Search tips
Search criteria

Results 1-25 (504635)

Clipboard (0)

Related Articles

1.  Cloning of a new murine endogenous retrovirus, MuERV-L, with strong similarity to the human HERV-L element and with a gag coding sequence closely related to the Fv1 restriction gene. 
Journal of Virology  1997;71(7):5652-5657.
We had previously identified a new family of human endogenous retrovirus-like elements, the HERV-L elements (human endogenous retrovirus with leucine tRNA primer), whose pol gene was most closely related to that of the foamy viruses. HERV-L pol-related sequences were also detected in other mammalian species. The recent cloning of the mouse Fv1 gene (S. Best, P. Le Tissier, G. Towers, and J. P. Stoye, Nature 382:826-829, 1996) has shed light on another HERV-L domain--identified as a gag gene based on its location within the provirus--which was found to be 60% identical, at the nucleotide level, to the Fv1 open reading frame (ORF). We have now cloned the murine homolog of HERV-L which, in contrast to HERV-L, displays fully open reading frames in the gag and pol genes. Its predicted Gag protein shares 43% identity with the Fv1 ORF product. Moreover, the characteristic major homology region of the capsid subdomain can be identified within both proteins, thus strongly emphasizing the gag-like origin of Fv1.
PMCID: PMC191811  PMID: 9188643
2.  Human Endogenous Retrovirus Family HERV-K(HML-2) RNA Transcripts Are Selectively Packaged into Retroviral Particles Produced by the Human Germ Cell Tumor Line Tera-1 and Originate Mainly from a Provirus on Chromosome 22q11.21▿ †  
Journal of Virology  2008;82(20):10008-10016.
The human germ cell tumor line Tera-1 produces retroviral particles which are encoded by the human endogenous retrovirus family HERV-K(HML-2). We show here, by quantitative reverse transcriptase PCR, that HML-2 gag and env RNA transcripts are selectively packaged into Tera-1 retroviral particles, whereas RNAs from cellular housekeeping genes and from other HERV families (HERV-H and HERV-W) are nonselectively copackaged. Assignment of cloned HML-2 gag and env cDNAs from Tera-1 retroviral particles to individual HML-2 loci in the human genome demonstrated that HML-2 RNA transcripts packaged into Tera-1 retroviral particles originate almost exclusively from an HML-2 provirus on chromosome 22q11.21. Based on relative cloning frequencies, this provirus was the most active among a total of eight transcribed HML-2 loci identified in Tera-1 cells. These data suggest that at least one HML-2 element, that is, the HML-2 provirus on 22q11.21, has retained the capacity for packaging RNA into HML-2-encoded retroviral particles. Given its elevated transcriptional activity and the presence of a full-length Gag open reading frame, the 22q11.21 HML-2 provirus may also significantly contribute to Gag protein and thus particle production in Tera-1 cells. Our findings provide important clues to the generation and biological properties of HML-2-encoded particles. In addition, copackaging of non-HML-2 HERV transcripts in HML-2-encoded particles should inform the debate about endogenous retroviral particles putatively encoded by non-HML-2 HERV families that have previously been described for other human diseases, such as multiple sclerosis.
PMCID: PMC2566279  PMID: 18684837
3.  HERVs Expression in Autism Spectrum Disorders 
PLoS ONE  2012;7(11):e48831.
Autistic Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder, resulting from complex interactions among genetic, genomic and environmental factors. Here we have studied the expression of Human Endogenous Retroviruses (HERVs), non-coding DNA elements with potential regulatory functions, and have tested their possible implication in autism.
The presence of retroviral mRNAs from four HERV families (E, H, K and W), widely implicated in complex diseases, was evaluated in peripheral blood mononuclear cells (PBMCs) from ASD patients and healthy controls (HCs) by qualitative RT-PCR. We also analyzed the expression of the env sequence from HERV-H, HERV-W and HERV-K families in PBMCs at the time of sampling and after stimulation in culture, in both ASD and HC groups, by quantitative Real-time PCR. Differences between groups were evaluated using statistical methods.
The percentage of HERV-H and HERV-W positive samples was higher among ASD patients compared to HCs, while HERV-K was similarly represented and HERV-E virtually absent in both groups. The quantitative evaluation shows that HERV-H and HERV-W are differentially expressed in the two groups, with HERV-H being more abundantly expressed and, conversely, HERV-W, having lower abundance, in PBMCs from ASDs compared to healthy controls. PMBCs from ASDs also showed an increased potential to up-regulate HERV-H expression upon stimulation in culture, unlike HCs. Furthermore we report a negative correlation between expression levels of HERV-H and age among ASD patients and a statistically significant higher expression in ASD patients with Severe score in Communication and Motor Psychoeducational Profile-3.
Specific HERV families have a distinctive expression profile in ASD patients compared to HCs. We propose that HERV-H expression be explored in larger samples of individuals with autism spectrum in order to determine its utility as a novel biological trait of this complex disorder.
PMCID: PMC3498248  PMID: 23155411
4.  Structure and Phylogenetic Analysis of an Endogenous Retrovirus Inserted into the Human Growth Factor Gene Pleiotrophin 
Journal of Virology  1998;72(7):6065-6072.
