PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1105156)

Clipboard (0)
None

Related Articles

1.  Class VIII Myosins Are Required for Plasmodesmatal Localization of a Closterovirus Hsp70 Homolog▿  
Journal of Virology  2008;82(6):2836-2843.
The Hsp70 homolog (Hsp70h) of Beet yellows virus (BYV) functions in virion assembly and cell-to-cell movement and is autonomously targeted to plasmodesmata in association with the actomyosin motility system (A. I. Prokhnevsky, V. V. Peremyslov, and V. V. Dolja, J. Virol. 79:14421-14428, 2005). Myosins are a diverse category of molecular motors that possess a motor domain and a tail domain involved in cargo binding. Plants have two classes of myosins, VIII and XI, whose specific functions are poorly understood. We used dominant negative inhibition to identify myosins required for Hsp70h localization to plasmodesmata. Six full-length myosin cDNAs from the BYV host plant Nicotiana benthamiana were sequenced and shown to encode apparent orthologs of the Arabidopsis thaliana myosins VIII-1, VIII-2, VIII-B, XI-2, XI-F, and XI-K. We found that the ectopic expression of the tail domains of each of the class VIII, but not the class XI, myosins inhibited the plasmodesmatal localization of Hsp70h. In contrast, the overexpression of the motor domains or the entire molecules of the class VIII myosins did not affect Hsp70h targeting. Further mapping revealed that the minimal cargo-binding part of the myosin VIII tails was both essential and sufficient for the inhibition of the proper Hsp70h localization. Interestingly, plasmodesmatal localization of the Tobacco mosaic virus movement protein and Arabidopsis protein RGP2 was not affected by myosin VIII tail overexpression. Collectively, our data implicate class VIII myosins in protein delivery to plasmodesmata and suggest that more than one mechanism of such delivery exist in plants.
doi:10.1128/JVI.02246-07
PMCID: PMC2258991  PMID: 18199648
2.  Distribution, phosphorylation, and activities of Hsp25 in heat-stressed H9c2 myoblasts: a functional link to cytoprotection 
Cell Stress & Chaperones  2002;7(2):146-155.
The behavior of the endogenous heat shock protein 25 (Hsp25) in heat-stressed rat H9c2 myoblasts was studied. After mild or severe heating, this protein became less extractable with Triton X-100 and displayed characteristic immunofluorescence patterns, namely (1) granules in the nucleus, and (2) association with F-actin bundles in the cytoplasm. The intranuclear granulation of Hsp25 and its association with F-actin were sensitive to drugs affecting Hsp25 phosphorylation (cantharidin, sodium orthovanadate, SB203580, SB202190). Isoform analysis of Hsp25 translocated to the nucleus-free cytoskeletal fraction revealed only mono- and biphosphorylated Hsp25 and no unphosphorylated Hsp25. Transfected luciferase with initial localization in the nucleosol became colocalized with the Hsp25-containing granules after a heat shock treatment that denatured the enzyme in the cells. The association of Hsp25 with actin filaments after a mild heat stress conferred protection from subsequent F-actin–damaging treatments with cytochalasins (D and B) or severe heat stress. We hypothesize that (1) the binding of heat-denatured nucleosolic proteins to the Hsp25 contained in specific granular structures may serve for the subsequent chaperoning or degradation of the bound proteins, and (2) the actin cytoskeleton is stabilized by the direct targeting of phosphorylated Hsp25 to microfilament bundles.
PMCID: PMC514812  PMID: 12380682
3.  An interdomain sector mediating allostery in Hsp70 molecular chaperones 
The Hsp70 family of molecular chaperones provides a well defined and experimentally powerful model system for understanding allosteric coupling between different protein domains.New extensions to the statistical coupling analysis (SCA) method permit identification of a group of co-evolving amino-acid positions—a sector—in the Hsp70 that is associated with allosteric function.Literature-based and new experimental studies support the notion that the protein sector identified through SCA underlies the allosteric mechanism of Hsp70.This work extends the concept of protein sectors by showing that two non-homologous protein domains can share a single sector when the underlying biological function is defined by the coupled activity of the two domains.
Allostery is a biologically critical property by which distantly positioned functional surfaces on proteins functionally interact. This property remains difficult to elucidate at a mechanistic level (Smock and Gierasch, 2009) because long-range coupling within proteins arises from the cooperative action of groups of amino acids. As a case study, consider the Hsp70 molecular chaperones, a large and diverse family of two-domain allosteric proteins required for cellular viability in nearly every organism (Figure 1) (Mayer and Bukau, 2005). In the ADP-bound state, the two domains act independently, the C-terminal substrate-binding domain displays a stable configuration in which the so-called ‘lid' region is docked against the β-sandwich subdomain, and substrates bind with relatively high affinity (Figure 1A) (Moro et al, 2003; Swain et al, 2007; Bertelsen et al, 2009). Exchange of ADP for ATP in the N-terminal nucleotide-binding domain causes significant local and propagated conformational change, formation of an interface with the substrate-binding domain, opening of the lid subdomain, and a decrease in the binding affinity for substrates (Figure 1B) (Rist et al, 2006; Swain et al, 2007). Upon ATP hydrolysis by the nucleotide-binding domain, Hsp70 is returned to the ADP-bound configuration suitable for another round of substrate binding and release. This process of cyclical substrate binding and release underlies all biological functions of Hsp70 proteins.
What is the structural basis for the long-range functional coupling within Hsp70? When allostery is a conserved property of a protein family, one approach to this problem is to analyze the correlated evolution of amino acids in the family—the expected statistical signature of cooperative action of protein residues (Lockless and Ranganathan, 1999; Kass and Horovitz, 2002; Suel et al, 2003). Previous work using an implementation of this concept (the statistical coupling analysis or SCA) showed that proteins contain sparse networks of co-evolving amino acids termed ‘sectors' that link protein active sites with distinct functional surfaces through the protein core (Halabi et al, 2009). This architecture is consistent with known allosteric mechanisms in protein domains (Suel et al, 2003; Halabi et al, 2009).
However, the principle of co-evolution of protein residues need not be limited to the study of individual protein domains. Indeed, conserved allosteric coupling between two (or more) non-homologous domains implies the existence of shared sectors that span functional sites on different domains. Here, we test this concept by extending the SCA method to consider the allosteric mechanism acting between the two domains of the Hsp70 proteins. Hsp70-like proteins include not only the allosteric Hsp70s, but also the Hsp110s—homologs that contain both domains and are regarded as structural models for Hsp70s, but that do not exhibit allosteric coupling. In this study, we take advantage of the functional divergence between the Hsp70s and Hsp110s to reveal patterns of co-evolution between amino acids that are specifically associated with the allosteric mechanism.
To identify the allosteric sector in Hsp70, we used SCA to compute a weighted correlation matrix, C̃, that describes the co-evolution of every pair of amino-acids positions in a sequence alignment of 926 members of the Hsp70/110 family. We then applied a mathematical method known as singular value decomposition to simultaneously evaluate the pattern of divergence between sequences and the pattern of co-evolution between amino-acid positions. The basic idea is that if the pattern of sequence divergence is able to classify members of a protein family into distinct functional subgroups, then we can rigorously identify the group of co-evolving residues that correspond to the underlying mechanism. Figure 2A shows the principal axis of sequence variation in the Hsp70/110 family, showing a clear separation of the allosteric (Hsp70) and non-allosteric (Hsp110) members of this family. The corresponding axis of co-evolution between amino-acid positions reveals a subset of Hsp70/110 positions (∼20%, 115 residues out of 605 total) that underlie the divergence of Hsp70 and Hsp110 proteins (Figure 2B). These positions derive roughly equally from the nucleotide-binding domain (in blue, 56 positions) and the substrate-binding domain (in green, 59 positions) and are more conserved within the Hsp70 sub-family. These results define a protein sector that is predicted to underlie the allosteric mechanism of Hsp70.
