PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (530258)

Clipboard (0)
None

Related Articles

1.  HERVs Expression in Autism Spectrum Disorders 
PLoS ONE  2012;7(11):e48831.
Background
Autistic Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder, resulting from complex interactions among genetic, genomic and environmental factors. Here we have studied the expression of Human Endogenous Retroviruses (HERVs), non-coding DNA elements with potential regulatory functions, and have tested their possible implication in autism.
Methods
The presence of retroviral mRNAs from four HERV families (E, H, K and W), widely implicated in complex diseases, was evaluated in peripheral blood mononuclear cells (PBMCs) from ASD patients and healthy controls (HCs) by qualitative RT-PCR. We also analyzed the expression of the env sequence from HERV-H, HERV-W and HERV-K families in PBMCs at the time of sampling and after stimulation in culture, in both ASD and HC groups, by quantitative Real-time PCR. Differences between groups were evaluated using statistical methods.
Results
The percentage of HERV-H and HERV-W positive samples was higher among ASD patients compared to HCs, while HERV-K was similarly represented and HERV-E virtually absent in both groups. The quantitative evaluation shows that HERV-H and HERV-W are differentially expressed in the two groups, with HERV-H being more abundantly expressed and, conversely, HERV-W, having lower abundance, in PBMCs from ASDs compared to healthy controls. PMBCs from ASDs also showed an increased potential to up-regulate HERV-H expression upon stimulation in culture, unlike HCs. Furthermore we report a negative correlation between expression levels of HERV-H and age among ASD patients and a statistically significant higher expression in ASD patients with Severe score in Communication and Motor Psychoeducational Profile-3.
Conclusions
Specific HERV families have a distinctive expression profile in ASD patients compared to HCs. We propose that HERV-H expression be explored in larger samples of individuals with autism spectrum in order to determine its utility as a novel biological trait of this complex disorder.
doi:10.1371/journal.pone.0048831
PMCID: PMC3498248  PMID: 23155411
2.  Reconstitution of an Infectious Human Endogenous Retrovirus 
PLoS Pathogens  2007;3(1):e10.
The human genome represents a fossil record of ancient retroviruses that once replicated in the ancestors of contemporary humans. Indeed, approximately 8% of human DNA is composed of sequences that are recognizably retroviral. Despite occasional reports associating human endogenous retrovirus (HERV) expression with human disease, almost all HERV genomes contain obviously inactivating mutations, and none are thought to be capable of replication. Nonetheless, one family of HERVs, namely HERV-K(HML-2), may have replicated in human ancestors less than 1 million years ago. By deriving a consensus sequence, we reconstructed a proviral clone (HERV-KCON) that likely resembles the progenitor of HERV-K(HML-2) variants that entered the human genome within the last few million years. We show that HERV-KCON Gag and protease proteins mediate efficient assembly and processing into retrovirus-like particles. Moreover, reporter genes inserted into the HERV-KCON genome and packaged into HERV-K particles are capable of infectious transfer and stable integration in a manner that requires reverse transcription. Additionally, we show that HERV-KCON Env is capable of pseudotyping HIV-1 particles and mediating entry into human and nonhuman cell lines. Furthermore, we show that HERV-KCON is resistant to inhibition by the human retrovirus restriction factors tripartite motif 5α and apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC) 3G but is inhibited by APOBEC 3F. Overall, the resurrection of this extinct infectious agent in a functional form from molecular fossils should enable studies of the molecular virology and pathogenic potential of this ancient human retrovirus.
Author Summary
Retrovirus genomes integrate into the genomes of host cells. If the target cells of a particular retrovirus include germ-line cells, e.g., sperm or egg cells, then retroviral genomes can be inherited like cellular genes. So-called “endogenous” retroviruses have accumulated throughout evolution in the genomes of many organisms, including humans. While all known endogenous retroviruses of modern humans are unable to replicate as retroviruses, the human genome represents a fossil record of ancient retroviruses that once infected our ancestors. In this study, a collection of “dead” endogenous retroviral genomes in modern human DNA was used to deduce the approximate sequence of an ancestral retrovirus, human endogenous retrovirus (HERV)-K, that is now thought to be extinct. A pseudo-ancestral HERV-K DNA sequence was synthesized and used to produce viral proteins and RNA that could reconstitute the HERV-K replication cycle. Thus, the replication and biology of a once-extinct retrovirus can now be studied in the laboratory. Interestingly, reconstituted HERV-K replication experiments, and comparison of the reconstituted HERV-K DNA sequence with the dead HERV-Ks in modern human DNA, suggests that HERV-K may have been extinguished in humans in part by host defenses that induce mutation of retroviral DNA and that the reconstitution of the pseudo-ancestral HERV-K reversed these changes.
doi:10.1371/journal.ppat.0030010
PMCID: PMC1781480  PMID: 17257061
3.  Expression of HERV-Fc1, a Human Endogenous Retrovirus, Is Increased in Patients with Active Multiple Sclerosis 
Journal of Virology  2012;86(7):3713-3722.
Multiple sclerosis (MS) is considered to be an autoimmune disease with an unknown cause and with immune system dysregulation. Among environmental factors, viruses are most often connected with the etiology of MS. Human endogenous retroviruses (HERVs) constitute 5 to 8% of human genomic DNA and have been detected as transcripts and proteins in the central nervous system (CNS) and peripheral blood, frequently in the context of neuroinflammation. HERV-Fc1, which belongs to the HERV-H/F family, has received our attention largely because of the genetic association with MS. We studied the expression of a capsid (Gag) protein of HERV-H/F origin by flow cytometry in peripheral blood mononuclear cells (PBMCs) from healthy controls and from MS patients with nonactive or active disease. There was a significant increase in HERV-H/F Gag expression in CD4+ (P < 0.001) and CD8+ (P < 0.001) T lymphocytes and in monocytes (P = 0.0356) in PBMCs from MS patients with active disease. Furthermore, we have undertaken the first rigorous SYBR green-based absolute quantitative PCR (Q-PCR) evaluation approach to quantify extracellular HERV-Fc1 RNA viral loads in plasma from MS patients and healthy controls. We found a 4-fold increase in extracellular HERV-Fc1 RNA titers in patients with active MS compared with healthy controls (P < 0.001). These findings strengthen the link between HERV-Fc1 and the pathology of MS. The cause and biological consequences of these differential expression levels will be the subject of further investigation. HERV-Fc1 biology could be a compelling area for understanding the pathology of MS and possibly other autoimmune disorders.
doi:10.1128/JVI.06723-11
PMCID: PMC3302483  PMID: 22278236
4.  Analysis of transcribed human endogenous retrovirus W env loci clarifies the origin of multiple sclerosis-associated retrovirus env sequences 
Retrovirology  2009;6:37.
Background
Multiple sclerosis-associated retrovirus (MSRV) RNA sequences have been detected in patients with multiple sclerosis (MS) and are related to the multi-copy human endogenous retrovirus family type W (HERV-W). Only one HERV-W locus (ERVWE1) codes for a complete HERV-W Env protein (Syncytin-1). Syncytin-1 and the putative MSRV Env protein have been involved in the pathogenesis of MS. The origin of MSRV and its precise relation to HERV-W were hitherto unknown.
