PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (668713)

Clipboard (0)
None

Related Articles

1.  Blockade of maitotoxin-induced oncotic cell death reveals zeiosis 
BMC Physiology  2002;2:2.
Background
Maitotoxin (MTX) initiates cell death by sequentially activating 1) Ca2+ influx via non-selective cation channels, 2) uptake of vital dyes via formation of large pores, and 3) release of lactate dehydrogenase, an indication of cell lysis. MTX also causes formation of membrane blebs, which dramatically dilate during the cytolysis phase. To determine the role of phospholipase C (PLC) in the cell death cascade, U73122, a specific inhibitor of PLC, and U73343, an inactive analog, were examined on MTX-induced responses in bovine aortic endothelial cells.
Results
Addition of either U73122 or U73343, prior to MTX, produced a concentration-dependent inhibition of the cell death cascade (IC50 ≈ 1.9 and 0.66 μM, respectively) suggesting that the effect of these agents was independent of PLC. Addition of U73343 shortly after MTX, prevented or attenuated the effects of the toxin, but addition at later times had little or no effect. Time-lapse videomicroscopy showed that U73343 dramatically altered the blebbing profile of MTX-treated cells. Specifically, U73343 blocked bleb dilation and converted the initial blebbing event into "zeiosis", a type of membrane blebbing commonly associated with apoptosis. Cells challenged with MTX and rescued by subsequent addition of U73343, showed enhanced caspase-3 activity 48 hr after the initial insult, consistent with activation of the apoptotic program.
Conclusions
Within minutes of MTX addition, endothelial cells die by oncosis. Rescue by addition of U73343 shortly after MTX showed that a small percentage of cells are destined to die by oncosis, but that a larger percentage survive; cells that survive the initial insult exhibit zeiosis and may ultimately die by apoptotic mechanisms.
doi:10.1186/1472-6793-2-2
PMCID: PMC65053  PMID: 11825342
2.  Protein release through nonlethal oncotic pores as an alternative nonclassical secretory pathway 
BMC Cell Biology  2011;12:46.
Background
Nonclassical (unconventional) protein secretion is thought to represent the primary secretion mechanism for several cytosolic proteins, such as HIV-Tat, galectin 1, interleukin-1β, and several proteins that shuttle between the nucleus and cytosol, such as fibroblast growth factor 1 (FGF1), FGF2, and nucleolin. Four nonclassical secretory pathways have been described including direct transport (presumably through transporters in the plasma membrane), secretion via exosomes, lysosomal secretion, and blebbing. The purpose of this study was to gain mechanistic insight into nonclassical protein secretion using phosphoglycerate kinase 1 (PGK1), a previously identified nonclassical secretory protein, as a reporter protein.
Results
Upon shifting HeLa cells into serum-free media PGK1 was released as a free soluble protein without cell loss. Release occurred in two phases: a rapid early phase and a slow late phase. Using a repertory of inhibitors, PGK1 release was shown not to rely on the classical secretory pathway. However, components of the cytoskeleton partially contributed to its release. Significantly, the presence of serum or bovine serum albumin in the media inhibited PGK1 release.
Conclusions
These results are consistent with a novel model of protein release termed oncotic release, in which a change in the colloidal osmotic pressure (oncotic pressure) upon serum withdrawal creates nonlethal oncotic pores in the plasma membrane through which PGK1 - and likely other nearby proteins - are released before the pores are rapidly resealed. These findings identify an alternative mechanism of release for FGF1, HIV-Tat, and galectin 1 whose reported nonclassical secretion is induced by serum withdrawal. Oncotic release may occur in routine cell biological experiments during which cells are washed with serum-free buffers or media and in pathophysiological conditions, such as edema, during which extracellular protein concentrations change.
doi:10.1186/1471-2121-12-46
PMCID: PMC3217904  PMID: 22008609
3.  Cell surface changes and enzyme release during hypoxia and reoxygenation in the isolated, perfused rat liver 
The Journal of Cell Biology  1983;97(3):778-786.
