. In each individual, these stages may vary according to the deterioration or the improvement of the metabolic state, either spontaneously or by treatment.
Diagnosis (Tables 3–7 and Figure 2):
 Criteria of fasting plasma glucose levels and 75 g oral glucose tolerance test 2‐h value
*Casual plasma glucose ≥200 mg/dL (≥11.1 mmol/L) and HbA1c≥6.5% are also regarded as to indicate diabetic type.
Even for normal type, if 1‐h value is 180 mg/dL (10.0 mmol/L), the risk of progression to diabetes mellitus is greater than for <180 mg/dL (10.0 mmol/L) and should be treated as with borderline type (follow‐up observation, etc.). Fasting plasma glucose level of 100–109 mg/dL (5.5–6.0 mmol/L) is called ‘high‐normal’: within the range of normal fasting plasma glucose.
Plasma glucose level after glucose load in oral glucose tolerance test (OGTT) is not included in casual plasma glucose levels. The value for HbA1c (%) is indicated with 0.4% added to HbA1c (JDS) (%).
 Procedures for diagnosing diabetes mellitus
*The value for HbA1c (%) is indicated with 0.4% added to HbA1c (JDS) (%). **Hyperglycemia must be confirmed in a non‐stressful condition. OGTT, oral glucose tolerance test.
 Disorders and conditions associated with low HbA1c values
 Situations where a 75‐g oral glucose tolerance test is recommended
*The value for HbA1c (%) is indicated with 0.4% added to HbA1c (JDS) (%).
 Definition and diagnostic criteria of gestational diabetes mellitus
(IADPSG Consensus Panel, Reference 42, partly modified with permission of Diabetes Care).
 Flow chart outlining steps in the clinical diagnosis of diabetes mellitus. *The value for HbA1c (%) is indicated with 0.4% added to HbA1c (JDS) (%).
Categories of the State of Glycemia:  Confirmation of chronic hyperglycemia is essential for the diagnosis of diabetes mellitus. When plasma glucose levels are used to determine the categories of glycemia, patients are classified as having a diabetic type if they meet one of the following criteria: (i) fasting plasma glucose level of ≥126 mg/dL (≥7.0 mmol/L); (ii) 2‐h value of ≥200 mg/dL (≥11.1 mmol/L) in 75 g oral glucose tolerance test (OGTT); or (iii) casual plasma glucose level of ≥200 mg/dL (≥11.1 mmol/L). Normal type is defined as fasting plasma glucose level of <110 mg/dL (<6.1 mmol/L) and 2‐h value of <140 mg/dL (<7.8 mmol/L) in OGTT. Borderline type (neither diabetic nor normal type) is defined as falling between the diabetic and normal values. According to the current revision, in addition to the earlier listed plasma glucose values, hemoglobin A1c (HbA1c) has been given a more prominent position as one of the diagnostic criteria. That is, (iv) HbA1c≥6.5% is now also considered to indicate diabetic type. The value of HbA1c, which is equivalent to the internationally used HbA1c (%) (HbA1c [NGSP]) defined by the NGSP (National Glycohemoglobin Standardization Program), is expressed by adding 0.4% to the HbA1c (JDS) (%) defined by the Japan Diabetes Society (JDS).
Subjects with borderline type have a high rate of developing diabetes mellitus, and correspond to the combination of impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) noted by the American Diabetes Association (ADA) and WHO. Although borderline cases show few of the specific complications of diabetes mellitus, the risk of arteriosclerosis is higher than those of normal type. When HbA1c is 6.0–6.4%, suspected diabetes mellitus cannot be excluded, and when HbA1c of 5.6–5.9% is included, it forms a group with a high risk for developing diabetes mellitus in the future, even if they do not have it currently.
Clinical Diagnosis:  1 If any of the criteria for diabetic type (i) through to (iv) is observed at the initial examination, the patient is judged to be ‘diabetic type’. Re‐examination is conducted on another day, and if ‘diabetic type’ is reconfirmed, diabetes mellitus is diagnosed. However, a diagnosis cannot be made only by the re‐examination of HbA1c alone. Moreover, if the plasma glucose values (any of criteria [i], [ii], or [iii]) and the HbA1c (criterion [iv]) in the same blood sample both indicate diabetic type, diabetes mellitus is diagnosed based on the initial examination alone. If HbA1c is used, it is essential that the plasma glucose level (criteria [i], [ii] or [iii]) also indicates diabetic type for a diagnosis of diabetes mellitus. When diabetes mellitus is suspected, HbA1c should be measured at the same time as examination for plasma glucose.2 If the plasma glucose level indicates diabetic type (any of [i], [ii], or [iii]) and either of the following conditions exists, diabetes mellitus can be diagnosed immediately at the initial examination.• The presence of typical symptoms of diabetes mellitus (thirst, polydipsia, polyuria, weight loss)• The presence of definite diabetic retinopathy3 If it can be confirmed that the above conditions 1 or 2 existed in the past, diabetes mellitus can be diagnosed or suspected regardless of the current test results.4 If the diagnosis of diabetes cannot be established by these procedures, the patient is followed up and re‐examined after an appropriate interval.5 The physician should assess not only the presence or absence of diabetes, but also its etiology and glycemic stage, and the presence and absence of diabetic complications or associated conditions.
Epidemiological Study:  For the purpose of estimating the frequency of diabetes mellitus, ‘diabetes mellitus’ can be substituted for the determination of ‘diabetic type’ from a single examination. In this case, HbA1c≥6.5% alone can be defined as ‘diabetes mellitus’.
Health Screening:  It is important not to misdiagnose diabetes mellitus, and thus clinical information such as family history and obesity should be referred to at the time of screening in addition to an index for plasma glucose level.
