Search tips
Search criteria

Results 1-25 (1229690)

Clipboard (0)

Related Articles

1.  Presence of Activatable Shiga Toxin Genotype (stx2d) in Shiga Toxigenic Escherichia coli from Livestock Sources 
Journal of Clinical Microbiology  2003;41(8):3777-3783.
Stx2d is a recently described Shiga toxin whose cytotoxicity is activated 10- to 1,000-fold by the elastase present in mouse or human intestinal mucus. We examined Shiga toxigenic Escherichia coli (STEC) strains isolated from food and livestock sources for the presence of activatable stx2d. The stx2 operons of STEC were first analyzed by PCR-restriction fragment length polymorphism (RFLP) analysis and categorized as stx2, stx2c vha, stx2c vhb, or stx2d EH250. Subsequently, the stx2c vha and stx2c vhb operons were screened for the absence of a PstI site in the stx2A subunit gene, a restriction site polymorphism which is a predictive indicator for the stx2d (activatable) genotype. Twelve STEC isolates carrying putative stx2d operons were identified, and nucleotide sequencing was used to confirm the identification of these operons as stx2d. The complete nucleotide sequences of seven representative stx2d operons were determined. Shiga toxin expression in stx2d isolates was confirmed by immunoblotting. stx2d isolates were induced for the production of bacteriophages carrying stx. Two isolates were able to produce bacteriophages φ1662a and φ1720a carrying the stx2d operons. RFLP analysis of bacteriophage genomic DNA revealed that φ1662a and φ1720a were highly related to each other; however, the DNA sequences of these two stx2d operons were distinct. The STEC strains carrying these operons were isolated from retail ground beef. Surveillance for STEC strains expressing activatable Stx2d Shiga toxin among clinical cases may indicate the significance of this toxin subtype to human health.
PMCID: PMC179786  PMID: 12904389
2.  Identification of Human-Pathogenic Strains of Shiga Toxin-Producing Escherichia coli from Food by a Combination of Serotyping and Molecular Typing of Shiga Toxin Genes▿  
Applied and Environmental Microbiology  2007;73(15):4769-4775.
We examined 219 Shiga toxin-producing Escherichia coli (STEC) strains from meat, milk, and cheese samples collected in Germany between 2005 and 2006. All strains were investigated for their serotypes and for genetic variants of Shiga toxins 1 and 2 (Stx1 and Stx2). stx1 or variant genes were detected in 88 (40.2%) strains and stx2 and variants in 177 (80.8%) strains. Typing of stx genes was performed by stx-specific PCRs and by analysis of restriction fragment length polymorphisms (RFLP) of PCR products. Major genotypes of the Stx1 (stx1, stx1c, and stx1d) and the Stx2 (stx2, stx2d, stx2-O118, stx2e, and stx2g) families were detected, and multiple types of stx genes coexisted frequently in STEC strains. Only 1.8% of the STEC strains from food belonged to the classical enterohemorrhagic E. coli (EHEC) types O26:H11, O103:H2, and O157:H7, and only 5.0% of the STEC strains from food were positive for the eae gene, which is a virulence trait of classical EHEC. In contrast, 95 (43.4%) of the food-borne STEC strains carried stx2 and/or mucus-activatable stx2d genes, an indicator for potential high virulence of STEC for humans. Most of these strains belonged to serotypes associated with severe illness in humans, such as O22:H8, O91:H21, O113:H21, O174:H2, and O174:H21. stx2 and stx2d STEC strains were found frequently in milk and beef products. Other stx types were associated more frequently with pork (stx2e), lamb, and wildlife meat (stx1c). The combination of serotyping and stx genotyping was found useful for identification and for assignment of food-borne STEC to groups with potential lower and higher levels of virulence for humans.
PMCID: PMC1951031  PMID: 17557838
3.  Stx2 Subtyping of Shiga Toxin-Producing Escherichia coli Isolated from Cattle in France: Detection of a New Stx2 Subtype and Correlation with Additional Virulence Factors 
Journal of Clinical Microbiology  2001;39(9):3060-3065.
At least 11 Stx2 variants produced by Shiga toxin-producing Escherichia coli (STEC) isolated from patients and animals have been described. The Stx2 subtyping of STEC isolated from healthy cows positive for stx2 (n = 104) or stx2 and stx1 (n = 63) was investigated. Stx2vh-b, Stx2 (renamed Stx2-EDL933), and Stx2vh-a were the subtypes mostly detected among the bovine isolates (39.5, 39, and 25.5%, respectively). Stx2e was not present, and subtypes included in the Stx2d group (Stx2d-OX3a, Stx2d-O111, and Stx2d-Ount) were found infrequently among the isolates examined (8.5%). A combination of two distinct Stx2 subtypes was observed among 23.5% of the strains. For the first time, a combination of three subtypes (Stx2-EDL933/Stx2vh-b/Stx2d and Stx2vh-a/Stx2vh-b/Stx2d) was detected (3.5% of the isolates). In addition, bovine STEC harboring stx1 and one or two stx2 genes appeared highly cytotoxic toward Vero cells. A new Stx2 subtype (Stx2-NV206), present among 14.5% of the isolates, showed high cytotoxicity for Vero cells. Two amino acid residues (Ser-291 and Glu-297) important for the activation of Stx2 by human intestinal mucus were conserved on the Stx2-NV206 A subunit. The gene encoding Ehx enterohemolysin was prominent among STEC harboring stx2-EDL933 alone (78%) or a combination of stx2-EDL933 and stx2vh-b (85%). In addition, Stx2-EDL933 and/or Stx2vh-b subtypes were highly associated with other putative virulence factors such as Stx1 and EspP extracellular serine protease, but not with EAST1 enterotoxin.
PMCID: PMC88297  PMID: 11526129
4.  One of Two Copies of the Gene for the Activatable Shiga Toxin Type 2d in Escherichia coli O91:H21 Strain B2F1 Is Associated with an Inducible Bacteriophage  
Infection and Immunity  2002;70(8):4282-4291.