What is the structural arrangement of the putative allosteric sector within the Hsp70 protein? Consistent with a function in allosteric coupling, the 115 sector residues form a physically contiguous network of atoms, linking the ATP-binding site on the nucleotide-binding domain to the substrate recognition site on the substrate-binding domain through the interdomain interface (Figure 2C). The physical connectivity is remarkable given that only ∼20% of overall Hsp70 residues is involved (Figure 2B). Thus, functionally coupled but non-homologous protein domains can share a single sector of co-evolving residues that connects their respective functional sites.
We compared the Hsp70 sector mapping with the large body of biochemical studies that have been carried out in this family. We find strong experimental support for the involvement of sector positions in the Hsp70 allosteric mechanism in several regions: (1) within the ATP-binding site, (2) at the interface linking the two domains, and (3) within the β-sandwich core of the substrate-binding domain. The sector analysis also makes predictions about the involvement of some previously untested residues; we show that mutations at two such sites in fact reduce the allosteric coupling within Hsp70 in vitro and fail to complement a DnaK knockout strain of E. coli in a stress-response assay. Taken together, we conclude that sector positions are associated with the allosteric mechanism of Hsp70.
This work also adds a new finding with regard to the concept of protein sectors. Previous work showed that multiple quasi-independent sectors, each of which contributes a different aspect of function, are possible within a single protein domain (Halabi et al, 2009). This work shows that a single sector can also span two different protein domains when biological function (here, nucleotide-dependent substrate binding) arises from their coupled action. This result emphasizes the point that sectors are units of functional selection and are not obviously related to traditional hierarchies of structural organization in proteins. An interesting possibility is that evolution of allostery between proteins might evolve through the joining of protein sectors, a conjecture that can be tested in future work.
Allosteric coupling between protein domains is fundamental to many cellular processes. For example, Hsp70 molecular chaperones use ATP binding by their actin-like N-terminal ATPase domain to control substrate interactions in their C-terminal substrate-binding domain, a reaction that is critical for protein folding in cells. Here, we generalize the statistical coupling analysis to simultaneously evaluate co-evolution between protein residues and functional divergence between sequences in protein sub-families. Applying this method in the Hsp70/110 protein family, we identify a sparse but structurally contiguous group of co-evolving residues called a ‘sector', which is an attribute of the allosteric Hsp70 sub-family that links the functional sites of the two domains across a specific interdomain interface. Mutagenesis of Escherichia coli DnaK supports the conclusion that this interdomain sector underlies the allosteric coupling in this protein family. The identification of the Hsp70 sector provides a basis for further experiments to understand the mechanism of allostery and introduces the idea that cooperativity between interacting proteins or protein domains can be mediated by shared sectors.
doi:10.1038/msb.2010.65
PMCID: PMC2964120  PMID: 20865007
allostery; chaperone; co-evolution; SCA; sector
4.  The role of Hsp27 and actin in the regulation of movement in human cancer cells responding to heat shock 
Cell Stress & Chaperones  2009;14(5):445-457.
Human heat shock 27-kDa protein 1 (HSPB1)/heat shock protein (Hsp) 27 is a small heat shock protein which is thought to have several roles within the cell. One of these roles includes regulating actin filament dynamics in cell movement, since Hsp27 has previously been found to inhibit actin polymerization in vitro. In this study, the role of Hsp27 in regulating actin filament dynamics is further investigated. Hsp27 protein levels were reduced using siRNA in SW480 cells, a human colon cancer cell line. An in vitro wound closure assay showed that cells with knocked down Hsp27 levels were unable to close wounds, indicating that this protein is involved in regulating cell motility. Immunoprecipitation pull down assays were done, to observe if and when Hsp27 and actin are in the same complex within the cell, before and after heat shock. At all time points tested, Hsp27 and actin were present in the same cell lysate fraction. Lastly, indirect immunostaining was done before and after heat shock to evaluate Hsp27 and actin interaction in cells. Hsp27 and actin showed colocalization before heat shock, little association 3 h after heat shock, and increased association 24 h after heat shock. Cytoprotection was observed as early as 3 h after heat shock, yet cells were still able to move. These results show that Hsp27 and actin are in the same complex in cells and that Hsp27 is important for cell motility.
Electronic supplementary material
The online version of this article (doi:10.1007/s12192-008-0098-1) contains supplementary material, which is available to authorized users.
doi:10.1007/s12192-008-0098-1
PMCID: PMC2728279  PMID: 19224398
Hsp27; Actin; Cell motility; Heat shock; Cancer
5.  Contribution of Host Intracellular Transport Machineries to Intercellular Movement of Turnip Mosaic Virus 
PLoS Pathogens  2013;9(10):e1003683.
The contribution of different host cell transport systems in the intercellular movement of turnip mosaic virus (TuMV) was investigated. To discriminate between primary infections and secondary infections associated with the virus intercellular movement, a gene cassette expressing GFP-HDEL was inserted adjacent to a TuMV infectious cassette expressing 6K2:mCherry, both within the T-DNA borders of the binary vector pCambia. In this system, both gene cassettes were delivered to the same cell by a single binary vector and primary infection foci emitted green and red fluorescence while secondarily infected cells emitted only red fluorescence. Intercellular movement was measured at 72 hours post infiltration and was estimated to proceed at an average rate of one cell being infected every three hours over an observation period of 17 hours. To determine if the secretory pathway were important for TuMV intercellular movement, chemical and protein inhibitors that blocked both early and late secretory pathways were used. Treatment with Brefeldin A or Concanamycin A or expression of ARF1 or RAB-E1d dominant negative mutants, all of which inhibit pre- or post-Golgi transport, reduced intercellular movement by the virus. These treatments, however, did not inhibit virus replication in primary infected cells. Pharmacological interference assays using Tyrphostin A23 or Wortmannin showed that endocytosis was not important for TuMV intercellular movement. Lack of co-localization by endocytosed FM4-64 and Ara7 (AtRabF2b) with TuMV-induced 6K2-tagged vesicles further supported this conclusion. Microfilament depolymerizing drugs and silencing expression of myosin XI-2 gene, but not myosin VIII genes, also inhibited TuMV intercellular movement. Expression of dominant negative myosin mutants confirmed the role played by myosin XI-2 as well as by myosin XI-K in TuMV intercellular movement. Using this dual gene cassette expression system and transport inhibitors, components of the secretory and actomyosin machinery were shown to be important for TuMV intercellular spread.