We examined the effects of hypoxia and reoxygenation in isolated, perfused rat livers. Hypoxia induced by a low rate of perfusion led to near anoxia confined to centrilobular regions of the liver lobule. Periportal regions remained normoxic. Within 15 min, anoxic centrilobular hepatocytes developed surface blebs that projected into sinusoids through endothelial fenestrations. Periportal hepatocytes were unaffected. Both scanning and transmission electron microscopy suggested that blebs developed by transformation of preexisting microvilli. Upon reoxygenation by restoration of a high rate of perfusion, blebs disappeared. Other changes included marked shrinkage of hepatocytes, enlargement of sinusoids, and dilation of sinusoidal fenestrations. There was also an abrupt increase in the release of lactate dehydrogenase and protein after reoxygenation, and cytoplasmic fragments corresponding in size and shape to blebs were recovered by filtration of the effluent perfusate. We also studied phalloidin and cytochalasin D, agents that disrupt the cytoskeleton. Both substances at micromolar concentrations caused rapid and profound alterations of cell surface topography. We conclude that hepatic tissue is quite vulnerable to hypoxic injury. The morphological expression of hypoxic injury seems mediated by changes in the cortical cytoskeleton. Reoxygenation causes disappearance of blebs and paradoxically causes disruption of cellular volume control and release of blebs as cytoplasmic fragments. Such cytoplasmic shedding provides a mechanism for selective release of hepatic enzymes by injured liver tissue.
PMCID: PMC2112554  PMID: 6684126
4.  Peripheral hyaline blebs (podosomes) of macrophages 
The Journal of Cell Biology  1977;75(3):941-955.
The plasmalemma and hyaline ectoplasm together constitute the sensory and motor organ of macrophages. The purpose of this study was to isolate this cell fraction in order to analyze it biochemically and functionally. Brief sonification of warmed rabbit lung macrophages caused release of heterodisperse hyaline blebs and filopodia, which were easily collected by differential centrifugation. Viewed in the electron microscope, these structures consisted of membrane-bounded sacs principally containing actin filaments. Some contained secondary lysosomes. They were enriched threefold over whole cell homogenates in specific adenylate cyclase activity and in trichloroacetic-acid-precipitable (125)I when derived from cells labeled with 125(I) by means of a lactoperoxidase-catalyzed reaction. These markers were found to have identical isopycnic densitites when macrophage homogenates were subjected to sedimentation in a focusing sucrose density gradient system, and these markers had densities distinct from those of other cytoplasmic organelles. These markers were therefore assumed to be associated with macrophage plasma membranes. The specific β- glucuronidase activity of the bleb fraction was similar to that of homogenates, but the blebs had considerably lower specific succinic dehydrogenase activity and RNA content, and DNA was undetectable. Electrophoresis of blebs solubilized in sodium dodecyl sulfate on polyacrylamide gels revealed polypeptides co-migrating with macrophage actin-binding protein, myosin, and actin; blebs also had EDTA-activated adenosine triphosphatase activity characteristic of myosin. The concentrations of actin-binding protein and myosin were higher in blebs than in cells or cytoplasmic extracts, whereas actin concentrations were similar (relative to extracts) or only slightly greater (than in cells). Blebs and intact cells had high lactate dehydrogenase activities in the presence but not the absence of Triton X-100. Blebs and cells oxidased 1-[(14)C]glucose, and the rate of glucose oxidation was increased substantially in the presence of latex beads. We conclude that intact sacs of plasmalemma encasing contractile proteins and cytoplasmic enzymes can be isolated from macrophages. They are enriched in myosin and actin-binding protein, indicating that the contractile apparatus is regulated in the cell periphery. These structures have the capacity to respond to environmental signals. We suggest the name "podosomes" for them because of their resemblance to macrophage pseudopodia. We propose that podosome formation results from rapid dissolution of the cortical gel when the membrane is in an actively extended configuration.
PMCID: PMC2111601  PMID: 925088
5.  Cell killing by lysosomotropic detergents 
The Journal of Cell Biology  1983;97(6):1841-1851.