A human endogenous retrovirus-like element (HERV), flanked by long terminal repeats of 502 and 495 nucleotides is inserted into the human pleiotrophin (PTN) gene upstream of the open reading frame. Based on its Glu-tRNA primer binding site specificity and the location within the PTN gene, we named this element HERV-E.PTN. HERV-E.PTN appears to be a recombined viral element based on its high homology (70 to 86%) in distinct areas to members of two distantly related HERV type C families, HERV-E and retrovirus-like element I (RTVL-I). Furthermore, its pseudogene region is organized from 5′ to 3′ into gag-, pol-, env-, pol-, env-similar sequences. Interestingly, full-length and partial HERV-E.PTN-homologous sequences were found in the human X chromosome, the human hereditary haemochromatosis region, and the BRCA1 pseudogene. Finally, Southern analyses indicate that the HERV-E.PTN element is present in the PTN gene of humans, chimpanzees, and gorillas but not of rhesus monkeys, suggesting that genomic insertion occurred after the separation of monkeys and apes about 25 million years ago.
PMCID: PMC110412  PMID: 9621070
5.  Evaluation of Cynomolgus Macaque (Macaca fascicularis) Endogenous Retrovirus Expression Following Simian Immunodeficiency Virus Infection 
PLoS ONE  2012;7(6):e40158.
Human endogenous retrovirus type K (HERV-K) transcripts are upregulated in the plasma of HIV-infected individuals and have been considered as targets for an HIV vaccine. We evaluated cynomolgus macaque endogenous retrovirus (CyERV) mRNA expression by RT-qPCR in PBMCs isolated from a cohort of animals previously utilized in a live attenuated SIV vaccine trial. CyERV env transcript levels decreased following vaccination (control and vaccine groups) and CyERV env and gag mRNA expression was decreased following acute SIV-infection, whereas during chronic SIV infection, CyERV transcript levels were indistinguishable from baseline. Reduced susceptibility to initial SIV infection, as measured by the number of SIV challenges required for infection, was associated with increased CyERV transcript levels in PBMCs. In vitro analysis revealed that SIV infection of purified CD4+ T-cells did not alter CyERV gene expression. This study represents the first evaluation of ERV expression in cynomolgus macaques following SIV infection, in an effort to assess the utility of cynomolgus macaques as an animal model to evaluate ERVs as a target for an HIV/SIV vaccine. This non-human primate model system does not recapitulate what has been observed to date in the plasma of HIV-infected humans suggesting that further investigation at the cellular level is required to elucidate the impact of HIV/SIV infection on endogenous retrovirus expression.
PMCID: PMC3387136  PMID: 22768246
6.  A Single Amino Acid Substitution in a Segment of the CA Protein within Gag That Has Similarity to Human Immunodeficiency Virus Type 1 Blocks Infectivity of a Human Endogenous Retrovirus K Provirus in the Human Genome ▿  
Journal of Virology  2008;83(2):1105-1114.
Human endogenous retrovirus K (HERV-K) is the most intact retrovirus in the human genome. However, no single HERV-K provirus in the human genome today appears to be infectious. Since the Gag protein is the central component for the production of retrovirus particles, we investigated the abilities of Gag from two HERV-K proviruses to support production of virus-like particles and viral infectivity. HERV-K113 has full-length open reading frames for all viral proteins, while HERV-K101 has a full-length gag open reading frame and is expressed in human male germ cell tumors. The Gag of HERV-K101 allowed production of viral particles and infectivity, although at lower levels than observed with a consensus sequence Gag. Thus, including HERV-K109, at least two HERV-K proviruses in human genome today have functional Gag proteins. In contrast, HERV-K113 Gag supported only very low levels of particle production, and no infectivity was detectable due to a single amino acid substitution (I516M) near the extreme C terminus of the CA protein within Gag. The sequence of this portion of HERV-K CA showed similarities to that of human immunodeficiency virus type 1 and other primate immunodeficiency viruses. The extreme C terminus of CA may be a general determinant of retrovirus particle production. In addition, precise mapping of the defects in HERV-K proviruses as was done here identifies the key polymorphisms that need to be analyzed to assess the possible existence of infectious HERV-K alleles within the human population.
PMCID: PMC2612375  PMID: 19004950
7.  Variant Splicing and Influence of Ionizing Radiation on Human Endogenous Retrovirus K (HERV-K) Transcripts in Cancer Cell Lines 
PLoS ONE  2013;8(10):e76472.
Human endogenous retrovirus K (HERV-K) is the most intact retrovirus in the human genome. There are multiple full-length or near full-length HERV-K proviruses in it. To analyze which HERV-K proviruses give rise to viral transcripts in cancer cell lines and to test whether ionizing radiation can alter the levels of HERV-K transcripts, RT-PCR studies were undertaken using multiple human cancer cell lines. Primers from several positions in the viral genome were used and included pairs designed to cross splice junctions in viral RNAs. In the absence of ionizing radiation, transcripts were detected from multiple HERV-K proviruses in cell lines from human prostate, cervical, head and neck, or breast cancers, and the proviruses from which the transcripts originated varied among the different lines. Only one of 13 cell lines tested (cervical cancer line C33A) failed to show HERV-K transcripts. Spliced RNAs detected included viral RNAs spliced as expected at the conventional viral splice sites, plus several alternatively spliced RNAs. Alternatively spliced transcripts arose from specific proviruses, and were detected in most of the cell lines used. Quantitative RT-PCR was performed to assess the effects of ionizing radiation. These analyses showed that HERV-K transcripts were elevated in four of twelve lines tested, specifically all three prostate cancer lines used and one breast cancer line. The increases were transient, peaking at 24 hours following a single dose of gamma-irradiation that ranged from 2.5 to 20 Gy, and returning to baseline levels by 72 hours. In summary, these studies showed that ionizing radiation can affect the levels of HERV-K transcripts in cells, and these effects vary among different cells. The changes in HERV-K transcript levels might affect multiple biological processes in cells, and future studies of the effects of ionizing radiation on HERV-K are worth pursuing.
