Search tips
Search criteria

Results 1-25 (414426)

Clipboard (0)

Related Articles

1.  GcpE Is Involved in the 2-C-Methyl-d-Erythritol 4-Phosphate Pathway of Isoprenoid Biosynthesis in Escherichia coli 
Journal of Bacteriology  2001;183(8):2411-2416.
In a variety of organisms, including plants and several eubacteria, isoprenoids are synthesized by the mevalonate-independent 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. Although different enzymes of this pathway have been described, the terminal biosynthetic steps of the MEP pathway have not been fully elucidated. In this work, we demonstrate that the gcpE gene of Escherichia coli is involved in this pathway. E. coli cells were genetically engineered to utilize exogenously provided mevalonate for isoprenoid biosynthesis by the mevalonate pathway. These cells were then deleted for the essential gcpE gene and were viable only if the medium was supplemented with mevalonate or the cells were complemented with an episomal copy of gcpE.
PMCID: PMC95155  PMID: 11274098
2.  The lytB Gene of Escherichia coli Is Essential and Specifies a Product Needed for Isoprenoid Biosynthesis 
Journal of Bacteriology  2001;183(24):7403-7407.
LytB and GcpE, because they are codistributed with other pathway enzymes, have been predicted to catalyze unknown steps in the nonmevalonate pathway for isoprenoid biosynthesis. We constructed a conditional Escherichia coli lytB mutant and found that LytB is essential for survival and that depletion of LytB results in cell lysis, which is consistent with a role for this protein in isoprenoid biosynthesis. Alcohols which can be converted to pathway intermediates beyond the hypothesized LytB step(s) support limited growth of E. coli lytB mutants. An informatic analysis of protein structure suggested that GcpE is a globular protein of the TIM barrel class and that LytB is also a globular protein. Possible biochemical roles for LytB and GcpE are suggested.
PMCID: PMC95591  PMID: 11717301
3.  Evidence of a Role for LytB in the Nonmevalonate Pathway of Isoprenoid Biosynthesis 
Journal of Bacteriology  2000;182(20):5841-5848.
It is proposed that the lytB gene encodes an enzyme of the deoxyxylulose-5-phosphate (DOXP) pathway that catalyzes a step at or subsequent to the point at which the pathway branches to form isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A mutant of the cyanobacterium Synechocystis strain PCC 6803 with an insertion in the promoter region of lytB grew slowly and produced greenish-yellow, easily bleached colonies. Insertions in the coding region of lytB were lethal. Supplementation of the culture medium with the alcohol analogues of IPP and DMAPP (3-methyl-3-buten-1-ol and 3-methyl-2-buten-1-ol) completely alleviated the growth impairment of the mutant. The Synechocystis lytB gene and a lytB cDNA from the flowering plant Adonis aestivalis were each found to significantly enhance accumulation of carotenoids in Escherichia coli engineered to produce these colored isoprenoid compounds. When combined with a cDNA encoding deoxyxylulose-5-phosphate synthase (dxs), the initial enzyme of the DOXP pathway, the individual salutary effects of lytB and dxs were multiplied. In contrast, the combination of lytB and a cDNA encoding IPP isomerase (ipi) was no more effective in enhancing carotenoid accumulation than ipi alone, indicating that the ratio of IPP and DMAPP produced via the DOXP pathway is influenced by LytB.
PMCID: PMC94708  PMID: 11004185
4.  Isoprenoid Biosynthesis in Synechocystis sp. Strain PCC6803 Is Stimulated by Compounds of the Pentose Phosphate Cycle but Not by Pyruvate or Deoxyxylulose-5-Phosphate 
Journal of Bacteriology  2002;184(18):5045-5051.
The photosynthetic cyanobacterium Synechocystis sp. strain PCC6803 possesses homologs of known genes of the non-mevalonate 2-C-methyl-d-erythritol 2-phosphate (MEP) pathway for synthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Isoprenoid biosynthesis in extracts of this cyanobacterium, measured by incorporation of radiolabeled IPP, was not stimulated by pyruvate, an initial substrate of the MEP pathway in Escherichia coli, or by deoxyxylulose-5-phosphate, the first pathway intermediate in E. coli. However, high rates of IPP incorporation were obtained with addition of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (GA3P), as well as a variety of pentose phosphate cycle compounds. Fosmidomycin (at 1 μM and 1 mM), an inhibitor of deoxyxylulose-5-phosphate reductoisomerase, did not significantly inhibit phototrophic growth of the cyanobacterium, nor did it affect [14C]IPP incorporation stimulated by DHAP plus GA3P. To date, it has not been possible to unequivocally demonstrate IPP isomerase activity in this cyanobacterium. The combined results suggest that the MEP pathway, as described for E. coli, is not the primary path by which isoprenoids are synthesized under photosynthetic conditions in Synechocystis sp. strain PCC6803. Our data support alternative routes of entry of pentose phosphate cycle substrates derived from photosynthesis.