Gestational Diabetes Mellitus:  There are two hyperglycemic disorders in pregnancy: (i) gestational diabetes mellitus (GDM); and (ii) diabetes mellitus. GDM is diagnosed if one or more of the following criteria is met in a 75 g OGTT during pregnancy:
1 Fasting plasma glucose level of ≥92 mg/dL (5.1 mmol/L)2 1‐h value of ≥180 mg/dL (10.0 mmol/L)3 2‐h value of ≥153 mg/dL (8.5 mmol/L)
However, diabetes mellitus that is diagnosed by the clinical diagnosis of diabetes mellitus defined earlier is excluded from GDM. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2010.00074.x, 2010)
PMCID: PMC4020724  PMID: 24843435
Diabetes mellitus; Clinical diagnosis; HbA1c
7.  Insufficient Sensitivity of Hemoglobin A1C (A1C) Determination in Diagnosis or Screening of Early Diabetic States 
An International Expert Committee made recommendations for using the hemoglobin A1C (A1C) assay as the preferred method for diagnosis of diabetes in nonpregnant individuals. A concentration of ≥ 6.5% was considered as diagnostic. It is the aim of this study to compare the sensitivity of A1C with that of plasma glucose concentrations in subjects with early diabetes or IGT. We chose two groups of subjects who had A1C of ≤ 6.4%. The first group of 89 subjects had family histories of diabetes (MODY or T2DM) and had OGTT and A1C determinations. They included 36 subjects with diabetes or IGT and 53 with normal OGTT. The second group of 58 subjects was screened for diabetes in our Diabetes Clinic by FPG or 2HPG or OGTT and A1C and similar comparisons were made. Subjects with diabetes or IGT, including those with fasting hyperglycemia, had A1C ranging from 5.0 – 6.4%, mean 5.8%. The subjects with normal OGTT had A1C of 4.2 – 6.3%, mean 5.4% or 5.5% for the two groups. A1C may be in the normal range in subjects with diabetes or IGT, including those with fasting hyperglycemia. Approximately one third of subjects with early diabetes and IGT have A1C <5.7%, the cut-point that ADA recommends as indicating the onset of risk of developing diabetes in the future. The results of our study are similar to those obtained by a large Dutch epidemiological study. If our aim is to recognize early diabetic states to apply effective prophylactic procedures to prevent or delay progression to more severe diabetes, A1C is not sufficiently sensitive or reliable for diagnosis of diabetes or IGT. A combination of A1C and plasma glucose determinations, where necessary, are recommended for diagnosis or screening of diabetes or IGT.
PMCID: PMC2998594  PMID: 20723948
Hemoglobin A1C; Diagnosis; Diabetes
8.  Pre-Type 1 Diabetes Dysmetabolism: Maximal sensitivity achieved with Both Oral and Intravenous Glucose Tolerance Testing 
The Journal of pediatrics  2007;150(1):31-36.e6.
To determine the relationship of intravenous (IVGTT) and oral (OGTT) glucose tolerance tests abnormalities to diabetes development in a high-risk pre-diabetic cohort and identify an optimal testing strategy for detecting pre-clinical diabetes.
Study design
Diabetes Prevention Trial Type 1 randomized subjects to oral (n=372) and parenteral (n=339) insulin prevention trials. Subjects were followed with IVGTTs and OGTTs. Factors associated with progression to diabetes were evaluated.
Survival analysis revealed that higher quartiles of 2-hour glucose and lower quartiles of FPIR at baseline were associated with decreased diabetes-free survival. Cox proportional hazards modeling showed that baseline BMI, FPIR and 2-hour glucose levels were significantly associated with an increased hazard for diabetes. On testing performed within 6 months of diabetes diagnosis, 3% (1/32) had normal first phase insulin response (FPIR) and normal 2-hour glucose on OGTT. The sensitivities for impaired glucose tolerance (IGT) and low FPIR performed within 6 months of diabetes diagnosis were equivalent (76% vs. 73%).
Most (97%) subjects had abnormal IVGTTs and/or OGTTs prior to the development of diabetes. The highest sensitivity is achieved using both tests.
PMCID: PMC1868416  PMID: 17188609
type 1 diabetes; Diabetes Prevention Trial Type 1 (DPT); oral glucose tolerance test; intravenous glucose tolerance test
9.  Diabetes and pre-diabetes are associated with cardiovascular risk factors and carotid/femoral intima-media thickness independently of markers of insulin resistance and adiposity 
Impaired glucose regulation (IGR) is associated with detrimental cardiovascular outcomes such as cardiovascular disease risk factors (CVD risk factors) or intima-media thickness (IMT). Our aim was to examine whether these associations are mediated by body mass index (BMI), waist circumference (waist) or fasting serum insulin (insulin) in a population in the African region.
Major CVD risk factors (systolic blood pressure, smoking, LDL-cholesterol, HDL-cholesterol,) were measured in a random sample of adults aged 25–64 in the Seychelles (n = 1255, participation rate: 80.2%).
According to the criteria of the American Diabetes Association, IGR was divided in four ordered categories: 1) normal fasting glucose (NFG), 2) impaired fasting glucose (IFG) and normal glucose tolerance (IFG/NGT), 3) IFG and impaired glucose tolerance (IFG/IGT), and 4) diabetes mellitus (DM). Carotid and femoral IMT was assessed by ultrasound (n = 496).