Shiga toxin (Stx) types 1 and 2 are encoded within intact or defective temperate bacteriophages in Stx-producing Escherichia coli (STEC), and expression of these toxins is linked to bacteriophage induction. Among Stx2 variants, only stx2e from one human STEC isolate has been reported to be carried within a toxin-converting phage. In this study, we examined the O91:H21 STEC isolate B2F1, which carries two functional alleles for the potent activatable Stx2 variant toxin, Stx2d, for the presence of Stx2d-converting bacteriophages. We first constructed mutants of B2F1 that produced one or the other Stx2d toxin and found that the mutant that produced only Stx2d1 made less toxin than the Stx2d2-producing mutant. Consistent with that result, the Stx2d1-producing mutant was attenuated in a streptomycin-treated mouse model of STEC infection. When the mutants were treated with mitomycin C to promote bacteriophage induction, Vero cell cytotoxicity was elevated only in extracts of the Stx2d1-producing mutant. Additionally, when mice were treated with ciprofloxacin, an antibiotic that induces the O157:H7 Stx2-converting phage, the animals were more susceptible to the Stx2d1-producing mutant. Moreover, an stx2d1-containing lysogen was isolated from plaques on strain DH5α that had been exposed to lysates of the mutant that produced Stx2d1 only, and supernatants from that lysogen transformed with a plasmid encoding RecA were cytotoxic when the lysogen was induced with mitomycin C. Finally, electron-microscopic examination of extracts from the Stx2d1-producing mutant showed hexagonal particles that resemble the prototypic Stx2-converting phage 933W. Together these observations provide strong evidence that expression of Stx2d1 is bacteriophage associated. We conclude that despite the sequence similarity of the stx2d1- and stx2d2-flanking regions in B2F1, Stx2d1 expression is repressed within the context of its toxin-converting phage while Stx2d2 expression is independent of phage induction.
PMCID: PMC128153  PMID: 12117937
5.  Molecular Analysis of Virulence Profiles and Shiga Toxin Genes in Food-Borne Shiga Toxin-Producing Escherichia coli▿  
Applied and Environmental Microbiology  2009;75(19):6187-6197.
In this study, 75 Shiga toxin (Stx)-producing Escherichia coli (STEC) strains originating from foods (n = 73) and drinking water (n = 2) were analyzed for their stx genotype, as well as for further chromosome-, phage-, and plasmid-encoded virulence factors. A broad spectrum of stx genes was detected. Fifty-three strains (70.7%) contained stx2 or stx2 variants, including stx2d, mucus-activatable stx2d, stx2e, and stx2g. Seven strains (9.3%) harbored stx1 or stx1c, and 15 strains (20.0%) carried both stx2 and/or stx2 variants and stx1 or stx1c. Beside stx, the most abundant accessory virulence markers in STEC food isolates were iha (57.3%), ehxA (40.0%), espP (28.0%), and subAB (25.3%). Only four strains were eae positive; three of these belonged to the serogroups O26, O103, and O157 and contained a typical enterohemorrhagic E. coli virulence spectrum. The results of this study show that a number of STEC strains that occur in foods appear to be pathogenic for humans, based on their virulence profiles. Analysis of stx subtypes and detection of additional virulence factors in eae-negative strains may help to better assess the risk of such strains for causing human infection.
PMCID: PMC2753087  PMID: 19684176
6.  Shiga Toxin, Cytolethal Distending Toxin, and Hemolysin Repertoires in Clinical Escherichia coli O91 Isolates▿  
Journal of Clinical Microbiology  2009;47(7):2061-2066.
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains of serogroup O91 are the most common human pathogenic eae-negative STEC strains. To facilitate diagnosis and subtyping of these pathogens, we genotypically and phenotypically characterized 100 clinical STEC O91 isolates. Motile strains expressed flagellar antigens H8 (1 strain), H10 (2 strains), H14 (52 strains), and H21 (20 strains) or were H nontypeable (Hnt) (10 strains); 15 strains were nonmotile. All nonmotile and Hnt strains possessed the fliC gene encoding the flagellin subunit of the H14 antigen (fliCH14). Most STEC O91 strains possessed enterohemorrhagic E. coli hlyA and expressed an enterohemolytic phenotype. Among seven stx alleles identified, stx2dact, encoding mucus- and elastase-activatable Stx2d, was present solely in STEC O91:H21, whereas most strains of the other serotypes possessed stx1. Moreover, only STEC O91:H21 possessed the cdt-V cluster, encoding cytolethal distending toxin V; the toxin was regularly expressed and was lethal to human microvascular endothelial cells. Infection with STEC O91:H21 was associated with hemolytic-uremic syndrome (P = 0.0015), whereas strains of the other serotypes originated mostly in patients with nonbloody diarrhea. We conclude that STEC O91 clinical isolates belong to at least four lineages that differ by H antigens/fliC types, stx genotypes, and non-stx putative virulence factors, with accumulation of virulence determinants in the O91:H21 lineage. Isolation of STEC O91 from patients' stools on enterohemolysin agar and the rapid initial subtyping of these isolates using fliC genotyping facilitate the identification of these emerging pathogens in clinical and epidemiological studies and enable prediction of the risk of a severe clinical outcome.
PMCID: PMC2708519  PMID: 19403777
7.  Shiga Toxin Type 2dact Displays Increased Binding to Globotriaosylceramide in vitro and Increased Lethality in Mice after Activation by Elastase  
Toxins  2013;5(11):2074-2092.
Shiga toxin type 2dact (Stx2dact), an Stx2 variant originally identified from Escherichia coli O91:H21 strain B2F1, displays increased cytotoxicity after activation by elastase present in intestinal mucus. Activation is a result of cleavage of two amino acids from the C-terminal tail of the A2 subunit. In this study, we hypothesized that activation leads to increased binding of toxin to its receptor on host cells both in vitro and in vivo. To test this theory, Stx2dact was treated with elastase or buffer alone and then each toxin was assessed for binding to purified globotriaosylceramide (Gb3) in an enzyme-linked immunosorbent assay, or cells in culture by immunofluorescence, or flow cytometry. Elastase- and buffer-treated Stx2dact were also evaluated for binding to mouse kidney tissue and for relative lethality in mice. We found that activated Stx2dact had a greater capacity to bind purified Gb3, cells in culture, and mouse kidney tissue and was more toxic for mice than was non-activated Stx2dact. Thus, one possible mechanism for the augmented cytotoxicity of Stx2dact after activation is its increased capacity to bind target cells, which, in turn, may cause greater lethality of elastase-treated toxin for mice and enhanced virulence for humans of E. coli strains that express Stx2dact.
PMCID: PMC3847715  PMID: 24217397
Shiga toxin 2d; Stx2dact; globotriaosylceramide/Gb3; Stx2dact binding; Stx2dact A2 subunit
8.  stx1c Is the Most Common Shiga Toxin 1 Subtype among Shiga Toxin-Producing Escherichia coli Isolates from Sheep but Not among Isolates from Cattle 
Journal of Clinical Microbiology  2003;41(3):926-936.