Author Summary
Plant viruses move from the initially infected cell to neighboring cells during local movement and then over long distances through vascular tissue to establish a systemic infection in the plant. Virus intercellular transport requires viral and host factors to move viral RNA-protein complexes through plasmodesmata (PDs). Virus intercellular movement is normally assessed by assays that cannot always differentiate between reduced viral RNA replication and intercellular movement. By using a dual cassette of genes encoding fluorescent proteins that can differentiate between primary infected cells and cells infected after intercellular transport, we provide evidence that turnip mosaic virus (TuMV) needs a functional secretory pathway where pre- and post-Golgi trafficking and the actomyosin network are important for its movement. Interestingly, disruption of these host transport machineries had no impact on TuMV accumulation in initially infected cells. These results support the idea that virus replication activities can be influenced separately from those involved in other virus activities such as movement, although aspects of both are likely coordinated.
doi:10.1371/journal.ppat.1003683
PMCID: PMC3789768  PMID: 24098128
6.  The maximal cytoprotective function of the heat shock protein 27 is dependent on heat shock protein 70 
Biochimica et biophysica acta  2010;1813(1):129-135.
Endogenous heat shock proteins (HSPs) 70 and 25/27 are induced in renal cells by injury from energy depletion. Transfected over-expression of HSPs 70 or 27 (human analogue of HSP25), provide protection against renal cell injury from ATP deprivation. This study examines whether over-expressed HSP27 depends on induction of endogenous HSPs, in particular HSP70, to afford protection against cell injury. LLC-PK1 cells transfected with HSP27 (27OE cells) were injured by ATP depletion for 2 h and recovered for 4 h in the presence of HSF decoy, HSP70 specific siRNA (siRNA-70) and their respective controls. Injury in the presence of HSF decoy, a synthetic oligonucleotide identical to the heat shock element, the nuclear binding site of HSF, decreased HSP70 induction by 80% without affecting the over-expression of transfected HSP27. The HSP70 stress response was completely ablated in the presence of siRNA-70. Protection against injury, provided by over-expression of HSP27, was reduced by treatment with HSF decoy and abolished by treatment with siRNA-70. Immunoprecipitation studies demonstrated association of HSP27 with actin that was not affected by either treatment with HSF decoy or siRNA. Therefore, HSP27 is dependent on HSP70 to provide its maximal cytoprotective effect, but not for its interaction with actin. This study suggests that, while it has specific action on the cytoskeleton, HSP 25/27 must have coordinated activity with other HSP classes, especially HSP70, to provide the full extent of resistance to injury from energy depletion.
doi:10.1016/j.bbamcr.2010.08.012
PMCID: PMC3014454  PMID: 20934464
Heat shock protein; Acute kidney injury; Cytoskeletal stability; Gene silencing
7.  Interaction between Long-Distance Transport Factor and Hsp70-Related Movement Protein of Beet Yellows Virus 
Journal of Virology  2002;76(21):11003-11011.
Systemic spread of viruses in plants involves local movement from cell to cell and long-distance transport through the vascular system. The cell-to-cell movement of the Beet yellows virus (BYV) is mediated by a movement protein that is an Hsp70 homolog (Hsp70h). This protein is required for the assembly of movement-competent virions that incorporate Hsp70h. By using the yeast two-hybrid system, in vitro coimmunoprecipitation, and in planta coexpression approaches, we show here that the Hsp70h interacts with a 20-kDa BYV protein (p20). We further demonstrate that p20 is associated with the virions presumably via binding to Hsp70h. Genetic and immunochemical analyses indicate that p20 is dispensable for assembly and cell-to-cell movement of BYV but is required for the long-distance transport of virus through the phloem. These results reveal a novel activity for the Hsp70h that provides a molecular link between the local and systemic spread of a plant virus by docking a long-distance transport factor to virions.
doi:10.1128/JVI.76.21.11003-11011.2002
PMCID: PMC136651  PMID: 12368343
8.  Heat Shock Protein 70 Inhibits the Activity of Influenza A Virus Ribonucleoprotein and Blocks the Replication of Virus In Vitro and In Vivo 
PLoS ONE  2011;6(2):e16546.
Background
Heat shock protein 70 (Hsp70) was identified as a cellular interaction partner of the influenza virus ribonucleoprotein (RNP) complex. The biological significance of the interaction between Hsp70 and RNP has not been fully investigated.
Principal Findings
Here we demonstrated that Hsp70 was involved in the regulation of influenza A viral transcription and replication. It was found that Hsp70 was associated with viral RNP by directly interacting with the PB1 and PB2 subunits, and the ATPase domain of Hsp70 was required for the association. Immunofluorescence analysis showed that Hsp70 was translocated from the cytoplasm into the nucleus in infected cells. Then we found that Hsp70 negatively regulated the expression of viral proteins in infected cells. Real-time PCR analysis revealed that the transcription and replication of all eight viral segments were significantly reduced in Hsp70 overexpressed cells and greatly increased as Hsp70 was knocked down by RNA interference. Luciferase assay showed that overexpression of Hsp70 could inhibit the viral RNP activity on both vRNA and cRNA promoters. Biochemical analysis demonstrated that Hsp70 interfered with the integrity of RNP. Furthermore, delivered Hsp70 could inhibit the replication of influenza A virus in mice.
Significance
Our study indicated that Hsp70 interacted with PB1 and PB2 of RNP and could interfere with the integrity of RNP and block the virus replication in vitro and in vivo possibly through disrupting the binding of viral polymerase with viral RNA.
doi:10.1371/journal.pone.0016546
PMCID: PMC3044721  PMID: 21390211
9.  Heat Shock protein 90: Role in Enterovirus 71 Entry and Assembly and Potential Target for Therapy 
PLoS ONE  2013;8(10):e77133.
Although several factors participating in enterovirus 71 (EV71) entry and replication had been reported, the precise mechanisms associated with these events are far from clear. In the present study, we showed that heat shock protein 90 (HSP90) is a key element associated with EV71 entry and replication in a human rhabdomyosarcoma of RD cells. Inhibition of HSP90 by pretreating host cells with HSP90β siRNA or blocking HSP90 with a HSP90-specific antibody or geldanamycin (GA), a specific inhibitor of HSP90, as well as recombinant HSP90β resulted in inhibiting viral entry and subsequent viral replication. Co-immunprecipitation of EV71 with recombinant HSP90β and colocalization of EV71-HSP90 in the cells demonstrated that HSP90 was physically associated with EV71 particles. HSP90 seems to mediate EV71 replication by preventing proteosomal degradation of the newly synthesized capsid proteins, but does not facilitate viral gene expression at transcriptional level. This was evident by post-treatment of host cells with GA, which did not affect the expression of viral transcripts but accelerated the degradation of viral capsid proteins and interfered with the formation of assembled virions. In vivo studies were carried out using human SCARB2-transgenic mice to evaluate the protection conferred by HSP90 inhibitor, 17-allyamino-17-demethoxygeldanamycin (17-AAG), an analog of geldanamycin, that elicited similar activity but with less toxicity. The results showed that the administration of 17-AAG twice conferred the resistance to hSCARB2 mice challenged with C2, C4, and B4 genotypes of EV71. Our data supports HSP90 plays an important role in EV71 infection. Targeting of HSP90 with clinically available drugs might provide a feasible therapeutic approach to treat EV71 infection.
doi:10.1371/journal.pone.0077133
PMCID: PMC3788750  PMID: 24098578
10.  The Heat Shock Protein Inhibitor Quercetin Attenuates Hepatitis C Virus Production 
Hepatology (Baltimore, Md.)  2009;50(6):10.1002/hep.23232.