We have studied the mechanism by which lysosomotropic detergents kill baby hamster kidney cells. Lysosomotropic detergents are lysosomotropic amines (compounds with pK between 5 and 9, such as imidazole or morpholine) containing straight-chain hydrocarbon "tails" of 9-14 carbon atoms (Firestone, R. A., J. M. Pisano, and R. J. Bonney. 1979, J. Med. Chem., 22:1130-1133). Using lucifer yellow CH as a specific fluorescent label for lysosomes, it was shown by light microscopy that N-dodecyl (C12)-imidazole acted rapidly to damage lysosomes, causing leakage of dye into the cytoplasm. This was followed at later times by vacuolization, blebbing of the plasma membrane, cell rounding, and cell death. 3H-labeled C12-imidazole rapidly diffused into cells where much of it was trapped in lysosomes as shown by its co-migration with lysosomes in Percoll gradients. Cells preincubated with C12-imidazole released it slowly into C12-imidazole-free media, permitting the cells to be killed by the preincubation dose. Cell killing by the lysosomotropic detergents exhibited strongly sigmoidal dose-response curves. The sensitivity of baby hamster kidney cells to killing by C12- imidazole was density dependent, the cells being most sensitive at lowest cell densities, and relatively resistant at confluence. The amount of 3H-C12-imidazole taken up by the cells was also density dependent, with highest specific uptake occurring at the lowest cell density. A rise in lysosomal pH, measured in fluoresceinated dextran- labeled cells, commenced immediately upon addition of C12-imidazole to cells, and continued for over an hour. This was followed after a lag of 1-2 h by inhibition of protein and RNA synthesis and by lactate dehydrogenase release. Ionophores or lysosomotropic amines, such as methylamine, that raise intralysosomal pH provided substantial protection of the cells from killing by lysosomotropic detergents. These findings provide strong support for the idea that lysosomotropic detergents kill cells by disrupting lysosomes from within.
PMCID: PMC2112709  PMID: 6196369
6.  In-Vitro and in-Silico characterization of Sophora interrupta plant extract as an anticancer activity 
Bioinformation  2014;10(3):144-151.
Sophora interrupta belongs to the family of Fabaceae and the species in this genus have a diverse medicinal importance as a folk medicine for preventing many ailments including cancer. In order to evaluate the anticancer activity of S.interrupta, we have performed in vitro anti-oxidant, anti-inflammatory, anti-proliferative, and cell based anticancer activity in MCF-7 and PC-3 cell lines. Secondary metabolites of S.interrupta were used to identify anticancer compounds using Open Eye software. The antioxidant activity of the S.interrupta root ethylacetate (SEA) extract at 100 µg/ml is equal to that of ascorbic acid at 50 µg/ml. The antiinflammatory activity of SEA is half of that of diclofenac at 50 µg/ml. Anticancer activity was detected by measuring the mitochondrial dehydrogenase activity (MTT assay). The half maximal inhibitory concentrations (IC50) for MCF-7 and PC-3 cell lines are 250 and 700 µg/ml respectively. This was supported by the morphological changes such as membrane blebbing, cell detachment and rounded cell morphology when compared to the parental cells. In addition, we observed few green cells (live) over red cells (dead) based on the uptake of acridine orange and ethidium bromide dyes. Kaempferol-3-O-b-D-glucopyranoside, a Secondary metabolite of S.interrupta form 6 hydrogen bond interactions with Arg 202, Gln 207, Gly 227, Gly 229, Thr 231 and Ala 232 human DEAD box RNA helicase, DDX3 protein and is equivalent to crystal structure of adenosine mono phosphate to DDX3. Overall, it suggests that the SEA extract has anticancer compounds, and it can be used to enhance death receptor mediated cancer cell death.
doi:10.6026/97320630010144
PMCID: PMC3974241  PMID: 24748754
Sophora interrupta; Apoptosis; cancer cell lines; DDX3
7.  The Second Transmembrane Domain of P2X7 Contributes to Dilated Pore Formation 
PLoS ONE  2013;8(4):e61886.
