Search tips
Search criteria

Results 1-25 (1203035)

Clipboard (0)

Related Articles

1.  TRUNCATULIX – a data warehouse for the legume community 
BMC Plant Biology  2009;9:19.
Databases for either sequence, annotation, or microarray experiments data are extremely beneficial to the research community, as they centrally gather information from experiments performed by different scientists. However, data from different sources develop their full capacities only when combined. The idea of a data warehouse directly adresses this problem and solves it by integrating all required data into one single database – hence there are already many data warehouses available to genetics. For the model legume Medicago truncatula, there is currently no such single data warehouse that integrates all freely available gene sequences, the corresponding gene expression data, and annotation information. Thus, we created the data warehouse TRUNCATULIX, an integrative database of Medicago truncatula sequence and expression data.
The TRUNCATULIX data warehouse integrates five public databases for gene sequences, and gene annotations, as well as a database for microarray expression data covering raw data, normalized datasets, and complete expression profiling experiments. It can be accessed via an AJAX-based web interface using a standard web browser. For the first time, users can now quickly search for specific genes and gene expression data in a huge database based on high-quality annotations. The results can be exported as Excel, HTML, or as csv files for further usage.
The integration of sequence, annotation, and gene expression data from several Medicago truncatula databases in TRUNCATULIX provides the legume community with access to data and data mining capability not previously available. TRUNCATULIX is freely available at .
PMCID: PMC2654896  PMID: 19210766
2.  Design and utilization of the colorectal and pancreatic neoplasm virtual biorepository: An early detection research network initiative 
The Early Detection Research Network (EDRN) colorectal and pancreatic neoplasm virtual biorepository is a bioinformatics-driven system that provides high-quality clinicopathology-rich information for clinical biospecimens. This NCI-sponsored EDRN resource supports translational cancer research. The information model of this biorepository is based on three components: (a) development of common data elements (CDE), (b) a robust data entry tool and (c) comprehensive data query tools.
The aim of the EDRN initiative is to develop and sustain a virtual biorepository for support of translational research. High-quality biospecimens were accrued and annotated with pertinent clinical, epidemiologic, molecular and genomic information. A user-friendly annotation tool and query tool was developed for this purpose. The various components of this annotation tool include: CDEs are developed from the College of American Pathologists (CAP) Cancer Checklists and North American Association of Central Cancer Registries (NAACR) standards. The CDEs provides semantic and syntactic interoperability of the data sets by describing them in the form of metadata or data descriptor. The data entry tool is a portable and flexible Oracle-based data entry application, which is an easily mastered, web-based tool. The data query tool facilitates investigators to search deidentified information within the warehouse through a “point and click” interface thus enabling only the selected data elements to be essentially copied into a data mart using a dimensional-modeled structure from the warehouse’s relational structure.
The EDRN Colorectal and Pancreatic Neoplasm Virtual Biorepository database contains multimodal datasets that are available to investigators via a web-based query tool. At present, the database holds 2,405 cases and 2,068 tumor accessions. The data disclosure is strictly regulated by user’s authorization. The high-quality and well-characterized biospecimens have been used in different translational science research projects as well as to further various epidemiologic and genomics studies.
The EDRN Colorectal and Pancreatic Neoplasm Virtual Biorepository with a tangible translational biomedical informatics infrastructure facilitates translational research. The data query tool acts as a central source and provides a mechanism for researchers to efficiently query clinically annotated datasets and biospecimens that are pertinent to their research areas. The tool ensures patient health information protection by disclosing only deidentified data with Institutional Review Board and Health Insurance Portability and Accountability Act protocols.
PMCID: PMC2956178  PMID: 21031013
Colorectal and pancreatic neoplasm; tissue banking informatics
3.  An expression database for roots of the model legume Medicago truncatula under salt stress 
BMC Genomics  2009;10:517.
Medicago truncatula is a model legume whose genome is currently being sequenced by an international consortium. Abiotic stresses such as salt stress limit plant growth and crop productivity, including those of legumes. We anticipate that studies on M. truncatula will shed light on other economically important legumes across the world. Here, we report the development of a database called MtED that contains gene expression profiles of the roots of M. truncatula based on time-course salt stress experiments using the Affymetrix Medicago GeneChip. Our hope is that MtED will provide information to assist in improving abiotic stress resistance in legumes.
The results of our microarray experiment with roots of M. truncatula under 180 mM sodium chloride were deposited in the MtED database. Additionally, sequence and annotation information regarding microarray probe sets were included. MtED provides functional category analysis based on Gene and GeneBins Ontology, and other Web-based tools for querying and retrieving query results, browsing pathways and transcription factor families, showing metabolic maps, and comparing and visualizing expression profiles. Utilities like mapping probe sets to genome of M. truncatula and In-Silico PCR were implemented by BLAT software suite, which were also available through MtED database.