The hepatitis C viral (HCV) genome is translated through an internal ribosome entry site (IRES) as a single polyprotein precursor that is subsequently cleaved into individual mature viral proteins. Non-structural protein 5A (NS5A) is one of these proteins that has been implicated in regulation of viral genome replication, translation from the viral IRES and viral packaging. We sought to identify cellular proteins that interact with NS5A and determine whether these interactions may play a role in viral production. Mass spectrometric analysis of coimmunoprecipitated NS5A complexes from cell extracts identified heat shock proteins (HSPs) 40 and 70.Weconfirmed anNS5A/HSPinteraction by confocal microscopy demonstrating colocalization of NS5A with HSP40 and with HSP70. Western analysis of coimmunoprecipitated NS5A complexes further confirmed interaction of HSP40 and HSP70 with NS5A.Atransient transfection, luciferase-based, tissue culture IRES assay demonstrated NS5A augmentation of HCV IRES-mediated translation, and small interfering RNA (siRNA)-mediated knockdown of HSP70 reduced this augmentation. Treatment with an inhibitor of HSP synthesis, Quercetin, markedly reduced baseline IRES activity and its augmentation by NS5A. HSP70 knockdown also modestly reduced viral protein accumulation, whereas HSP40 and HSP70 knockdown both reduced infectious viral particle production in an HCV cell culture system using the J6/JFH virus fused to the Renilla luciferase reporter. Treatment with Quercetin reduced infectious particle production at nontoxic concentrations. The marked inhibition of virus production by Quercetin may partially be related to reduction of HSP40 and HSP70 and their potential involvement in IRES translation, as well as viral morphogenesis or secretion.
Conclusion
Quercetin may allow for dissection of the viral life cycle and has potential therapeutic use to reduce virus production with low associated toxicity.
doi:10.1002/hep.23232
PMCID: PMC3846025  PMID: 19839005
11.  Hsp27 as a Negative Regulator of Cytochrome c Release 
Molecular and Cellular Biology  2002;22(3):816-834.
We previously showed that Hsp27 protects against apoptosis through its interaction with cytosolic cytochrome c. We have revisited this protective activity in murine cell lines expressing different levels of Hsp27. We report that Hsp27 also interferes, in a manner dependent on level of expression, with the release of cytochrome c from mitochondria. Moreover, a decreased level of endogenous Hsp27, which sensitized HeLa cells to apoptosis, reduced the delay required for cytochrome c release and procaspase 3 activation. The molecular mechanism regulating this function of Hsp27 is unknown. In our cell systems, Hsp27 is mainly cytosolic and only a small fraction of this protein colocalized with mitochondria. Moreover, we show that only a very small fraction of cytochrome c interacts with Hsp27, hence excluding a role of this interaction in the retention of cytochrome c in mitochondria. We also report that Bid intracellular relocalization was altered by changes in Hsp27 level of expression, suggesting that Hsp27 interferes with apoptotic signals upstream of mitochondria. We therefore investigated if the ability of Hsp27 to act as an expression-dependent modulator of F-actin microfilaments integrity was linked to the retention of cytochrome c in mitochondria. We show here that the F-actin depolymerizing agent cytochalasin D rapidly induced the release of cytochrome c from mitochondria and caspase activation. This phenomenon was delayed in cells pretreated with the F-actin stabilizer phalloidin and in cells expressing a high level of Hsp27. This suggests the existence of an apoptotic signaling pathway linking cytoskeleton damages to mitochondria. This pathway, which induces Bid intracellular redistribution, is negatively regulated by the ability of Hsp27 to protect F-actin network integrity. However, this upstream pathway is probably not the only one to be regulated by Hsp27 since, in staurosporine-treated cells, phalloidin only partially inhibited cytochrome c release and caspase activation. Moreover, in etoposide-treated cells, Hsp27 still delayed the release of cytochrome c from mitochondria and Bid intracellular redistribution in conditions where F-actin was not altered.
doi:10.1128/MCB.22.3.816-834.2002
PMCID: PMC133538  PMID: 11784858
12.  Heat Shock Protein 90 Positively Regulates Chikungunya Virus Replication by Stabilizing Viral Non-Structural Protein nsP2 during Infection 
PLoS ONE  2014;9(6):e100531.
Background
The high morbidity and socio-economic loss associated with the recent massive global outbreak of Chikungunya virus (CHIKV) emphasize the need to understand the biology of the virus for developing effective antiviral therapies.
Methods and Findings
In this study, an attempt was made to understand the molecular mechanism involved in Heat shock protein 90 (Hsp90) mediated regulation of CHIKV infection in mammalian cells using CHIKV prototype strain (S 27) and Indian outbreak strain of 2006 (DRDE-06). Our results showed that Hsp90 is required at a very early stage of viral replication and Hsp90 inhibitor Geldanamycin (GA) can abrogate new virus particle formation more effectively in the case of S 27 than that of DRDE-06. Further analysis revealed that CHIKV nsP2 protein level is specifically reduced by GA treatment as well as HSP90-siRNA transfection; however, viral RNA remains unaltered. Immunoprecipitation analysis showed that nsP2 interacts with Hsp90 during infection; however this interaction is reduced in the presence of GA. In addition, our analysis on Hsp90 associated PI3K/Akt/mTOR signaling pathway demonstrated that CHIKV infection stabilizes Raf1 and activates Hsp90 client protein Akt, which in turn phosphorylates mTOR. Subsequently, this phosphorylation leads to the activation of two important downstream effectors, S6K and 4EBP1, which may facilitate translation of viral as well as cellular mRNAs. Hence, the data suggests that CHIKV infection is regulated by Hsp90 associated Akt phosphorylation and DRDE-06 is more efficient than S 27 in enhancing the activation of host signaling molecules for its efficient replication and virus production.
Conclusion
Hsp90 positively regulates Chikungunya virus replication by stabilizing CHIKV-nsP2 through its interaction during infection. The study highlights the possible molecular mechanism of GA mediated inhibition of CHIKV replication and differential effect of this drug on S 27 and DRDE-06, which will be informative for developing effective anti-CHIKV therapies in future.
doi:10.1371/journal.pone.0100531
PMCID: PMC4069056  PMID: 24959709
13.  Modulation of adjuvant arthritis in Lewis rats by recombinant vaccinia virus expressing the human 60-kilodalton heat shock protein. 
Infection and Immunity  1993;61(10):4225-4231.
The immune response to the mycobacterial 65-kDa heat shock protein (hsp65) is considered an important event in the induction of adjuvant arthritis (AA) in rats; this induction probably occurs through a molecular mimicry mechanism involving cross-reactivity against the rat homolog hsp60. To analyze the role of mammalian molecule hsp60 in arthritis, we generated a recombinant vaccinia virus (hsp60-VV) carrying the human hsp60 gene inserted into the thymidine kinase locus under the control of the 7.5k vaccinia virus promoter. Human hsp60 is almost identical to its rat homolog (97.4% linear amino acid homology) and shares about 50% of amino acid positions with Mycobacterium tuberculosis hsp65. The latter supposedly carries a critical epitope for AA induction that is not present in human hsp60. Infections with hsp60-VV of monkey cell cultures led to the expression of the human hsp60 molecule, as evidenced by immunoblotting analysis with specific monoclonal antibodies. Also, Lewis rats infected with hsp60-VV produced specific antibodies, demonstrating the in vivo expression of human hsp60 in the infected animals. Therefore, we used hsp60-VV to analyze whether the delivery of hsp60 could affect the induction of AA in Lewis rats. hsp60-VV clearly reduced and retarded arthritic symptoms when administered to rats at day 7 after AA induction. In contrast, inoculation of rats with a control recombinant vaccinia virus did not affect the course of the disease. The improvement in AA with hsp60-VV administration was associated with a specific immune response, as determined by the presence of antibodies to hsp60 in the sera and the proliferation induced by hsp60 of T cells from popliteal lymph nodes. These results support a critical role for immunity to heat shock proteins in AA. Since the protective construct is virtually identical to rat homolog hsp60, we conclude that immunity directed to conserved areas of this family of proteins is directly involved in the pathogenesis of AA.