Results
By mapping HERV-W env cDNA sequences (n = 332) from peripheral blood mononuclear cells of patients with MS and healthy controls onto individual genomic HERV-W env elements, we identified seven transcribed HERV-W env loci in these cells, including ERVWE1. Transcriptional activity of individual HERV-W env elements did not significantly differ between patients with MS and controls. Remarkably, almost 30% of HERV-W env cDNAs were recombined sequences that most likely arose in vitro between transcripts from different HERV-W env elements. Re-analysis of published MSRV env sequences revealed that all of them can be explained as originating from genomic HERV-W env loci or recombinations among them. In particular, a MSRV env clone previously used for the generation of monoclonal antibody 6A2B2, detecting an antigen in MS brain lesions, appears to be derived from a HERV-W env locus on chromosome Xq22.3. This locus harbors a long open reading frame for an N-terminally truncated HERV-W Env protein.
Conclusion
Our data clarify the origin of MSRV env sequences, have important implications for the status of MSRV, and open the possibility that a protein encoded by a HERV-W env element on chromosome Xq22.3 may be expressed in MS brain lesions.
doi:10.1186/1742-4690-6-37
PMCID: PMC2672075  PMID: 19368703
5.  Expression of selected human endogenous retroviral sequences in skin and peripheral blood mononuclear cells in morphea 
Introduction
Morphea or localized scleroderma is a relatively rare disease whose main symptom is excessive skin fibrosis. Here we focus on the involvement of human endogenous retroviruses (HERVs) in morphea. The HERVs are a vast and intensely growing field in genomics. HERVs are of special interest as far as autoimmune disorders are concerned, yet little effort has been made until now to assess the possible changes of their expression in morphea.
Material and methods
Six sequences of particular interest were chosen for this study. Real-time polymerase chain reaction was performed on samples derived from peripheral blood mononuclear cells (PBMCs) and skin biopsies. The results were normalized to the level of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) transcription.
Results
In PBMCs we found a statistically significant decrease of transcription of HERV-E pol, while HERV-K env, HERV-R pol-env, and HERV-W env were found to be up-regulated. In skin biopsies HERV-K env was strongly up-regulated. On the other hand, we noted a decrease of transcription of HERV-H env 62, HERV-K10 gag, HERV-R pol-env, and HERV-W env. In PBMCs we found a statistically significant decrease of transcription of HERV-E pol (–81.8%, p < 0.001), while HERV-K env (+94.1%, p = 0.010), HERV-R pol-env (+140.0%, p < 0.001), and HERV-W env (+97.7%, p < 0.001) were found to be up-regulated. In skin biopsies HERV-K env was strongly up-regulated (+713.0%, p = 0.003). On the other hand, we noted a decrease of transcription of HERV-H env 62 (–83.5%, p < 0.001, HERV-K10 gag (-33.7%, p = 0.044), HERV-R pol-env (–71.3%, p < 0.001), and HERV-W env (–59.3%, p = 0.029).
Conclusions
The studied HERV sequences generally show an increase of transcription in PBMCs of morphea patients, while being down-regulated in their skin, with some exceptions for both types of tissue.
doi:10.5114/aoms.2012.30954
PMCID: PMC3506226  PMID: 23185190
human endogenous retroviruses; real-time polymerase chain reaction; autoimmunity; localized scleroderma
6.  Genome-Wide Screening, Cloning, Chromosomal Assignment, and Expression of Full-Length Human Endogenous Retrovirus Type K 
Journal of Virology  1999;73(11):9187-9195.
The human genome harbors 25 to 50 proviral copies of the endogenous retrovirus type K (HERV-K), some of which code for the characteristic retroviral proteins Gag, Pol, and Env. For a genome-wide cloning approach of full-length and intact HERV-K proviruses, a human P1 gene library was screened with a gag-specific probe. Both HERV-K type 1 and 2 clones were isolated. Sixteen HERV-K type 2 proviral genomes were characterized by direct coupled in vitro transcription-in vitro translation assays to analyze the coding potential of isolated gag, pol, and env amplicons from individual P1 clones. After determination of long terminal repeat (LTR) sequences and adjacent chromosomal integration sites by inverse PCR techniques, two HERV-K type 2 proviruses displaying long retroviral open reading frames (ORFs) were assigned to chromosomes 7 (C7) and 19 (C19) by using a human-rodent monochromosomal cell hybrid mapping panel. HERV-K(C7) shows an altered (YIDD-to-CIDD) motif in the reverse transcriptase domain. HERV-K(C19) is truncated in the 5′ LTR and harbors a defective protease gene due to a point mutation. Direct amplification of proviral structures from single chromosomes by using chromosomal flanking primers was performed by long PCR for HERV-K(C7) and HERV-K(C19) and for type 1 proviruses HERV-K10 and HERV-K18 from chromosomes 5 and 1, respectively. HERV-K18, in contrast to HERV-K10, bears no intact gag ORF and shows close homology to HERV-K/IDDMK1,222. In transfection experiments, HERV-K(C7) and HERV-K cDNA-based expression vectors yielded the proteins Gag and cORF whereas HERV-K10 vectors yielded Gag alone. The data suggest that the human genome does not contain an entire, intact proviral copy of HERV-K.
PMCID: PMC112952  PMID: 10516026
7.  Human endogenous retrovirus K10: expression of Gag protein and detection of antibodies in patients with seminomas. 
Journal of Virology  1995;69(1):414-421.
The human endogenous retrovirus K10 (HERV-K10) has been identified in the human genome by its homology to retroviruses of other vertebrates (M. Ono, T. Yasunaga, T. Miyata, and H. Ushikubo, J. Virol. 60:589-598, 1986). Using PCR amplification, DNA cloning, sequencing, and procaryotic expression, we were able to demonstrate that HERV-K10 encodes a 73-kDa protein which was processed by a HERV-K10-encoded protease to yield proteins p22/p26, p30, and p15/16. Analysis of the teratocarcinoma cell line Tera 1 or tumor tissues by immunoblotting demonstrated that the 80-kDa polyprotein of HERV-K10 gag and a processed protein of 39 kDa were expressed. In addition, a major protein of 39 kDa and additional species of 30, 22, 19, and 17 kDa could be detected in the supernatant of Tera 1 cells, suggesting that HERV-K10 Gag proteins are either secreted or processed to probably incomplete viral particles. In addition, the gag gene of HERV-K10 was expressed in the baculovirus system. Using this recombinant system to test antisera from patients with different diseases and healthy individuals, we were able to detect antibodies against the N-terminal part of HERV-K10 Gag in 2 to 4% of groups of tumor patients with titers ranging between 1:80 and 1:640, while approximately 0.1 to 0.5% of healthy individuals exhibited antibodies with lower titers. In contrast, patients with seminoma had antibody titers in the range of 1:2,560 at the time when the tumor was detected. Immunohistochemistry using specific rabbit sera or monoclonal antibodies against HERV-K10 Gag revealed that the Gag protein is expressed in the cytoplasm of the tumor cells. Furthermore, an 80-kDa protein corresponding to the HERV-K10 Gag polyprotein could be detected in tumor biopsies. For the first time, these data indicate that HERV-K10 Gag proteins are synthesized in seminoma cells and tumors exhibit relatively high antibody titers against Gag. So far, no information on which role HERV-K10 plays in the development of this tumor exists.