MtED was built in the PHP script language and as a MySQL relational database system on a Linux server. It has an integrated Web interface, which facilitates ready examination and interpretation of the results of microarray experiments. It is intended to help in selecting gene markers to improve abiotic stress resistance in legumes. MtED is available at
PMCID: PMC2779821  PMID: 19906315
4.  metabolicMine: an integrated genomics, genetics and proteomics data warehouse for common metabolic disease research 
Common metabolic and endocrine diseases such as diabetes affect millions of people worldwide and have a major health impact, frequently leading to complications and mortality. In a search for better prevention and treatment, there is ongoing research into the underlying molecular and genetic bases of these complex human diseases, as well as into the links with risk factors such as obesity. Although an increasing number of relevant genomic and proteomic data sets have become available, the quantity and diversity of the data make their efficient exploitation challenging. Here, we present metabolicMine, a data warehouse with a specific focus on the genomics, genetics and proteomics of common metabolic diseases. Developed in collaboration with leading UK metabolic disease groups, metabolicMine integrates data sets from a range of experiments and model organisms alongside tools for exploring them. The current version brings together information covering genes, proteins, orthologues, interactions, gene expression, pathways, ontologies, diseases, genome-wide association studies and single nucleotide polymorphisms. Although the emphasis is on human data, key data sets from mouse and rat are included. These are complemented by interoperation with the RatMine rat genomics database, with a corresponding mouse version under development by the Mouse Genome Informatics (MGI) group. The web interface contains a number of features including keyword search, a library of Search Forms, the QueryBuilder and list analysis tools. This provides researchers with many different ways to analyse, view and flexibly export data. Programming interfaces and automatic code generation in several languages are supported, and many of the features of the web interface are available through web services. The combination of diverse data sets integrated with analysis tools and a powerful query system makes metabolicMine a valuable research resource. The web interface makes it accessible to first-time users, whereas the Application Programming Interface (API) and web services provide convenient data access and tools for bioinformaticians. metabolicMine is freely available online at
Database URL:
PMCID: PMC4438919  PMID: 23935057
5.  Arabidopsis Gene Family Profiler (aGFP) – user-oriented transcriptomic database with easy-to-use graphic interface 
BMC Plant Biology  2007;7:39.
Microarray technologies now belong to the standard functional genomics toolbox and have undergone massive development leading to increased genome coverage, accuracy and reliability. The number of experiments exploiting microarray technology has markedly increased in recent years. In parallel with the rapid accumulation of transcriptomic data, on-line analysis tools are being introduced to simplify their use. Global statistical data analysis methods contribute to the development of overall concepts about gene expression patterns and to query and compose working hypotheses. More recently, these applications are being supplemented with more specialized products offering visualization and specific data mining tools. We present a curated gene family-oriented gene expression database, Arabidopsis Gene Family Profiler (aGFP; ), which gives the user access to a large collection of normalised Affymetrix ATH1 microarray datasets. The database currently contains NASC Array and AtGenExpress transcriptomic datasets for various tissues at different developmental stages of wild type plants gathered from nearly 350 gene chips.
The Arabidopsis GFP database has been designed as an easy-to-use tool for users needing an easily accessible resource for expression data of single genes, pre-defined gene families or custom gene sets, with the further possibility of keyword search. Arabidopsis Gene Family Profiler presents a user-friendly web interface using both graphic and text output. Data are stored at the MySQL server and individual queries are created in PHP script. The most distinguishable features of Arabidopsis Gene Family Profiler database are: 1) the presentation of normalized datasets (Affymetrix MAS algorithm and calculation of model-based gene-expression values based on the Perfect Match-only model); 2) the choice between two different normalization algorithms (Affymetrix MAS4 or MAS5 algorithms); 3) an intuitive interface; 4) an interactive "virtual plant" visualizing the spatial and developmental expression profiles of both gene families and individual genes.
Arabidopsis GFP gives users the possibility to analyze current Arabidopsis developmental transcriptomic data starting with simple global queries that can be expanded and further refined to visualize comparative and highly selective gene expression profiles.
PMCID: PMC1963329  PMID: 17645793
6.  GEM-TREND: a web tool for gene expression data mining toward relevant network discovery 
BMC Genomics  2009;10:411.
DNA microarray technology provides us with a first step toward the goal of uncovering gene functions on a genomic scale. In recent years, vast amounts of gene expression data have been collected, much of which are available in public databases, such as the Gene Expression Omnibus (GEO). To date, most researchers have been manually retrieving data from databases through web browsers using accession numbers (IDs) or keywords, but gene-expression patterns are not considered when retrieving such data. The Connectivity Map was recently introduced to compare gene expression data by introducing gene-expression signatures (represented by a set of genes with up- or down-regulated labels according to their biological states) and is available as a web tool for detecting similar gene-expression signatures from a limited data set (approximately 7,000 expression profiles representing 1,309 compounds). In order to support researchers to utilize the public gene expression data more effectively, we developed a web tool for finding similar gene expression data and generating its co-expression networks from a publicly available database.
GEM-TREND, a web tool for searching gene expression data, allows users to search data from GEO using gene-expression signatures or gene expression ratio data as a query and retrieve gene expression data by comparing gene-expression pattern between the query and GEO gene expression data. The comparison methods are based on the nonparametric, rank-based pattern matching approach of Lamb et al. (Science 2006) with the additional calculation of statistical significance. The web tool was tested using gene expression ratio data randomly extracted from the GEO and with in-house microarray data, respectively. The results validated the ability of GEM-TREND to retrieve gene expression entries biologically related to a query from GEO. For further analysis, a network visualization interface is also provided, whereby genes and gene annotations are dynamically linked to external data repositories.
GEM-TREND was developed to retrieve gene expression data by comparing query gene-expression pattern with those of GEO gene expression data. It could be a very useful resource for finding similar gene expression profiles and constructing its gene co-expression networks from a publicly available database. GEM-TREND was designed to be user-friendly and is expected to support knowledge discovery. GEM-TREND is freely available at .
PMCID: PMC2748096  PMID: 19728865
7.  VTCdb: a gene co-expression database for the crop species Vitis vinifera (grapevine) 
BMC Genomics  2013;14:882.