PMCID: PMC135332  PMID: 12193620
5.  A Whole-Cell Phenotypic Screening Platform for Identifying Methylerythritol Phosphate Pathway-Selective Inhibitors as Novel Antibacterial Agents 
Isoprenoid biosynthesis is essential for survival of all living organisms. More than 50,000 unique isoprenoids occur naturally, with each constructed from two simple five-carbon precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Two pathways for the biosynthesis of IPP and DMAPP are found in nature. Humans exclusively use the mevalonate (MVA) pathway, while most bacteria, including all Gram-negative and many Gram-positive species, use the unrelated methylerythritol phosphate (MEP) pathway. Here we report the development of a novel, whole-cell phenotypic screening platform to identify compounds that selectively inhibit the MEP pathway. Strains of Salmonella enterica serovar Typhimurium were engineered to have separately inducible MEP (native) and MVA (nonnative) pathways. These strains, RMC26 and CT31-7d, were then used to differentiate MVA pathway- and MEP pathway-specific perturbation. Compounds that inhibit MEP pathway-dependent bacterial growth but leave MVA-dependent growth unaffected represent MEP pathway-selective antibacterials. This screening platform offers three significant results. First, the compound is antibacterial and is therefore cell permeant, enabling access to the intracellular target. Second, the compound inhibits one or more MEP pathway enzymes. Third, the MVA pathway is unaffected, suggesting selectivity for targeting the bacterial versus host pathway. The cell lines also display increased sensitivity to two reported MEP pathway-specific inhibitors, further biasing the platform toward inhibitors selective for the MEP pathway. We demonstrate development of a robust, high-throughput screening platform that combines phenotypic and target-based screening that can identify MEP pathway-selective antibacterials simply by monitoring optical density as the readout for cell growth/inhibition.
PMCID: PMC3421842  PMID: 22777049
6.  Complete blockage of the mevalonate pathway results in male gametophyte lethality 
Journal of Experimental Botany  2009;60(7):2055-2064.
Plants have two isoprenoid biosynthetic pathways: the cytosolic mevalonate (MVA) pathway and the plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Since the discovery of the MEP pathway, possible metabolic cross-talk between these pathways has prompted intense research. Although many studies have shown the existence of such cross-talk using feeding experiments, it remains to be determined if native cross-talk, rather than exogenously applied metabolites, can compensate for complete blockage of the MVA pathway. Previously, Arabidopsis mutants for HMG1 and HMG2 encoding HMG-CoA reductase (HMGR) were isolated. Although it was shown that HMGR1 is a functional HMGR, the enzyme activity of HMGR2 has not been confirmed. It is demonstrated here that HMG2 encodes a functional reductase with similar activity to HMGR1, using enzyme assays and complementation experiments. To estimate the contribution of native cross-talk, an attempt was made to block the MVA pathway by making double mutants lacking both HMG1 and HMG2, but no double homozygotes were detected in the progeny of self-pollinated HMG1/hmg1 hmg2/hmg2 plants. hmg1 hmg2 male gametophytes appeared to be lethal based on crossing experiments, and microscopy indicated that ∼50% of the microspores from the HMG1/hmg1 hmg2/hmg2 plant appeared shrunken and exhibited poorly defined endoplasmic reticulum membranes. In situ hybridization showed that HMG1 transcripts were expressed in both the tapetum and microspores, while HMG2 mRNA appeared only in microspores. It is concluded that native cross-talk from the plastid cannot compensate for complete blockage of the MVA pathway, at least during male gametophyte development, because either HMG1 or HMG2 is required for male gametophyte development.
PMCID: PMC2682496  PMID: 19363204
Anther; cross-talk; HMG-CoA reductase; isoprenoid; male gametophyte; MEP pathway; MVA pathway; pollen; sterol; tapetum
7.  Discovery of a metabolic alternative to the classical mevalonate pathway 
eLife  2013;2:e00672.
Eukarya, Archaea, and some Bacteria encode all or part of the essential mevalonate (MVA) metabolic pathway clinically modulated using statins. Curiously, two components of the MVA pathway are often absent from archaeal genomes. The search for these missing elements led to the discovery of isopentenyl phosphate kinase (IPK), one of two activities necessary to furnish the universal five-carbon isoprenoid building block, isopentenyl diphosphate (IPP). Unexpectedly, we now report functional IPKs also exist in Bacteria and Eukarya. Furthermore, amongst a subset of species within the bacterial phylum Chloroflexi, we identified a new enzyme catalyzing the missing decarboxylative step of the putative alternative MVA pathway. These results demonstrate, for the first time, a functioning alternative MVA pathway. Key to this pathway is the catalytic actions of a newly uncovered enzyme, mevalonate phosphate decarboxylase (MPD) and IPK. Together, these two discoveries suggest that unforeseen variation in isoprenoid metabolism may be widespread in nature.
eLife digest
Living things make thousands of chemicals that are vital for life, and are also useful as medicines, perfumes, and food additives. The largest family of these natural chemicals is called the isoprenoids, and members of this family are found in all three domains of life: the eukaryotes (such as plants and animals), the Archaea (an ancient group of single-celled microbes), and bacteria.