PMCID: PMC3799738  PMID: 24204631
8.  Implication of the env Gene of the Human Endogenous Retrovirus W Family in the Expression of BDNF and DRD3 and Development of Recent-Onset Schizophrenia 
Schizophrenia Bulletin  2010;37(5):988-1000.
Objective: Retrovirus has been suggested as one of agents involved in the development of schizophrenia. In the present study, we examined the role of the human endogenous retrovirus W family (HERV-W) env gene in the etiopathogenesis of recent-onset schizophrenia, using molecular and epidemiological approaches. Methods: Nested RT-PCR was used to detect the messenger RNA (mRNA) of the HERV-w env gene in plasmas. Quantitative real-time polymerase chain reaction (PCR) was employed to detect the viral reverse transcriptase activity in human sera. Human U251 glioma cells were used to study the potential role of the HERV-W env gene in the etiopathogenesis of recent-onset schizophrenia. Results: We identified genes with mRNA sequences homologous to HERV-W env gene from plasmas of 42 out of 118 individuals with recent-onset schizophrenia but not from any of 106 normal persons (P < .01, t test). Quantitative real-time PCR showed a significantly increase in the reverse transcriptase activity in the sera of patients (by 35.59%) compared with controls (by 2.83%) (P < .05, t test). Overexpression of HERV-w env in human U251 glioma cells upregulated brain-derived neurotrophic factor (BDNF), an important schizophrenia-associated gene, neurotrophic tyrosine kinase receptor type 2 (NTRK2, also called TrkB), and dopamine receptor D3 and increased the phosphorylation of cyclic adenosine monophosphate response element–binding (CREB) protein. BDNF promoter reporter gene assays showed that the HERV-W env triggers BDNF production in human U251 glioma cells. Using gene knockdown, we found that CREB is required for the expression of BDNF that is regulated by env. Conclusion: Our data revealed that the transcriptional activation of HERV is associated with the development of schizophrenia in some patients and indicated that HERV-W env regulates the expression of schizophrenia-associated genes. This report is the first to elucidate the signaling pathway responsible for the upregulation of HERV-W env–triggered BDNF. Our study provides new evidence for the involvement of HERV-W in the central nervous system, which will benefit the diagnosis and treatment of the devastating schizophrenia and related disorders.
PMCID: PMC3160218  PMID: 20100784
schizophrenia; HERV-W; env; Human U251 glioma cells; DRD3; BDNF; siRNA
9.  Analysis of transcribed human endogenous retrovirus W env loci clarifies the origin of multiple sclerosis-associated retrovirus env sequences 
Retrovirology  2009;6:37.
Multiple sclerosis-associated retrovirus (MSRV) RNA sequences have been detected in patients with multiple sclerosis (MS) and are related to the multi-copy human endogenous retrovirus family type W (HERV-W). Only one HERV-W locus (ERVWE1) codes for a complete HERV-W Env protein (Syncytin-1). Syncytin-1 and the putative MSRV Env protein have been involved in the pathogenesis of MS. The origin of MSRV and its precise relation to HERV-W were hitherto unknown.
By mapping HERV-W env cDNA sequences (n = 332) from peripheral blood mononuclear cells of patients with MS and healthy controls onto individual genomic HERV-W env elements, we identified seven transcribed HERV-W env loci in these cells, including ERVWE1. Transcriptional activity of individual HERV-W env elements did not significantly differ between patients with MS and controls. Remarkably, almost 30% of HERV-W env cDNAs were recombined sequences that most likely arose in vitro between transcripts from different HERV-W env elements. Re-analysis of published MSRV env sequences revealed that all of them can be explained as originating from genomic HERV-W env loci or recombinations among them. In particular, a MSRV env clone previously used for the generation of monoclonal antibody 6A2B2, detecting an antigen in MS brain lesions, appears to be derived from a HERV-W env locus on chromosome Xq22.3. This locus harbors a long open reading frame for an N-terminally truncated HERV-W Env protein.
Our data clarify the origin of MSRV env sequences, have important implications for the status of MSRV, and open the possibility that a protein encoded by a HERV-W env element on chromosome Xq22.3 may be expressed in MS brain lesions.
PMCID: PMC2672075  PMID: 19368703
10.  Genome-Wide Screening, Cloning, Chromosomal Assignment, and Expression of Full-Length Human Endogenous Retrovirus Type K 
Journal of Virology  1999;73(11):9187-9195.
The human genome harbors 25 to 50 proviral copies of the endogenous retrovirus type K (HERV-K), some of which code for the characteristic retroviral proteins Gag, Pol, and Env. For a genome-wide cloning approach of full-length and intact HERV-K proviruses, a human P1 gene library was screened with a gag-specific probe. Both HERV-K type 1 and 2 clones were isolated. Sixteen HERV-K type 2 proviral genomes were characterized by direct coupled in vitro transcription-in vitro translation assays to analyze the coding potential of isolated gag, pol, and env amplicons from individual P1 clones. After determination of long terminal repeat (LTR) sequences and adjacent chromosomal integration sites by inverse PCR techniques, two HERV-K type 2 proviruses displaying long retroviral open reading frames (ORFs) were assigned to chromosomes 7 (C7) and 19 (C19) by using a human-rodent monochromosomal cell hybrid mapping panel. HERV-K(C7) shows an altered (YIDD-to-CIDD) motif in the reverse transcriptase domain. HERV-K(C19) is truncated in the 5′ LTR and harbors a defective protease gene due to a point mutation. Direct amplification of proviral structures from single chromosomes by using chromosomal flanking primers was performed by long PCR for HERV-K(C7) and HERV-K(C19) and for type 1 proviruses HERV-K10 and HERV-K18 from chromosomes 5 and 1, respectively. HERV-K18, in contrast to HERV-K10, bears no intact gag ORF and shows close homology to HERV-K/IDDMK1,222. In transfection experiments, HERV-K(C7) and HERV-K cDNA-based expression vectors yielded the proteins Gag and cORF whereas HERV-K10 vectors yielded Gag alone. The data suggest that the human genome does not contain an entire, intact proviral copy of HERV-K.