Unlike Shiga toxin 2 (stx2) genes, most nucleotide sequences of Shiga toxin 1 (stx1) genes from Shiga toxin-producing Escherichia coli (STEC), Shigella dysenteriae, and several bacteriophages (H19B, 933J, and H30) are highly conserved. Consequently, there has been little incentive to investigate variants of stx1 among STEC isolates derived from human or animal sources. However stx1OX3, originally identified in an OX3:H8 isolate from a healthy sheep in Germany, differs from other stx1 subtypes by 43 nucleotides, resulting in changes to 12 amino acid residues, and has been renamed stx1c. In this study we describe the development of a PCR-restriction fragment length polymorphism (RFLP) assay that distinguishes stx1c from other stx1 subtypes. The PCR-RFLP assay was used to study 378 stx1-containing STEC isolates. Of these, 207 were isolated from sheep, 104 from cattle, 45 from humans, 11 from meat, 5 from swine, 5 from unknown sources, and 1 from a cattle water trough. Three hundred fifty-five of the 378 isolates (93.9%) also possessed at least one other associated virulence gene (ehxA, eaeA, and/or stx2); the combination stx1, stx2, and ehxA was the most common (175 of 355 [49.3%]), and 90 of 355 (25.4%) isolates possessed eaeA. One hundred thirty-six of 207 (65.7%) ovine isolates possessed stx1c alone and belonged to 41 serotypes. Seventy-one of 136 (52.2%) comprised the common ovine serotypes O5:H−, O128:H2, and O123:H−. Fifty-two of 207 isolates (25.1%) possessed an stx1 subtype; 27 (51.9%) of these belonged to serotype O91:H−. Nineteen of 207 isolates (9.2%) contained both stx1c and stx1 subtypes, and 14 belonged to serotype O75:H8. In marked contrast, 97 of 104 (93.3%) bovine isolates comprising 44 serotypes possessed an stx1 subtype, 6 isolates possessed stx1c, and the remaining isolate possessed both stx1c and stx1 subtypes. Ten of 11 (91%) isolates cultured from meat in New Zealand possessed stx1c (serotypes O5:H−, O75:H8/H40, O81:H26, O88:H25, O104:H−/H7, O123:H−/H10, and O128:H2); most of these serotypes are commonly recovered from the feces of healthy sheep. Serotypes containing stx1 recovered from cattle rarely were the same as those isolated from sheep. Although an stx1c subtype was never associated with the typical enterohemorrhagic E. coli serogroups O26, O103, O111, O113, and O157, 13 human isolates possessed stx1c. Of these, six isolates with serotype O128:H2 (from patients with diarrhea), four O5:H− isolates (from patients with hemolytic-uremic syndrome), and three isolates with serotypes O123:H− (diarrhea), OX3:H8 (hemolytic-uremic syndrome), and O81:H6 (unknown health status) represent serotypes that are commonly isolated from sheep.
PMCID: PMC150265  PMID: 12624011
9.  Identification, Characterization, and Distribution of a Shiga Toxin 1 Gene Variant (stx1c) in Escherichia coli Strains Isolated from Humans 
Journal of Clinical Microbiology  2002;40(4):1441-1446.
By using sequence analysis of Shiga toxin 1 (Stx 1) genes from human and ovine Stx-producing Escherichia coli (STEC) strains, we identified an Stx1 variant in STEC of human origin that was identical to the Stx1 variant from ovine STEC, but demonstrated only 97.1 and 96.6% amino acid sequence identity in its A and B subunits, respectively, to the Stx1 encoded by bacteriophage 933J. We designated this variant “Stx1c” and developed stxB1 restriction fragment length polymorphism and stx1c-specific PCR strategies to determine the frequency and distribution of stx1c among 212 STEC strains isolated from humans. stx1c was identified in 36 (17.0%) of 212 STEC strains, 19 of which originated from asymptomatic subjects and 16 of which were from patients with uncomplicated diarrhea. stx1c was most frequently (in 23 STEC strains [63.9%]) associated with stx2d, but 12 (33.3%) of the 36 STEC strains possessed stx1c only. A single STEC strain possessed stx1c together with stx2 and was isolated from a patient with hemolytic-uremic syndrome. All 36 stx1c-positive STEC strains were eae negative and belonged to 10 different serogroups, none of which was O157, O26, O103, O111, or O145. Stx1c was produced by all stx1c-containing STEC strains, but reacted weakly with a commercial immunoassay. We conclude that STEC strains harboring the stx1c variant account for a significant proportion of human STEC isolates. The procedures developed in this study now allow the determination of the frequency of STEC strains harboring stx1c among clinical STEC isolates and their association with human disease in prospective studies.
PMCID: PMC140390  PMID: 11923370
10.  Isolation of a Lysogenic Bacteriophage Carrying the stx1OX3 Gene, Which Is Closely Associated with Shiga Toxin-Producing Escherichia coli Strains from Sheep and Humans 
Journal of Clinical Microbiology  2001;39(11):3992-3998.
A specific PCR for the detection of a variant of the gene encoding Shiga toxin 1 (stx1) called stx1OX3 (GenBank accession no. Z36901) was developed. The PCR was used to investigate 148 Stx1-producing Escherichia coli strains from human patients (n = 72), cattle (n = 27), sheep (n = 48), and a goat (n = 1) for the presence of the stx1OX3 gene. The stx1OX3 gene was present in 38 Shiga toxin-producing E. coli (STEC) strains from sheep belonging to serogroups O5, O125, O128, O146, and OX3 but was absent from Stx1-positive ovine STEC O91 strains. The stx1OX3 gene was also detected in 22 STEC strains from humans with nonbloody diarrhea and from asymptomatic excreters. Serotypes O146:H21 and O128:H2 were most frequently associated with stx1OX3-carrying STEC from sheep and humans. In contrast, Stx1-producing STEC strains from cattle and goats and 50 STEC strains from humans were all negative for the stx1OX3 gene. The stx1OX3-negative strains belonged to 13 serotypes which were different from those of the stx1OX3-positive STEC strains. Moreover, the stx1OX3 gene was not associated with STEC belonging to enterohemorrhagic E. coli (EHEC) serogroups O26, O103, O111, O118, O145, and O157. A bacteriophage carrying the stx1OX3 gene (phage 6220) was isolated from a human STEC O146:H21 strain. The phage was able to lysogenize laboratory E. coli K-12 strain C600. Phage 6220 shared a similar morphology and a high degree of DNA homology with Stx2-encoding phage 933W, which originates from EHEC O157. In contrast, few similarities were found between phage 6220 and Stx1-encoding bacteriophage H-19B from EHEC O26.