Gene expression datasets in model plants such as Arabidopsis have contributed to our understanding of gene function and how a single underlying biological process can be governed by a diverse network of genes. The accumulation of publicly available microarray data encompassing a wide range of biological and environmental conditions has enabled the development of additional capabilities including gene co-expression analysis (GCA). GCA is based on the understanding that genes encoding proteins involved in similar and/or related biological processes may exhibit comparable expression patterns over a range of experimental conditions, developmental stages and tissues. We present an open access database for the investigation of gene co-expression networks within the cultivated grapevine, Vitis vinifera.
The new gene co-expression database, VTCdb (, offers an online platform for transcriptional regulatory inference in the cultivated grapevine. Using condition-independent and condition-dependent approaches, grapevine co-expression networks were constructed using the latest publicly available microarray datasets from diverse experimental series, utilising the Affymetrix Vitis vinifera GeneChip (16 K) and the NimbleGen Grape Whole-genome microarray chip (29 K), thus making it possible to profile approximately 29,000 genes (95% of the predicted grapevine transcriptome). Applications available with the online platform include the use of gene names, probesets, modules or biological processes to query the co-expression networks, with the option to choose between Affymetrix or Nimblegen datasets and between multiple co-expression measures. Alternatively, the user can browse existing network modules using interactive network visualisation and analysis via CytoscapeWeb. To demonstrate the utility of the database, we present examples from three fundamental biological processes (berry development, photosynthesis and flavonoid biosynthesis) whereby the recovered sub-networks reconfirm established plant gene functions and also identify novel associations.
Together, we present valuable insights into grapevine transcriptional regulation by developing network models applicable to researchers in their prioritisation of gene candidates, for on-going study of biological processes related to grapevine development, metabolism and stress responses.
PMCID: PMC3904201  PMID: 24341535
8.  High dimensional biological data retrieval optimization with NoSQL technology 
BMC Genomics  2014;15(Suppl 8):S3.
High-throughput transcriptomic data generated by microarray experiments is the most abundant and frequently stored kind of data currently used in translational medicine studies. Although microarray data is supported in data warehouses such as tranSMART, when querying relational databases for hundreds of different patient gene expression records queries are slow due to poor performance. Non-relational data models, such as the key-value model implemented in NoSQL databases, hold promise to be more performant solutions. Our motivation is to improve the performance of the tranSMART data warehouse with a view to supporting Next Generation Sequencing data.
In this paper we introduce a new data model better suited for high-dimensional data storage and querying, optimized for database scalability and performance. We have designed a key-value pair data model to support faster queries over large-scale microarray data and implemented the model using HBase, an implementation of Google's BigTable storage system. An experimental performance comparison was carried out against the traditional relational data model implemented in both MySQL Cluster and MongoDB, using a large publicly available transcriptomic data set taken from NCBI GEO concerning Multiple Myeloma. Our new key-value data model implemented on HBase exhibits an average 5.24-fold increase in high-dimensional biological data query performance compared to the relational model implemented on MySQL Cluster, and an average 6.47-fold increase on query performance on MongoDB.
The performance evaluation found that the new key-value data model, in particular its implementation in HBase, outperforms the relational model currently implemented in tranSMART. We propose that NoSQL technology holds great promise for large-scale data management, in particular for high-dimensional biological data such as that demonstrated in the performance evaluation described in this paper. We aim to use this new data model as a basis for migrating tranSMART's implementation to a more scalable solution for Big Data.
PMCID: PMC4248814  PMID: 25435347
9.  A Web Based Resource Characterizing the Zebrafish Developmental Profile of over 16,000 transcripts 
Gene expression patterns : GEP  2007;8(3):171-180.
Using a spotted 65-mer oligonucleotide microarray, we have characterized the developmental expression profile from mid-gastrulation (75% epiboly) to 5 days post-fertilization (dpf) for >16,000 unique transcripts in the zebrafish genome. Microarray profiling data sets are often immense, and one challenge is validating the results and prioritizing genes for further study. The purpose of the current study was to address such issues, as well as to generate a publicly available resource for investigators to examine the developmental expression profile of any of the over 16,000 zebrafish genes on the array. On the chips, there are 16,459 printed spots corresponding to 16,288 unique transcripts and 172 β-actin (AF025305) spots spatially distributed throughout the chip as a positive control. We have collected 55 microarray gene expression profiling results from various zebrafish laboratories and created a Perl/CGI-based software tool ( for researchers to look for the expression patterns of their gene of interest. Users can search for their genes of interest by entering the accession numbers or the nucleotide sequences and the expression profiling will be reported in the form of expression intensities versus time-course graphical displays. In order to validate this web tool, we compared seventy-four genes’ expression results between our web tool and the in situ hybridization results from Thisse et al. (2004) as well as those reported by Mathavan et al. (2005). The comparison indicates the expression patterns are 80% and 75% in agreement between our web resource with the in situ database (Thisse et al. 2004) and with those reported by Mathavan et al. (2005), respectively. Those genes that conflict between our web tool and the in situ database either have high sequence similarity with other genes or the in situ probes are not reliable. Among those genes that disagree between our web tool and those reported by Mathavan et al. (2005), 93% of the genes are in agreement between our web tool and the in situ database, indicating our web tool results are quite reliable. Thus, this resource provides a user-friendly web based platform for researchers to determine the developmental profile of their gene of interest and to prioritize genes identified in microarray analyses by their developmental expression profile.