Activation of the purinergic receptor P2X7 leads to the cellular permeability of low molecular weight cations. To determine which domains of P2X7 are necessary for this permeability, we exchanged either the C-terminus or portions of the second transmembrane domain (TM2) with those in P2X1 or P2X4. Replacement of the C-terminus of P2X7 with either P2X1 or P2X4 prevented surface expression of the chimeric receptor. Similarly, chimeric P2X7 containing TM2 from P2X1 or P2X4 had reduced surface expression and no permeability to cationic dyes. Exchanging the N-terminal 10 residues or C-terminal 14 residues of the P2X7 TM2 with the corresponding region of P2X1 TM2 partially restored surface expression and limited pore permeability. To further probe TM2 structure, we replaced single residues in P2X7 TM2 with those in P2X1 or P2X4. We identified multiple substitutions that drastically changed pore permeability without altering surface expression. Three substitutions (Q332P, Y336T, and Y343L) individually reduced pore formation as indicated by decreased dye uptake and also reduced membrane blebbing in response to ATP exposure. Three others substitutions, V335T, S342G, and S342A each enhanced dye uptake, membrane blebbing and cell death. Our results demonstrate a critical role for the TM2 domain of P2X7 in receptor function, and provide a structural basis for differences between purinergic receptors.
doi:10.1371/journal.pone.0061886
PMCID: PMC3629090  PMID: 23613968
8.  Apoptotic Membrane Blebbing Is Regulated by Myosin Light Chain Phosphorylation  
The Journal of Cell Biology  1998;140(3):627-636.
The evolutionarily conserved execution phase of apoptosis is defined by characteristic changes occurring during the final stages of death; specifically cell shrinkage, dynamic membrane blebbing, condensation of chromatin, and DNA fragmentation. Mechanisms underlying these hallmark features of apoptosis have previously been elusive, largely because the execution phase is a rapid event whose onset is asynchronous across a population of cells. In the present study, a model system is described for using the caspase inhibitor, z-VAD-FMK, to block apoptosis and generate a synchronous population of cells actively extruding and retracting membrane blebs. This model system allowed us to determine signaling mechanisms underlying this characteristic feature of apoptosis. A screen of kinase inhibitors performed on synchronized blebbing cells indicated that only myosin light chain kinase (MLCK) inhibitors decreased blebbing. Immunoprecipitation of myosin II demonstrated that myosin regulatory light chain (MLC) phosphorylation was increased in blebbing cells and that MLC phosphorylation was prevented by inhibitors of MLCK. MLC phosphorylation is also mediated by the small G protein, Rho. C3 transferase inhibited apoptotic membrane blebbing, supporting a role for a Rho family member in this process. Finally, blebbing was also inhibited by disruption of the actin cytoskeleton. Based on these results, a working model is proposed for how actin/myosin II interactions cause cell contraction and membrane blebbing. Our results provide the first evidence that MLC phosphorylation is critical for apoptotic membrane blebbing and also implicate Rho signaling in these active morphological changes. The model system described here should facilitate future studies of MLCK, Rho, and other signal transduction pathways activated during the execution phase of apoptosis.
PMCID: PMC2140178  PMID: 9456322
9.  P2X7 Receptor-mediated Membrane Blebbing in Salivary Epithelial Cells 
High concentrations of ATP induce membrane blebbing. However, the underlying mechanism involved in epithelial cells remains unclear. In this study, we investigated the role of the P2X7 receptor (P2X7R) in membrane blebbing using Par C5 cells. We stimulated the cells with 5 mM of ATP for 1~2 hrs and found the characteristics of membrane blebbing, a hallmark of apoptotic cell death. In addition, 500 µM Bz-ATP, a specific P2X7R agonist, induced membrane blebbing. However, 300 µM of Ox-ATP, a P2X7R antagonist, inhibited ATP-induced membrane blebbing, suggesting that ATP-induced membrane blebbing is mediated by P2X7R. We found that ATP-induced membrane blebbing was mediated by ROCK I activation and MLC phosphorylation, but not by caspase-3. Five mM of ATP evoked a biphasic [Ca2+]i response; a transient [Ca2+]i peak and sustained [Ca2+]i increase secondary to ATP-stimulated Ca2+ influx. These results suggest that P2X7R plays a role in membrane blebbing of the salivary gland epithelial cells.
doi:10.4196/kjpp.2009.13.3.175
PMCID: PMC2766740  PMID: 19885034
P2X7 receptor; Membrane blebbing; ROCKI; Ca2+ influx
10.  Extracellular ATP Causes ROCK I-dependent Bleb Formation in P2X7-transfected HEK293 CellsV⃞ 
Molecular Biology of the Cell  2003;14(7):2655-2664.