PMCID: PMC88477  PMID: 11682520
11.  Serotypes, virulence genes and intimin types of Shiga toxin (verocytotoxin)-producing Escherichia coli isolates from minced beef in Lugo (Spain) from 1995 through 2003 
BMC Microbiology  2007;7:13.
Shiga toxin-producing Escherichia coli (STEC) have emerged as pathogens that can cause food-borne infections and severe and potentially fatal illnesses in humans, such as haemorrhagic colitis (HC) and haemolytic uraemic syndrome (HUS). In Spain, like in many other countries, STEC strains have been frequently isolated from ruminants, and represent a significant cause of sporadic cases of human infection. In view of the lack of data on STEC isolated from food in Spain, the objectives of this study were to determine the level of microbiological contamination and the prevalence of STEC O157:H7 and non-O157 in a large sampling of minced beef collected from 30 local stores in Lugo city between 1995 and 2003. Also to establish if those STEC isolated from food possessed the same virulence profiles as STEC strains causing human infections.
STEC were detected in 95 (12%) of the 785 minced beef samples tested. STEC O157:H7 was isolated from eight (1.0%) samples and non-O157 STEC from 90 (11%) samples. Ninety-six STEC isolates were further characterized by PCR and serotyping. PCR showed that 28 (29%) isolates carried stx1 genes, 49 (51%) possessed stx2 genes, and 19 (20%) both stx1 and stx2. Enterohemolysin (ehxA) and intimin (eae) virulence genes were detected in 43 (45%) and in 25 (26%) of the isolates, respectively. Typing of the eae variants detected four types: γ1 (nine isolates), β1 (eight isolates), ε1 (three isolates), and θ (two isolates). The majority (68%) of STEC isolates belonged to serotypes previously detected in human STEC and 38% to serotypes associated with STEC isolated from patients with HUS. Ten new serotypes not previously described in raw beef products were also detected. The highly virulent seropathotypes O26:H11 stx1 eae-β1, O157:H7 stx1stx2 eae-γ1 and O157:H7 stx2eae-γ1, which are the most frequently observed among STEC causing human infections in Spain, were detected in 10 of the 96 STEC isolates. Furthermore, phage typing of STEC O157:H7 isolates showed that the majority (seven of eight isolates) belonged to the main phage types previously detected in STEC O157:H7 strains associated with severe human illnesses.
The results of this study do not differ greatly from those reported in other countries with regard to prevalence of O157 and non-O157 STEC in minced beef. As we suspected, serotypes different from O157:H7 also play an important role in food contamination in Spain, including the highly virulent seropathotype O26:H11 stx1 eae-β1. Thus, our data confirm minced beef in the city of Lugo as vehicles of highly pathogenic STEC. This requires that control measures to be introduced and implemented to increase the safety of minced beef.
PMCID: PMC1810539  PMID: 17331254
12.  Emerging types of Shiga toxin-producing E. coli (STEC) O178 present in cattle, deer, and humans from Argentina and Germany 
More than 400 serotypes of Shiga toxin-producing Escherichia coli (STEC) have been implicated in outbreaks and sporadic human diseases. In recent years STEC strains belonging to serogroup O178 have been commonly isolated from cattle and food of bovine origin in South America and Europe. In order to explore the significance of these STEC strains as potential human pathogens, 74 German and Argentinean E. coli O178 strains from animals, food and humans were characterized phenotypically and investigated for their serotypes, stx-genotypes and 43 virulence-associated markers by a real-time PCR-microarray. The majority (n = 66) of the O178 strains belonged to serotype O178:H19. The remaining strains divided into O178:H7 (n = 6), O178:H10 (n = 1), and O178:H16 (n = 1). STEC O178:H19 strains were mainly isolated from cattle and food of bovine origin, but one strain was from a patient with hemolytic uremic syndrome (HUS). Genotyping of the STEC O178:H19 strains by pulsed-field gel electrophoresis revealed two major clusters of genetically highly related strains which differ in their stx-genotypes and non-Stx putative virulence traits, including adhesins, toxins, and serine-proteases. Cluster A-strains including the HUS-strain (n = 35) carried genes associated with severe disease in humans (stx2a, stx2d, ehxA, saa, subAB1, lpfAO113, terE combined with stx1a, espP, iha). Cluster B-strains (n = 26) showed a limited repertoire of virulence genes (stx2c, pagC, lpfAO113, espP, iha). Among O178:H7 strains isolated from deer meat and patients with uncomplicated disease a new STEC variant was detected that is associated with the genotype stx1c/stx2b/ehxA/subAB2/espI/[terE]/espP/iha. None of the STEC O178 strains was positive for locus of enterocyte effacement (LEE)- and nle-genes. Results indicate that STEC O178:H19 strains belong to the growing group of LEE-negative STEC that should be considered with respect to their potential to cause diseases in humans.
PMCID: PMC4060028  PMID: 24987616
E. coli O178; STEC; Shiga toxins; virulence; genotyping; PFGE; real-time PCR micro array
13.  Prevalence and distribution of the stx1, stx2 genes in Shiga toxin producing E. coli (STEC) isolates from cattle 
Background and Objectives
Shiga toxin-producing Escherichia coli (STEC) strains are human pathogens linked to hemorrhagic colitis and hemolytic uremic syndrome. Shiga toxins (Stx1 and Stx2) are the major virulence factors of these strains. The aim of this work was to study the prevalence and distribution of stx 1 and stx 2 gene in E. coli O157:H7 and non-O157:H7 strains isolated from cattle in Shiraz, Iran.
Materials and Methods
Four hundred and twenty samples consisted of recto-anal mucosal swabs were collected from cattle. They were checked for the presence of the stx1 and stx2 gene using multiplex-PCR every 1 week over a 1-year period (2007-2008).
A total of 146 strains carrying the stx1 and stx2 gene were isolated from 51 (12.14%) cattle. Overall, 15 (3.57%) were identified as O157:H7 and 131 (31.19%) revealed to be non-O157:H7. Both stx2 and stx1 genes were detected in 51 (34.93%) STEC isolates. Genotypes stx1 and stx2 were detected in 15 (10.27%) and 78 (53.42%) respectively. Seasonal distribution of stx genes revealed high percentage of positive animals in warm seasons. The gene sequence similarity ranged from 94 to 100%.