PMCID: PMC2253684  PMID: 18068546
10.  The Medicago truncatula gene expression atlas web server 
BMC Bioinformatics  2009;10:441.
Legumes (Leguminosae or Fabaceae) play a major role in agriculture. Transcriptomics studies in the model legume species, Medicago truncatula, are instrumental in helping to formulate hypotheses about the role of legume genes. With the rapid growth of publically available Affymetrix GeneChip Medicago Genome Array GeneChip data from a great range of tissues, cell types, growth conditions, and stress treatments, the legume research community desires an effective bioinformatics system to aid efforts to interpret the Medicago genome through functional genomics. We developed the Medicago truncatula Gene Expression Atlas (MtGEA) web server for this purpose.
The Medicago truncatula Gene Expression Atlas (MtGEA) web server is a centralized platform for analyzing the Medicago transcriptome. Currently, the web server hosts gene expression data from 156 Affymetrix GeneChip® Medicago genome arrays in 64 different experiments, covering a broad range of developmental and environmental conditions. The server enables flexible, multifaceted analyses of transcript data and provides a range of additional information about genes, including different types of annotation and links to the genome sequence, which help users formulate hypotheses about gene function. Transcript data can be accessed using Affymetrix probe identification number, DNA sequence, gene name, functional description in natural language, GO and KEGG annotation terms, and InterPro domain number. Transcripts can also be discovered through co-expression or differential expression analysis. Flexible tools to select a subset of experiments and to visualize and compare expression profiles of multiple genes have been implemented. Data can be downloaded, in part or full, in a tabular form compatible with common analytical and visualization software. The web server will be updated on a regular basis to incorporate new gene expression data and genome annotation, and is accessible at:
The MtGEA web server has a well managed rich data set, and offers data retrieval and analysis tools provided in the web platform. It's proven to be a powerful resource for plant biologists to effectively and efficiently identify Medicago transcripts of interest from a multitude of aspects, formulate hypothesis about gene function, and overall interpret the Medicago genome from a systematic point of view.
PMCID: PMC2804685  PMID: 20028527
11.  GATExplorer: Genomic and Transcriptomic Explorer; mapping expression probes to gene loci, transcripts, exons and ncRNAs 
BMC Bioinformatics  2010;11:221.
Genome-wide expression studies have developed exponentially in recent years as a result of extensive use of microarray technology. However, expression signals are typically calculated using the assignment of "probesets" to genes, without addressing the problem of "gene" definition or proper consideration of the location of the measuring probes in the context of the currently known genomes and transcriptomes. Moreover, as our knowledge of metazoan genomes improves, the number of both protein-coding and noncoding genes, as well as their associated isoforms, continues to increase. Consequently, there is a need for new databases that combine genomic and transcriptomic information and provide updated mapping of expression probes to current genomic annotations.
GATExplorer (Genomic and Transcriptomic Explorer) is a database and web platform that integrates a gene loci browser with nucleotide level mappings of oligo probes from expression microarrays. It allows interactive exploration of gene loci, transcripts and exons of human, mouse and rat genomes, and shows the specific location of all mappable Affymetrix microarray probes and their respective expression levels in a broad set of biological samples. The web site allows visualization of probes in their genomic context together with any associated protein-coding or noncoding transcripts. In the case of all-exon arrays, this provides a means by which the expression of the individual exons within a gene can be compared, thereby facilitating the identification and analysis of alternatively spliced exons. The application integrates data from four major source databases: Ensembl, RNAdb, Affymetrix and GeneAtlas; and it provides the users with a series of files and packages (R CDFs) to analyze particular query expression datasets. The maps cover both the widely used Affymetrix GeneChip microarrays based on 3' expression (e.g. human HG U133 series) and the all-exon expression microarrays (Gene 1.0 and Exon 1.0).
GATExplorer is an integrated database that combines genomic/transcriptomic visualization with nucleotide-level probe mapping. By considering expression at the nucleotide level rather than the gene level, it shows that the arrays detect expression signals from entities that most researchers do not contemplate or discriminate. This approach provides the means to undertake a higher resolution analysis of microarray data and potentially extract considerably more detailed and biologically accurate information from existing and future microarray experiments.
PMCID: PMC2875241  PMID: 20429936
12.  BEAT: Bioinformatics Exon Array Tool to store, analyze and visualize Affymetrix GeneChip Human Exon Array data from disease experiments 
BMC Bioinformatics  2012;13(Suppl 4):S21.
It is known from recent studies that more than 90% of human multi-exon genes are subject to Alternative Splicing (AS), a key molecular mechanism in which multiple transcripts may be generated from a single gene. It is widely recognized that a breakdown in AS mechanisms plays an important role in cellular differentiation and pathologies. Polymerase Chain Reactions, microarrays and sequencing technologies have been applied to the study of transcript diversity arising from alternative expression. Last generation Affymetrix GeneChip Human Exon 1.0 ST Arrays offer a more detailed view of the gene expression profile providing information on the AS patterns. The exon array technology, with more than five million data points, can detect approximately one million exons, and it allows performing analyses at both gene and exon level. In this paper we describe BEAT, an integrated user-friendly bioinformatics framework to store, analyze and visualize exon arrays datasets. It combines a data warehouse approach with some rigorous statistical methods for assessing the AS of genes involved in diseases. Meta statistics are proposed as a novel approach to explore the analysis results. BEAT is available at
BEAT is a web tool which allows uploading and analyzing exon array datasets using standard statistical methods and an easy-to-use graphical web front-end. BEAT has been tested on a dataset with 173 samples and tuned using new datasets of exon array experiments from 28 colorectal cancer and 26 renal cell cancer samples produced at the Medical Genetics Unit of IRCCS Casa Sollievo della Sofferenza.