PMCID: PMC112952  PMID: 10516026
11.  Expression of human endogenous retrovirus type K envelope glycoprotein in insect and mammalian cells. 
Journal of Virology  1997;71(4):2747-2756.
The human endogenous retrovirus type K (HERV-K) family codes for the human teratocarcinoma-derived retrovirus (HTDV) particles. The existence of the envelope protein (ENV) of HERV-K encoded by the subgenomic env mRNA has not yet been demonstrated. To study the genetic requirements for successful expression of ENV, we have constructed a series of recombinant HERV-K env expression vectors for infection and transfection experiments in insect cells and mammalian cells, respectively. Six baculovirus constructs bearing full-length or truncated HERV-K env with or without homologous or heterologous signal peptides were used for infections of insect cells. All recombinant baculoviruses yielded ENV proteins with the expected molecular masses. The full-length 80- to 90-kDa HERV-K ENV protein including the cORF leader sequence was glycosylated in insect cells. In addition, the 14-kDa cORF protein was expressed due to splicing of the full-length env mRNA. The ENV precursor protein is not cleaved to the surface (SU) and transmembrane (TM) glycoproteins; it does not appear on the surface of infected insect cells and is not secreted into the medium. For ENV expression in COS cells, plasmid vectors harboring the cytomegalovirus immediate-early promoter/intron A element and the tissue plasminogen activator (t-PA) signal peptide or the homologous HERV-K signal peptide upstream of the env gene were employed. Glycosylated and uncleaved ENV was expressed as in GH teratocarcinoma cells but at higher levels. The heterologous t-PA signal sequence was instrumental for expression of HERV-K ENV on the cell surface. Hence, we have shown for the first time that the HERV-K env gene has the potential to be expressed as a full-length envelope protein with appropriate glycosylation. In addition, our data provide explanations for the lack of infectivity of HERV-K/HTDV particles.
PMCID: PMC191397  PMID: 9060628
12.  An Envelope Glycoprotein of the Human Endogenous Retrovirus HERV-W Is Expressed in the Human Placenta and Fuses Cells Expressing the Type D Mammalian Retrovirus Receptor 
Journal of Virology  2000;74(7):3321-3329.
A new human endogenous retrovirus (HERV) family, termed HERV-W, was recently described (J.-L. Blond, F. Besème, L. Duret, O. Bouton, F. Bedin, H. Perron, B. Mandrand, and F. Mallet, J. Virol. 73:1175–1185, 1999). HERV-W mRNAs were found to be specifically expressed in placenta cells, and an env cDNA containing a complete open reading frame was recovered. In cell-cell fusion assays, we demonstrate here that the product of the HERV-W env gene is a highly fusogenic membrane glycoprotein. Transfection of an HERV-W Env expression vector in a panel of cell lines derived from different species resulted in formation of syncytia in primate and pig cells upon interaction with the type D mammalian retrovirus receptor. Moreover, envelope glycoproteins encoded by HERV-W were specifically detected in placenta cells, suggesting that they may play a physiological role during pregnancy and placenta formation.
PMCID: PMC111833  PMID: 10708449
13.  Influence of Antipsychotic Drugs on Human Endogenous Retrovirus (HERV) Transcription in Brain Cells 
PLoS ONE  2012;7(1):e30054.
Human endogenous retroviruses (HERVs) have been associated with various neurological and neuropsychiatric disorders. Transcripts and proteins of at least three HERV groups, HERV-W, ERV9 and HERV-K(HML-2) have been detected repeatedly in brain samples or cerebrospinal fluid of patients with schizophrenia suggesting that alterations in HERV activity may play a role in etiopathogenesis. Current therapies otherwise include neuroleptics and/or antidepressants that may induce epigenetic alterations and thus influence HERV expression. To investigate the effects of these drugs on HERV transcriptional activity, HERV expression profiles of a broad range of human brain cell lines treated with valproic acid (VPA), haloperidol, risperidone, and clozapine were analyzed using a retrovirus-specific microarray and qRT-PCR. Investigation of 52 HERV subgroups revealed upregulation of several class I and class II HERV elements by VPA in a dose-dependent manner. The strongest effect was observed on HERV-W and ERV9 groups in the human glioblastoma cell lines SK-N-SH and SK-N-MC, respectively. The transcript level of HERV-K(HML-2) elements was not influenced. Transcription of HERV-W, ERV9 and HERV-K(HML-2) taxa was further quantified in postmortem brain samples of patients with schizophrenia, bipolar disorders and a healthy control group with regard to their medication. Patients with schizophrenia showed a significantly higher HERV-W transcription associated with VPA treatment. However in case of ERV9, enhanced transcript levels could not be explained solely by VPA treatment, since a slight increase was also found in untreated patients compared to healthy controls. HERV-K(HML-2) elements appeared to be upregulated in some patients with bipolar disorders independent from medication. In conclusion, these results suggest that antipsychotic medication may contribute to increased expression of distinct HERV taxa in patients with neuropsychiatric diseases.
PMCID: PMC3256206  PMID: 22253875
14.  Expression and Activation by Epstein Barr Virus of Human Endogenous Retroviruses-W in Blood Cells and Astrocytes: Inference for Multiple Sclerosis 
PLoS ONE  2012;7(9):e44991.