Frequency of stx1 and stx2 in animals and its relation to human disease is not well understood in Iran. The high prevalence of STEC in cattle seems to parallel that which is usually observed in warm seasons and it also parallels occurrence of human STEC. The higher prevalence of the stx2 gene than stx1 in strain populations isolated from cattle indicates a risk alert of E. coli O157:H7 being shed by cattle in these populations. Appropriate measures are now needed to prevent the spread of this life-threatening foodborne disease in our country.
PMCID: PMC3279763  PMID: 22347544
STEC; stx1; stx2; cattle; Iran
14.  Differences in Shiga toxin and phage production among stx2g-positive STEC strains 
Shiga toxin-producing Escherichia coli (STEC) are characterized by the production of Shiga toxins (Stx) encoded by temperate bacteriophages. Stx production is linked to the induction of the phage lytic cycle. Several stx variants have been described and differentially associated with the risk of developing severe illness. The variant named stx2g was first identified in a STEC strain isolated from the faeces of healthy cattle. Analysis of stx2g-positive strains isolated from humans, animals, and environmental sources have shown that they have a close relationship. In this study, stx2g-positive STEC isolated from cattle were analyzed for phage and Stx production, with the aim to relate the results to differences observed in cytotoxicity. The presence of inducible phages was assessed by analyzing the bacterial growth/lysis curves and also by plaque assay. Bacterial growth curves in the absence of induction were similar for all isolates, however, notably differed among induced cultures. The two strains that clearly evidenced bacteriolysis under this condition also showed higher phage titers in plaque assays. However, only the phage plaques produced by one of these strains (FB 62) hybridized with a stx2-probe. Furthermore, the production of Stx was evaluated by enzyme immunoassay (EIA) and Western immunoblotting in overnight supernatants. By EIA, we detected Stx only in supernatants of FB 62, with a higher signal for induced than uninduced cultures. By immunoblotting, Stx2 could be detected after induction in all stx2g-positive isolates, but with lower amounts of Stx2B subunit in those supernatants where phages could not be detected. Taking into account all the results, several differences could be found among stx2g-positive strains. The strain with the highest cytotoxic titer showed higher levels of stx2-phages and toxin production by EIA, and the opposite was observed for strains that previously showed low cytotoxic titers, confirming that in stx2g-positive strains Stx production is phage-regulated.
PMCID: PMC3417572  PMID: 22919673
cytotoxicity; Stx2g; phage induction; toxin production
15.  Characterization of Shiga toxin-producing Escherichia coli (STEC) in feces of healthy and diarrheic calves in Urmia region, Iran 
Background and Objectives
Shiga toxin-producing Escherichia coli (STEC) have emerged as human pathogens and contamination of foods of animal origin has been a major public health concern. The aim of the present study was to determine the dissemination of STEC in healthy and diarrheic calves in Urmia region which is located in West Azerbaijan province, Iran.
Materials and Methods
In the current study, a total of 124 Escherichia coli isolates from clinically healthy (n = 73) and diarrheic calves (51) belonging to 6 different farms located in West Azerbaijan province, Iran, were screened by the polymerase chain reaction (PCR) assay for the presence of virulence genes characteristic for STEC, that is, Shiga-toxin producing gene(s) (stx1, stx2), intimin (eaeA) and enterohemolysin (hlyA).
STEC isolates were recovered from 21.92% (16/73) in healthy calves, and 19.6% (10/51) in diarrheic calves. Overall, PCR results showed that 6 (23.1%) isolates carried stx1 gene, 7 (26.92%) possessed stx2 gene while 13 isolates (50%) gave positive amplicon both for stx1 and stx2 genes. All stx positive isolates were assayed further to detect eaeA and hlyA sequences. Seven out of the 26 (26.92%) Shiga toxin gene positive isolates were positive for the eaeA gene, and 15 (57.69%) were positive for the hlyA gene. Both virulence genes (eaeA and hlyA) in the same isolate were observed in 5 (19.23%) of the stx + isolates. In total, diverse virulence gene profiles were detected, from which isolates with the genetic profile stx1 stx2 hlyA was the most prevalent. In addition, eaeA gene was more evident in isolates from diarrheic calves than in healthy calves.
There was no significant difference in detecting STEC isolates between healthy and diarrheic calves. It seems that calves to be the reservoir of STEC within the herds and calf management may represent specific control points for reducing STEC spread within dairy units.
PMCID: PMC3434643  PMID: 22973471
Shiga toxin; E. coli; calves; Iran
16.  Prevalence and Characterization of Shiga Toxin-Producing Escherichia coli in Swine Feces Recovered in the National Animal Health Monitoring System's Swine 2000 Study 
Applied and Environmental Microbiology  2004;70(12):7173-7178.
A study was conducted to determine the prevalence of Shiga toxin-producing Escherichia coli (STEC) in swine feces in the United States as part of the National Animal Health Monitoring System's Swine 2000 study. Fecal samples collected from swine operations from 13 of the top 17 swine-producing states were tested for the presence of STEC. After enrichment of swine fecal samples in tryptic soy broth, the samples were tested for the presence of stx1 and stx2 by use of the TaqMan E. coli STX1 and STX2 PCR assays. Enrichments of samples positive for stx1 and/or stx2 were plated, and colony hybridization was performed using digoxigenin-labeled probes complementary to the stx1 and stx2 genes. Positive colonies were picked and confirmed by PCR for the presence of the stx1, stx2, or stx2e genes, and the isolates were serotyped. Out of 687 fecal samples tested using the TaqMan assays, 70% (484 of 687) were positive for Shiga toxin genes, and 54% (370 of 687), 64% (436 of 687), and 38% (261 of 687) were positive for stx1, stx2, and both toxin genes, respectively. Out of 219 isolates that were characterized, 29 (13%) produced stx1, 14 (6%) produced stx2, and 176 (80%) produced stx2e. Twenty-three fecal samples contained at least two STEC strains that had different serotypes but that had the same toxin genes or included a strain that possessed stx1 in addition to a strain that possessed stx2 or stx2e. The STEC isolates belonged to various serogroups, including O2, O5, O7, O8, O9, OX10, O11, O15, OX18, O20, O57, O65, O68, O69, O78, O91, O96, O100, O101, O120, O121, O152, O159, O160, O163, and O untypeable. It is noteworthy that no isolates of serogroup O157 were recovered. Results of this study indicate that swine in the United States harbor STEC that can potentially cause human illness.