To highlight all possible AS events, alternative names, accession Ids, Gene Ontology terms and biochemical pathways annotations are integrated with exon and gene level expression plots. The user can customize the results choosing custom thresholds for the statistical parameters and exploiting the available clinical data of the samples for a multivariate AS analysis.
Despite exon array chips being widely used for transcriptomics studies, there is a lack of analysis tools offering advanced statistical features and requiring no programming knowledge. BEAT provides a user-friendly platform for a comprehensive study of AS events in human diseases, displaying the analysis results with easily interpretable and interactive tables and graphics.
PMCID: PMC3314565  PMID: 22536968
13.  Tomato Expression Database (TED): a suite of data presentation and analysis tools 
Nucleic Acids Research  2005;34(Database issue):D766-D770.
The Tomato Expression Database (TED) includes three integrated components. The Tomato Microarray Data Warehouse serves as a central repository for raw gene expression data derived from the public tomato cDNA microarray. In addition to expression data, TED stores experimental design and array information in compliance with the MIAME guidelines and provides web interfaces for researchers to retrieve data for their own analysis and use. The Tomato Microarray Expression Database contains normalized and processed microarray data for ten time points with nine pair-wise comparisons during fruit development and ripening in a normal tomato variety and nearly isogenic single gene mutants impacting fruit development and ripening. Finally, the Tomato Digital Expression Database contains raw and normalized digital expression (EST abundance) data derived from analysis of the complete public tomato EST collection containing >150 000 ESTs derived from 27 different non-normalized EST libraries. This last component also includes tools for the comparison of tomato and Arabidopsis digital expression data. A set of query interfaces and analysis, and visualization tools have been developed and incorporated into TED, which aid users in identifying and deciphering biologically important information from our datasets. TED can be accessed at .
PMCID: PMC1347472  PMID: 16381976
14.  GCOD - GeneChip Oncology Database 
BMC Bioinformatics  2011;12:46.
DNA microarrays have become a nearly ubiquitous tool for the study of human disease, and nowhere is this more true than in cancer. With hundreds of studies and thousands of expression profiles representing the majority of human cancers completed and in public databases, the challenge has been effectively accessing and using this wealth of data.
To address this issue we have collected published human cancer gene expression datasets generated on the Affymetrix GeneChip platform, and carefully annotated those studies with a focus on providing accurate sample annotation. To facilitate comparison between datasets, we implemented a consistent data normalization and transformation protocol and then applied stringent quality control procedures to flag low-quality assays.
The resulting resource, the GeneChip Oncology Database, is available through a publicly accessible website that provides several query options and analytical tools through an intuitive interface.
PMCID: PMC3045303  PMID: 21291543
15.  SQUAT: A web tool to mine human, murine and avian SAGE data 
BMC Bioinformatics  2008;9:378.
There is an increasing need in transcriptome research for gene expression data and pattern warehouses. It is of importance to integrate in these warehouses both raw transcriptomic data, as well as some properties encoded in these data, like local patterns.
We have developed an application called SQUAT (SAGE Querying and Analysis Tools) which is available at: . This database gives access to both raw SAGE data and patterns mined from these data, for three species (human, mouse and chicken). This database allows to make simple queries like "In which biological situations is my favorite gene expressed?" as well as much more complex queries like: ≪what are the genes that are frequently co-over-expressed with my gene of interest in given biological situations?≫. Connections with external web databases enrich biological interpretations, and enable sophisticated queries. To illustrate the power of SQUAT, we show and analyze the results of three different queries, one of which led to a biological hypothesis that was experimentally validated.
SQUAT is a user-friendly information retrieval platform, which aims at bringing some of the state-of-the-art mining tools to biologists.
PMCID: PMC2567996  PMID: 18801154
16.  CoryneRegNet 4.0 – A reference database for corynebacterial gene regulatory networks 
BMC Bioinformatics  2007;8:429.
Detailed information on DNA-binding transcription factors (the key players in the regulation of gene expression) and on transcriptional regulatory interactions of microorganisms deduced from literature-derived knowledge, computer predictions and global DNA microarray hybridization experiments, has opened the way for the genome-wide analysis of transcriptional regulatory networks. The large-scale reconstruction of these networks allows the in silico analysis of cell behavior in response to changing environmental conditions. We previously published CoryneRegNet, an ontology-based data warehouse of corynebacterial transcription factors and regulatory networks. Initially, it was designed to provide methods for the analysis and visualization of the gene regulatory network of Corynebacterium glutamicum.
Now we introduce CoryneRegNet release 4.0, which integrates data on the gene regulatory networks of 4 corynebacteria, 2 mycobacteria and the model organism Escherichia coli K12. As the previous versions, CoryneRegNet provides a web-based user interface to access the database content, to allow various queries, and to support the reconstruction, analysis and visualization of regulatory networks at different hierarchical levels. In this article, we present the further improved database content of CoryneRegNet along with novel analysis features. The network visualization feature GraphVis now allows the inter-species comparisons of reconstructed gene regulatory networks and the projection of gene expression levels onto that networks. Therefore, we added stimulon data directly into the database, but also provide Web Service access to the DNA microarray analysis platform EMMA. Additionally, CoryneRegNet now provides a SOAP based Web Service server, which can easily be consumed by other bioinformatics software systems. Stimulons (imported from the database, or uploaded by the user) can be analyzed in the context of known transcriptional regulatory networks to predict putative contradictions or further gene regulatory interactions. Furthermore, it integrates protein clusters by means of heuristically solving the weighted graph cluster editing problem. In addition, it provides Web Service based access to up to date gene annotation data from GenDB.