Proposed co-factors triggering the pathogenesis of multiple sclerosis (MS) are the Epstein Barr virus (EBV), and the potentially neuropathogenic MSRV (MS-associated retrovirus) and syncytin-1, of the W family of human endogenous retroviruses.
Methodology/Principal Findings
In search of links, the expression of HERV-W/MSRV/syncytin-1, with/without exposure to EBV or to EBV glycoprotein350 (EBVgp350), was studied on peripheral blood mononuclear cells (PBMC) from healthy volunteers and MS patients, and on astrocytes, by discriminatory env-specific RT-PCR assays, and by flow cytometry. Basal expression of HERV-W/MSRV/syncytin-1 occurs in astrocytes and in monocytes, NK, and B, but not in T cells. This uneven expression is amplified in untreated MS patients, and dramatically reduced during therapy. In astrocytes, EBVgp350 stimulates the expression of HERV-W/MSRV/syncytin-1, with requirement of the NF-κB pathway. In EBVgp350-treated PBMC, MSRVenv and syncytin-1 transcription is activated in B cells and monocytes, but not in T cells, nor in the highly expressing NK cells. The latter cells, but not the T cells, are activated by proinflammatory cytokines.
In vitro EBV activates the potentially immunopathogenic and neuropathogenic HERV-W/MSRV/syncytin-1, in cells deriving from blood and brain. In vivo, pathogenic outcomes would depend on abnormal situations, as in late EBV primary infection, that is often symptomatic, or/and in the presence of particular host genetic backgrounds. In the blood, HERV-Wenv activation might induce immunopathogenic phenomena linked to its superantigenic properties. In the brain, toxic mechanisms against oligodendrocytes could be established, inducing inflammation, demyelination and axonal damage. Local stimulation by proinflammatory cytokines and other factors might activate further HERV-Ws, contributing to the neuropathogenity. In MS pathogenesis, a possible model could include EBV as initial trigger of future MS, years later, and HERV-W/MSRV/syncytin-1 as actual contributor to MS pathogenicity, in striking parallelism with disease behaviour.
PMCID: PMC3459916  PMID: 23028727
15.  HERV-E-Mediated Modulation of PLA2G4A Transcription in Urothelial Carcinoma 
PLoS ONE  2012;7(11):e49341.
Human endogenous retroviruses (HERV) and related elements account for more than 8% of the human genome and significantly contribute to the human transcriptome by long terminal repeat (LTR) promoter activity. In this context, HERVs are thought to intervene in the expression of adjacent genes by providing regulatory sequences (cis-effect) or via noncoding RNA including natural antisense transcripts. To address the potential impact of HERV activity in urothelial carcinoma, we comparatively analyzed the HERV transcription profiles in paired samples of non-malignant urothelium and urothelial carcinoma derived from 13 patients with bladder cancer by means of a retrovirus-specific microarray (RetroArray). We established a characteristic HERV signature consisting of six ubiquitously active HERV subgroups (E4-1, HERV-Rb, ERV9, HERV-K-T47D, NMWV3, HERV-KC4). The transcription pattern is largely identical in human urothelial carcinoma, non-malignant urothelial tissue, four tumor-derived cell lines and in a non-malignant urothelial cell line (UROtsa). Quantitative reverse transcriptase PCR (qRT-PCR) of HERV-E4-1, HERV-K(HML-6) and HERV-T(S71-TK1) revealed a bias to lower HERV activity in carcinoma samples compared to non-malignant tissue. Determination of active HERV-E4-1 loci by cloning and sequencing revealed six HERV-E4-1 proviral loci that are differentially regulated in urothelial carcinoma cells and normal tissue. Two full-length HERV-E4-1 proviruses, HERV-Ec1 and HERV-Ec6, are located in antisense orientation in introns of the genes PLA2G4A and RNGTT, respectively. PLA2G4A encodes a cytosolic phospholipase A2 (cPLA2) that is dysregulated in many human tumors. PLA2G4A and HERV-Ec1 displayed reciprocal transcript levels in 7 of 11 urothelial carcinoma patients. Moreover, reciprocal shifts were observed after treatment of UROtsa cells with HERV-Ec1 and PLA2G4A-directed siRNAs or 5-aza-2′-deoxycytidine (aza-dC) pointing to an antagonistic regulation of PLA2G4A and HERV-Ec1 transcription in human urothelial cells. We suggest that transcription of HERV-Ec1 contributes to fine tuning of cPLA2 expression, thereby facilitating tumorigenesis.
PMCID: PMC3492278  PMID: 23145155
16.  Characterization of the human endogenous retrovirus K Gag protein: identification of protease cleavage sites 
Retrovirology  2011;8:21.
Viral genomes of the human endogenous retrovirus K (HERV-K) family are integrated into the human chromosome and are transmitted vertically as Mendelian genes. Although viral particles are released by some transformed cells, they have never been shown to be infectious. In general, gammaretroviruses are produced as immature viral particles by accumulation of the Gag polyproteins at the plasma membrane, which subsequently bud from the cell surface. After release from the cell, Gag is further processed by proteolytic cleavage by the viral protease (PR), which results in morphologically mature particles with condensed cores. The HERV-K Gag polyprotein processing and function has not yet been precisely determined.
We generated a recombinant poxvirus, encoding the human endogenous retrovirus K consensus gag-pro-pol genes (MVA-HERV-Kcon) and obtained high levels of HERV-K Gag expression. The resulting retroviral particle assembled at the plasma membrane, as is typical for gammaretroviruses; and immature as well as mature retrovirus-like particles (VLPs) were observed around the infected cells. VLPs were purified, concentrated and separated by two-dimensional gel electrophoresis. The HERV-K Gag fragments were identified by mass spectroscopy and N-terminal sequencing which revealed that HERV-K Gag is processed into MA, a short spacer peptide, p15, CA and NC.