Images
PMCID: PMC281148  PMID: 8406810
14.  Hsp90 Inhibitors Are Efficacious against Kaposi Sarcoma by Enhancing the Degradation of the Essential Viral Gene LANA, of the Viral Co-Receptor EphA2 as well as Other Client Proteins 
PLoS Pathogens  2012;8(11):e1003048.
Heat-shock protein 90 (Hsp90) inhibitors exhibit activity against human cancers. We evaluated a series of new, oral bioavailable, chemically diverse Hsp90 inhibitors (PU-H71, AUY922, BIIB021, NVP-BEP800) against Kaposi sarcoma (KS). All Hsp90 inhibitors exhibited nanomolar EC50 in culture and AUY922 reduced tumor burden in a xenograft model of KS. KS is associated with KS-associated herpesvirus (KSHV). We identified the viral latency associated nuclear antigen (LANA) as a novel client protein of Hsp90 and demonstrate that the Hsp90 inhibitors diminish the level of LANA through proteasomal degradation. These Hsp90 inhibitors also downregulated EphA2 and ephrin-B2 protein levels. LANA is essential for viral maintenance and EphA2 has recently been shown to facilitate KSHV infection; which in turn feeds latent persistence. Further, both molecules are required for KS tumor formation and both were downregulated in response to Hsp90 inhibitors. This provides a rationale for clinical testing of Hsp90 inhibitors in KSHV-associated cancers and in the eradication of latent KSHV reservoirs.
Author Summary
Heat shock proteins, such as Hsp90, aid the folding of proteins. They seem to be essential to sustain the growth of cancer cells. Hsp90 inhibitors are in clinical trials for many cancers but with mixed results, presumably since these proteins have many clients. The mechanism for drug efficacy and tumor-type variation in responses is not understood. Here we show that in the case of Kaposi sarcoma and primary effusion lymphoma, which are cancers caused by Kaposi sarcoma associated herpesvirus (KSHV/HHV8) an essential viral protein, LANA, binds to Hsp90 and is a client of Hsp90. Different small molecule Hsp90 inhibitors reduce the expression of LANA. At the same time they reduce the expression of the newly discovered co-receptor of KSHV ephA2, of Akt, cdc2 and ephrin-B2. Since LANA is required to maintain the virus latent in all tumor cells, a process, which is periodically aided by de novo infection, these inhibitors interfere with essential components of viral pathogenesis and in vivo tumor growth.
doi:10.1371/journal.ppat.1003048
PMCID: PMC3510261  PMID: 23209418
15.  Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-κB 
Breast Cancer Research : BCR  2011;13(5):R101.
Introduction
Heat shock proteins (HSPs) are normally induced under environmental stress to serve as chaperones for maintenance of correct protein folding but they are often overexpressed in many cancers, including breast cancer. The expression of Hsp27, an ATP-independent small HSP, is associated with cell migration and drug resistance of breast cancer cells. Breast cancer stem cells (BCSCs) have been identified as a subpopulation of breast cancer cells with markers of CD24-CD44+ or high intracellular aldehyde dehydrogenase activity (ALDH+) and proved to be associated with radiation resistance and metastasis. However, the involvement of Hsp27 in the maintenance of BCSC is largely unknown.
Methods
Mitogen-activated protein kinase antibody array and Western blot were used to discover the expression of Hsp27 and its phosphorylation in ALDH + BCSCs. To study the involvement of Hsp27 in BCSC biology, siRNA mediated gene silencing and quercetin treatment were used to inhibit Hsp27 expression and the characters of BCSCs, which include ALDH+ population, mammosphere formation and cell migration, were analyzed simultaneously. The tumorigenicity of breast cancer cells after knockdown of Hsp27 was analyzed by xenograftment assay in NOD/SCID mice. The epithelial-mesenchymal transition (EMT) of breast cancer cells was analyzed by wound-healing assay and Western blot of snail, vimentin and E-cadherin expression. The activation of nuclear factor kappa B (NF-κB) was analyzed by luciferase-based reporter assay and nuclear translocation.
Results
Hsp27 and its phosphorylation were increased in ALDH+ BCSCs in comparison with ALDH- non-BCSCs. Knockdown of Hsp27 in breast cancer cells decreased characters of BCSCs, such as ALDH+ population, mammosphere formation and cell migration. In addition, the in vivo CSC frequency could be diminished in Hsp27 knockdown breast cancer cells. The inhibitory effects could also be observed in cells treated with quercetin, a plant flavonoid inhibitor of Hsp27, and it could be reversed by overexpression of Hsp27. Knockdown of Hsp27 also suppressed EMT signatures, such as decreasing the expression of snail and vimentin and increasing the expression of E-cadherin. Furthermore, knockdown of Hsp27 decreased the nuclear translocation as well as the activity of NF-κB in ALDH + BCSCs, which resulted from increasing expression of IκBα. Restored activation of NF-κB by knockdown of IκBα could reverse the inhibitory effect of Hsp27 siRNA in suppression of ALDH+ cells.
Conclusions
Our data suggest that Hsp27 regulates the EMT process and NF-κB activity to contribute the maintenance of BCSCs. Targeting Hsp27 may be considered as a novel strategy in breast cancer therapy.
doi:10.1186/bcr3042
PMCID: PMC3262214  PMID: 22023707
16.  Proteomic Analysis of Bovine Axonemes Exposed to Acute Alcohol: Role of eNOS and HSP90 in Cilia Stimulation 
Background
Cilia are fingerlike motor-driven organelles, which propel inhaled particles and mucus from the lung and airways. We have previously shown that brief alcohol exposure stimulates ciliary motility through an endothelial nitric oxide (eNOS)-dependent pathway localized in the ciliary metabolon. However, the signaling molecules of the ciliary metabolon involved in alcohol-triggered cilia beat frequency (CBF) stimulation upstream of eNOS activation are unknown.
Methods and Results
We hypothesized that brief alcohol exposure alters threonine and serine phosphorylation of proteins involved in stimulating ciliary beat frequency. Two-dimensional electrophoresis indicated both increases and deceases in the serine and threonine phosphorylation states of several proteins. One of the proteins identified was heat shock protein 90 (HSP90), which undergoes increased threonine phosphorylation after brief alcohol exposure. Because HSP90 has been shown to associate with eNOS in lung tissue, we hypothesized that HSP90 is a key component in alcohol-triggered eNOS activation and that these two proteins co-localize within the ciliary metabolon. Immunofluorescence experiments demonstrate that eNOS and HSP90 co-localize within basal bodies of the ciliary metabolon and partially translocate to the axoneme upon brief alcohol exposure. Pretreatment with geldanamycin, which disrupts HSP90 chaperone functions, prevented eNOS-HSP90 association and prevented the translocation of eNOS from the ciliary metabolon to the axoneme. Functional cilia motility studies revealed that geldanamycin blocked alcohol-stimulated ciliary motility in bovine bronchial epithelial cells and mouse tracheal rings.