PMCID: PMC535163  PMID: 15574914
17.  Detection of Shiga Toxin-Producing Escherichia coli Serotypes O26:H11, O103:H2, O111:H8, O145:H28, and O157:H7 in Raw-Milk Cheeses by Using Multiplex Real-Time PCR ▿  
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are a diverse group of food-borne pathogens with various levels of virulence for humans. In this study, we describe the use of a combination of multiple real-time PCR assays for the screening of 400 raw-milk cheeses for the five main pathogenic STEC serotypes (O26:H11, O103:H2, O111:H8, O145:H28, and O157:H7). The prevalences of samples positive for stx, intimin-encoding gene (eae), and at least one of the five O group genetic markers were 29.8%, 37.3%, and 55.3%, respectively. The H2, H7, H8, H11, and H28 fliC alleles were highly prevalent and could not be used as reliable targets for screening. Combinations of stx, eae variants, and O genetic markers, which are typical of the five targeted STEC serotypes, were detected by real-time PCR in 6.5% of the cheeses (26 samples) and included stx-wzxO26-eae-β1 (4.8%; 19 samples), stx-wzxO103-eae-ɛ (1.3%; five samples), stx-ihp1O145-eae-γ1 (0.8%; three samples), and stx-rfbEO157-eae-γ1 (0.3%; one sample). Twenty-eight immunomagnetic separation (IMS) assays performed on samples positive for these combinations allowed the recovery of seven eaeβ1-positive STEC O26:H11 isolates, whereas no STEC O103:H2, O145:H28, or O157:H7 strains could be isolated. Three stx-negative and eaeβ1-positive E. coli O26:[H11] strains were also isolated from cheeses by IMS. Colony hybridization allowed us to recover STEC from stx-positive samples for 15 out of 45 assays performed, highlighting the difficulties encountered in STEC isolation from dairy products. The STEC O26:H11 isolates shared the same virulence genetic profile as enterohemorrhagic E. coli (EHEC) O26:H11, i.e., they carried the virulence-associated genes EHEC-hlyA, katP, and espP, as well as genomic O islands 71 and 122. Except for one strain, they all contained the stx1 variant only, which was reported to be less frequently associated with human cases than stx2. Pulsed-field gel electrophoresis (PFGE) analysis showed that they displayed high genetic diversity; none of them had patterns identical to those of human O26:H11 strains investigated here.
PMCID: PMC3067316  PMID: 21239543
18.  Serotypes, Virulence Genes, and Intimin Types of Shiga Toxin (Verotoxin)-Producing Escherichia coli Isolates from Cattle in Spain and Identification of a New Intimin Variant Gene (eae-ξ) 
Journal of Clinical Microbiology  2004;42(2):645-651.
A total of 514 Shiga toxin-producing Escherichia coli (STEC) isolates from diarrheic and healthy cattle in Spain were characterized in this study. PCR showed that 101 (20%) isolates carried stx1 genes, 278 (54%) possessed stx2 genes, and 135 (26%) possessed both stx1 and stx2. Enterohemolysin (ehxA) and intimin (eae) virulence genes were detected in 326 (63%) and in 151 (29%) of the isolates, respectively. STEC isolates belonged to 66 O serogroups and 113 O:H serotypes (including 23 new serotypes). However, 67% were of one of these 15 serogroups (O2, O4, O8, O20, O22, O26, O77, O91, O105, O113, O116, O157, O171, O174, and OX177) and 52% of the isolates belonged to only 10 serotypes (O4:H4, O20:H19, O22:H8, O26:H11, O77:H41, O105:H18, O113:H21, O157:H7, O171:H2, and ONT:H19). Although the 514 STEC isolates belonged to 164 different seropathotypes (associations between serotypes and virulence genes), only 12 accounted for 43% of isolates. Seropathotype O157:H7 stx2 eae-γ1 ehxA (46 isolates) was the most common, followed by O157:H7 stx1 stx2 eae-γ1 ehxA (34 isolates), O113:H21 stx2 (25 isolates), O22:H8 stx1 stx2 ehxA (15 isolates), O26:H11 stx1 eae-β1 ehxA (14 isolates), and O77:H41 stx2 ehxA (14 isolates). Forty-one (22 of serotype O26:H11) isolates had intimin β1, 82 O157:H7 isolates possessed intimin γ1, three O111:H- isolates had intimin type γ2, one O49:H- strain showed intimin type δ, 13 (six of serotype O103:H2) isolates had intimin type ɛ and eight (four of serotype O156:H-) isolates had intimin ζ. We have identified a new variant of the eae intimin gene designated ξ (xi) in two isolates of serotype O80:H-. The majority (85%) of bovine STEC isolates belonged to serotypes previously found for human STEC organisms and 54% to serotypes associated with STEC organisms isolated from patients with hemolytic uremic syndrome. Thus, this study confirms that cattle are a major reservoir of STEC strains pathogenic for humans.
PMCID: PMC344521  PMID: 14766831
19.  Identification and Characterization of a Newly Isolated Shiga Toxin 2-Converting Phage from Shiga Toxin-Producing Escherichia coli 
Infection and Immunity  1998;66(9):4100-4107.
Shiga toxins 1 (Stx1) and 2 (Stx2) are encoded by toxin-converting bacteriophages of Stx-producing Escherichia coli (STEC), and so far two Stx1- and one Stx2-converting phages have been isolated from two STEC strains (A. D. O’Brien, J. W. Newlands, S. F. Miller, R. K. Holmes, H. W. Smith, and S. B. Formal, Science 226:694–696, 1984). In this study, we isolated two Stx2-converting phages, designated Stx2Φ-I and Stx2Φ-II, from two clinical strains of STEC associated with the outbreaks in Japan in 1996 and found that Stx2Φ-I resembled 933W, the previously reported Stx2-converting phage, in its infective properties for E. coli K-12 strain C600 while Stx2Φ-II was distinct from them. The sizes of the plaques of Stx2Φ-I and Stx2Φ-II in C600 were different; the former was larger than the latter. The restriction maps of Stx2Φ-I and Stx2Φ-II were not identical; rather, Stx2Φ-II DNA was approximately 3 kb larger than Stx2Φ-I DNA. Furthermore, Stx2Φ-I and Stx2Φ-II showed different phage immunity, with Stx2Φ-I and 933W belonging to the same group. Infection of C600 by Stx2Φ-I or 933W was affected by environmental osmolarity differently from that by Stx2Φ-II. When C600 was grown under conditions of high osmolarity, the infectivity of Stx2Φ-I and 933W was greatly decreased compared with that of Stx2Φ-II. Examination of the plating efficiency of the three phages for the defined mutations in C600 revealed that the efficiency of Stx2Φ-I and 933W for the fadL mutant decreased to less than 10−7 compared with that for C600 whereas the efficiency of Stx2Φ-II decreased to 0.1% of that for C600. In contrast, while the plating efficiency of Stx2Φ-II for the lamB mutant decreased to a low level (0.05% of that for C600), the efficiencies of Stx2Φ-I and 933W were not changed. This was confirmed by the phage neutralization experiments with isolated outer membrane fractions from C600, fadL mutant, or lamB mutant or the purified His6-tagged FadL and LamB proteins. Based on the data, we concluded that FadL acts as the receptor for Stx2Φ-I and Stx2Φ-II whereas LamB acts as the receptor only for Stx2Φ-II.