The release 4.0 of CoryneRegNet is a comprehensive system for the integrated analysis of procaryotic gene regulatory networks. It is a versatile systems biology platform to support the efficient and large-scale analysis of transcriptional regulation of gene expression in microorganisms. It is publicly available at .
PMCID: PMC2194740  PMID: 17986320
17.  GPAT: Retrieval of genomic annotation from large genomic position datasets 
BMC Bioinformatics  2008;9:533.
Recent genome wide transcription factor binding site or chromatin modification mapping analysis techniques, such as chromatin immunoprecipitation (ChIP) linked to DNA microarray analysis (ChIP on chip) or ChIP coupled to high throughput sequencing (ChIP-seq), generate tremendous amounts of genomic location data in the form of one-dimensional series of signals. After pre-analysis of these data (signal pre-clearing, relevant binding site detection), biologists need to search for the biological relevance of the detected genomic positions representing transcription regulation or chromatin modification events.
To address this problem, we have developed a Genomic Position Annotation Tool (GPAT) with a simple web interface that allows the rapid and systematic labelling of thousands of genomic positions with several types of annotations. GPAT automatically extracts gene annotation information around the submitted positions from different public databases (Refseq or ENSEMBL). In addition, GPAT provides access to the expression status of the corresponding genes from either existing transcriptomic databases or from user generated expression data sets. Furthermore, GPAT allows the localisation of the genomic coordinates relative to the chromosome bands and the well characterised ENCODE regions. We successfully used GPAT to analyse ChIP on chip data and to identify genes functionally regulated by the TATA binding protein (TBP).
GPAT provides a quick, convenient and flexible way to annotate large sets of genomic positions obtained after pre-analysis of ChIP-chip, ChIP-seq or other high throughput sequencing-based techniques. Through the different annotation data displayed, GPAT facilitates the interpretation of genome wide datasets for molecular biologists.
PMCID: PMC2654044  PMID: 19077303
18.  BioWarehouse: a bioinformatics database warehouse toolkit 
BMC Bioinformatics  2006;7:170.
This article addresses the problem of interoperation of heterogeneous bioinformatics databases.
We introduce BioWarehouse, an open source toolkit for constructing bioinformatics database warehouses using the MySQL and Oracle relational database managers. BioWarehouse integrates its component databases into a common representational framework within a single database management system, thus enabling multi-database queries using the Structured Query Language (SQL) but also facilitating a variety of database integration tasks such as comparative analysis and data mining. BioWarehouse currently supports the integration of a pathway-centric set of databases including ENZYME, KEGG, and BioCyc, and in addition the UniProt, GenBank, NCBI Taxonomy, and CMR databases, and the Gene Ontology. Loader tools, written in the C and JAVA languages, parse and load these databases into a relational database schema. The loaders also apply a degree of semantic normalization to their respective source data, decreasing semantic heterogeneity. The schema supports the following bioinformatics datatypes: chemical compounds, biochemical reactions, metabolic pathways, proteins, genes, nucleic acid sequences, features on protein and nucleic-acid sequences, organisms, organism taxonomies, and controlled vocabularies. As an application example, we applied BioWarehouse to determine the fraction of biochemically characterized enzyme activities for which no sequences exist in the public sequence databases. The answer is that no sequence exists for 36% of enzyme activities for which EC numbers have been assigned. These gaps in sequence data significantly limit the accuracy of genome annotation and metabolic pathway prediction, and are a barrier for metabolic engineering. Complex queries of this type provide examples of the value of the data warehousing approach to bioinformatics research.
BioWarehouse embodies significant progress on the database integration problem for bioinformatics.
PMCID: PMC1444936  PMID: 16556315
19.  The Innate Immune Database (IIDB) 
BMC Immunology  2008;9:7.
As part of a National Institute of Allergy and Infectious Diseases funded collaborative project, we have performed over 150 microarray experiments measuring the response of C57/BL6 mouse bone marrow macrophages to toll-like receptor stimuli. These microarray expression profiles are available freely from our project web site . Here, we report the development of a database of computationally predicted transcription factor binding sites and related genomic features for a set of over 2000 murine immune genes of interest. Our database, which includes microarray co-expression clusters and a host of web-based query, analysis and visualization facilities, is available freely via the internet. It provides a broad resource to the research community, and a stepping stone towards the delineation of the network of transcriptional regulatory interactions underlying the integrated response of macrophages to pathogens.
We constructed a database indexed on genes and annotations of the immediate surrounding genomic regions. To facilitate both gene-specific and systems biology oriented research, our database provides the means to analyze individual genes or an entire genomic locus. Although our focus to-date has been on mammalian toll-like receptor signaling pathways, our database structure is not limited to this subject, and is intended to be broadly applicable to immunology. By focusing on selected immune-active genes, we were able to perform computationally intensive expression and sequence analyses that would currently be prohibitive if applied to the entire genome. Using six complementary computational algorithms and methodologies, we identified transcription factor binding sites based on the Position Weight Matrices available in TRANSFAC. For one example transcription factor (ATF3) for which experimental data is available, over 50% of our predicted binding sites coincide with genome-wide chromatin immnuopreciptation (ChIP-chip) results. Our database can be interrogated via a web interface. Genomic annotations and binding site predictions can be automatically viewed with a customized version of the Argo genome browser.