Conclusions
Based on the HSP90 localization with eNOS, alcohol activation of HSP90 phosphorylation, and geldanamycin’s ability inhibit HSP90-eNOS association, prevent eNOS translocation to the axoneme, and block alcohol-stimulated ciliary motility, we conclude that alcohol-induced cilia stimulation occurs through the increased association of HSP90 with eNOS. These data help further elucidate the mechanism through which brief alcohol exposure stimulates CBF.
doi:10.1111/acer.12014
PMCID: PMC3556349  PMID: 23078267
17.  Genome-scale Co-evolutionary Inference Identifies Functions and Clients of Bacterial Hsp90 
PLoS Genetics  2013;9(7):e1003631.
The molecular chaperone Hsp90 is essential in eukaryotes, in which it facilitates the folding of developmental regulators and signal transduction proteins known as Hsp90 clients. In contrast, Hsp90 is not essential in bacteria, and a broad characterization of its molecular and organismal function is lacking. To enable such characterization, we used a genome-scale phylogenetic analysis to identify genes that co-evolve with bacterial Hsp90. We find that genes whose gain and loss were coordinated with Hsp90 throughout bacterial evolution tended to function in flagellar assembly, chemotaxis, and bacterial secretion, suggesting that Hsp90 may aid assembly of protein complexes. To add to the limited set of known bacterial Hsp90 clients, we further developed a statistical method to predict putative clients. We validated our predictions by demonstrating that the flagellar protein FliN and the chemotaxis kinase CheA behaved as Hsp90 clients in Escherichia coli, confirming the predicted role of Hsp90 in chemotaxis and flagellar assembly. Furthermore, normal Hsp90 function is important for wild-type motility and/or chemotaxis in E. coli. This novel function of bacterial Hsp90 agreed with our subsequent finding that Hsp90 is associated with a preference for multiple habitats and may therefore face a complex selection regime. Taken together, our results reveal previously unknown functions of bacterial Hsp90 and open avenues for future experimental exploration by implicating Hsp90 in the assembly of membrane protein complexes and adaptation to novel environments.
Author Summary
Hsp90 is a chaperone protein that aids the folding of many other proteins (clients), which tend to be signal transduction proteins. Hsp90 is particularly important when organisms are under environmental or mutational stress (e.g. in cancerous cells). Although Hsp90 is well-studied in eukaryotic species from yeast to humans, little is known about its counterpart in bacteria. To address this challenge, we analyzed the presence and absence of thousands of genes across numerous bacterial species and identified genes that co-evolved with Hsp90. These genes provide insights into potential functions of Hsp90 in bacteria. We found that Hsp90 co-evolves with membrane-associated protein complexes such as the flagellum and that Hsp90 is associated with a preference for inhabiting multiple habitats. We extended our analysis to identify genes that exhibit evolutionary dynamics characteristic of Hsp90 clients. Many of the putative clients were involved in flagellar assembly, suggesting a crucial role of Hsp90 in the regulation of bacterial motility. We experimentally confirmed that E. coli Hsp90 interacts with selected candidates and demonstrated Hsp90's role in flagellar motility and chemotaxis. The computational approach described here, identifying novel functions and specific clients of bacterial Hsp90, further provides exciting starting points for research in bacterial chaperone biology.
doi:10.1371/journal.pgen.1003631
PMCID: PMC3708813  PMID: 23874229
18.  Hsp90 Interacts Specifically with Viral RNA and Differentially Regulates Replication Initiation of Bamboo mosaic virus and Associated Satellite RNA 
PLoS Pathogens  2012;8(5):e1002726.
Host factors play crucial roles in the replication of plus-strand RNA viruses. In this report, a heat shock protein 90 homologue of Nicotiana benthamiana, NbHsp90, was identified in association with partially purified replicase complexes from BaMV-infected tissue, and shown to specifically interact with the 3′ untranslated region (3′ UTR) of BaMV genomic RNA, but not with the 3′ UTR of BaMV-associated satellite RNA (satBaMV RNA) or that of genomic RNA of other viruses, such as Potato virus X (PVX) or Cucumber mosaic virus (CMV). Mutational analyses revealed that the interaction occurs between the middle domain of NbHsp90 and domain E of the BaMV 3′ UTR. The knockdown or inhibition of NbHsp90 suppressed BaMV infectivity, but not that of satBaMV RNA, PVX, or CMV in N. benthamiana. Time-course analysis further revealed that the inhibitory effect of 17-AAG is significant only during the immediate early stages of BaMV replication. Moreover, yeast two-hybrid and GST pull-down assays demonstrated the existence of an interaction between NbHsp90 and the BaMV RNA-dependent RNA polymerase. These results reveal a novel role for NbHsp90 in the selective enhancement of BaMV replication, most likely through direct interaction with the 3′ UTR of BaMV RNA during the initiation of BaMV RNA replication.
Author Summary
Heat shock protein 90 (Hsp90) is a highly conserved molecular chaperone in prokaryotes and eukaryotes, and regulates diverse cellular processes through ensuring the correct folding of numerous client proteins. However, there are no reports of direct interactions between Hsp90 with viral RNA. Here, we report that a new member of the Hsp90 proteins of Nicotiana benthamiana, NbHsp90, specifically interacts with the 3′ UTR of Bamboo mosaic virus (BaMV) genomic RNA, but not with the 3′ UTR of BaMV-associated satellite RNA or that of other viruses. We further demonstrate that NbHsp90 specifically involves in the immediately early stage of BaMV RNA replication. NbHsp90 directly interacts with the BaMV 3′ UTR through the domain E, the key structural differences that distinguishes the BaMV 3′ UTR from the satBaMV 3′ UTR, which might contribute to NbHsp90's differential requirement for BaMV and satBaMV replication. Our work revealed a new role of Hsp90 in the interaction with RNA molecules, and demonstrated the differential requirement of Hsp90 in the replication of BaMV and satBaMV RNAs, which provide additional leverage for understanding the complex interactions between host, virus and its associated satellite RNA.
doi:10.1371/journal.ppat.1002726
PMCID: PMC3359997  PMID: 22654666
19.  hsp70-Dependent Antiviral Immunity against Cytopathic Neuronal Infection by Vesicular Stomatitis Virus 
Journal of Virology  2013;87(19):10668-10678.
The major inducible 70-kDa heat shock protein (hsp70) protects against measles virus (MeV) neurovirulence in the mouse that is caused by a cell-associated noncytolytic neuronal infection. Protection is type I interferon (IFN) dependent, and we have established a novel axis of antiviral immunity in which hsp70 is released from virus-infected neurons to induce IFN-β in macrophages. The present work used vesicular stomatitis virus (VSV) to establish the relevance of hsp70-dependent antiviral immunity to fulminant cytopathic neuronal infections. In vitro, hsp70 that was constitutively expressed in mouse neuronal cells caused a modest increase in VSV replication. Infection induced an early extracellular release of hsp70 from viable cells, and the release was progressive, increasing with virus-induced apoptosis and cell lysis. The impact of this VSV-hsp70 interaction on neurovirulence was established in weanling male hsp70 transgenic and nontransgenic mice. Constitutive expression of hsp70 in neurons of transgenic mice enhanced viral clearance from brain and reduced mortality, and it was correlated with enhanced expression of type I IFN mRNA. Nontransgenic mice were also protected against neurovirulence and expressed increased type I IFN mRNA in brain when hsp70 was expressed by a recombinant VSV (rVSV-hsp70), indicating that hsp70 in the virus-infected cell is sufficient for host protection. In vitro data confirmed extracellular release of hsp70 from cells infected with rVSV-hsp70 and also showed that viral replication is not enhanced when hsp70 is expressed in this manner, suggesting that hsp70-mediated protection in vivo is not dependent on stimulatory effects of hsp70 on virus gene expression.
doi:10.1128/JVI.00872-13
PMCID: PMC3807379  PMID: 23885078
20.  Heat shock protein inhibitors increase the efficacy of measles virotherapy 
Gene therapy  2008;15(14):1024-1034.