The cleavage sites of HERV-K Gag were mapped and found to be highly conserved among HERV-K genomes. The consensus HERV-K gag gene used in this study is known to support viral, infectivity [1], and thus the cleavage sites that were mapped in this study for all the Gag components are relevant for HERV-K infectivity.
PMCID: PMC3073897  PMID: 21429186
17.  Activation of the Long Terminal Repeat of Human Endogenous Retrovirus K by Melanoma-Specific Transcription Factor MITF-M12 
Neoplasia (New York, N.Y.)  2011;13(11):1081-1092.
The human and Old World primate genomes possess conserved endogenous retrovirus sequences that have been implicated in evolution, reproduction, and carcinogenesis. Human endogenous retrovirus (HERV)-K with 5′LTR-gag-pro-pol-env-rec/np9-3′LTR sequences represents the newest retrovirus family that integrated into the human genome 1 to 5 million years ago. Although a high-level expression of HERV-K in melanomas, breast cancers, and teratocarcinomas has been demonstrated, the mechanism of the lineage-specific activation of the long terminal repeat (LTR) remains obscure. We studied chromosomal HERV-K expression in MeWo melanoma cells in comparison with the basal expression in human embryonic kidney 293 (HEK293) cells. Cloned LTR of HERV-K (HML-2.HOM) was also characterized by mutation and transactivation experiments. We detected multiple transcriptional initiator (Inr) sites in the LTR by rapid amplification of complementary DNA ends (5′ RACE). HEK293 and MeWo showed different Inr usage. The most potent Inr was associated with a TATA box and three binding motifs of microphthalmia-associated transcription factor (MITF). Both chromosomal HERV-K expression and the cloned LTR function were strongly activated in HEK293 by transfection with MITF-M, a melanocyte/melanoma-specific isoform of MITF. Coexpression of MITF and the HERV-K core antigen was detected in retinal pigmented epithelium by an immunofluorescence analysis. Although malignant melanoma lines MeWo, G361, and SK-MEL-28 showed enhanced HERV-K transcription compared with normal melanocytes, the level of MITF-M messenger RNA persisted from normal to transformed melanocytes. Thus, MITF-M may be a prerequisite for the pigmented cell lineage-specific function of HERV-K LTR, leading to the high-level expression in malignant melanomas.
PMCID: PMC3223611  PMID: 22131883
18.  Expression of selected human endogenous retroviral sequences in skin and peripheral blood mononuclear cells in morphea 
Morphea or localized scleroderma is a relatively rare disease whose main symptom is excessive skin fibrosis. Here we focus on the involvement of human endogenous retroviruses (HERVs) in morphea. The HERVs are a vast and intensely growing field in genomics. HERVs are of special interest as far as autoimmune disorders are concerned, yet little effort has been made until now to assess the possible changes of their expression in morphea.
Material and methods
Six sequences of particular interest were chosen for this study. Real-time polymerase chain reaction was performed on samples derived from peripheral blood mononuclear cells (PBMCs) and skin biopsies. The results were normalized to the level of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) transcription.
In PBMCs we found a statistically significant decrease of transcription of HERV-E pol, while HERV-K env, HERV-R pol-env, and HERV-W env were found to be up-regulated. In skin biopsies HERV-K env was strongly up-regulated. On the other hand, we noted a decrease of transcription of HERV-H env 62, HERV-K10 gag, HERV-R pol-env, and HERV-W env. In PBMCs we found a statistically significant decrease of transcription of HERV-E pol (–81.8%, p < 0.001), while HERV-K env (+94.1%, p = 0.010), HERV-R pol-env (+140.0%, p < 0.001), and HERV-W env (+97.7%, p < 0.001) were found to be up-regulated. In skin biopsies HERV-K env was strongly up-regulated (+713.0%, p = 0.003). On the other hand, we noted a decrease of transcription of HERV-H env 62 (–83.5%, p < 0.001, HERV-K10 gag (-33.7%, p = 0.044), HERV-R pol-env (–71.3%, p < 0.001), and HERV-W env (–59.3%, p = 0.029).
The studied HERV sequences generally show an increase of transcription in PBMCs of morphea patients, while being down-regulated in their skin, with some exceptions for both types of tissue.
PMCID: PMC3506226  PMID: 23185190
human endogenous retroviruses; real-time polymerase chain reaction; autoimmunity; localized scleroderma
19.  Transactivation of elements in the human endogenous retrovirus W family by viral infection 
Retrovirology  2006;3:44.
Aberrant expression of human endogenous retrovirus (HERV) elements in the W family has previously been associated with schizophrenia, multiple sclerosis and preeclampsia. Little is know regarding the basal expression, transcriptional regulation and functional significance of individual HERV-elements. Since viral infections have previously been reported to transactivate retroviral long terminal repeat regions we examined the basal expression of HERV-W elements and following infections by influenza A/WSN/33 and Herpes simplex 1 viruses in human cell-lines.
Relative levels of transcripts encoding HERV-W elements and cellular genes were analyzed by qPCR methods. An analysis of amplicon melting temperatures was used to detect variations in the frequencies of amplicons in discrete ranges of such melting temperatures. These frequency-distributions were taken as proxy markers for the repertoires of transcribed HERV-W elements in the cells.