PMCID: PMC188589  PMID: 7983737
8.  HERV-E-Mediated Modulation of PLA2G4A Transcription in Urothelial Carcinoma 
PLoS ONE  2012;7(11):e49341.
Human endogenous retroviruses (HERV) and related elements account for more than 8% of the human genome and significantly contribute to the human transcriptome by long terminal repeat (LTR) promoter activity. In this context, HERVs are thought to intervene in the expression of adjacent genes by providing regulatory sequences (cis-effect) or via noncoding RNA including natural antisense transcripts. To address the potential impact of HERV activity in urothelial carcinoma, we comparatively analyzed the HERV transcription profiles in paired samples of non-malignant urothelium and urothelial carcinoma derived from 13 patients with bladder cancer by means of a retrovirus-specific microarray (RetroArray). We established a characteristic HERV signature consisting of six ubiquitously active HERV subgroups (E4-1, HERV-Rb, ERV9, HERV-K-T47D, NMWV3, HERV-KC4). The transcription pattern is largely identical in human urothelial carcinoma, non-malignant urothelial tissue, four tumor-derived cell lines and in a non-malignant urothelial cell line (UROtsa). Quantitative reverse transcriptase PCR (qRT-PCR) of HERV-E4-1, HERV-K(HML-6) and HERV-T(S71-TK1) revealed a bias to lower HERV activity in carcinoma samples compared to non-malignant tissue. Determination of active HERV-E4-1 loci by cloning and sequencing revealed six HERV-E4-1 proviral loci that are differentially regulated in urothelial carcinoma cells and normal tissue. Two full-length HERV-E4-1 proviruses, HERV-Ec1 and HERV-Ec6, are located in antisense orientation in introns of the genes PLA2G4A and RNGTT, respectively. PLA2G4A encodes a cytosolic phospholipase A2 (cPLA2) that is dysregulated in many human tumors. PLA2G4A and HERV-Ec1 displayed reciprocal transcript levels in 7 of 11 urothelial carcinoma patients. Moreover, reciprocal shifts were observed after treatment of UROtsa cells with HERV-Ec1 and PLA2G4A-directed siRNAs or 5-aza-2′-deoxycytidine (aza-dC) pointing to an antagonistic regulation of PLA2G4A and HERV-Ec1 transcription in human urothelial cells. We suggest that transcription of HERV-Ec1 contributes to fine tuning of cPLA2 expression, thereby facilitating tumorigenesis.
doi:10.1371/journal.pone.0049341
PMCID: PMC3492278  PMID: 23145155
9.  Expression of Human Endogenous Retrovirus-W Including Syncytin-1 in Cutaneous T-Cell Lymphoma 
PLoS ONE  2013;8(10):e76281.
The pathomechanism of mycosis fungoides (MF), the most common type of primary cutaneous T-cell lymphomas (CTCLs) and a malignancy of non-recirculating, skin-resident T-cells, is unknown albeit underlying viral infections have been sought for. Human endogenous retroviruses (HERVs) are ancient retroviral sequences in the human genome and their transcription is often deregulated in cancers. We explored the transcriptional activity of HERV sequences in a total of 34 samples comprising MF and psoriasis skin lesions, as well as corresponding non-malignant skin using a retrovirus-specific microarray and quantitative RT-PCR. To identify active HERV-W loci, we cloned the HERV-W specific RT-PCR products, sequenced the cDNA clones and assigned the sequences to HERV-W loci. Finally, we used immunohistochemistry on MF patient and non-malignant inflammatory skin samples to confirm specific HERV-encoded protein expression. Firstly, a distinct, skin-specific transcription profile consisting of five constitutively active HERV groups was established. Although individual variability was common, HERV-W showed significantly increased transcription in MF lesions compared to clinically intact skin from the same patient. Predominantly transcribed HERV-W loci were found to be located in chromosomes 6q21 and 7q21.2, chromosomal regions typically altered in CTCL. Surprisingly, we also found the expression of 7q21.2/ERVWE1-encoded Syncytin-1 (Env) protein in MF biopsies and expression of Syncytin-1 was seen in malignant lymphocytes, especially in the epidermotropic ones, in 15 of 30 cases studied. Most importantly, no Syncytin-1 expression was detected in inflammatory dermatosis (Lichen ruber planus) with skin-homing, non-malignant T lymphocytes. The expression of ERVWE1 mRNA was further confirmed in 3/7 MF lesions analyzed. Our observations strengthen the association between activated HERVs and cancer. The study offers a new perspective into the pathogenesis of CTCL since we demonstrate that differences in HERV-W transcription levels between lesional MF and non-malignant skin are significant, and that ERVWE1-encoded Syncytin-1 is expressed in MF lymphoma cells.
doi:10.1371/journal.pone.0076281
PMCID: PMC3788054  PMID: 24098463
10.  Expression and Activation by Epstein Barr Virus of Human Endogenous Retroviruses-W in Blood Cells and Astrocytes: Inference for Multiple Sclerosis 
PLoS ONE  2012;7(9):e44991.
Background
Proposed co-factors triggering the pathogenesis of multiple sclerosis (MS) are the Epstein Barr virus (EBV), and the potentially neuropathogenic MSRV (MS-associated retrovirus) and syncytin-1, of the W family of human endogenous retroviruses.
Methodology/Principal Findings
In search of links, the expression of HERV-W/MSRV/syncytin-1, with/without exposure to EBV or to EBV glycoprotein350 (EBVgp350), was studied on peripheral blood mononuclear cells (PBMC) from healthy volunteers and MS patients, and on astrocytes, by discriminatory env-specific RT-PCR assays, and by flow cytometry. Basal expression of HERV-W/MSRV/syncytin-1 occurs in astrocytes and in monocytes, NK, and B, but not in T cells. This uneven expression is amplified in untreated MS patients, and dramatically reduced during therapy. In astrocytes, EBVgp350 stimulates the expression of HERV-W/MSRV/syncytin-1, with requirement of the NF-κB pathway. In EBVgp350-treated PBMC, MSRVenv and syncytin-1 transcription is activated in B cells and monocytes, but not in T cells, nor in the highly expressing NK cells. The latter cells, but not the T cells, are activated by proinflammatory cytokines.
Conclusions/Significance
In vitro EBV activates the potentially immunopathogenic and neuropathogenic HERV-W/MSRV/syncytin-1, in cells deriving from blood and brain. In vivo, pathogenic outcomes would depend on abnormal situations, as in late EBV primary infection, that is often symptomatic, or/and in the presence of particular host genetic backgrounds. In the blood, HERV-Wenv activation might induce immunopathogenic phenomena linked to its superantigenic properties. In the brain, toxic mechanisms against oligodendrocytes could be established, inducing inflammation, demyelination and axonal damage. Local stimulation by proinflammatory cytokines and other factors might activate further HERV-Ws, contributing to the neuropathogenity. In MS pathogenesis, a possible model could include EBV as initial trigger of future MS, years later, and HERV-W/MSRV/syncytin-1 as actual contributor to MS pathogenicity, in striking parallelism with disease behaviour.
doi:10.1371/journal.pone.0044991
PMCID: PMC3459916  PMID: 23028727
11.  Detection of Human Endogenous Retrovirus K (HERV-K) Transcripts in Human Prostate Cancer Cell Lines 
Frontiers in Oncology  2013;3:180.