The isoprenoids are made from a smaller building block called isopentenyl diphosphate, IPP for short, that contains five carbon atoms and two phosphate groups. IPP can be produced in two ways. The classical mevalonate pathway is found in most eukaryotes, including humans; statin drugs are used to inhibit this pathway to treat those with high cholesterol and reduce the risk of heart disease. The second pathway does not use the compound mevalonate and is found in many, but not all, bacteria as well as the chloroplasts of plants. Until recently, however, the enzymes needed for the last two steps of the classical mevalonate pathway appeared to be missing in the Archaea and in some bacteria.
Researchers subsequently discovered that an enzyme called isopentenyl phosphate kinase, shortened to IPK, was responsible for one of these two missing steps—the addition of IPP’s second phosphate group. The way this enzyme worked also suggested that there was an alternative mevalonate pathway in which the order of the last two steps was reversed. However, the identity of the enzyme responsible for the other step—the removal of a molecule of carbon dioxide to make the starting material needed by IPK—remained mysterious.
Now Dellas et al. have discovered the enzyme responsible for this missing step in Green non-sulphur bacteria, confirming the existence of the alternative mevalonate pathway for the first time. Previously it had been thought that this enzyme acted in the classical mevalonate pathway; but in fact this enzyme has evolved a new function and is not involved in the classical pathway at all. Moreover, Dellas et al. show that Green non-sulphur bacteria, and some eukaryotes, also have functional IPK enzymes. This means that IPK has now unexpectedly been observed in all three domains of life, and hints at another target to medically control mevalonate pathways. The discovery of the missing enzyme in the alternative pathway opens the door to the re-examination of many other living things, to find which have the new pathway and to work out why.
PMCID: PMC3857490  PMID: 24327557
Mevalonate pathway; Isopentenyl diphosphate; Archaea; Mevalonate phosphate decarboxylase; Chloroflexi; Plants; Arabidopsis; Other
8.  The Nonmevalonate Pathway of Isoprenoid Biosynthesis in Mycobacterium tuberculosis Is Essential and Transcriptionally Regulated by Dxs ▿ †  
Journal of Bacteriology  2010;192(9):2424-2433.
Mycobacterium tuberculosis synthesizes isoprenoids via the nonmevalonate or DOXP pathway. Previous work demonstrated that three enzymes in the pathway (Dxr, IspD, and IspF) are all required for growth in vitro. We demonstrate the essentiality of the key genes dxs1 and gcpE, confirming that the pathway is of central importance and that the second homolog of the synthase (dxs2) cannot compensate for the loss of dxs1. We looked at the effect of overexpression of Dxr, Dxs1, Dxs2, and GcpE on viability and on growth in M. tuberculosis. Overexpression of dxs1 or dxs2 was inhibitory to growth, whereas overexpression of dxr or gcpE was not. Toxicity is likely to be, at least partially, due to depletion of pyruvate from the cells. Overexpression of dxs1 or gcpE resulted in increased flux through the pathway, as measured by accumulation of the metabolite 4-hydroxy-3-methyl-but-2-enyl pyrophosphate. We identified the functional translational start site and promoter region for dxr and demonstrated that it is expressed as part of a polycistronic mRNA with gcpE and two other genes. Increased expression of this operon was seen in cells overexpressing Dxs1, indicating that transcriptional control is effected by the first enzyme of the pathway via an unknown regulator.
PMCID: PMC2863480  PMID: 20172995
9.  Two distinct pathways for essential metabolic precursors for isoprenoid biosynthesis 
Isoprenoids are a diverse group of molecules found in all organisms, where they perform such important biological functions as hormone signaling (e.g., steroids) in mammals, antioxidation (e.g., carotenoids) in plants, electron transport (e.g., ubiquinone), and cell wall biosynthesis intermediates in bacteria. All isoprenoids are synthesized by the consecutive condensation of the five-carbon monomer isopentenyl diphosphate (IPP) to its isomer, dimethylallyl diphosphate (DMAPP). The biosynthetic pathway for the formation of IPP from acetyl-CoA (i.e., the mevalonate pathway) had been established mainly in mice and the budding yeast Saccharomyces cerevisiae. Curiously, most prokaryotic microorganisms lack homologs of the genes in the mevalonate pathway, even though IPP and DMAPP are essential for isoprenoid biosynthesis in bacteria. This observation provided an impetus to search for an alternative pathway to synthesize IPP and DMAPP, ultimately leading to the discovery of the mevalonate-independent 2-C-methyl-d-erythritol 4-phosphate pathway. This review article focuses on our significant contributions to a comprehensive understanding of the biosynthesis of IPP and DMAPP.