We report cell-specific expression patterns of HERV-W elements during base-line conditions. Expressed elements include those with intact regulatory long terminal repeat regions (LTRs) as well as elements flanked by truncated LTRs. Subsets of HERV-W elements were transactivated by viral infection in the different cell-lines. Transcriptional activation of these elements, including that encoding syncytin, was dependent on viral replication and was not induced by antiviral responses. Serum deprivation of cells induced similar changes in the expression of HERV-W elements suggesting that the observed phenomena are, in part, an effect of cellular stress.
We found that HERV-W elements, including elements lacking regulatory LTRs, are expressed in cell-specific patterns which can be modulated by environmental influences. This brings into light that mechanisms behind the regulation of expression of HERV-W elements are more complex than previously assumed and suggests biological functions of these transcripts.
PMCID: PMC1539011  PMID: 16822326
20.  Reconstitution of an Infectious Human Endogenous Retrovirus 
PLoS Pathogens  2007;3(1):e10.
The human genome represents a fossil record of ancient retroviruses that once replicated in the ancestors of contemporary humans. Indeed, approximately 8% of human DNA is composed of sequences that are recognizably retroviral. Despite occasional reports associating human endogenous retrovirus (HERV) expression with human disease, almost all HERV genomes contain obviously inactivating mutations, and none are thought to be capable of replication. Nonetheless, one family of HERVs, namely HERV-K(HML-2), may have replicated in human ancestors less than 1 million years ago. By deriving a consensus sequence, we reconstructed a proviral clone (HERV-KCON) that likely resembles the progenitor of HERV-K(HML-2) variants that entered the human genome within the last few million years. We show that HERV-KCON Gag and protease proteins mediate efficient assembly and processing into retrovirus-like particles. Moreover, reporter genes inserted into the HERV-KCON genome and packaged into HERV-K particles are capable of infectious transfer and stable integration in a manner that requires reverse transcription. Additionally, we show that HERV-KCON Env is capable of pseudotyping HIV-1 particles and mediating entry into human and nonhuman cell lines. Furthermore, we show that HERV-KCON is resistant to inhibition by the human retrovirus restriction factors tripartite motif 5α and apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC) 3G but is inhibited by APOBEC 3F. Overall, the resurrection of this extinct infectious agent in a functional form from molecular fossils should enable studies of the molecular virology and pathogenic potential of this ancient human retrovirus.
Author Summary
Retrovirus genomes integrate into the genomes of host cells. If the target cells of a particular retrovirus include germ-line cells, e.g., sperm or egg cells, then retroviral genomes can be inherited like cellular genes. So-called “endogenous” retroviruses have accumulated throughout evolution in the genomes of many organisms, including humans. While all known endogenous retroviruses of modern humans are unable to replicate as retroviruses, the human genome represents a fossil record of ancient retroviruses that once infected our ancestors. In this study, a collection of “dead” endogenous retroviral genomes in modern human DNA was used to deduce the approximate sequence of an ancestral retrovirus, human endogenous retrovirus (HERV)-K, that is now thought to be extinct. A pseudo-ancestral HERV-K DNA sequence was synthesized and used to produce viral proteins and RNA that could reconstitute the HERV-K replication cycle. Thus, the replication and biology of a once-extinct retrovirus can now be studied in the laboratory. Interestingly, reconstituted HERV-K replication experiments, and comparison of the reconstituted HERV-K DNA sequence with the dead HERV-Ks in modern human DNA, suggests that HERV-K may have been extinguished in humans in part by host defenses that induce mutation of retroviral DNA and that the reconstitution of the pseudo-ancestral HERV-K reversed these changes.
PMCID: PMC1781480  PMID: 17257061
21.  Age- and Disease-Dependent HERV-W Envelope Allelic Variation in Brain: Association with Neuroimmune Gene Expression 
PLoS ONE  2011;6(4):e19176.
The glycoprotein, Syncytin-1, is encoded by a human endogenous retrovirus (HERV)-W env gene and is capable of inducing neuroinflammation. The specific allele(s) responsible for Syncytin-1 expression in the brain is uncertain. Herein, HERV-W env diversity together with Syncytin-1 abundance and host immune gene profiles were examined in the nervous system using a multiplatform approach.
HERV-W env sequences were encoded by multiple chromosomal encoding loci in primary human neurons compared with less chromosomal diversity in astrocytes and microglia (p<0.05). HERV-W env RNA sequences cloned from brains of patients with systemic or neurologic diseases were principally derived from chromosomal locus 7q21.2. Within the same specimens, HERV-W env transcript levels were correlated with the expression of multiple proinflammatory genes (p<0.05). Deep sequencing of brain transcriptomes disclosed the env transcripts to be the most abundant HERV-W transcripts, showing greater expression in fetal compared with healthy adult brain specimens. Syncytin-1's expression in healthy brain specimens was derived from multiple encoding loci and linked to distinct immune and developmental gene profiles.
Syncytin-1 expression in the brain during disease was associated with neuroinflammation and was principally encoded by a full length provirus. The present studies also highlighted the diversity in HERV gene expression within the brain and reinforce the potential contributions of HERV expression to neuroinflammatory diseases.
PMCID: PMC3084769  PMID: 21559469
22.  Expression of HERV-Fc1, a Human Endogenous Retrovirus, Is Increased in Patients with Active Multiple Sclerosis 
Journal of Virology  2012;86(7):3713-3722.