Human endogenous retroviruses (HERVs) are transcribed in many cancers including prostate cancer. Human endogenous retrovirus K (HERV-K) of the HML2 subtype is the most recently integrated and most intact retrovirus in the human genome, with many of the viral genomes encoding full- or partial-length viral proteins. To assess transcripts of HERV-K in prostate cancer cell lines and identify the specific HERV-K elements in the human genome that are transcribed, reverse transcriptase-PCR (RT-PCR) and cDNA sequencing were undertaken. Strand-specific RT-PCR, plasmid subcloning, and cDNA sequencing detected the presence of HERV-K(HML2) coding strand transcripts within four prostate cell lines (LNCaP, DU145, PC3, and VCaP). RT-PCR across splice junctions revealed splicing variants for env gene mRNA in three cell lines, two involving previously undescribed alternative splice sites. To determine the HERV-K loci from which the transcripts arose, RepeatMasker was used to compile a list of over 200 HERV-K internal genome segment fragments and over 1,000 HERV-K solo long terminal repeat (LTR) fragments in the human genome. Surprisingly, the sequences identified from internal positions of the viral genome were mostly smaller segments, while the LTRs were relatively intact. Possible reasons for this are discussed. The transcripts in the cell lines tested, arose from several HERV-K loci, with some proviruses being detected in multiple cell lines and others in only one of the four used. In some instances, transcripts from viral antisense strands was also detected. In addition, transcripts from both strands of solo LTRs were detected. These data show that transcripts from HERV-K loci commonly occur in prostate cancer cell lines and that transcription of either strand can occur. They also emphasize the importance of single nucleotide level analysis to identify the specific, individual HERV-K loci that are transcribed, and indicate that HERV-K expression in prostate cancer warrants further study.
doi:10.3389/fonc.2013.00180
PMCID: PMC3705622  PMID: 23847768
endogenous retroviruses; HERV-K; prostate cancer; cancer; unconventional splicing; RT-PCR; evolution
12.  Human Endogenous Retrovirus K Gag Coassembles with HIV-1 Gag and Reduces the Release Efficiency and Infectivity of HIV-1 
Journal of Virology  2012;86(20):11194-11208.
Human endogenous retroviruses (HERVs), which are remnants of ancestral retroviruses integrated into the human genome, are defective in viral replication. Because activation of HERV-K and coexpression of this virus with HIV-1 have been observed during HIV-1 infection, it is conceivable that HERV-K could affect HIV-1 replication, either by competition or by cooperation, in cells expressing both viruses. In this study, we found that the release efficiency of HIV-1 Gag was 3-fold reduced upon overexpression of HERV-KCON Gag. In addition, we observed that in cells expressing Gag proteins of both viruses, HERV-KCON Gag colocalized with HIV-1 Gag at the plasma membrane. Furthermore, HERV-KCON Gag was found to coassemble with HIV-1 Gag, as demonstrated by (i) processing of HERV-KCON Gag by HIV-1 protease in virions, (ii) coimmunoprecipitation of virion-associated HERV-KCON Gag with HIV-1 Gag, and (iii) rescue of a late-domain-defective HERV-KCON Gag by wild-type (WT) HIV-1 Gag. Myristylation-deficient HERV-KCON Gag localized to nuclei, suggesting cryptic nuclear trafficking of HERV-K Gag. Notably, unlike WT HERV-KCON Gag, HIV-1 Gag failed to rescue myristylation-deficient HERV-KCON Gag to the plasma membrane. Efficient colocalization and coassembly of HIV-1 Gag and HERV-K Gag also required nucleocapsid (NC). These results provide evidence that HIV-1 Gag heteromultimerizes with HERV-K Gag at the plasma membrane, presumably through NC-RNA interaction. Intriguingly, HERV-K Gag overexpression reduced not only HIV-1 release efficiency but also HIV-1 infectivity in a myristylation- and NC-dependent manner. Altogether, these results indicate that Gag proteins of endogenous retroviruses can coassemble with HIV-1 Gag and modulate the late phase of HIV-1 replication.
doi:10.1128/JVI.00301-12
PMCID: PMC3457174  PMID: 22855497
13.  Implication of the env Gene of the Human Endogenous Retrovirus W Family in the Expression of BDNF and DRD3 and Development of Recent-Onset Schizophrenia 
Schizophrenia Bulletin  2010;37(5):988-1000.
Objective: Retrovirus has been suggested as one of agents involved in the development of schizophrenia. In the present study, we examined the role of the human endogenous retrovirus W family (HERV-W) env gene in the etiopathogenesis of recent-onset schizophrenia, using molecular and epidemiological approaches. Methods: Nested RT-PCR was used to detect the messenger RNA (mRNA) of the HERV-w env gene in plasmas. Quantitative real-time polymerase chain reaction (PCR) was employed to detect the viral reverse transcriptase activity in human sera. Human U251 glioma cells were used to study the potential role of the HERV-W env gene in the etiopathogenesis of recent-onset schizophrenia. Results: We identified genes with mRNA sequences homologous to HERV-W env gene from plasmas of 42 out of 118 individuals with recent-onset schizophrenia but not from any of 106 normal persons (P < .01, t test). Quantitative real-time PCR showed a significantly increase in the reverse transcriptase activity in the sera of patients (by 35.59%) compared with controls (by 2.83%) (P < .05, t test). Overexpression of HERV-w env in human U251 glioma cells upregulated brain-derived neurotrophic factor (BDNF), an important schizophrenia-associated gene, neurotrophic tyrosine kinase receptor type 2 (NTRK2, also called TrkB), and dopamine receptor D3 and increased the phosphorylation of cyclic adenosine monophosphate response element–binding (CREB) protein. BDNF promoter reporter gene assays showed that the HERV-W env triggers BDNF production in human U251 glioma cells. Using gene knockdown, we found that CREB is required for the expression of BDNF that is regulated by env. Conclusion: Our data revealed that the transcriptional activation of HERV is associated with the development of schizophrenia in some patients and indicated that HERV-W env regulates the expression of schizophrenia-associated genes. This report is the first to elucidate the signaling pathway responsible for the upregulation of HERV-W env–triggered BDNF. Our study provides new evidence for the involvement of HERV-W in the central nervous system, which will benefit the diagnosis and treatment of the devastating schizophrenia and related disorders.
doi:10.1093/schbul/sbp166
PMCID: PMC3160218  PMID: 20100784
schizophrenia; HERV-W; env; Human U251 glioma cells; DRD3; BDNF; siRNA
14.  HERV-H RNA is abundant in human embryonic stem cells and a precise marker for pluripotency 
Retrovirology  2012;9:111.
Background
Certain post-translational modifications to histones, including H3K4me3, as well as binding sites for the transcription factor STAT1, predict the site of integration of exogenous gamma-retroviruses with great accuracy and cell-type specificity. Statistical methods that were used to identify chromatin features that predict exogenous gamma-retrovirus integration site selection were exploited here to determine whether cell type-specific chromatin markers are enriched in the vicinity of endogenous retroviruses (ERVs).