The P2X7 ATP receptor mediates the cytotoxic effect of extracellular ATP. P2X7-dependent cell death is heralded by dramatic plasma membrane bleb formation. Membrane blebbing is a complex phenomenon involving as yet poorly characterized intracellular pathways. We have investigated the effect of extracellular ATP on HEK293 cells transfected with the cytotoxic/pore-forming P2X7 receptor. Addition of ATP to P2X7-transfected, but not to wt P2X7-less, HEK293 cells caused massive membrane blebbing within 1–2 min. UTP, a nucleotide incapable of activating P2X7, had no early effects on cell shape and bleb formation. Bleb formation triggered by ATP was reversible and required extracellular Ca2+ and an intact cytoskeleton. Furthermore, it was completely prevented by preincubation with the P2X blocker oxidized ATP. It was recently observed that the ROCK protein is a key determinant of bleb formation. Preincubation of HEK293-P2X7 cells with the ROCK blocker Y-27632 completely prevented P2X7-dependent blebbing. Although ATP triggered cleavage of the ROCK I isoform in P2X7-transfected HEK293 cells, the wide range caspase inhibitor z-VAD-fluoromethylketone had no effect. These observations suggest that P2X7-dependent plasma membrane blebbing depends on the activation of the serine/threonine kinase ROCK I.
doi:10.1091/mbc.02-04-0061
PMCID: PMC165666  PMID: 12857854
11.  RELEASE OF ENDOTOXIN IN THE FORM OF CELL WALL BLEBS DURING IN VITRO GROWTH OF NEISSERIA MENINGITIDIS 
The Journal of Experimental Medicine  1973;138(5):1156-1167.
Multiple cell wall blebs were observed on the surface of three strains of N. meningitidis taken from log phase cultures. The blebs originated as evaginations of the outer layer of the cell wall. Bleb production was noted on both defined or complex media either as broth or a solid medium. The addition of 10% normal bovine serum to the various media did not affect the production and release of these surface blebs. However, as broth cultures progressed into the stationary phase of growth, the blebs disappeared from the surface of the cells. Blebs were present in substantial quantities in culture supernatant fluids and on cell surfaces and were readily isolated by ultracentrifugation. Analysis for 2-keto-3-deoxyoctonate in cultures revealed that 18% of the total endotoxin of log phase cultures was present in blebs from the cell wall.
PMCID: PMC2139435  PMID: 4200775
12.  Blebs produced by actin–myosin contraction during apoptosis release damage-associated molecular pattern proteins before secondary necrosis occurs 
Cell Death and Differentiation  2013;20(10):1293-1305.
Apoptosis is a fundamental homeostatic mechanism essential for the normal growth, development and maintenance of every tissue and organ. Dying cells have been defined as apoptotic by distinguishing features, including cell contraction, nuclear fragmentation, blebbing, apoptotic body formation and maintenance of intact cellular membranes to prevent massive protein release and consequent inflammation. We now show that during early apoptosis limited membrane permeabilization occurs in blebs and apoptotic bodies, which allows release of proteins that may affect the proximal microenvironment before the catastrophic loss of membrane integrity during secondary necrosis. Blebbing, apoptotic body formation and protein release during early apoptosis are dependent on ROCK and myosin ATPase activity to drive actomyosin contraction. We identified 231 proteins released from actomyosin contraction-dependent blebs and apoptotic bodies by adapted SILAC (stable isotope labeling with amino acids in cell culture) combined with mass spectrometry analysis. The most enriched proteins released were the nucleosomal histones, which have previously been identified as damage-associated molecular pattern proteins (DAMPs) that can initiate sterile inflammatory responses. These results indicate that limited membrane permeabilization occurs in blebs and apoptotic bodies before secondary necrosis, leading to acute and localized release of immunomodulatory proteins during the early phase of active apoptotic membrane blebbing. Therefore, the shift from apoptosis to secondary necrosis is more graded than a simple binary switch, with the membrane permeabilization of apoptotic bodies and consequent limited release of DAMPs contributing to the transition between these states.