PMCID: PMC108492  PMID: 9712754
20.  Presence and Characterization of Shiga Toxin-Producing Escherichia coli and Other Potentially Diarrheagenic E. coli Strains in Retail Meats▿  
To determine the presence of Shiga toxin-producing Escherichia coli (STEC) and other potentially diarrheagenic E. coli strains in retail meats, 7,258 E. coli isolates collected by the U.S. National Antimicrobial Resistance Monitoring System (NARMS) retail meat program from 2002 to 2007 were screened for Shiga toxin genes. In addition, 1,275 of the E. coli isolates recovered in 2006 were examined for virulence genes specific for other diarrheagenic E. coli strains. Seventeen isolates (16 from ground beef and 1 from a pork chop) were positive for stx genes, including 5 positive for both stx1 and stx2, 2 positive for stx1, and 10 positive for stx2. The 17 STEC strains belonged to 10 serotypes: O83:H8, O8:H16, O15:H16, O15:H17, O88:H38, ONT:H51, ONT:H2, ONT:H10, ONT:H7, and ONT:H46. None of the STEC isolates contained eae, whereas seven carried enterohemorrhagic E. coli (EHEC) hlyA. All except one STEC isolate exhibited toxic effects on Vero cells. DNA sequence analysis showed that the stx2 genes from five STEC isolates encoded mucus-activatable Stx2d. Subtyping of the 17 STEC isolates by pulsed-field gel electrophoresis (PFGE) yielded 14 distinct restriction patterns. Among the 1,275 isolates from 2006, 11 atypical enteropathogenic E. coli (EPEC) isolates were identified in addition to 3 STEC isolates. This study demonstrated that retail meats, mainly ground beef, were contaminated with diverse STEC strains. The presence of atypical EPEC strains in retail meat is also of concern due to their potential to cause human infections.
PMCID: PMC2837998  PMID: 20080990
21.  Molecular Analysis of Shiga Toxin-Producing Escherichia coli Strains Isolated from Hemolytic-Uremic Syndrome Patients and Dairy Samples in France▿  
Shiga toxin-producing Escherichia coli (STEC) has been associated with food-borne diseases ranging from uncomplicated diarrhea to hemolytic-uremic syndrome (HUS). While most outbreaks are associated with E. coli O157:H7, about half of the sporadic cases may be due to non-O157:H7 serotypes. To assess the pathogenicity of STEC isolated from dairy foods in France, 40 strains isolated from 1,130 raw-milk and cheese samples were compared with 15 STEC strains isolated from patients suffering from severe disease. The presence of genes encoding Shiga toxins (stx1, stx2, and variants), intimin (eae and variants), adhesins (bfp, efa1), enterohemolysin (ehxA), serine protease (espP), and catalase-peroxidase (katP) was determined by PCR and/or hybridization. Plasmid profiling, ribotyping, and pulsed-field gel electrophoresis (PFGE) were used to further compare the strains at the molecular level. A new stx2 variant, stx2-CH013, associated with an O91:H10 clinical isolate was identified. The presence of the stx2, eae, and katP genes, together with a combination of several stx2 variants, was clearly associated with human-pathogenic strains. In contrast, dairy food STEC strains were characterized by a predominance of stx1, with a minority of isolates harboring eae, espP, and/or katP. These associations may help to differentiate less virulent STEC strains from those more likely to cause disease in humans. Only one dairy O5 isolate had a virulence gene panel identical to that of an HUS-associated strain. However, the ribotype and PFGE profiles were not identical. In conclusion, most STEC strains isolated from dairy products in France showed characteristics different from those of strains isolated from patients.
PMCID: PMC2292610  PMID: 18245246
22.  Shiga Toxin-Producing Escherichia coli in Yaks (Bos grunniens) from the Qinghai-Tibetan Plateau, China 
PLoS ONE  2013;8(6):e65537.
Shiga toxin (Stx)-producing Escherichia coli (STEC) are recognized as important human pathogens of public health concern. Many animals are the sources of STEC. In this study we determined the occurrence and characteristics of the STEC in yaks (Bos grunniens) from the Qinghai-Tibetan plateau, China. A total of 728 yak fecal samples was collected from June to August, 2012 and was screened for the presence of the stx1 and stx2 genes by TaqMan real-time PCR after the sample was enriched in modified Tryptone Soya Broth. Of the 138 (18.96%) stx1 and/or stx2-positive samples, 85 (61.59%) were confirmed to have at least 1 STEC isolate present by culture isolation, from which 128 STEC isolates were recovered. All STEC isolates were serotyped, genotyped by pulsed-field gel electrophoresis (PFGE) and characterized for the presence of 16 known virulence factors. Fifteen different O serogroups and 36 different O:H serotypes were identified in the 128 STEC isolates with 21 and 4 untypable for the O and H antigens respectively. One stx1 subtype (stx1a) and 5 stx2 subtypes (stx2a, stx2b, stx2c, stx2d and stx2g) were present in these STEC isolates. Apart from lpfAO157/OI-141, lpfAO157/OI-154, lpfAO113, katP and toxB which were all absent, other virulence factors screened (eaeA, iha, efa1, saa, paa, cnf1, cnf2, astA, subA, exhA and espP) were variably present in the 128 STEC isolates. PFGE were successful for all except 5 isolates and separated them into 67 different PFGE patterns. For the 18 serotypes with 2 or more isolates, isolates of the same serotypes had the same or closely related PFGE patterns, demonstrating clonality of these serotypes. This study was the first report on occurrence and characteristics of STEC isolated from yaks (Bos grunniens) from the Qinghai-Tibetan plateau, China, and extended the genetic diversity and reservoir host range of STEC.
PMCID: PMC3679134  PMID: 23776496
23.  Serotypes, Virulence Genes, and Intimin Types of Shiga Toxin (Verotoxin)-Producing Escherichia coli Isolates from Healthy Sheep in Spain 
Journal of Clinical Microbiology  2003;41(4):1351-1356.