Age-adjusted levels of the major CVD risk factors worsened gradually across IGR categories (NFG < IFG/NGT < IFG/IGT < DM), particularly HDL-cholesterol and blood pressure (p for trend < 0.001). These relationships were marginally attenuated upon further adjustment for waist, BMI or insulin (whether considered alone or combined) and most of these relationships remained significant. With regards to IMT, the association was null with IFG/NGT, weak with IFG/IGT and stronger with DM (all more markedly at femoral than carotid levels). The associations between IMT and IFG/IGT or DM (adjusted by age and major CVD risk factors) decreased only marginally upon further adjustment for BMI, waist or insulin. Further adjustment for family history of diabetes did not alter the results.
We found graded relationships between IGR categories and both major CVD risk factors and carotid/femoral IMT. These relationships were only partly accounted for by BMI, waist and insulin. This suggests that increased CVD-risk associated with IGR is also mediated by factors other than the considered markers of adiposity and insulin resistance. The results also imply that IGR and associated major CVD risk factors should be systematically screened and appropriately managed.
PMCID: PMC2148037  PMID: 17958881
10.  Oral glucose tolerance test‐based calculation identifies different glucose intolerance phenotypes within the impaired fasting glucose range 
The conventional oral glucose tolerance test (OGTT) cannot detect future diabetics among isolated impaired fasting glucose (is‐IFG) nor normal glucose tolerant (NGT) groups. By analyzing the relationship between fasting (FPG) and 2‐h plasma glucose (2hPG), the present study identifies is‐IFG subjects liable to worsening glucose homeostasis.
Materials and Methods
Oral glucose tolerance test was carried out in 619 patients suffering from obesity, hypertension or dyslipidemia, whose FPG was in the 100–125 mg/dL range. We calculated the percentage increment of 2hPG with respect to FPG (PG%) in these patients using the formula: ([2hPG − FPG] / FPG) × 100. Differences in β‐cell function within is‐IFG patients were assessed by estimated insulin sensitivity index (EISI), first‐phase insulin release (1stPH) and 1stPH/1/EISI (1stPHcorrected).
Diabetes was diagnosed in 69 patients (11.2%), combined IFG/impaired glucose tolerance (IGT) in 185 patients (29.9%) and is‐IFG in 365 patients (58.9%). Is‐IFG was subdivided into PG% tertile groups: the percentage of females increased from 25% in the lowest to 45.2% in the highest tertile (χ2 = 18.7, P < 0.001). Moving from the lowest to the highest PG% tertile group, insulin and 2hPG concentrations rose, whereas FPG, EISI, and 1stPHcorrected decreased progressively and significantly. Furthemore, PG% correlated inversely with EISI (r = −0.44, P < 0.0001) and 1stPHcorrected (r = −0.38, P < 0.0001).
Oral glucose tolerance test does differentiate the great heterogeneity in metabolic disorders of patients with FPG 100–125 mg/dL. Furthermore, PG% can expand the diagnostic power of OGTT in the is‐IFG range by distinguishing metabolic phenotypes very likely to herald different clinical risks.
PMCID: PMC4188111  PMID: 25411621
Diabetes risk; Impaired fasting glucose; Oral glucose tolerance test‐based index
11.  Strategies to Identify Adults at High Risk for Type 2 Diabetes 
Diabetes care  2005;28(1):138-144.
The Diabetes Prevention Program (DPP) was a large, multicenter, randomized clinical trial testing interventions to prevent or delay type 2 diabetes. A major challenge was to identify eligible high-risk adults, defined by DPP as having both impaired glucose tolerance (IGT) (2-h glucose 140–199 mg/dl) and elevated fasting plasma glucose (EFG) (95–125 mg/dl).
We analyzed how screening yields would be affected by the presence of established risk factors such as age, sex, ethnicity, BMI, and family history of diabetes, and how much yields would be enhanced by preselecting individuals with elevated capillary blood glucose levels. Of 158,177 contacted adults, 79,190 were potentially eligible (no history of diabetes, age 25 years and older, BMI ≥ 24 kg/m2). We focus on the 30,383 participants who completed an oral glucose tolerance test (OGTT).
Based on OGTT, 27% had IGT with EFG, meeting DPP eligibility criteria for being at high risk of diabetes, and 13% had previously undiagnosed diabetes based on OGTT. Older age and higher BMI increased yield of high-risk individuals and those with newly discovered diabetes in most ethnic groups (whites, African Americans, Hispanics, and American Indians). In Asian Americans, age but not BMI predicted high risk and diabetes. Independent of age and BMI, the preliminary fasting capillary glucose predicted screening yield in all ethnic groups, with an inverted-U pattern defining DPP eligibility alone (IGT-EFG) and a steep curvilinear pattern defining either IGT-EFG or newly discovered diabetes. Fasting capillary glucose did not attenuate the affects of other participant characteristics in predicting IGT-EFG or the combination of IGT-EFG and newly discovered diabetes.
The DPP screening approach identified adults with or at high risk for type 2 diabetes across various ethnic groups and provided guidance to more efficient use of OGTTs. Fasting capillary glucose is a useful adjunct in screening programs combined with data on age and adiposity.
PMCID: PMC1314971  PMID: 15616247
ADA, American Diabetes Association; CBL, Central Biochemistry Laboratory; DPP, Diabetes Prevention Program; EFG, elevated fasting glucose; IGT, impaired glucose tolerance; OGTT, oral glucose tolerance test
12.  Prediction of Diabetes Based on Baseline Metabolic Characteristics in Individuals at High Risk 
Diabetes Care  2013;36(11):3607-3612.
Individuals with impaired glucose tolerance (IGT) are at high risk for developing type 2 diabetes mellitus (T2DM). We examined which characteristics at baseline predicted the development of T2DM versus maintenance of IGT or conversion to normal glucose tolerance.