doi:10.1038/cdd.2013.69
PMCID: PMC3770329  PMID: 23787996
apoptosis; blebbing; actomyosin cytoskeleton; DAMPs
13.  Interaction of c-Cbl with Myosin IIA Regulates Bleb Associated Macropinocytosis of Kaposi's Sarcoma-Associated Herpesvirus 
PLoS Pathogens  2010;6(12):e1001238.
KSHV is etiologically associated with Kaposi's sarcoma (KS), an angioproliferative endothelial cell malignancy. Macropinocytosis is the predominant mode of in vitro entry of KSHV into its natural target cells, human dermal microvascular endothelial (HMVEC-d) cells. Although macropinocytosis is known to be a major route of entry for many viruses, the molecule(s) involved in the recruitment and integration of signaling early during macropinosome formation is less well studied. Here we demonstrate that tyrosine phosphorylation of the adaptor protein c-Cbl is required for KSHV induced membrane blebbing and macropinocytosis. KSHV induced the tyrosine phosphorylation of c-Cbl as early as 1 min post-infection and was recruited to the sites of bleb formation. Infection also led to an increase in the interaction of c-Cbl with PI3-K p85 in a time dependent manner. c-Cbl shRNA decreased the formation of KSHV induced membrane blebs and macropinocytosis as well as virus entry. Immunoprecipitation of c-Cbl followed by mass spectrometry identified the interaction of c-Cbl with a novel molecular partner, non-muscle myosin heavy chain IIA (myosin IIA), in bleb associated macropinocytosis. Phosphorylated c-Cbl colocalized with phospho-myosin light chain II in the interior of blebs of infected cells and this interaction was abolished by c-Cbl shRNA. Studies with the myosin II inhibitor blebbistatin demonstrated that myosin IIA is a biologically significant component of the c-Cbl signaling pathway and c-Cbl plays a new role in the recruitment of myosin IIA to the blebs during KSHV infection. Myosin II associates with actin in KSHV induced blebs and the absence of actin and myosin ubiquitination in c-Cbl ShRNA cells suggested that c-Cbl is also responsible for the ubiquitination of these proteins in the infected cells. This is the first study demonstrating the role of c-Cbl in viral entry as well as macropinocytosis, and provides the evidence that a signaling complex containing c-Cbl and myosin IIA plays a crucial role in blebbing and macropinocytosis during viral infection and suggests that targeting c-Cbl could lead to a block in KSHV infection.
Author Summary
KSHV is etiologically associated with Kaposi's sarcoma (KS), the most common AIDS related neoplasm. The first key step in KSHV infection is its initial contact with target cells and entry. While it is known that KSHV uses macropinocytosis for its infectious entry into its natural target cells, HMVEC-d cells, we know little about the molecule(s) involved in this event. Here, we show that the adaptor protein c-Cbl plays a major role in regulating bleb associated macropinocytosis of KSHV. The results demonstrate that c-Cbl protein functions as an adaptor for the myosin II hexameric complex in macropinocytic events. Knocking down c-Cbl by shRNA induces defects in myosin II dependent blebbing and KSHV entry, indicating that c-Cbl uses myosin II to coordinate signaling pathways, resulting in bleb formation and bleb retraction. This work provides a clear understanding of the role of c-Cbl in the recruitment and integration of signaling molecules around the macropinosome during virus infection, and identifies potential targets to intervene in KSHV infection.