Results
Among retro-elements in the human genome, the gamma-retrovirus HERV-H was highly associated with H3K4me3, though this association was only observed in embryonic stem (ES) cells (p < 10-300) and, to a lesser extent, in induced pluripotent stem (iPS) cells. No significant association was observed in nearly 40 differentiated cell types, nor was any association observed with other retro-elements. Similar strong association was observed between HERV-H and the binding sites within ES cells for the pluripotency transcription factors NANOG, OCT4, and SOX2. NANOG binding sites were located within the HERV-H 5′LTR itself. OCT4 and SOX2 binding sites were within 1 kB and 2 kB of the 5′LTR, respectively. In keeping with these observations, HERV-H RNA constituted 2% of all poly A RNA in ES cells. As ES cells progressed down a differentiation pathway, the levels of HERV-H RNA decreased progressively. RNA-Seq datasets showed HERV-H transcripts to be over 5 kB in length and to have the structure 5′LTR-gag-pro-3′LTR, with no evidence of splicing and no intact open reading frames.
Conclusion
The developmental regulation of HERV-H expression, the association of HERV-H with binding sites for pluripotency transcription factors, and the extremely high levels of HERV-H RNA in human ES cells suggest that HERV-H contributes to pluripotency in human cells. Proximity of HERV-H to binding sites for pluripotency transcription factors within ES cells might be due to retention of the same chromatin features that determined the site of integration of the ancestral, exogenous, gamma-retrovirus that gave rise to HERV-H in the distant past. Retention of these markers, or, alternatively, recruitment of them to the site of the established provirus, may have acted post-integration to fix the provirus within the germ-line of the host species. Either way, HERV-H RNA provides a specific marker for pluripotency in human cells.
doi:10.1186/1742-4690-9-111
PMCID: PMC3558390  PMID: 23253934
HERV-H; Endogenous retrovirus; Pluripotency; Long non-coding RNA; Embryonic stem cell; Induced pluripotent stem cell
15.  Comprehensive Analysis of Human Endogenous Retrovirus Group HERV-W Locus Transcription in Multiple Sclerosis Brain Lesions by High-Throughput Amplicon Sequencing 
Journal of Virology  2013;87(24):13837-13852.
Human endogenous retroviruses (HERVs) of the HERV-W group comprise hundreds of loci in the human genome. Deregulated HERV-W expression and HERV-W locus ERVWE1-encoded Syncytin-1 protein have been implicated in the pathogenesis of multiple sclerosis (MS). However, the actual transcription of HERV-W loci in the MS context has not been comprehensively analyzed. We investigated transcription of HERV-W in MS brain lesions and white matter brain tissue from healthy controls by employing next-generation amplicon sequencing of HERV-W env-specific reverse transcriptase (RT) PCR products, thus revealing transcribed HERV-W loci and the relative transcript levels of those loci. We identified more than 100 HERV-W loci that were transcribed in the human brain, with a limited number of loci being predominantly transcribed. Importantly, relative transcript levels of HERV-W loci were very similar between MS and healthy brain tissue samples, refuting deregulated transcription of HERV-W env in MS brain lesions, including the high-level-transcribed ERVWE1 locus encoding Syncytin-1. Quantitative RT-PCR likewise did not reveal differences in MS regarding HERV-W env general transcript or ERVWE1- and ERVWE2-specific transcript levels. However, we obtained evidence for interindividual differences in HERV-W transcript levels. Reporter gene assays indicated promoter activity of many HERV-W long terminal repeats (LTRs), including structurally incomplete LTRs. Our comprehensive analysis of HERV-W transcription in the human brain thus provides important information on the biology of HERV-W in MS lesions and normal human brain, implications for study design, and mechanisms by which HERV-W may (or may not) be involved in MS.
doi:10.1128/JVI.02388-13
PMCID: PMC3838257  PMID: 24109235
16.  Expression-analysis of the human endogenous retrovirus HERV-K in human astrocytic tumors 
BMC Research Notes  2014;7:159.
Background
The human endogenous retrovirus K (HERV-K) has been acquired by the genome of human ancestors million years ago. It is the most complete of the HERVs with transcriptionally active gag, pol and env genes. Splice variants of env, which are rec, 1.5 kb transcript and Np9 have been suggested to be tumorigenic. Transcripts of HERV-K have been detected in a multitude of human cancers. However, no such reports are available concerning glioblastomas (GBM), the most common malignant brain tumor in adults. Patients have a limited prognosis of 14.6 months in median, despite standard treatment. Therefore, we elucidated whether HERV-K transcripts could be detected in these tumors and serve as new molecular target for treatment.
Findings
We analyzed human GBM cell lines, tissue samples from patients and primary cell cultures of different passages for HERV-K full length mRNA and env, rec and 1.5 kb transcripts. While the GBM cell lines U138, U251, U343 and GaMG displayed weak and U87 strong expression of the full length HERV-K, the splice products could not be detected, despite a weak expression of env mRNA in U87 cells. Very few tissue samples from patients showed weak expression of env mRNA, but none of the rec or 1.5 kb transcripts. Primary cells expressed the 1.5 kb transcript weakly in early passages, but lost HERV-K expression with extended culture time.
Conclusions
These data suggest that HERV-K splice products do not play a role in human malignant gliomas and therefore, are not suitable as targets for new therapy regimen.
doi:10.1186/1756-0500-7-159
PMCID: PMC3995297  PMID: 24642114
Human endogenous retrovirus; HERV-K; Glioblastoma multiforme; Astrocytic tumor; Expression; Glioblastoma cell line; PCR analysis
17.  No additional copies of HERV-Fc1 in the germ line of multiple sclerosis patients 
Virology Journal  2012;9:188.
Background
Human endogenous retroviruses (HERVs) are suspected to play a role in the development of multiple sclerosis (MS). This suspicion has in part been based on increased expression of viral RNA or proteins or antibodies targeting retroviral products in MS patients. Recently, our group provided genetic evidence for association between the endogenous retrovirus HERV-Fc1 and MS, suggesting that HERV-Fc1 plays a role in this multifactorial disease. We have found increased expression of HERV-Fc1 in MS patients suffering from recent attack, but the underlying mechanism for association is still unknown.
Findings
Evidence from animal models indicates that ERV implication in the pathogenesis of diseases can be a result of extra copies of the virus in the germ line. Therefore, we investigated the genome of 81 individuals, 74 patients with MS and 7 healthy controls, by means of Southern blotting, for presence of extra HERV-Fc1 copies. The known insertion at the Xq21.33 position was readily detectable, but no additional insertions in other genomic contexts could be identified in any studied individuals. This substantiates our previous copy-number PCR findings of a 2:1 ratio of HERV-Fc1 DNA between women and men, as expected from the X-chromosome location; there was no difference between patient and control individuals.
Conclusions
No additional germ line copies of HERV-Fc1 could be identified, precluding such copies to underlie the association between this provirus and multiples sclerosis.
doi:10.1186/1743-422X-9-188
PMCID: PMC3459695  PMID: 22958517
HERV-Fc1; Multiple sclerosis; Provirus copy-number
18.  Human Endogenous Retrovirus Family HERV-K(HML-2) RNA Transcripts Are Selectively Packaged into Retroviral Particles Produced by the Human Germ Cell Tumor Line Tera-1 and Originate Mainly from a Provirus on Chromosome 22q11.21▿ †  
Journal of Virology  2008;82(20):10008-10016.