We studied 228 subjects at high risk with IGT who received treatment with placebo in ACT NOW and who underwent baseline anthropometric measures and oral glucose tolerance test (OGTT) at baseline and after a mean follow-up of 2.4 years.
In a univariate analysis, 45 of 228 (19.7%) IGT individuals developed diabetes. After adjusting for age, sex, and center, increased fasting plasma glucose, 2-h plasma glucose, ∆G0–120 during OGTT, HbA1c, adipocyte insulin resistance index, ln fasting plasma insulin, and ln ∆I0–120, as well as family history of diabetes and presence of metabolic syndrome, were associated with increased risk of diabetes. At baseline, higher insulin secretion (ln [∆I0–120/∆G0–120]) during the OGTT was associated with decreased risk of diabetes. Higher β-cell function (insulin secretion/insulin resistance or disposition index; ln [∆I0–120/∆G0–120 × Matsuda index of insulin sensitivity]; odds ratio 0.11; P < 0.0001) was the variable most closely associated with reduced risk of diabetes.
In a stepwise multiple-variable analysis, only HbA1c and β-cell function (ln insulin secretion/insulin resistance index) predicted the development of diabetes (r = 0.49; P < 0.0001).
PMCID: PMC3816921  PMID: 24062330
13.  Diabetes, Insulin Resistance and Atherosclerosis Surrogates in Patients With Coronary Atherosclerosis 
Korean Circulation Journal  2010;40(2):62-67.
Background and Objectives
Undiagnosed diabetes mellitus (DM) or impaired glucose tolerance (IGT) is not uncommon in patients with coronary atherosclerosis and is known to be associated with abnormal scores for atherosclerosis surrogates. We sought to determine the prevalence of undiagnosed DM or IGT, and the association between insulin resistance (IR) and atherosclerosis surrogates in patients with coronary atherosclerosis.
Subjects and Methods
The study population consisted of 187 consecutive patients with angiographically proven coronary atherosclerosis (mean: 61 years old, 94 males). We measured carotid intima-media thickness (IMT) and flow mediated brachial artery dilatation (FMD). We also did oral glucose tolerance tests (OGTT), quantitative insulin-sensitivity check indexes (QUICKI) and homeostasis model assessment-IR (HOMA-IR).
Abnormal OGTT was found in 164 patients (87.7%), even though there were only 63 known cases of DM (33.7%). There were 58 patients (31%) with newly diagnosed IGT and 43 patients (23%) with newly diagnosed DM. There were 71 patients (38%) who had IR (defined as measured HOMA-R ≥3.0). HOMA-IR showed a positive correlation with body mass index (BMI) (r=0.275, p<0.001) and triglycerides (r=0.2, p=0.01), whereas QUICKI had a negative correlation with BMI (r=-0.26, p<0.001), total cholesterol (r=-0.15, p=0.04), triglycerides (r=-0.21, p=0.004) and low-density lipoprotein-cholesterol (LDL-C) (r=-0.17, p=0.02). HOMA-IR and QUICKI were not significantly correlated with IMT or FMD.
This study suggests that there is a high incidence of undiagnosed DM and IGT, but atherosclerosis surrogates are not associated with IR in patients with coronary atherosclerosis.
PMCID: PMC2827804  PMID: 20182590
Coronary atherosclerosis; Diabetes; Insulin resistance
14.  The Association between HbA1c, Fasting Glucose, 1-Hour Glucose and 2-Hour Glucose during an Oral Glucose Tolerance Test and Cardiovascular Disease in Individuals with Elevated Risk for Diabetes 
PLoS ONE  2014;9(10):e109506.
To determine the association between HbA1c, fasting plasma glucose (FPG), 1-hour (1 hPG) and 2-hour (2 hPG) glucose after an oral glucose tolerance test (OGTT) and cardiovascular disease in individuals with elevated risk for diabetes.
We studied the relationship between baseline, updated mean and updated (last) value of HbA1c, FPG, 1 hPG and 2 hPG after an oral 75 g glucose tolerance test (OGTT) and acute CVD events in 504 individuals with impaired glucose tolerance (IGT) at baseline enrolled in the Finnish Diabetes Prevention Study.
Follow-up of clinical trial.
504 individuals with IGT were followed with yearly evaluations with OGTT, FPG and HbA1c.
Main Outcome Measure
Relative risk of CVD.
Over a median follow-up of 9.0 years 34 (6.7%) participants had a CVD event, which increased to 52 (10.3%) over a median follow-up of 13.0 years when including events that occurred among participants following a diagnosis of diabetes. Updated mean HbA1c, 1 hPG and 2 hPG, HR per 1 unit SD of 1.57 (95% CI 1.16 to 2.11), p = 0.0032, 1.51 (1.03 to 2.23), p = 0.036 and 1.60 (1.10 to 2.34), p = 0.014, respectively, but not FPG (p = 0.11), were related to CVD. In analyses of the last value prior to the CVD event the same three glycaemic measurements were associated with the CVD events, with HRs per 1 unit SD of 1.45 (1.06 to 1.98), p = 0.020, 1.55 (1.04 to 2.29), p = 0.030 and 2.19 (1.51 to 3.18), p<0.0001, respectively but only 2 hPG remained significant in pairwise comparisons. Including the follow-up period after diabetes onset updated 2 hPG (p = 0.003) but not updated mean HbA1c (p = 0.08) was related to CVD.
Conclusions and Relevance
Current 2 hPG level in people with IGT is associated with increased risk of CVD. This supports its use in screening for prediabetes and monitoring glycaemic levels of people with prediabetes.