Fecal swabs obtained from 1,300 healthy lambs in 93 flocks in Spain in 1997 were examined for Shiga toxin-producing Escherichia coli (STEC). STEC O157:H7 strains were isolated from 5 (0.4%) animals in 4 flocks, and non-O157 STEC strains were isolated from 462 (36%) lambs in 63 flocks. A total of 384 ovine STEC strains were characterized in this study. PCR showed that 213 (55%) strains carried the stx1 gene, 10 (3%) possessed the stx2 gene, and 161 (42%) carried both the stx1 and the stx2 genes. Enterohemolysin (ehxA) and intimin (eae) virulence genes were detected in 106 (28%) and 23 (6%) of the STEC strains, respectively. The STEC strains belonged to 35 O serogroups and 64 O:H serotypes (including 18 new serotypes). However, 72% were of 1 of the following 12 serotypes: O5:H−, O6:H10, O91:H−, O117:H−, O128:H−, O128:H2, O136:H20, O146:H8, O146:H21, O156:H−, O166:H28, and ONT:H21 (where NT is nontypeable). Although the 384 STEC strains belonged to 95 different seropathotypes (associations between serotypes and virulence genes), 49% of strains belonged to only 11. O91:H− stx1 stx2 (54 strains) was the most common seropathotype, followed by O128:H− stx1 stx2 (33 strains) and O6:H10 stx1 (25 strains). Three strains of serotypes O26:H11, O156:H11, and OX177:H11 had intimin type β1; 5 strains of serotype O157:H7 possessed intimin type γ1; and 15 strains of serotypes O49:H−, O52:H12, O156:H− (12 strains), and O156:H25 had the new intimin, intimin type ζ. The majority (82%) of ovine STEC strains belonged to serotypes previously found to be associated with human STEC strains, and 51% belonged to serotypes associated with STEC strains isolated from patients with hemolytic-uremic syndrome. Thus, this study confirms that healthy sheep are a major reservoir of STEC strains pathogenic for humans.
PMCID: PMC153932  PMID: 12682113
24.  Antiviral Activity of Shiga Toxin 1: Suppression of Bovine Leukemia Virus-Related Spontaneous Lymphocyte Proliferation† 
Infection and Immunity  2000;68(8):4462-4469.
Human infections with Shiga toxin (Stx)-producing Escherichia coli (STEC) cause hemorrhagic colitis. The Stxs belong to a large family of ribosome-inactivating proteins (RIPs) that are found in a variety of higher plants and some bacteria. Many RIPs have potent antiviral activity for the plants that synthesize them. STEC strains, both virulent and nonvirulent to humans, are frequently isolated from healthy cattle. Interestingly, despite intensive investigations, it is not known why cattle carry STEC. We tested the hypothesis that Stx has antiviral properties for bovine viruses by assessing the impact of Stx type 1 (Stx1) on bovine peripheral blood mononuclear cells (PBMC) from cows infected with bovine leukemia virus (BLV). PBMC from BLV-positive animals invariably displayed spontaneous lymphocyte proliferation (SLP) in vitro. Stx1 or the toxin A subunit (Stx1A) strongly inhibited SLP. Toxin only weakly reduced the pokeweed mitogen- or interleukin-2-induced proliferation of PBMC from normal (BLV-negative) cows and had no effect on concanavalin A-induced proliferation. The toxin activity in PBMC from BLV-positive cattle was selective for viral SLP and did not abrogate cell response to pokeweed mitogen- or interleukin-2-induced proliferation. Antibody to virus or Stx1A was most effective at inhibiting SLP if administered at the start of cell culture, indicating that both reagents likely interfere with BLV-dependent initiation of SLP. Stx1A inhibited expression of BLV p24 protein by PBMC. A well-defined mutant Stx1A (E167D) that has decreased catalytic activity was not effective at inhibiting SLP, suggesting the inhibition of protein synthesis is likely the mechanism of toxin antiviral activity. Our data suggest that Stx has potent antiviral activity and may serve an important role in BLV-infected cattle by inhibiting BLV replication and thus slowing the progression of infection to its malignant end stage.
PMCID: PMC98349  PMID: 10899843
25.  Serotypes, Virulence Genes, and Intimin Types of Shiga Toxin (Verotoxin)-Producing Escherichia coli Isolates from Human Patients: Prevalence in Lugo, Spain, from 1992 through 1999 
Journal of Clinical Microbiology  2004;42(1):311-319.
We have analyzed the prevalence of Shiga toxin-producing Escherichia coli (STEC) in stool specimens of patients with diarrhea or other gastrointestinal alterations from the Xeral-Calde Hospital of Lugo City (Spain). STEC strains were detected in 126 (2.5%) of 5,054 cases investigated, with a progressive increase in the incidence from 0% in 1992 to 4.4% in 1999. STEC O157:H7 was isolated in 24 cases (0.5%), whereas non-O157 STEC strains were isolated from 87 patients (1.7%). STEC strains were (after Salmonella and Campylobacter strains) the third most frequently recovered enteropathogenic bacteria. A total of 126 human STEC isolates were characterized in this study. PCR showed that 43 (34%) isolates carried stx1 genes, 45 (36%) possessed stx2 genes and 38 (30%) carried both stx1 and stx2. A total of 88 (70%) isolates carried an ehxA enterohemolysin gene, and 70 (56%) isolates possessed an eae intimin gene (27 isolates with type γ1, 20 with type β1, 8 with type ζ, 5 with type γ2, and 3 with type ɛ). STEC isolates belonged to 41 O serogroups and 66 O:H serotypes, including 21 serotypes associated with hemolytic uremic syndrome and 30 new serotypes not previously reported among human STEC strains in other studies. Although the 126 STEC isolates belonged to 81 different seropathotypes (associations between serotypes and virulence genes), only four accounted for 31% of isolates. Seropathotype O157:H7 stx1 stx2 eae-γ1 ehxA was the most common (13 isolates) followed by O157:H7 stx2 eae-γ1 ehxA (11 isolates), O26:H11 stx1 eae-β1 ehxA (11 isolates), and O111:H- stx1 stx2 eae-γ2 ehxA (4 isolates). Our results suggest that STEC strains are a significant cause of human infections in Spain and confirm that in continental Europe, infections caused by STEC non-O157 strains are more common than those caused by O157:H7 isolates. The high prevalence of STEC strains (both O157:H7 and non-O157 strains) in human patients, and their association with serious complications, strongly supports the utilization of protocols for detection of all serotypes of STEC in Spanish clinical microbiology laboratories.
PMCID: PMC321739  PMID: 14715771

Results 1-25 (1229690)