We present the Innate Immune Database (IIDB) as a community resource for immunologists interested in gene regulatory systems underlying innate responses to pathogens. The database website can be freely accessed at .
PMCID: PMC2268913  PMID: 18321385
20.  ArrayExpress—a public database of microarray experiments and gene expression profiles 
Nucleic Acids Research  2006;35(Database issue):D747-D750.
ArrayExpress is a public database for high throughput functional genomics data. ArrayExpress consists of two parts—the ArrayExpress Repository, which is a MIAME supportive public archive of microarray data, and the ArrayExpress Data Warehouse, which is a database of gene expression profiles selected from the repository and consistently re-annotated. Archived experiments can be queried by experiment attributes, such as keywords, species, array platform, authors, journals or accession numbers. Gene expression profiles can be queried by gene names and properties, such as Gene Ontology terms and gene expression profiles can be visualized. ArrayExpress is a rapidly growing database, currently it contains data from >50 000 hybridizations and >1 500 000 individual expression profiles. ArrayExpress supports community standards, including MIAME, MAGE-ML and more recently the proposal for a spreadsheet based data exchange format: MAGE-TAB. Availability: .
PMCID: PMC1716725  PMID: 17132828
21.  An ICT infrastructure to integrate clinical and molecular data in oncology research 
BMC Bioinformatics  2012;13(Suppl 4):S5.
The ONCO-i2b2 platform is a bioinformatics tool designed to integrate clinical and research data and support translational research in oncology. It is implemented by the University of Pavia and the IRCCS Fondazione Maugeri hospital (FSM), and grounded on the software developed by the Informatics for Integrating Biology and the Bedside (i2b2) research center. I2b2 has delivered an open source suite based on a data warehouse, which is efficiently interrogated to find sets of interesting patients through a query tool interface.
Onco-i2b2 integrates data coming from multiple sources and allows the users to jointly query them. I2b2 data are then stored in a data warehouse, where facts are hierarchically structured as ontologies. Onco-i2b2 gathers data from the FSM pathology unit (PU) database and from the hospital biobank and merges them with the clinical information from the hospital information system.
Our main effort was to provide a robust integrated research environment, giving a particular emphasis to the integration process and facing different challenges, consecutively listed: biospecimen samples privacy and anonymization; synchronization of the biobank database with the i2b2 data warehouse through a series of Extract, Transform, Load (ETL) operations; development and integration of a Natural Language Processing (NLP) module, to retrieve coded information, such as SNOMED terms and malignant tumors (TNM) classifications, and clinical tests results from unstructured medical records. Furthermore, we have developed an internal SNOMED ontology rested on the NCBO BioPortal web services.
Onco-i2b2 manages data of more than 6,500 patients with breast cancer diagnosis collected between 2001 and 2011 (over 390 of them have at least one biological sample in the cancer biobank), more than 47,000 visits and 96,000 observations over 960 medical concepts.
Onco-i2b2 is a concrete example of how integrated Information and Communication Technology architecture can be implemented to support translational research. The next steps of our project will involve the extension of its capabilities by implementing new plug-in devoted to bioinformatics data analysis as well as a temporal query module.
PMCID: PMC3303735  PMID: 22536972
22.  puma 3.0: improved uncertainty propagation methods for gene and transcript expression analysis 
BMC Bioinformatics  2013;14:39.
Microarrays have been a popular tool for gene expression profiling at genome-scale for over a decade due to the low cost, short turn-around time, excellent quantitative accuracy and ease of data generation. The Bioconductor package puma incorporates a suite of analysis methods for determining uncertainties from Affymetrix GeneChip data and propagating these uncertainties to downstream analysis. As isoform level expression profiling receives more and more interest within genomics in recent years, exon microarray technology offers an important tool to quantify expression level of the majority of exons and enables the possibility of measuring isoform level expression. However, puma does not include methods for the analysis of exon array data. Moreover, the current expression summarisation method for Affymetrix 3’ GeneChip data suffers from instability for low expression genes. For the downstream analysis, the method for differential expression detection is computationally intensive and the original expression clustering method does not consider the variance across the replicated technical and biological measurements. It is therefore necessary to develop improved uncertainty propagation methods for gene and transcript expression analysis.
We extend the previously developed Bioconductor package puma with a new method especially designed for GeneChip Exon arrays and a set of improved downstream approaches. The improvements include: (i) a new gamma model for exon arrays which calculates isoform and gene expression measurements and a level of uncertainty associated with the estimates, using the multi-mappings between probes, isoforms and genes, (ii) a variant of the existing approach for the probe-level analysis of Affymetrix 3’ GeneChip data to produce more stable gene expression estimates, (iii) an improved method for detecting differential expression which is computationally more efficient than the existing approach in the package and (iv) an improved method for robust model-based clustering of gene expression, which takes technical and biological replicate information into consideration.
With the extensions and improvements, the puma package is now applicable to the analysis of both Affymetrix 3’ GeneChips and Exon arrays for gene and isoform expression estimation. It propagates the uncertainty of expression measurements into more efficient and comprehensive downstream analysis at both gene and isoform level. Downstream methods are also applicable to other expression quantification platforms, such as RNA-Seq, when uncertainty information is available from expression measurements. puma is available through Bioconductor and can be found at
PMCID: PMC3626802  PMID: 23379655
23.  An informatics supported web-based data annotation and query tool to expedite translational research for head and neck malignancies 
BMC Cancer  2009;9:396.