PMCID: PMC4186853  PMID: 25285769
15.  Retrospective study on the efficacy of a low-carbohydrate diet for impaired glucose tolerance 
In recent years, the number of people with impaired glucose tolerance (IGT) has increased steadily worldwide. It is clear that the prevention of diabetes is important from the perspective of public health, medical care, and economics. It was recently reported that a low-carbohydrate diet (LCD) is useful for achieving weight loss and glycemic control, but there is no information about the effects of the LCD on IGT. We designed a 7-day in-hospital educational program focused on the LCD for IGT.
The subjects were 72 patients with IGT (36 in the LCD group and 36 in the control group) who were enrolled from April 2007–March 2012 and followed for 12 months. We retrospectively compared the LCD group with the control group.
In 69.4% of the LCD group, blood glucose was normalized at 12 months and the 2-hour plasma glucose level in the oral glucose tolerance test (OGTT) was reduced by 33 mg/dL. In addition, the incidence of diabetes was significantly lower in the LCD group than in the control group at 12 months (0% versus 13.9%, P=0.02). The LCD group showed a significant decrease in fasting plasma glucose, hemoglobin A1c, the homeostasis model of assessment of insulin resistance value, body weight and serum triglycerides (TGs) at 12 months, while there was a significant increase of the serum high-density lipoprotein (HDL) cholesterol level.
The LCD is effective for normalizing blood glucose and preventing progression to type 2 diabetes in patients with IGT.
PMCID: PMC4063858  PMID: 24966689
type 2 diabetes; low-carbohydrate diet; impaired glucose tolerance
16.  Cardiometabolic Risk Profiles and Carotid Atherosclerosis in Individuals With Prediabetes Identified by Fasting Glucose, Postchallenge Glucose, and Hemoglobin A1c Criteria 
Diabetes Care  2012;35(5):1144-1149.
We evaluated whether cardiometabolic risk profiles differ for subjects identified as having prediabetes by A1C, fasting glucose (FPG), or 2-h postchallenge glucose (2-PG) criteria.
Atherosclerosis risk factors, oral glucose tolerance test, and ultrasound measurement of carotid intima–media thickness (IMT) were analyzed in 780 nondiabetic individuals.
Poor agreement existed for A1C and FPG criteria for identification of subjects with prediabetes (κ coefficient = 0.332). No differences in cardiometabolic risk profiles were observed among the three groups of individuals with prediabetes by A1C only, FPG only, and both A1C and FPG. Poor agreement also existed for A1C and 2-PG criteria for identification of individuals with prediabetes (κ coefficient = 0.299). No significant differences in cardiometabolic risk factors were observed between IGT-only and individuals with prediabetes by A1C and 2-PG. Compared with subjects with prediabetes identified by A1C only, IGT-only individuals exhibited a worse cardiometabolic risk profile, with significantly higher systolic blood pressure, pulse pressure, 2-h postchallenge insulin, triglycerides, high-sensitivity C-reactive protein, and carotid IMT, and lower HDL cholesterol levels and insulin sensitivity.
These results suggest that considerable discordance between A1C, FPG, and 2-PG exists for the identification of individuals with prediabetes and that the cardiometabolic risk profile of these individuals varies by metabolic parameter, with 2-PG showing the stronger association with cardiometabolic risk factors and subclinical atherosclerosis than FPG or A1C.
PMCID: PMC3329850  PMID: 22399698
17.  A cross-sectional study of glucose regulation in young adults with very low birth weight: impact of male gender on hyperglycaemia 
BMJ Open  2012;2(1):e000327.
To investigate glucose regulation in young adults with very low birth weight (VLBW; <1500 g) in an Asian population.
Cross-sectional observational study.
A general hospital in Hamamatsu, Japan.
111 young adults (42 men and 69 women; aged 19–30 years) born with VLBW between 1980 and 1990. Participants underwent standard 75 g oral glucose tolerance test (OGTT).
Primary and secondary outcome measures
The primary outcomes were glucose and insulin levels during OGTT and risk factors for a category of hyperglycaemia defined as follows: diabetes mellitus, impaired glucose tolerance (IGT), impaired fasting glycaemia (IFG) and non-diabetes/IGT/IFG with elevated 1 h glucose levels (>8.6 mmol/l). The secondary outcomes were the pancreatic β cell function (insulinogenic index and homeostasis model of assessment for beta cell (HOMA-β)) and insulin resistance (homeostasis model of assessment for insulin resistance (HOMA-IR)).
Of 111 young adults with VLBW, 21 subjects (19%) had hyperglycaemia: one had type 2 diabetes, six had IGT, one had IFG and 13 had non-diabetes/IGT/IFG with elevated 1 h glucose levels. In logistic regression analysis, male gender was an independent risk factor associated with hyperglycaemia (OR 3.34, 95% CI 1.08 to 10.3, p=0.036). Male subjects had significantly higher levels of glucose and lower levels of insulin during OGTT than female subjects (p<0.001 for glucose and p=0.005 for insulin by repeated measures analysis of variance). Pancreatic β cell function was lower in men (insulinogenic index: p=0.002; HOMA-β: p=0.001), although no gender difference was found in insulin resistance (HOMA-IR: p=0.477). In male subjects, logistic regression analysis showed that small for gestational age was an independent risk factor associated with hyperglycaemia (OR 33.3, 95% CI 1.67 to 662.6, p=0.022).
19% of individuals with VLBW already had hyperglycaemia in young adulthood, and male gender was a significant independent risk factor of hyperglycaemia. In male young adults with VLBW, small for gestational age was associated with hyperglycaemia.