PMCID: PMC3365244  PMID: 22450534
biosynthesis; inhibitor; isoprenoid; MEP pathway; mevalonate pathway; terpenoid
10.  Optimization of the IPP Precursor Supply for the Production of Lycopene, Decaprenoxanthin and Astaxanthin by Corynebacterium glutamicum 
The biotechnologically relevant bacterium Corynebacterium glutamicum, currently used for the million ton-scale production of amino acids for the food and feed industries, is pigmented due to synthesis of the rare cyclic C50 carotenoid decaprenoxanthin and its glucosides. The precursors of carotenoid biosynthesis, isopenthenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate, are synthesized in this organism via the methylerythritol phosphate (MEP) or non-mevalonate pathway. Terminal pathway engineering in recombinant C. glutamicum permitted the production of various non-native C50 and C40 carotenoids. Here, the role of engineering isoprenoid precursor supply for lycopene production by C. glutamicum was characterized. Overexpression of dxs encoding the enzyme that catalyzes the first committed step of the MEP-pathway by chromosomal promoter exchange in a prophage-cured, genome-reduced C. glutamicum strain improved lycopene formation. Similarly, an increased IPP supply was achieved by chromosomal integration of two artificial operons comprising MEP pathway genes under the control of a constitutive promoter. Combined overexpression of dxs and the other six MEP pathways genes in C. glutamicum strain LYC3-MEP was not synergistic with respect to improving lycopene accumulation. Based on C. glutamicum strain LYC3-MEP, astaxanthin could be produced in the milligrams per gram cell dry weight range when the endogenous genes crtE, crtB, and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were coexpressed with the genes for lycopene cyclase and β-carotene hydroxylase from Pantoea ananatis and carotene C(4) oxygenase from Brevundimonas aurantiaca.
PMCID: PMC4138558  PMID: 25191655
carotenoid production; genome-reduced Corynebacterium glutamicum; MEP pathway; synthetic operons; astaxanthin
11.  Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex 
Journal of Experimental Botany  2011;63(5):1863-1871.
The cytosolic mevalonate (MVA) pathway in Hevea brasiliensis latex is the conventionally accepted pathway which provides isopentenyl diphosphate (IPP) for cis-polyisoprene (rubber) biosynthesis. However, the plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway may be an alternative source of IPP since its more recent discovery in plants. Quantitative RT-PCR (qRT-PCR) expression profiles of genes from both pathways in latex showed that subcellular compartmentalization of IPP for cis-polyisoprene synthesis is related to the degree of plastidic carotenoid synthesis. From this, the occurrence of two schemes of IPP partitioning and utilization within one species is proposed whereby the supply of IPP for cis-polyisoprene from the MEP pathway is related to carotenoid production in latex. Subsequently, a set of latex unique gene transcripts was sequenced and assembled and they were then mapped to IPP-requiring pathways. Up to eight such pathways, including cis-polyisoprene biosynthesis, were identified. Our findings on pre- and post-IPP metabolic routes form an important aspect of a pathway knowledge-driven approach to enhancing cis-polyisoprene biosynthesis in transgenic rubber trees.
PMCID: PMC3295384  PMID: 22162870
cis-polyisoprene; gene expression; Hevea brasiliensis; isopentenyl diphosphate; isoprenoids; latex pathways; rubber biosynthesis; transcriptome
12.  Lethal Mutations in the Isoprenoid Pathway of Salmonella enterica 
Journal of Bacteriology  2006;188(4):1444-1450.
Essential isoprenoid compounds are synthesized using the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway in many gram-negative bacteria, some gram-positive bacteria, some apicomplexan parasites, and plant chloroplasts. The alternative mevalonate pathway is found in archaea and eukaryotes, including cytosolic biosynthesis in plants. The existence of orthogonal essential pathways in eukaryotes and bacteria makes the MEP pathway an attractive target for the development of antimicrobial agents. A system is described for identifying mutations in the MEP pathway of Salmonella enterica serovar Typhimurium. Using this system, point mutations induced by diethyl sulfate were found in the all genes of the essential MEP pathway and also in genes involved in uptake of methylerythritol. Curiously, none of the MEP pathway genes could be identified in the same parent strain by transposon mutagenesis, despite extensive searches. The results complement the biochemical and bioinformatic approaches to the elucidation of the genes involved in the MEP pathway and also identify key residues for activity in the enzymes of the pathway.
PMCID: PMC1367239  PMID: 16452427
13.  Current Development in Isoprenoid Precursor Biosynthesis and Regulation 
Isoprenoids are one of the largest classes of natural products and all of them are constructed from two precursors, isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). For decades, the mevalonic acid (MVA) pathway was proposed to be the only IPP and DMAPP biosynthetic pathway. This review summarizes the newly discovered IPP and DMAPP production pathways since late 1990s, their distribution among different kingdoms, and their roles in secondary metabolite production. These new IPP and DMAPP production pathways include the methylerythritol phosphate (MEP) pathway, a modified MVA pathway, and the 5-Methylthioadenosine shunt pathway. Relative to the studies on the MVA pathway, information on the MEP pathway regulation is limited and the mechanistic details of several of its novel transformations remain to be addressed. Current status on both MEP pathway regulation and mechanistic issues are also presented.