The human germ cell tumor line Tera-1 produces retroviral particles which are encoded by the human endogenous retrovirus family HERV-K(HML-2). We show here, by quantitative reverse transcriptase PCR, that HML-2 gag and env RNA transcripts are selectively packaged into Tera-1 retroviral particles, whereas RNAs from cellular housekeeping genes and from other HERV families (HERV-H and HERV-W) are nonselectively copackaged. Assignment of cloned HML-2 gag and env cDNAs from Tera-1 retroviral particles to individual HML-2 loci in the human genome demonstrated that HML-2 RNA transcripts packaged into Tera-1 retroviral particles originate almost exclusively from an HML-2 provirus on chromosome 22q11.21. Based on relative cloning frequencies, this provirus was the most active among a total of eight transcribed HML-2 loci identified in Tera-1 cells. These data suggest that at least one HML-2 element, that is, the HML-2 provirus on 22q11.21, has retained the capacity for packaging RNA into HML-2-encoded retroviral particles. Given its elevated transcriptional activity and the presence of a full-length Gag open reading frame, the 22q11.21 HML-2 provirus may also significantly contribute to Gag protein and thus particle production in Tera-1 cells. Our findings provide important clues to the generation and biological properties of HML-2-encoded particles. In addition, copackaging of non-HML-2 HERV transcripts in HML-2-encoded particles should inform the debate about endogenous retroviral particles putatively encoded by non-HML-2 HERV families that have previously been described for other human diseases, such as multiple sclerosis.
doi:10.1128/JVI.01016-08
PMCID: PMC2566279  PMID: 18684837
19.  Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients 
Arthritis Research & Therapy  2008;10(4):R101.
Introduction
MicroRNAs are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their targeted mRNAs. It is known that aberrant microRNA expression can play important roles in cancer, but the role of microRNAs in autoimmune diseases is only beginning to emerge. In this study, the expression of selected microRNAs is examined in rheumatoid arthritis.
Methods
Total RNA was isolated from peripheral blood mononuclear cells obtained from patients with rheumatoid arthritis, and healthy and disease control individuals, and the expression of miR-146a, miR-155, miR-132, miR-16, and microRNA let-7a was analyzed using quantitative real-time PCR.
Results
Rheumatoid arthritis peripheral blood mononuclear cells exhibited between 1.8-fold and 2.6-fold increases in miR-146a, miR-155, miR-132, and miR-16 expression, whereas let-7a expression was not significantly different compared with healthy control individuals. In addition, two targets of miR-146a, namely tumor necrosis factor receptor-associated factor 6 (TRAF6) and IL-1 receptor-associated kinase 1 (IRAK-1), were similarly expressed between rheumatoid arthritis patients and control individuals, despite increased expression of miR-146a in patients with rheumatoid arthritis. Repression of TRAF6 and/or IRAK-1 in THP-1 cells resulted in up to an 86% reduction in tumor necrosis factor-α production, implicating that normal miR-146a function is critical for the regulation of tumor necrosis factor-α production.
Conclusions
Recent studies have shown that synovial tissue and synovial fibroblasts from patients with rheumatoid arthritis exhibit increased expression of certain microRNAs. Our data thus demonstrate that microRNA expression in rheumatoid arthritis peripheral blood mononuclear cells mimics that of synovial tissue/fibroblasts. The increased microRNA expression in rheumatoid arthritis patients is potentially useful as a marker for disease diagnosis, progression, or treatment efficacy, but this will require confirmation using a large and well defined cohort. Our data also suggest a possible mechanism contributing to rheumatoid arthritis pathogenesis, whereby miR-146a expression is increased but unable to properly function, leading to prolonged tumor necrosis factor-α production in patients with rheumatoid arthritis.
doi:10.1186/ar2493
PMCID: PMC2575615  PMID: 18759964
20.  A Single Amino Acid Substitution in a Segment of the CA Protein within Gag That Has Similarity to Human Immunodeficiency Virus Type 1 Blocks Infectivity of a Human Endogenous Retrovirus K Provirus in the Human Genome ▿  
Journal of Virology  2008;83(2):1105-1114.
Human endogenous retrovirus K (HERV-K) is the most intact retrovirus in the human genome. However, no single HERV-K provirus in the human genome today appears to be infectious. Since the Gag protein is the central component for the production of retrovirus particles, we investigated the abilities of Gag from two HERV-K proviruses to support production of virus-like particles and viral infectivity. HERV-K113 has full-length open reading frames for all viral proteins, while HERV-K101 has a full-length gag open reading frame and is expressed in human male germ cell tumors. The Gag of HERV-K101 allowed production of viral particles and infectivity, although at lower levels than observed with a consensus sequence Gag. Thus, including HERV-K109, at least two HERV-K proviruses in human genome today have functional Gag proteins. In contrast, HERV-K113 Gag supported only very low levels of particle production, and no infectivity was detectable due to a single amino acid substitution (I516M) near the extreme C terminus of the CA protein within Gag. The sequence of this portion of HERV-K CA showed similarities to that of human immunodeficiency virus type 1 and other primate immunodeficiency viruses. The extreme C terminus of CA may be a general determinant of retrovirus particle production. In addition, precise mapping of the defects in HERV-K proviruses as was done here identifies the key polymorphisms that need to be analyzed to assess the possible existence of infectious HERV-K alleles within the human population.
doi:10.1128/JVI.01439-08
PMCID: PMC2612375  PMID: 19004950
21.  Lack of Detection of Human Retrovirus-5 Proviral DNA in Synovial Tissue and Blood Specimens From Individuals With Rheumatoid Arthritis or Osteoarthritis 
Arthritis and rheumatism  2006;55(1):123-125.
Objective
Prior studies have suggested an association of human retrovirus 5 with rheumatoid arthritis. The purpose of this study was to determine if human retrovirus-5 proviral DNA is present in synovial tissue and blood specimens from patients with rheumatoid arthritis or osteoarthritis, or those without joint disease.
Methods
Synovial tissue and whole blood from 75 patients with rheumatoid arthritis, 75 patients with osteoarthritis, and 50 patients without a primary arthritis diagnosis were assayed by real-time quantitative polymerase chain reaction (PCR) using primers that amplify a 186-bp fragment of human retrovirus-5 proviral DNA.
Results
A total of 200 tissue specimens, 200 mononuclear cells, and 196 of 200 granulocyte specimens tested negative for human retrovirus-5 proviral DNA. No association between human retrovirus 5 and rheumatoid arthritis or osteoarthritis (P = 0.516) was identified. Granulocyte specimens from 4 patients, 2 with rheumatoid arthritis and 2 with osteoarthritis, yielded a low positive human retrovirus-5 proviral DNA signal (83–1,365 copies of human retrovirus-5 proviral DNA/ml blood).