Article summary
Article focus
Neonatal intensive care has improved the survival rate for very low birth weight infants (VLBW; birth weight <1500 g) in recent decades, and the first generation of VLBW infants have only recently reached young adulthood.
Only a few studies have shown that VLBW (or preterm) is associated with glucose intolerance in Caucasian young adults, while glucose regulation in Asian young adults with VLBW is still uncertain.
The present study investigated glucose regulation in young adults with VLBW in an Asian population and determined the factors associated with hyperglycaemia.
Key messages
Of 111 young adults with VLBW, 19% of individuals already had hyperglycaemia (type 2 diabetes, impaired glucose tolerance (IGT), impaired fasting glycaemia (IFG) and non-diabetes/IGT/IFG with elevated 1 h glucose levels).
Male gender was a significant independent risk factor of hyperglycaemia in young adults with VLBW.
Small for gestational age was associated with hyperglycaemia particularly in male young adults with VLBW.
Strengths and limitations of this study
This is the first study assessing the glucose regulation in young adults with VLBW in an Asian population.
This study does not provide information on postnatal growth patterns, which have been shown to be associated with later hyperglycaemia in previous studies.
The study design with no control subjects makes it impossible to address the delayed impact of VLBW itself on glucose regulation.
PMCID: PMC3274711  PMID: 22307095
18.  Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study 
Impaired glucose tolerance (IGT) is a pre-diabetic state of hyperglycemia that is associated with insulin resistance, increased risk of type II diabetes, and cardiovascular pathology. Recently, investigators hypothesized that decreased vagus nerve activity may be the underlying mechanism of metabolic syndrome including obesity, elevated glucose levels, and high blood pressure.
In this pilot randomized clinical trial, we compared the efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) and sham taVNS on patients with IGT. 72 participants with IGT were single-blinded and were randomly allocated by computer-generated envelope to either taVNS or sham taVNS treatment groups. In addition, 30 IGT adults were recruited as a control population and not assigned treatment so as to monitor the natural fluctuation of glucose tolerance in IGT patients. All treatments were self-administered by the patients at home after training at the hospital. Patients were instructed to fill in a patient diary booklet each day to describe any side effects after each treatment. The treatment period was 12 weeks in duration. Baseline comparison between treatment and control group showed no difference in weight, BMI, or measures of systolic blood pressure, diastolic blood pressure, fasting plasma glucose (FPG), 2-hour plasma glucose (2hPG), or glycosylated hemoglobin (HbAlc).
100 participants completed the study and were included in data analysis. Two female patients (one in the taVNS group, one in the sham taVNS group) dropped out of the study due to stimulation-evoked dizziness. The symptoms were relieved after stopping treatment. Compared with sham taVNS, taVNS significantly reduced the two-hour glucose tolerance (F(2) = 5.79, p = 0.004). In addition, we found that taVNS significantly decreased (F(1) = 4.21, p = 0.044) systolic blood pressure over time compared with sham taVNS. Compared with the no-treatment control group, patients receiving taVNS significantly differed in measures of FPG (F(2) = 10.62, p < 0.001), 2hPG F(2) = 25.18, p < 0.001) and HbAlc (F(1) = 12.79, p = 0.001) over the course of the 12 week treatment period.
Our study suggests that taVNS is a promising, simple, and cost-effective treatment for IGT/ pre-diabetes with only slight risk of mild side-effects.
PMCID: PMC4227038  PMID: 24968966
19.  Effects of Telmisartan on Glucose Levels in People at High Risk for Cardiovascular Disease but Free From Diabetes 
Diabetes Care  2011;34(9):1902-1907.
Several large clinical trials suggest that ACE inhibitors may reduce the incidence of diabetes. Less is known about the effects of angiotensin receptor blockers (ARBs) on reducing incident diabetes or leading to regression of impaired fasting glucose (IFG) or impaired glucose tolerance (IGT) to normoglycemia.
Participants were 3,488 adults at high risk for cardiovascular disease but free from diabetes (mean age 67 years; 61% male) in the Telmisartan Randomized Assessment Study in ACE Intolerant Subjects With Cardiovascular Disease (TRANSCEND) study. The participants were randomized to the ARB telmisartan 80 mg (n = 1,726) or placebo (n = 1,762) in addition to usual care.
During a median 56 months, 21.8% of participants treated with telmisartan and 22.4% of those on placebo developed diabetes (relative ratio 0.95 [95% CI 0.83–1.10]; P = 0.51). Participants originally diagnosed with IFG and/or IGT were equally likely to regress to normoglycemia (26.9 vs. 24.5%) or to progress to incident diabetes (20.1 vs. 21.1%; P = 0.59) on telmisartan or placebo.
There was no evidence that addition of the ARB telmisartan to usual care prevents incident diabetes or leads to regression of IFG or IGT in people at high risk for cardiovascular disease but free from diabetes.