Oncolytic measles virus strains have activity against multiple tumor types and are currently in phase I clinical testing. Induction of the heat shock protein 70 (HSP70) constitutes one of the earliest changes in cellular gene expression following infection with RNA viruses including measles virus, and HSP70 upregulation induced by heat shock has been shown to result in increased measles virus cytotoxicity. HSP90 inhibitors such as geldanamycin (GA) or 17-allylaminogeldanamycin result in pharmacologic upregulation of HSP70 and they are currently in clinical testing as cancer therapeutics. We therefore investigated the hypothesis that heat shock protein inhibitors could augment the measles virus-induced cytopathic effect. We tested the combination of a measles virus derivative expressing soluble human carcinoembryonic antigen (MV-CEA) and GA in MDA-MB-231 (breast), SKOV3.IP (ovarian) and TE671 (rhabdomyosarcoma) cancer cell lines. Optimal synergy was accomplished when GA treatment was initiated 6–24 h following MV infection. Western immunoblotting confirmed HSP70 upregulation in combination-treated cells. Combination treatment resulted in statistically significant increase in syncytia formation as compared to MV-CEA infection alone. Clonogenic assays demonstrated significant decrease in tumor colony formation in MV-CEA/GA combination-treated cells. In addition there was increase in apoptosis by 4,6-diamidino-2-phenylindole staining. Western immunoblotting for caspase-9, caspase-8, caspase-3 and poly(ADP-ribose) polymerase (PARP) demonstrated increase in cleaved caspase-8 and PARP. The pan-caspase inhibitor Z-VAD-FMK and caspase-8 inhibitor Z-IETD-FMK, but not the caspase-9 inhibitor Z-IEHD-FMK, protected tumor cells from MV-CEA/GA-induced PARP activation, indicating that apoptosis in combination-treated cells occurs mainly via the extrinsic caspase pathway. Treatment of normal cells, such as normal human fibroblasts, however, with the MV-CEA/GA combination, did not result in cytopathic effect, indicating that GA did not alter the MV-CEA specificity for tumor cells. One-step viral growth curves, western immunoblotting for MV-N protein expression, QRT-PCR quantitation of MV-genome copy number and CEA levels showed comparable proliferation of MV-CEA in GA-treated vs -untreated tumor cells. Rho activation assays and western blot for total RhoA, a GTPase associated with the actin cytoskeleton, demonstrated decrease in RhoA activation in combination-treated cells, a change previously shown to be associated with increase in paramyxovirus-induced cell—cell fusion. The enhanced cytopathic effect resulting from measles virus/GA combination supports the translational potential of this approach in the treatment of cancer.
doi:10.1038/gt.2008.30
PMCID: PMC2748733  PMID: 18356818
measles; virotherapy; GA; heat shock protein inhibitors; RhoA
21.  Myosins VIII and XI Play Distinct Roles in Reproduction and Transport of Tobacco Mosaic Virus 
PLoS Pathogens  2014;10(10):e1004448.
Viruses are obligatory parasites that depend on host cellular factors for their replication as well as for their local and systemic movement to establish infection. Although myosin motors are thought to contribute to plant virus infection, their exact roles in the specific infection steps have not been addressed. Here we investigated the replication, cell-to-cell and systemic spread of Tobacco mosaic virus (TMV) using dominant negative inhibition of myosin activity. We found that interference with the functions of three class VIII myosins and two class XI myosins significantly reduced the local and long-distance transport of the virus. We further determined that the inactivation of myosins XI-2 and XI-K affected the structure and dynamic behavior of the ER leading to aggregation of the viral movement protein (MP) and to a delay in the MP accumulation in plasmodesmata (PD). The inactivation of myosin XI-2 but not of myosin XI-K affected the localization pattern of the 126k replicase subunit and the level of TMV accumulation. The inhibition of myosins VIII-1, VIII-2 and VIII-B abolished MP localization to PD and caused its retention at the plasma membrane. These results suggest that class XI myosins contribute to the viral propagation and intracellular trafficking, whereas myosins VIII are specifically required for the MP targeting to and virus movement through the PD. Thus, TMV appears to recruit distinct myosins for different steps in the cell-to-cell spread of the infection.
Author Summary
Viruses are parasites that require the host cell machinery for their propagation within and between cells. Myosins are molecular motors involved in the trafficking of cargos along actin filaments. Plant viruses have evolved to borrow this transport mechanism to aid their infection and spread within the plant. However, little is known about which of the many plant myosins are essential and at which specific steps they act to support virus infection. Here we investigated the role of different N. benthamiana myosins during the infection by Tobacco mosaic virus (TMV). Our results show that class XI myosins play specific roles in the reproduction and intracellular movement of TMV in association with the dynamic endoplasmic reticulum network, whereas class VIII myosins support the specific targeting of the viral movement protein to plasmodesmata and thus the cell-to-cell movement of the virus. Together these results indicate that TMV interacts with distinct myosins during specific infection steps.
doi:10.1371/journal.ppat.1004448
PMCID: PMC4199776  PMID: 25329993
22.  Heat Shock Protein 90 Inhibitors Protect and Restore Pulmonary Endothelial Barrier Function 
Heat shock protein 90 (hsp90) inhibitors inactivate and/or degrade various client proteins, including many involved in inflammation. Increased vascular permeability is a hallmark of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Thus, we tested the hypothesis that hsp90 inhibitors may prevent and/or restore endothelial cell (EC) permeability after injury. Exposure of confluent bovine pulmonary arterial endothelial cell (BPAEC) monolayer to TGF-β1, thrombin, bacterial lipopolysaccharide (LPS), or vascular endothelial growth factor (VEGF) increased BPAEC permeability, as revealed by decreased transendothelial electrical resistance (TER). Treatment of injured endothelium with hsp90 inhibitors completely restored TER of BPAEC. Similarly, preincubation of BPAEC with hsp90 inhibitors prevented the decline in TER induced by the exposure to thrombin, LPS, VEGF, or TGF-β1. In addition, hsp90 inhibitors restored the EC barrier function after PMA or nocodazole-induced hyperpermeability. These effects of the hsp90 inhibitors were associated with the restoration of TGF-β1– or nocodazole-induced decrease in VE-cadherin and β-catenin expression at EC junctions. The protective effect of hsp90 inhibitors on TGF-β1–induced hyperpermeability was critically dependent upon preservation of F-actin cytoskeleton and was associated with the inhibition of agonist-induced myosin light chain (MLC) and myosin phosphatase target subunit 1 (MYPT1) phosphorylation, F-actin stress fibers formation, microtubule disassembly, increase in hsp27 phosphorylation, and association of hsp90 with hsp27, but independent of p38MAPK activity. We conclude that hsp90 inhibitors exert barrier protective effects on BPAEC, at least in part, via inhibition of hsp27-mediated, agonist-induced cytoskeletal rearrangement, and therefore may have useful therapeutic value in ALI, ARDS, and other pulmonary inflammatory disease.
doi:10.1165/rcmb.2007-0324OC
PMCID: PMC2574526  PMID: 18474672
endothelial permeability; TGF-β1; hsp27; 17-AAG; MYPT1
23.  Novobiocin and Additional Inhibitors of the Hsp90 C-Terminal Nucleotide-binding Pocket 
Current medicinal chemistry  2008;15(26):2702-2717.