Conclusion
Contrary to prior reports, we did not find an association between human retrovirus 5 and rheumatoid arthritis or osteoarthritis using a real-time PCR assay. Our findings are consistent with the recent finding that human retrovirus 5 is actually rabbit endogenous retrovirus H.
doi:10.1002/art.21690
PMCID: PMC1464419  PMID: 16463423
Human retrovirus-5; Rheumatoid arthritis; Osteoarthritis
22.  Human Endogenous Retrovirus K(HML-2) Gag and Env specific T-cell responses are not detected in HTLV-I-infected subjects using standard peptide screening methods 
Background
An estimated 10–20 million individuals are infected with the retrovirus human T-cell leukemia virus type 1 (HTLV-1). While the majority of these individuals remain asymptomatic, 0.3-4% develop a neurodegenerative inflammatory disease, termed HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HAM/TSP results in the progressive demyelination of the central nervous system and is a differential diagnosis of multiple sclerosis (MS). The etiology of HAM/TSP is unclear, but evidence points to a role for CNS-inflitrating T-cells in pathogenesis. Recently, the HTLV-1-Tax protein has been shown to induce transcription of the human endogenous retrovirus (HERV) families W, H and K. Intriguingly, numerous studies have implicated these same HERV families in MS, though this association remains controversial.
Results
Here, we explore the hypothesis that HTLV-1-infection results in the induction of HERV antigen expression and the elicitation of HERV-specific T-cells responses which, in turn, may be reactive against neurons and other tissues. PBMC from 15 HTLV-1-infected subjects, 5 of whom presented with HAM/TSP, were comprehensively screened for T-cell responses to overlapping peptides spanning HERV-K(HML-2) Gag and Env. In addition, we screened for responses to peptides derived from diverse HERV families, selected based on predicted binding to predicted optimal epitopes. We observed a lack of responses to each of these peptide sets.
Conclusions
Thus, although the limited scope of our screening prevents us from conclusively disproving our hypothesis, the current study does not provide data supporting a role for HERV-specific T-cell responses in HTLV-1 associated immunopathology.
doi:10.1186/1477-5751-12-3
PMCID: PMC3560086  PMID: 23305161
HTLV-I; Human endogenous retrovirus; T-cells; HTLV-1-associated myelopathy/tropical spastic paraparesis
23.  Ectopic Lymphoid Structures Support Ongoing Production of Class-Switched Autoantibodies in Rheumatoid Synovium 
PLoS Medicine  2009;6(1):e1.
Background
Follicular structures resembling germinal centres (GCs) that are characterized by follicular dendritic cell (FDC) networks have long been recognized in chronically inflamed tissues in autoimmune diseases, including the synovium of rheumatoid arthritis (RA). However, it is debated whether these ectopic structures promote autoimmunity and chronic inflammation driving the production of pathogenic autoantibodies. Anti-citrullinated protein/peptide antibodies (ACPA) are highly specific markers of RA, predict a poor prognosis, and have been suggested to be pathogenic. Therefore, the main study objectives were to determine whether ectopic lymphoid structures in RA synovium: (i) express activation-induced cytidine deaminase (AID), the enzyme required for somatic hypermutation and class-switch recombination (CSR) of Ig genes; (ii) support ongoing CSR and ACPA production; and (iii) remain functional in a RA/severe combined immunodeficiency (SCID) chimera model devoid of new immune cell influx into the synovium.
Methods and Findings
Using immunohistochemistry (IHC) and quantitative Taqman real-time PCR (QT-PCR) in synovial tissue from 55 patients with RA, we demonstrated that FDC+ structures invariably expressed AID with a distribution resembling secondary lymphoid organs. Further, AID+/CD21+ follicular structures were surrounded by ACPA+/CD138+ plasma cells, as demonstrated by immune reactivity to citrullinated fibrinogen. Moreover, we identified a novel subset of synovial AID+/CD20+ B cells outside GCs resembling interfollicular large B cells. In order to gain direct functional evidence that AID+ structures support CSR and in situ manufacturing of class-switched ACPA, 34 SCID mice were transplanted with RA synovium and humanely killed at 4 wk for harvesting of transplants and sera. Persistent expression of AID and Iγ-Cμ circular transcripts (identifying ongoing IgM-IgG class-switching) was observed in synovial grafts expressing FDCs/CD21L. Furthermore, synovial mRNA levels of AID were closely associated with circulating human IgG ACPA in mouse sera. Finally, the survival and proliferation of functional B cell niches was associated with persistent overexpression of genes regulating ectopic lymphoneogenesis.
Conclusions
Our demonstration that FDC+ follicular units invariably express AID and are surrounded by ACPA-producing plasma cells provides strong evidence that ectopic lymphoid structures in the RA synovium are functional and support autoantibody production. This concept is further confirmed by evidence of sustained AID expression, B cell proliferation, ongoing CSR, and production of human IgG ACPA from GC+ synovial tissue transplanted into SCID mice, independently of new B cell influx from the systemic circulation. These data identify AID as a potential therapeutic target in RA and suggest that survival of functional synovial B cell niches may profoundly influence chronic inflammation, autoimmunity, and response to B cell–depleting therapies.
Costantino Pitzalis and colleagues show that lymphoid structures in synovial tissue of patients with rheumatoid arthritis support production of anti-citrullinated peptide antibodies, which continues following transplantation into SCID mice.
Editors' Summary
Background.
More than 1 million people in the United States have rheumatoid arthritis, an “autoimmune” condition that affects the joints. Normally, the immune system provides protection against infection by responding to foreign antigens (molecules that are unique to invading organisms) while ignoring self-antigens present in the body's own tissues. In autoimmune diseases, this ability to discriminate between self and non-self fails for unknown reasons and the immune system begins to attack human tissues. In rheumatoid arthritis, the lining of the joints (the synovium) is attacked, it becomes inflamed and thickened, and chemicals are released that damage all the tissues in the joint. Eventually, the joint may become so scarred that movement is no longer possible. Rheumatoid arthritis usually starts in the small joints in the hands and feet, but larger joints and other tissues (including the heart and blood vessels) can be affected. Its symptoms, which tend to fluctuate, include early morning joint pain, swelling, and stiffness, and feeling generally unwell. Although the disease is not always easy to diagnose, the immune systems of many people with rheumatoid arthritis make “anti-citrullinated protein/peptide antibodies” (ACPA). These “autoantibodies” (which some experts believe can contribute to the joint damage in rheumatoid arthritis) recognize self-proteins that contain the unusual amino acid citrulline, and their detection on blood tests can help make the diagnosis. Although there is no cure for rheumatoid arthritis, the recently developed biologic drugs, often used together with the more traditional disease-modifying therapies, are able to halt its progression by specifically blocking the chemicals that cause joint damage. Painkillers and nonsteroidal anti-inflammatory drugs can reduce its symptoms, and badly damaged joints can sometimes be surgically replaced.
Why Was This Study Done?
Before scientists can develop a cure for rheumatoid arthritis, they need to know how and why autoantibodies are made that attack the joints in this common and disabling disease. B cells, the immune system cells that make antibodies, mature in structures known as “germinal centers” in the spleen and lymph nodes. In the germinal centers, immature B cells are exposed to antigens and undergo two genetic processes called “somatic hypermutation” and “class-switch recombination” that ensure that each B cell makes an antibody that sticks as tightly as possible to just one antigen. The B cells then multiply and enter the bloodstream where they help to deal with infections. Interestingly, the inflamed synovium of many patients with rheumatoid arthritis contains structures that resemble germinal centers. Could these ectopic (misplaced) lymphoid structures, which are characterized by networks of immune system cells called follicular dendritic cells (FDCs), promote autoimmunity and long-term inflammation by driving the production of autoantibodies within the joint itself? In this study, the researchers investigate this possibility.