PMCID: PMC4068245  PMID: 23891475
isoprenoids; MVA; MEP; methylthioadenosine; regulation; biosynthesis
14.  Cytidine derivatives as IspF inhibitors of Burkolderia pseudomallei 
Bioorganic & medicinal chemistry letters  2013;23(24):10.1016/j.bmcl.2013.09.101.
Published biological data suggest that the methyl erythritol phosphate (MEP) pathway, a non-mevalonate isoprenoid biosynthetic pathway, is essential for certain bacteria and other infectious disease organisms. One highly conserved enzyme in the MEP pathway is 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF). Fragment-bound complexes of IspF from Burkholderia pseudomallei were used to design and synthesize a series of molecules linking the cytidine moiety to different zinc pocket fragment binders. Testing by surface plasmon resonance (SPR) found one molecule in the series to possess binding affinity equal to that of cytidine diphosphate, despite lacking any metal-coordinating phosphate groups. Close inspection of the SPR data suggest different binding stoichiometries between IspF and test compounds. Crystallographic analysis shows important variations between the binding mode of one synthesized compound and the pose of the bound fragment from which it was designed. The binding modes of these molecules add to our structural knowledge base for IspF and suggest future refinements in this compound series.
PMCID: PMC3874807  PMID: 24157367
Fragment screening; MEP pathway; IspF; Non-mevalonate; Anti-infective; SPR
15.  Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering 
Engineering biosynthetic pathways in heterologous microbial host organisms offers an elegant approach to pathway elucidation via the incorporation of putative biosynthetic enzymes and characterization of resulting novel metabolites. Our previous work in Escherichia coli demonstrated the feasibility of a facile modular approach to engineering the production of labdane-related diterpene (20 carbon) natural products. However, yield was limited (<0.1 mg/L), presumably due to reliance on endogenous production of the isoprenoid precursors dimethylallyl diphosphate and isopentenyl diphosphate. Here, we report incorporation of either a heterologous mevalonate pathway (MEV) or enhancement of the endogenous methyl erythritol phosphate pathway (MEP) with our modular metabolic engineering system. With MEP pathway enhancement, it was found that pyruvate supplementation of rich media and simultaneous overexpression of three genes (idi, dxs, and dxr) resulted in the greatest increase in diterpene yield, indicating distributed metabolic control within this pathway. Incorporation of a heterologous MEV pathway in bioreactor grown cultures resulted in significantly higher yields than MEP pathway enhancement. We have established suitable growth conditions for diterpene production levels ranging from 10 to >100 mg/L of E. coli culture. These amounts are sufficient for nuclear magnetic resonance analyses, enabling characterization of enzymatic products and hence, pathway elucidation. Furthermore, these results represent an up to >1,000-fold improvement in diterpene production from our facile, modular platform, with MEP pathway enhancement offering a cost effective alternative with reasonable yield. Finally, we reiterate here that this modular approach is expandable and should be easily adaptable to the production of any terpenoid natural product.
Electronic supplementary material
The online version of this article (doi:10.1007/s00253-009-2219-x) contains supplementary material, which is available to authorized users.
PMCID: PMC2811251  PMID: 19777230
Terpenoid; Natural products biosynthesis; Metabolic engineering; Isoprenoid
16.  Characterization of acyl carrier protein and LytB in Babesia bovis apicoplast 
Graphical abstract
Investigation of type II fatty acid and isoprenoid biosyntheses in Babesia resulted in the identification of two major components within the apicoplastic lumen.
► This study illustrates a four membrane babesid apicoplast. ► Babesia bovis apicoplast resides adjacent to the nucleus. ► Acyl carrier protein and LytB are transcribed and translated in Babesia bovis. ► Isoprenoid biosynthesis likely exists in Babesia bovis. ► Type II fatty acid biosynthesis may not be present in Babesia bovis.
The apicoplast is a highly specialized organelle that mediates required functions in the growth and replication of apicomplexan parasites. Despite structural conservation of the apicoplast among different parasite genera and species, there are also critical differences in the metabolic requirements of different parasites and at different stages of the life cycle. To specifically compare apicoplast pathways between parasites that have both common and unique stages, we characterized the apicoplast in Babesia bovis, which has only intraerythrocytic asexual stages in the mammalian host, and compared it to that of Plasmodium falciparum, which has both asexual intraerythrocytic and hepatic stages. Specifically focusing on the type II fatty acid (FASII) and isoprenoid (MEP) biosynthesis pathways, we searched for pathway components and retention of active sites within the genome, localized key components [acyl carrier protein (ACP) and 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (LytB)] to the apicoplast, and demonstrated that the N-terminal bipartite signals of both proteins are required and sufficient for trafficking to the apicoplast lumen. Using specific pharmacologic inhibition, we demonstrated that MEP biosynthesis may be disrupted and its presence is required for intraerythrocytic growth of B. bovis asexual stages, consistent with the genomic pathway analysis and with its requirement in the asexual erythrocytic stages of P. falciparum. In contrast, FASII biosynthesis may or may not be present and specific drug targets did not have any inhibitory effect to B. bovis intraerythrocytic growth, which is consistent with the lack of requirement for P. falciparum intraerythrocytic growth. However, genomic analysis revealed the loss of FASII pathway components in B. bovis whereas the pathway is intact for P. falciparum but regulated to be expressed when needed (hepatic stages) and silent when not (intraerythrocytic stages). The results indicate specialized molding of apicoplast biosynthetic pathways to meet the requirements of individual apicomplexan parasites and their unique intracellular niches.