The Specialized Program of Research Excellence (SPORE) in Head and Neck Cancer neoplasm virtual biorepository is a bioinformatics-supported system to incorporate data from various clinical, pathological, and molecular systems into a single architecture based on a set of common data elements (CDEs) that provides semantic and syntactic interoperability of data sets.
The various components of this annotation tool include the Development of Common Data Elements (CDEs) that are derived from College of American Pathologists (CAP) Checklist and North American Association of Central Cancer Registries (NAACR) standards. The Data Entry Tool is a portable and flexible Oracle-based data entry device, which is an easily mastered web-based tool. The Data Query Tool helps investigators and researchers to search de-identified information within the warehouse/resource through a "point and click" interface, thus enabling only the selected data elements to be essentially copied into a data mart using a multi dimensional model from the warehouse's relational structure.
The SPORE Head and Neck Neoplasm Database contains multimodal datasets that are accessible to investigators via an easy to use query tool. The database currently holds 6553 cases and 10607 tumor accessions. Among these, there are 965 metastatic, 4227 primary, 1369 recurrent, and 483 new primary cases. The data disclosure is strictly regulated by user's authorization.
The SPORE Head and Neck Neoplasm Virtual Biorepository is a robust translational biomedical informatics tool that can facilitate basic science, clinical, and translational research. The Data Query Tool acts as a central source providing a mechanism for researchers to efficiently find clinically annotated datasets and biospecimens that are relevant to their research areas. The tool protects patient privacy by revealing only de-identified data in accordance with regulations and approvals of the IRB and scientific review committee.
PMCID: PMC2780457  PMID: 19912644
24.  Integrating multiple genome annotation databases improves the interpretation of microarray gene expression data 
BMC Genomics  2010;11:50.
The Affymetrix GeneChip is a widely used gene expression profiling platform. Since the chips were originally designed, the genome databases and gene definitions have been considerably updated. Thus, more accurate interpretation of microarray data requires parallel updating of the specificity of GeneChip probes. We propose a new probe remapping protocol, using the zebrafish GeneChips as an example, by removing nonspecific probes, and grouping the probes into transcript level probe sets using an integrated zebrafish genome annotation. This genome annotation is based on combining transcript information from multiple databases. This new remapping protocol, especially the new genome annotation, is shown here to be an important factor in improving the interpretation of gene expression microarray data.
Transcript data from the RefSeq, GenBank and Ensembl databases were downloaded from the UCSC genome browser, and integrated to generate a combined zebrafish genome annotation. Affymetrix probes were filtered and remapped according to the new annotation. The influence of transcript collection and gene definition methods was tested using two microarray data sets. Compared to remapping using a single database, this new remapping protocol results in up to 20% more probes being retained in the remapping, leading to approximately 1,000 more genes being detected. The differentially expressed gene lists are consequently increased by up to 30%. We are also able to detect up to three times more alternative splicing events. A small number of the bioinformatics predictions were confirmed using real-time PCR validation.
By combining gene definitions from multiple databases, it is possible to greatly increase the numbers of genes and splice variants that can be detected in microarray gene expression experiments.
PMCID: PMC2827411  PMID: 20089164
25.  SiPaGene: A new repository for instant online retrieval, sharing and meta-analyses of GeneChip® expression data 
BMC Genomics  2009;10:98.
Microarray expression profiling is becoming a routine technology for medical research and generates enormous amounts of data. However, reanalysis of public data and comparison with own results is laborious. Although many different tools exist, there is a need for more convenience and online analysis with restriction of access and user specific sharing options. Furthermore, most of the currently existing tools do not use the whole range of statistical power provided by the MAS5.0/GCOS algorithms.
With a current focus on immunology, infection, inflammation, tissue regeneration and cancer we developed a database platform that can load preprocessed Affymetrix GeneChip expression data for immediate access. Group or subgroup comparisons can be calculated online, retrieved for candidate genes, transcriptional activity in various biological conditions and compared with different experiments. The system is based on Oracle 9i with algorithms in java and graphical user interfaces implemented as java servlets. Signals, detection calls, signal log ratios, change calls and corresponding p-values were calculated with MAS5.0/GCOS algorithms. MIAME information and gene annotations are provided via links to GEO and EntrezGene. Users access via https protocol their own, shared or public data. Sharing is comparison- and user-specific with different levels of rights. Arrays for group comparisons can be selected individually. Twenty-two different group comparison parameters can be applied in user-defined combinations on single or multiple group comparisons. Identified genes can be reviewed online or downloaded. Optimized selection criteria were developed and reliability was demonstrated with the "Latin Square" data set. Currently more than 1,000 arrays, 10,000 pairwise comparisons and 500 group comparisons are presented with public or restricted access by different research networks or individual users.
SiPaGene is a repository and a high quality tool for primary analysis of GeneChips. It exploits the MAS5.0/GCOS pairwise comparison algorithm, enables restricted access and user specific sharing. It does not aim for a complete representation of all public arrays but for high quality analysis with stepwise integration of reference signatures for detailed meta-analyses. Development of additional tools like functional annotation networks based on expression information will be future steps towards a systematic biological analysis of expression profiles.
PMCID: PMC2657156  PMID: 19265543

Results 1-25 (1203035)