The 90 kDa heal shock proteins (Hsp90), which are integrally involved in cell signaling, proliferation, and survival, are ubiquitously expressed in cells. Many proteins in tumor cells are dependent upon the Hsp90 protein folding machinery for their stability, refolding, and maturation. Inhibition of Hsp90 uniquely targets client proteins associated with all six hallmarks of cancer. Thus, Hsp90 has emerged as a promising target for the treatment of cancer.
Hsp90 exists as a homodimer, which contains three domains. The N-terminal domain contains an ATP-binding site that binds the natural products geldanamycin and radicicol. The middle domain is highly charged and has high affinity for co-chaperones and client proteins. Initial studies by Csermely and co-workers suggested a second ATP-binding site in the C-terminus of Hsp90. This C-terminal nucleotide binding pocket has been shown to not only bind ATP, but cisplatin, novobiocin, epilgallocatechin-3-gallate (EGCG) and taxol.
The coumarin antibiotics novobiocin, clorobiocin, and coumermycin A1 were isolated from several streptomyces strains and exhibit potent activity against Gram-positive bacteria. These compounds bind type II topoisomerases, including DNA gyrase, and inhibit the enzyme-catalyzed hydrolysis of ATP. As a result, novobiocin analogues have garnered the attention of numerous researchers as an attractive agent for the treatment of bacterial infection. Novobiocin was reported to bind weakly to the newly discovered Hsp90 C-terminal ATP binding site (~700 M in SkBr3 cells) and induce degradation of Hsp90 client proteins. Structural modification of this compound has led to an increase of 1000-fold in activity in anti-proliferative assays. Recent studies of structure-activity relationship (SAR) by Renoir and co-workers highlighted the crucial role of the C-4 and/or C-7 positions of the coumarin and removal of the noviose moiety, which appeared to be essential for degradation of Hsp90 client proteins. Unlike the N-terminal ATP binding site, there is no reported co-crystal structure of Hsp90 C-terminus bound to any inhibitor. The Hsp90 C-terminal domain, however, is known to contain a conserved pentapeptide sequence (MEEVD) which is recognized by co-chaperones.
Cisplatin is a platinum-containing chemotherapeutic used to treat various types of cancers, including testicular, ovarian, bladder, and small cell lung cancer. Most notably, cisplatin coordinates to DNA bases, resulting in cross-linked DNA, which prohibits rapidly dividing cells from duplicating DNA for mitosis. Itoh and co-workers reported that cisplatin decreases the chaperone activity of Hsp90. This group applied bovine brain cytosol to a cisplatin affinity column, eluted with cisplatin and detected Hsp90 in the eluent. Subsequent experiments indicated that cisplatin exhibits high affinity for Hsp90. Moreover Csermely and co-workers determined that the cisplatin binding site is located proximal to the C-terminal ATP binding site.
EGCG is one of the active ingredients found in green tea EGCG is known to inhibit the activity of many Hsp90-dependent client proteins, including telomerase, several kinases, and the aryl hydrocarbon receptor (AhR). Recently Gasiewicz and co-workers reported that EGCG manifests its antagonistic activity against AhR through binding Hsp90. Similar to novobiocin, EGCG was shown to bind the C-terminus of Hsp90. Unlike previously identified N-terminal Hsp90 inhibitors, EGCG does not appear to prevent Hsp90 from forming multiprotein complexes. Studies are currently underway to determine whether EGCG competes with novobiocin or cisplatin binding.
Taxol, a well-known drug for the treatment of cancer, is responsible for the stabilization of microtubules and the inhibition of mitosis. Previous studies have shown that taxol induces the activation of kinases and transcription factors, and mimies the effect of bacterial lipopolysaccharide (LPS), an attribute unrelated to its tubulin-binding properties. Rosen and co-workers prepared a biotinylated taxol derivative and performed affinity chromatography experiments with lysates from both mouse brain and macrophage cell lines. These studies led to identification of two chaperones. Hsp70 and Hsp90, by mass spectrometry. In contrast to typical Hsp90-binding drugs, taxol exhibits a stimulatory response. Recently it was reported that the geldanamycin derivative 17-AAG behaves synergistically with taxol-induced apoptosis.
This review describes the different C-terminal inhibitors of Hsp90, with specific emphasis on structure-activity relationship studies of novobiocin and their effects on anti-proliferative activity.
PMCID: PMC2729083  PMID: 18991631
24.  The actin cytoskeleton is involved in the regulation of the plasmodesmal size exclusion limit 
Plant Signaling & Behavior  2010;5(12):1663-1665.
Plasmodesmata (PD) are the communication channels which allow the trafficking of macromolecules between neighboring cells. Such cell-to-cell movement of macromolecules is regulated during plant growth and development; however, little is known about the regulation mechanism of PD size exclusion limit (SEL). Plant viral movement proteins (MPs) enhance the invasion of viruses from cell to cell by increasing the SEL of the PD and are therefore a powerful means for the study of the plasmodesmal regulation mechanisms. In a recent study, we reported that the actin cytoskeleton is involved in the increase of the PD SEL induced by MPs. Microinjection experiments demonstrated that actin depolymerization was required for the Cucumber mosaic virus (CMV) MP-induced increase in the PD SEL. In vitro experiments showed that CMV MP severs actin filaments (F-actin). Furthermore, through the analyses of two CMV MP mutants, we demonstrated that the F-actin severing ability of CMV MP was required to increase the PD SEL. These results are similar to what has been found in Tobacco mosaic virus MP. Thus, our data suggest that actin dynamics may participate in the regulations of the PD SEL.
doi:10.4161/psb.5.12.14018
PMCID: PMC3115129  PMID: 21150300
plasmodesmata; size exclusion limit; movement protein; actin filaments; F-actin severing
25.  Hsp70 Protein Positively Regulates Rabies Virus Infection 
Journal of Virology  2012;86(9):4743-4751.
The Hsp70 chaperone plays a central role in multiple processes within cells, including protein translation, folding, intracellular trafficking, and degradation. This protein is implicated in the replication of numerous viruses. We have shown that rabies virus infection induced the cellular expression of Hsp70, which accumulated in Negri body-like structures, where viral transcription and replication take place. In addition, Hsp70 is present in both nucleocapsids purified from infected cells and in purified virions. Hsp70 has been shown to interact with the nucleoprotein N. The downregulation of Hsp70, using specific chaperone inhibitors, such as quercetin or RNA interference, resulted in a significant decrease of the amount of viral mRNAs, viral proteins, and virus particles. These results indicate that Hsp70 has a proviral function during rabies virus infection and suggest that Hsp70 is involved in at least one stage(s) of the viral life cycle, such as viral transcription, translation, and/or production. The mechanism by which Hsp70 controls viral infection will be discussed.
doi:10.1128/JVI.06501-11
PMCID: PMC3347396  PMID: 22345440

Results 1-25 (1105156)