PMCID: PMC3278595  PMID: 22057350
Apicomplexan; Apicoplast; Babesia bovis; Plasmodium falciparum; FASII; MEP; ACP; LytB
17.  Indirect Stimulation of Human Vγ2Vδ2 T cells Through Alterations in Isoprenoid Metabolism1 
Human Vγ2Vδ2 T cells monitor isoprenoid metabolism by recognizing (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), an intermediate in the 2-C-methyl-D-erythritol-4-phosphate pathway used by microbes, and isopentenyl pyrophosphate (IPP), an intermediate in the mevalonate pathway used by humans. Aminobisphosphonates and alkylamines indirectly stimulate Vγ2Vδ2 cells by inhibiting farnesyl diphosphate synthase (FDPS) in the mevalonate pathway, thereby increasing IPP/ApppI that directly stimulate. In this study, we further characterize stimulation by these compounds, and define pathways used by new classes of compounds. Consistent with FDPS inhibition, stimulation of Vγ2Vδ2 cells by aminobisphosphonates and alkylamines was much more sensitive to statin inhibition than stimulation by prenyl pyrophosphates. However, the continuous presence of aminobisphosphonates was toxic for T cells, and blocked their proliferation. Aminobisphosphonate stimulation was rapid and prolonged, independent of known antigen presenting molecules, and resistant to fixation. New classes of stimulatory compounds–mevalonate, the alcohol of HMBPP, and alkenyl phosphonates–likely stimulate differently. Mevalonate, a rate-limiting metabolite, appears to enter cells to increase IPP levels whereas the alcohol of HMBPP and alkenyl phosphonates are directly recognized. The critical chemical feature of bisphosphonates is the amino moiety, because its loss switched aminobisphosphonates to direct antigens. Transfection of APC with siRNA downregulating FDPS rendered them stimulatory for Vγ2Vδ2 cells, and increased cellular IPP. siRNAs for isopentenyl diphosphate isomerase functioned similarly. Our results show that a variety of manipulations affecting isoprenoid metabolism lead to stimulation of Vγ2Vδ2 T cells and that pulsing aminobisphosphonates would be more effective for the ex vivo expansion of Vγ2Vδ2 T cells for adoptive cancer immunotherapy.
PMCID: PMC3326638  PMID: 22013129
gamma delta T cell; Vgamma2Vdelta2 T cells; human; bisphosphonate; antigen presentation; prenyl pyrophosphates; isopentenyl pyrophosphate; isoprenoid metabolism; farnesyl diphosphate synthase; siRNA
18.  Synthesis of chirally pure 1-deoxy-d-xylulose-5-phosphate : A substrate for IspC assay to determine M. tb inhibitor 
Chemical sciences journal  2013;4(2):22305.
1-Deoxy-D-xylulsose-5-phosphate (DXP) is a key intermediate in the non-mevalonate or methyl erythritol phosphate (MEP) pathway for the biosynthesis of isoprenoid, which are essential building blocks involved in the construction of pathogens growth. Since the homologous enzymes of this pathway are not present in vertebrates, including humans, the MEP pathway presents a viable source for antimicrobial drug targets. However, an insight into the features of the enzymes involved in this pathway has been plagued by lack of chirally pure substrates. Here in, we report an efficient synthesis of enantiomerically pure 1-deoxy-D-xylulose-5-phosphate from commercially available 1,2-O-isopropylidene-α-D-xylofuranose through Weinreb amide formation in shorter route.
PMCID: PMC4032121  PMID: 24860687
19.  Formal Synthesis of 4-diphosphocytidyl-2-C-methyl D-erythritol From D-(+)-Arabitol 
Tetrahedron  2012;68(43):8937-8941.
2-C-methyl-D-erythritol-4-phosphate (MEP) is a key chemical intermediate of the non-mevalonate pathway for isoprenoid biosynthesis employed by many pathogenic microbes. MEP is also the precursor for the synthesis of 4-diphosphocytidyl-2-C-methyl D-erythritol (CDP-ME), another key intermediate of the non-mevalonate pathway. As this pathway is non-existent in higher animals, including humans, it represents great opportunities for novel antimicrobial development. To facilitate the in-depth studies of this pathway, we reported here a formal synthesis of CDP-ME through a new synthesis of 2-C-Methyl-D-erythritol-4-phosphoric acid from D-(+)-arabitol.