Multiple sclerosis (MS) is considered to be an autoimmune disease with an unknown cause and with immune system dysregulation. Among environmental factors, viruses are most often connected with the etiology of MS. Human endogenous retroviruses (HERVs) constitute 5 to 8% of human genomic DNA and have been detected as transcripts and proteins in the central nervous system (CNS) and peripheral blood, frequently in the context of neuroinflammation. HERV-Fc1, which belongs to the HERV-H/F family, has received our attention largely because of the genetic association with MS. We studied the expression of a capsid (Gag) protein of HERV-H/F origin by flow cytometry in peripheral blood mononuclear cells (PBMCs) from healthy controls and from MS patients with nonactive or active disease. There was a significant increase in HERV-H/F Gag expression in CD4+ (P < 0.001) and CD8+ (P < 0.001) T lymphocytes and in monocytes (P = 0.0356) in PBMCs from MS patients with active disease. Furthermore, we have undertaken the first rigorous SYBR green-based absolute quantitative PCR (Q-PCR) evaluation approach to quantify extracellular HERV-Fc1 RNA viral loads in plasma from MS patients and healthy controls. We found a 4-fold increase in extracellular HERV-Fc1 RNA titers in patients with active MS compared with healthy controls (P < 0.001). These findings strengthen the link between HERV-Fc1 and the pathology of MS. The cause and biological consequences of these differential expression levels will be the subject of further investigation. HERV-Fc1 biology could be a compelling area for understanding the pathology of MS and possibly other autoimmune disorders.
PMCID: PMC3302483  PMID: 22278236
23.  Molecular cloning and long terminal repeat sequences of human endogenous retrovirus genes related to types A and B retrovirus genes. 
Journal of Virology  1986;58(3):937-944.
By using a DNA fragment primarily encoding the reverse transcriptase (pol) region of the Syrian hamster intracisternal A particle (IAP; type A retrovirus) gene as a probe, human endogenous retrovirus genes, tentatively termed HERV-K genes, were cloned from a fetal human liver gene library. Typical HERV-K genes were 9.1 or 9.4 kilobases in length, having long terminal repeats (LTRs) of ca. 970 base pairs. Many structural features commonly observed on the retrovirus LTRs, such as the TATAA box, polyadenylation signal, and terminal inverted repeats, were present on each LTR, and a lysine (K) tRNA having a CUU anticodon was identified as a presumed primer tRNA. The HERV-K LTR, however, had little sequence homology to either the IAP LTR or other typical oncovirus LTRs. By filter hybridization, the number of HERV-K genes was estimated to be ca. 50 copies per haploid human genome. The cloned mouse mammary tumor virus (type B) gene was found to hybridize with both the HERV-K and IAP genes to essentially the same extent.
PMCID: PMC253002  PMID: 3009897
24.  Methods for estimating human endogenous retrovirus activities from EST databases 
BMC Bioinformatics  2007;8(Suppl 2):S11.
Human endogenous retroviruses (HERVs) are surviving traces of ancient retrovirus infections and now reside within the human DNA. Recently HERV expression has been detected in both normal tissues and diseased patients. However, the activities (expression levels) of individual HERV sequences are mostly unknown.
We introduce a generative mixture model, based on Hidden Markov Models, for estimating the activities of the individual HERV sequences from EST (expressed sequence tag) databases. We use the model to estimate the relative activities of 181 HERVs. We also empirically justify a faster heuristic method for HERV activity estimation and use it to estimate the activities of 2450 HERVs. The majority of the HERV activities were previously unknown.
(i) Our methods estimate activity accurately based on experiments on simulated data. (ii) Our estimate on real data shows that 7% of the HERVs are active. The active ones are spread unevenly into HERV groups and relatively uniformly in terms of estimated age. HERVs with the retroviral env gene are more often active than HERVs without env. Few of the active HERVs have open reading frames for retroviral proteins.
PMCID: PMC1892069  PMID: 17493249
25.  Human endogenous retrovirus K10: expression of Gag protein and detection of antibodies in patients with seminomas. 
Journal of Virology  1995;69(1):414-421.
The human endogenous retrovirus K10 (HERV-K10) has been identified in the human genome by its homology to retroviruses of other vertebrates (M. Ono, T. Yasunaga, T. Miyata, and H. Ushikubo, J. Virol. 60:589-598, 1986). Using PCR amplification, DNA cloning, sequencing, and procaryotic expression, we were able to demonstrate that HERV-K10 encodes a 73-kDa protein which was processed by a HERV-K10-encoded protease to yield proteins p22/p26, p30, and p15/16. Analysis of the teratocarcinoma cell line Tera 1 or tumor tissues by immunoblotting demonstrated that the 80-kDa polyprotein of HERV-K10 gag and a processed protein of 39 kDa were expressed. In addition, a major protein of 39 kDa and additional species of 30, 22, 19, and 17 kDa could be detected in the supernatant of Tera 1 cells, suggesting that HERV-K10 Gag proteins are either secreted or processed to probably incomplete viral particles. In addition, the gag gene of HERV-K10 was expressed in the baculovirus system. Using this recombinant system to test antisera from patients with different diseases and healthy individuals, we were able to detect antibodies against the N-terminal part of HERV-K10 Gag in 2 to 4% of groups of tumor patients with titers ranging between 1:80 and 1:640, while approximately 0.1 to 0.5% of healthy individuals exhibited antibodies with lower titers. In contrast, patients with seminoma had antibody titers in the range of 1:2,560 at the time when the tumor was detected. Immunohistochemistry using specific rabbit sera or monoclonal antibodies against HERV-K10 Gag revealed that the Gag protein is expressed in the cytoplasm of the tumor cells. Furthermore, an 80-kDa protein corresponding to the HERV-K10 Gag polyprotein could be detected in tumor biopsies. For the first time, these data indicate that HERV-K10 Gag proteins are synthesized in seminoma cells and tumors exhibit relatively high antibody titers against Gag. So far, no information on which role HERV-K10 plays in the development of this tumor exists.
PMCID: PMC188589  PMID: 7983737

Results 1-25 (504635)