PMCID: PMC3161302  PMID: 21788624
20.  Different Pathophysiology of Impaired Glucose Tolerance in First Degree Relatives of Individuals with Type 2 Diabetes 
To assess whether an increased genetic predisposition for type 2 diabetes (T2DM) influences the contributions of insulin resistance and impaired insulin secretion to impaired glucose tolerance (IGT), 437 subjects not known to have T2DM underwent an OGTT and a 3-hour hyperglycemic clamp. Plasma insulin responses and insulin sensitivity were compared between all subjects (unselected for demographic or anthropometric characteristics) that had normal glucose homeostasis and no first degree T2DM relative (NGH; N=133), IGT with a first degree T2DM relative (IGT/FH+; N=74) or IGT without a first degree T2DM relative (IGT/FH−; N=50). Compared to NGH, first and second phase plasma insulin responses were reduced ~45% and 30%, respectively (both P<0.001) in IGT/FH+, whereas insulin sensitivity was only ~20% reduced (P=0.011). In contrast, in IGT/FH−, first phase plasma insulin responses were only ~20% reduced (P=0.016), second phase plasma insulin responses were not reduced, but insulin sensitivity was ~40% reduced (P<0.001). IGT/FH+ differed significantly from IGT/FH− by having 25–30% lower first phase plasma insulin responses (P=0.026) and 25–30% greater insulin sensitivity (P=0.027). Adjustment for obesity abolished the differences in insulin resistance but not plasma insulin responses. However, when the IGT groups were stratified into subgroups based on body mass index (BMI), first phase plasma insulin responses were ~30% lower in IGT/FH+ with a BMI ≥27 kg/m2 (P=0.018) but similar in IGT/FH+ with a BMI <27 kg/m2 compared to the corresponding IGT/FH− subgroups. We conclude that in IGT an increased genetic predisposition for T2DM increases the contribution of impaired insulin secretion to its pathophysiology. This effect is enhanced by obesity.
PMCID: PMC2713184  PMID: 19375581
impaired glucose tolerance; insulin resistance; insulin secretion
21.  Abnormal glucose tolerance in young male patients with nonalcoholic fatty liver disease 
Liver International  2009;29(4):525-529.
The association of nonalcoholic fatty liver disease (NAFLD) with insulin resistance and metabolic syndrome has been documented for obese men and middle-aged men. This study was designed to determine the relationship between NAFLD and the oral glucose tolerance test (OGTT) to predict preclinical diabetes in nondiabetic young male patients (<30 years old).
A total of 75 male patients who had elevated liver enzymes and who were diagnosed with NAFLD were enrolled in this study. A standard 75 g OGTT was carried out on all patients. Impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) were defined as a fasting plasma glucose (FPG) level ≥100 mg/dl but <126 mg/dl, and a 2-h post-load glucose on the OGTT of ≥140 mg/dl, but <200 mg/dl respectively.
According to the OGTT results, 24 (32%) patients were diagnosed as having IGT and 12 (16%) patients were diagnosed as having diabetes. Among the 48 patients with normal fasting glucose, 18 (37.6%) patients showed abnormal glucose tolerance (15 had IGT and three had diabetes). The NAFLD patients with abnormal glucose tolerance showed significant differences in age, weight, body mass index, waist–hip ratio, alanine aminotransferase, total bilirubin, total cholesterol, low-density lipoprotein cholesterol, triglyceride, insulin, FPG and homeostasis model for insulin resistance (HOMA-IR). Multiple regression analysis showed that age, FPG and HOMA-IR were independent predictors of abnormal glucose tolerance.
Although the patients were young men, an OGTT should be recommended for NAFLD patients with elevated liver enzymes and IFG to predict the risk of type 2 diabetes.
PMCID: PMC2711255  PMID: 19323780
insulin resistance; nonalcoholic fatty liver disease; oral glucose tolerance test
22.  Effect of acacia polyphenol on glucose homeostasis in subjects with impaired glucose tolerance: A randomized multicenter feeding trial 
Numerous in vitro and animal studies, as well as clinical trials have indicated that plant-derived polyphenols exert beneficial effects on glucose intolerance or type 2 diabetes. This clinical study aimed to investigate the effects of acacia polyphenol (AP) on glucose and insulin responses to an oral glucose tolerance test (OGTT) in non-diabetic subjects with impaired glucose tolerance (IGT). A randomized, double-blind, placebo-controlled trial was conducted in a total of 34 enrolled subjects. The subjects were randomly assigned to the AP-containing dietary supplement (AP supplement; in a daily dose of 250 mg as AP; n=17) or placebo (n=17) and the intervention was continued for 8 weeks. Prior to the start of the intervention (baseline) and after 4 and 8 weeks of intervention, plasma glucose and insulin were measured during a two-hour OGTT. Compared with the baseline, plasma glucose and insulin levels at 90 and/or 120 min, as well as the total area under the curve values during the OGTT (AUC0→2h) for glucose and insulin, were significantly reduced in the AP group, but not in the placebo group after intervention for 8 weeks. The decline from baseline in plasma glucose and insulin at 90 or 120 min of the OGTT for the AP group was significantly greater compared with that of the placebo group after 8 weeks of intervention. No AP supplement-related adverse side-effects nor any abnormal changes in routine laboratory tests and anthropometric parameters were observed throughout the study period. The AP supplement may have the potential to improve glucose homeostasis in subjects with IGT.
PMCID: PMC3702714  PMID: 23837032
dietary supplement; acacia polyphenol; impaired glucose tolerance; glucose homeostasis; insulin; oral glucose tolerance test
23.  The immediate effects of a single bout of aerobic exercise on oral glucose tolerance across the glucose tolerance continuum 
Physiological Reports  2014;2(8):e12114.