PMCID: PMC3462025  PMID: 23049145
MEP; CDP-ME; selective phosphorylation; dioxanone; monophosphate
20.  Bile Stress Response in Listeria monocytogenes LO28: Adaptation, Cross-Protection, and Identification of Genetic Loci Involved in Bile Resistance 
Applied and Environmental Microbiology  2002;68(12):6005-6012.
Bile is one of many barriers that Listeria monocytogenes must overcome in the human gastrointestinal tract in order to infect and cause disease. We demonstrated that stationary-phase cultures of L. monocytogenes LO28 were able to tolerate concentrations of bovine, porcine, and human bile and bile acids well in excess of those encountered in vivo. Strain LO28 was relatively bile resistant compared with other clinical isolates of L. monocytogenes, as well as with Listeria innocua, Salmonella enterica serovar Typhimurium LT2, and Lactobacillus sakei. While exponential-phase L. monocytogenes LO28 cells were exquisitely sensitive to unconjugated bile acids, prior adaptation to sublethal levels of bile acids or heterologous stresses, such as acid, heat, salt, or sodium dodecyl sulfate (SDS), significantly enhanced bile resistance. This adaptive response was independent of protein synthesis, and in the cases of bile and SDS adaptation, occurred in seconds. In order to identify genetic loci involved in the bile tolerance phenotype of L. monocytogenes LO28, transposon (Tn917) and plasmid (pORI19) integration banks were screened for bile-sensitive mutants. The disrupted genes included a homologue of the capA locus required for capsule formation in Bacillus anthracis; a gene encoding the transcriptional regulator ZurR; a homologue of an Escherichia coli gene, lytB, involved in isoprenoid biosynthesis; a gene encoding a homologue of the Bacillus subtilis membrane protein YxiO; and a gene encoding an amino acid transporter with a putative role in pH homeostasis, gadE. Interestingly, all of the identified loci play putative roles in maintenance of the cell envelope or in stress responses.
PMCID: PMC134417  PMID: 12450822
21.  Inhibition Studies on Enzymes Involved in Isoprenoid Biosynthesis: Focus on Two Potential Drug Targets: DXR and IDI-2 Enzymes 
Current enzyme inhibition  2011;7(2):10.2174/157340811796575317.
Isoprenoid compounds constitute an immensely diverse group of acyclic, monocyclic and polycyclic compounds that play important roles in all living organisms. Despite the diversity of their structures, this plethora of natural products arises from only two 5-carbon precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). This review will discuss the enzymes in the mevalonate (MVA) and methylerythritol phosphate (MEP) biosynthetic pathways leading to IPP and DMAPP with a particular focus on MEP synthase (DXR) and IPP isomerase (IDI), which are potential targets for the development of antibiotic compounds. DXR is the second enzyme in the MEP pathway and the only one for which inhibitors with antimicrobial activity at pharmaceutically relevant concentrations are known. All of the published DXR inhibitors are fosmidomycin analogues, except for a few bisphosphonates with moderate inhibitory activity. These far, there are no other candidates that target DXR. IDI was first identified and characterised over 40 years ago (IDI-1) and a second convergently evolved isoform (IDI-2) was discovered in 2001. IDI-1 is a metalloprotein found in Eukarya and many species of Bacteria. Its mechanism has been extensively studied. In contrast, IDI-2 requires reduced flavin mononucleotide as a cofactor. The mechanism of action for IDI-2 is less well defined. This review will describe how lead inhibitors are being improved by structure-based drug design and enzymatic assays against DXR to lead to new drug families and how mechanistic probes are being used to address questions about the mechanisms of the isomerases.
PMCID: PMC3856697  PMID: 24339799
DXR; IDI; isomerase; isopentenyl; isoprenoid; MEP; mevalonate; MVA; reductoisomerase
22.  Nasopharyngeal Colonization and Invasive Disease Are Enhanced by the Cell Wall Hydrolases LytB and LytC of Streptococcus pneumoniae 
PLoS ONE  2011;6(8):e23626.
Streptococcus pneumoniae is a common colonizer of the human nasopharynx and one of the major pathogens causing invasive disease worldwide. Dissection of the molecular pathways responsible for colonization, invasion, and evasion of the immune system will provide new targets for antimicrobial or vaccine therapies for this common pathogen.