What Did the Researchers Do and Find?
The researchers collected synovial tissue from 55 patients with rheumatoid arthritis and used two approaches, called immunohistochemistry and real-time PCR, to investigate whether FDC-containing structures in synovium expressed an enzyme called activation-induced cytidine deaminase (AID), which is needed for both somatic hypermutation and class-switch recombination. All the FDC-containing structures that the researchers found in their samples expressed AID. Furthermore, these AID-containing structures were surrounded by mature B cells making ACPAs. To test whether these B cells were derived from AID-expressing cells resident in the synovium rather than ACPA-expressing immune system cells coming into the synovium from elsewhere in the body, the researchers transplanted synovium from patients with rheumatoid arthritis under the skin of a special sort of mouse that largely lacks its own immune system. Four weeks later, the researchers found that the transplanted human lymphoid tissue was still making AID, that the level of AID expression correlated with the amount of human ACPA in the blood of the mice, and that the B cells in the transplant were proliferating.
What Do These Findings Mean?
These findings show that the ectopic lymphoid structures present in the synovium of some patients with rheumatoid arthritis are functional and are able to make ACPA. Because ACPA may be responsible for joint damage, the survival of these structures could, therefore, be involved in the development and progression of rheumatoid arthritis. More experiments are needed to confirm this idea, but these findings may explain why drugs that effectively clear B cells from the bloodstream do not always produce a marked clinical improvement in rheumatoid arthritis. Finally, they suggest that AID might provide a new target for the development of drugs to treat rheumatoid arthritis.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0060001.
This study is further discussed in a PLoS Medicine Perspective by Rene Toes and Tom Huizinga
The MedlinePlus Encyclopedia has a page on rheumatoid arthritis (in English and Spanish). MedlinePlus provides links to other information on rheumatoid arthritis (in English and Spanish)
The UK National Health Service Choices information service has detailed information on rheumatoid arthritis
The US National Institute of Arthritis and Musculoskeletal and Skin Diseases provides Fast Facts, an easy to read publication for the public, and a more detailed Handbook on rheumatoid arthritis
The US Centers for Disease Control and Prevention has an overview on rheumatoid arthritis that includes statistics about this disease and its impact on daily life
doi:10.1371/journal.pmed.0060001
PMCID: PMC2621263  PMID: 19143467
24.  T Cell Responses to Human Endogenous Retroviruses in HIV-1 Infection 
PLoS Pathogens  2007;3(11):e165.
Human endogenous retroviruses (HERVs) are remnants of ancient infectious agents that have integrated into the human genome. Under normal circumstances, HERVs are functionally defective or controlled by host factors. In HIV-1-infected individuals, intracellular defense mechanisms are compromised. We hypothesized that HIV-1 infection would remove or alter controls on HERV activity. Expression of HERV could potentially stimulate a T cell response to HERV antigens, and in regions of HIV-1/HERV similarity, these T cells could be cross-reactive. We determined that the levels of HERV production in HIV-1-positive individuals exceed those of HIV-1-negative controls. To investigate the impact of HERV activity on specific immunity, we examined T cell responses to HERV peptides in 29 HIV-1-positive and 13 HIV-1-negative study participants. We report T cell responses to peptides derived from regions of HERV detected by ELISPOT analysis in the HIV-1-positive study participants. We show an inverse correlation between anti-HERV T cell responses and HIV-1 plasma viral load. In HIV-1-positive individuals, we demonstrate that HERV-specific T cells are capable of killing cells presenting their cognate peptide. These data indicate that HIV-1 infection leads to HERV expression and stimulation of a HERV-specific CD8+ T cell response. HERV-specific CD8+ T cells have characteristics consistent with an important role in the response to HIV-1 infection: a phenotype similar to that of T cells responding to an effectively controlled virus (cytomegalovirus), an inverse correlation with HIV-1 plasma viral load, and the ability to lyse cells presenting their target peptide. These characteristics suggest that elicitation of anti-HERV-specific immune responses is a novel approach to immunotherapeutic vaccination. As endogenous retroviral sequences are fixed in the human genome, they provide a stable target, and HERV-specific T cells could recognize a cell infected by any HIV-1 viral variant. HERV-specific immunity is an important new avenue for investigation in HIV-1 pathogenesis and vaccine design.
Author Summary
The human genome contains a number of remnants or fossils of ancient viral infections referred to as human endogenous retroviruses (HERV). Like fossils, these HERV are considered to be dead or inert in most cases. However, we demonstrate that T cells in the human immune system respond to HERV when a person is infected with the human immunodeficiency virus (HIV). The T cells responding to HERV share characteristics with T cells that effectively control cytomegalovirus, a common chronic viral infection. T cells responding to HERV can also kill target cells carrying HERV protein. For some HIV-positive people, the strength of their response against HERV is related to having a lower HIV viral load. This study has important implications for new directions in HIV vaccine research. One of the key obstacles to creating an effective HIV vaccine is overcoming the ability of some of the viral variants produced when HIV replicates to evade the immune responses that the body mounts to control infections. If T cells that recognize HERV can stably target HIV-infected cells, they could be an important factor in controlling HIV infection.
doi:10.1371/journal.ppat.0030165
PMCID: PMC2065876  PMID: 17997601
25.  Staufen-1 Interacts with the Human Endogenous Retrovirus Family HERV-K(HML-2) Rec and Gag Proteins and Increases Virion Production 
Journal of Virology  2013;87(20):11019-11030.
The human endogenous retrovirus family HERV-K(HML-2) Rec protein is an RNA transport factor that enhances nuclear export of intron-containing retroviral transcripts. Using the yeast two-hybrid approach, we have newly identified human Staufen-1 as a Rec-interacting protein. The interaction was confirmed by coimmunoprecipitation experiments, and the relevant site in Staufen-1 has been mapped to double-stranded RNA binding domain 4 (RBD4). Staufen-1 is in several aspects functionally related to retroviral RNA transport proteins. It binds mRNAs and targets its ribonuclear cargo to polysomes for efficient translation. We observed an accumulation of Staufen-1 in the nucleus of Rec-expressing cells and colocalization in the nucleoli as well as in the cytoplasm. Overexpression of Staufen-1 resulted in a 5-fold enhancement in nuclear export and/or translation of unspliced HERV-K(HML-2) viral RNAs in the presence of Rec and its Rec-responsive element (RcRE) binding site together with a clear increase in virus production. Staufen-1 was previously shown to interact with the Gag protein of HIV-1, promoting Gag oligomerization and RNA encapsidation. We demonstrate here that Staufen-1 also binds to the Gag protein of HERV-K(HML-2). Under stress conditions, Rec colocalizes with Staufen-1 in stress granules in cells that express viral RNA but not in mRNA-decay-related processing bodies. Our results suggest a new role for Staufen-1 as a cellular Rec and HERV-K(HML-2) Gag cofactor.
doi:10.1128/JVI.03031-12
PMCID: PMC3807308  PMID: 23926355

Results 1-25 (530258)