We investigated glucose tolerance and postprandial glucose fluxes immediately after a single bout of aerobic exercise in subjects representing the entire glucose tolerance continuum. Twenty‐four men with normal glucose tolerance (NGT), impaired glucose tolerance (IGT), or type 2 diabetes (T2D; age: 56 ± 1 years; body mass index: 27.8 ± 0.7 kg/m2, P > 0.05) underwent a 180‐min oral glucose tolerance test (OGTT) combined with constant intravenous infusion of [6,6‐2H2]glucose and ingestion of [U‐13C]glucose, following 1 h of exercise (50% of peak aerobic power) or rest. In both trials, plasma glucose concentrations and kinetics, insulin, C‐peptide, and glucagon were measured. Rates (mg kg−1 min−1) of glucose appearance from endogenous (RaEndo) and exogenous (oral glucose; RaOGTT) sources, and glucose disappearance (Rd) were determined. We found that exercise increased RaEndo, RaOGTT, and Rd (all P < 0.0001) in all groups with a tendency for a greater (~20%) peak RaOGTT value in NGT subjects when compared to IGT and T2D subjects. Accordingly, following exercise, the plasma glucose concentration during the OGTT was increased in NGT subjects (P < 0.05), while unchanged in subjects with IGT and T2D. In conclusion, while a single bout of moderate‐intensity exercise increased the postprandial glucose response in NGT subjects, glucose tolerance following exercise was preserved in the two hyperglycemic groups. Thus, postprandial plasma glucose responses immediately following exercise are dependent on the underlying degree of glycemic control.
This study shows that following an exercise bout, plasma glucose concentrations during an oral glucose tolerance test are increased in subjects with normal glucose tolerance, but unchanged in subjects with impaired glucose tolerance or type 2 diabetes. While rates of glucose disappearance and rates of glucose appearance from endogenous sources and from orally ingested glucose were all increased following exercise, there was a 20% greater peak value for the rate of orally ingested glucose appearance in normal glucose tolerant subjects, when compared to IGT and T2D subjects. In summary, postprandial plasma glucose responses immediately following exercise are dependent on the underlying level of glycemic control.
PMCID: PMC4246585  PMID: 25168869
Glucose kinetics; oral glucose tolerance test; physical activity; type 2 diabetes
24.  Improved Insulin Sensitivity during Pioglitazone Treatment Is Associated with Changes in IGF-I and Cortisol Secretion in Type 2 Diabetes and Impaired Glucose Tolerance 
ISRN Endocrinology  2013;2013:148497.
Background. Hypercortisolism and type 2 diabetes (T2D) share clinical characteristics. We examined pioglitazone's effects on the GH-IGF-I and HPA axes in men with varying glucose intolerance. Methods. 10 men with T2D and 10 with IGT received pioglitazone 30–45 mg for 12 weeks. OGTT with microdialysis in subcutaneous adipose tissue and 1 μg ACTH-stimulation test were performed before and after. Glucose, insulin, IGF-I, IGFBP1, and interstitial measurements were analyzed during the OGTT. Insulin sensitivity was estimated using HOMA-IR. Results. HOMA-IR improved in both groups. IGF-I was initially lower in T2D subjects (P = 0.004) and increased during treatment (−1.4 ± 0.5 to −0.5 ± 0.4 SD; P = 0.007); no change was seen in IGT (0.4 ± 39 SD before and during treatment). Fasting glycerol decreased in T2D (P = 0.038), indicating reduced lipolysis. Fasting cortisol decreased in T2D (400 ± 30 to 312 ± 25 nmol/L; P = 0.041) but increased in IGT (402 ± 21 to 461 ± 35 nmol/L; P = 0.044). Peak cortisol was lower in T2D during treatment (599 ± 32 to 511 ± 43, versus 643 ± 0.3 to 713 ± 37 nmol/L in IGT; P = 0.007). Conclusions. Pioglitazone improved adipose tissue and liver insulin sensitivity in both groups. This may explain increased IGF-I in T2D. Pioglitazone affected cortisol levels in both groups but differently, suggesting different mechanisms for improving insulin sensitivity between T2D and IGT.
PMCID: PMC3562586  PMID: 23401789
25.  Skin Autofluorescence Based Decision Tree in Detection of Impaired Glucose Tolerance and Diabetes 
PLoS ONE  2013;8(6):e65592.
Diabetes (DM) and impaired glucose tolerance (IGT) detection are conventionally based on glycemic criteria. Skin autofluorescence (SAF) is a noninvasive proxy of tissue accumulation of advanced glycation endproducts (AGE) which are considered to be a carrier of glycometabolic memory. We compared SAF and a SAF-based decision tree (SAF-DM) with fasting plasma glucose (FPG) and HbA1c, and additionally with the Finnish Diabetes Risk Score (FINDRISC) questionnaire±FPG for detection of oral glucose tolerance test (OGTT)- or HbA1c-defined IGT and diabetes in intermediate risk persons.
Participants had ≥1 metabolic syndrome criteria. They underwent an OGTT, HbA1c, SAF and FINDRISC, in adition to SAF-DM which includes SAF, age, BMI, and conditional questions on DM family history, antihypertensives, renal or cardiovascular disease events (CVE).
218 persons, age 56 yr, 128M/90F, 97 with previous CVE, participated. With OGTT 28 had DM, 46 IGT, 41 impaired fasting glucose, 103 normal glucose tolerance. SAF alone revealed 23 false positives (FP), 34 false negatives (FN) (sensitivity (S) 68%; specificity (SP) 86%). With SAF-DM, FP were reduced to 18, FN to 16 (5 with DM) (S 82%; SP 89%). HbA1c scored 48 FP, 18 FN (S 80%; SP 75%). Using HbA1c-defined DM-IGT/suspicion ≥6%/42 mmol/mol, SAF-DM scored 33 FP, 24 FN (4 DM) (S76%; SP72%), FPG 29 FP, 41 FN (S71%; SP80%). FINDRISC≥10 points as detection of HbA1c-based diabetes/suspicion scored 79 FP, 23 FN (S 69%; SP 45%).
SAF-DM is superior to FPG and non-inferior to HbA1c to detect diabetes/IGT in intermediate-risk persons. SAF-DM’s value for diabetes/IGT screening is further supported by its established performance in predicting diabetic complications.
PMCID: PMC3672176  PMID: 23750268

Results 1-25 (950339)