Methodology/Principal Findings
We have constructed mutants lacking the pneumococcal cell wall hydrolases (CWHs) LytB and LytC to investigate the role of these proteins in different phases of the pneumococcal pathogenesis. Our results show that LytB and LytC are involved in the attachment of S. pneumoniae to human nasopharyngeal cells both in vitro and in vivo. The interaction of both proteins with phagocytic cells demonstrated that LytB and LytC act in concert avoiding pneumococcal phagocytosis mediated by neutrophils and alveolar macrophages. Furthermore, C3b deposition was increased on the lytC mutant confirming that LytC is involved in complement evasion. As a result, the lytC mutant showed a reduced ability to successfully cause pneumococcal pneumonia and sepsis. Bacterial mutants lacking both LytB and LytC showed a dramatically impaired attachment to nasopharyngeal cells as well as a marked degree of attenuation in a mouse model of colonization. In addition, C3b deposition and phagocytosis was more efficient for the double lytB lytC mutant and its virulence was greatly impaired in both systemic and pulmonary models of infection.
This study confirms that the CWHs LytB and LytC of S. pneumoniae are essential virulence factors involved in the colonization of the nasopharynx and in the progress of invasive disease by avoiding host immunity.
PMCID: PMC3160309  PMID: 21886805
23.  Deciphering the intracellular metabolism of Listeria monocytogenes by mutant screening and modelling 
BMC Genomics  2010;11:573.
The human pathogen Listeria monocytogenes resides and proliferates within the cytoplasm of epithelial cells. While the virulence factors essentially contributing to this step of the infection cycle are well characterized, the set of listerial genes contributing to intracellular replication remains to be defined on a genome-wide level.
A comprehensive library of L. monocytogenes strain EGD knockout mutants was constructed upon insertion-duplication mutagenesis, and 1491 mutants were tested for their phenotypes in rich medium and in a Caco-2 cell culture assay. Following sequencing of the plasmid insertion site, 141 different genes required for invasion of and replication in Caco-2 cells were identified. Ten in-frame deletion mutants were constructed that confirmed the data. The genes with known functions are mainly involved in cellular processes including transport, in the intermediary metabolism of sugars, nucleotides and lipids, and in information pathways such as regulatory functions. No function could be ascribed to 18 genes, and a counterpart of eight genes is missing in the apathogenic species L. innocua. Mice infection studies revealed the in vivo requirement of IspE (Lmo0190) involved in mevalonate synthesis, and of the novel ABC transporter Lmo0135-0137 associated with cysteine transport. Based on the data of this genome-scale screening, an extreme pathway and elementary mode analysis was applied that demonstrates the critical role of glycerol and purine metabolism, of fucose utilization, and of the synthesis of glutathione, aspartate semialdehyde, serine and branched chain amino acids during intracellular replication of L. monocytogenes.
The combination of a genetic screening and a modelling approach revealed that a series of transporters help L. monocytogenes to overcome a putative lack of nutrients within cells, and that a high metabolic flexibility contributes to the intracellular replication of this pathogen.
PMCID: PMC3091722  PMID: 20955543
24.  Reconstruction and Evaluation of the Synthetic Bacterial MEP Pathway in Saccharomyces cerevisiae 
PLoS ONE  2012;7(12):e52498.
Isoprenoids, which are a large group of natural and chemical compounds with a variety of applications as e.g. fragrances, pharmaceuticals and potential biofuels, are produced via two different metabolic pathways, the mevalonate (MVA) pathway and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Here, we attempted to replace the endogenous MVA pathway in Saccharomyces cerevisiae by a synthetic bacterial MEP pathway integrated into the genome to benefit from its superior properties in terms of energy consumption and productivity at defined growth conditions. It was shown that the growth of a MVA pathway deficient S. cerevisiae strain could not be restored by the heterologous MEP pathway even when accompanied by the co-expression of genes erpA, hISCA1 and CpIscA involved in the Fe-S trafficking routes leading to maturation of IspG and IspH and E. coli genes fldA and fpr encoding flavodoxin and flavodoxin reductase believed to be responsible for electron transfer to IspG and IspH.
PMCID: PMC3532213  PMID: 23285068
25.  Functional Expression of an Orchid Fragrance Gene in Lactococcus lactis 
Vanda Mimi Palmer (VMP), an orchid hybrid of Vanda tesselata and Vanda Tan Chay Yan is a highly scented tropical orchid which blooms all year round. Previous studies revealed that VMP produces a variety of isoprenoid volatiles during daylight. Isoprenoids are well known to contribute significantly to the scent of most fragrant plants. They are a large group of secondary metabolites which may possess valuable characteristics such as flavor, fragrance and toxicity and are produced via two pathways, the mevalonate (MVA) pathway or/and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. In this study, a sesquiterpene synthase gene denoted VMPSTS, previously isolated from a floral cDNA library of VMP was cloned and expressed in Lactococcus lactis to characterize the functionality of the protein. L. lactis, a food grade bacterium which utilizes the mevalonate pathway for isoprenoid production was found to be a suitable host for the characterization of plant terpene synthases. Through recombinant expression of VMPSTS, it was revealed that VMPSTS produced multiple sesquiterpenes and germacrene D dominates its profile.
PMCID: PMC3291978  PMID: 22408409
Vanda Mimi Palmer; Lactococcus lactis; isoprenoids; sesquiterpene synthase; orchid; fragrance

Results 1-25 (414426)