doi:10.1371/journal.ppat.1001238
PMCID: PMC3009604  PMID: 21203488
14.  Anthrolysin O and fermentation products mediate the toxicity of Bacillus anthracis to lung epithelial cells under microaerobic conditions 
Bacillus anthracis generates virulence factors such as lethal and edema toxins, capsule, and hemolytic proteins under conditions of reduced oxygenation. Here, we report on the acute cytotoxicity of culture supernatants (Sups) of six nonencapsulated B. anthracis strains grown till the stationary phase under static microaerobic conditions. Human small airway epithelial, umbilical vein endothelial, Caco-2, and Hep-G2 cells were found to be susceptible. Sups displayed a reduction of pH to 5.3–5.5, indicating the onset of acid anaerobic fermentation; however, low pH itself was not a major factor of toxicity. The pore-forming hemolysin, anthrolysin O (ALO), contributed to the toxicity in a concentration-dependent manner. Its effect was found to be synergistic with a metabolic product of B. anthracis, succinic acid. Cells exposed to Sups demonstrated cytoplasmic membrane blebbing, increased permeability, loss of ATP, mitochondrial membrane potential collapse, and arrest of cell respiration. The toxicity was reduced by inhibition of ALO by cholesterol, decomposition of reactive oxygen species, and inhibition of mitochondrial succinate dehydrogenase. Cell death appears to be caused by an acute primary membrane permeabilization by ALO, followed by a burst of reactive radicals from the mitochondria fuelled by the succinate, which is generated by bacteria in the hypoxic environment. This mechanism of metabolic toxicity is relevant to the late-stage conditions of hypoxia and acidosis found in anthrax patients and might operate at anatomical locations of the host deprived from oxygen supply.
doi:10.1111/j.1574-695X.2010.00740.x
PMCID: PMC3040846  PMID: 20946354
pore-forming toxin; oxidative stress; anthrax; lung epithelium
15.  Chlamydophila pneumoniae derived from inclusions late in the infectious cycle induce aponecrosis in human aortic endothelial cells 
BMC Microbiology  2008;8:32.
Background
Atherosclerosis is still the leading cause of death in the western world. Besides known risk factors studies demonstrating Chlamydophila pneumoniae (C. pneumoniae) to be implicated in the progression of the disease, little is known about C. pneumoniae infection dynamics. We investigated whether C. pneumoniae induce cell death of human aortic endothelial cells, a cell type involved in the initiation of atherosclerosis, and whether chlamydial spots derive from inclusions.
Results
Lactate dehydrogenase release revealed host cell death to be dependent on the amounts of Chlamydia used for infection. The morphology of lysed human aortic endothelial cells showed DNA strand breaks simultaneously with cell membrane damage exclusively in cells carrying Chlamydia as spots. Further ultrastructural analysis revealed additional organelle dilation, leading to the definition as aponecrotic cell death of endothelial cells. Exclusive staining of the metabolic active pathogens by chlamydial heat shock protein 60 labelling and ceramide incorporation demonstrated that the bacteria responsible for the induction of aponecrosis had resided in former inclusions. Furthermore, a strong pro-inflammatory molecule, high mobility group box protein 1, was shown to be released from aponecrotic host cells.
Conclusion
From the data it can be concluded that aponecrosis inducing C. pneumoniae stem from inclusions, since metabolically active bacterial spots are strongly associated with aponecrosis late in the infectious cycle in vascular endothelial cells and metabolic activity was exclusively located inside of inclusions in intact cells. Vice versa initial spot-like infection with metabolically inert bacteria does not have an effect on cell death induction. Hence, C. pneumoniae infection can contribute to atherosclerosis by initial endothelial damage.
doi:10.1186/1471-2180-8-32
PMCID: PMC2275732  PMID: 18284660
16.  DIDS Prevents Ischemic Membrane Degradation in Cultured Hippocampal Neurons by Inhibiting Matrix Metalloproteinase Release 
PLoS ONE  2012;7(8):e43995.
During stroke, cells in the infarct core exhibit rapid failure of their permeability barriers, which releases ions and inflammatory molecules that are deleterious to nearby tissue (the penumbra). Plasma membrane degradation is key to penumbral spread and is mediated by matrix metalloproteinases (MMPs), which are released via vesicular exocytosis into the extracellular fluid in response to stress. DIDS (4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid) preserves membrane integrity in neurons challenged with an in vitro ischemic penumbral mimic (ischemic solution: IS) and we asked whether this action was mediated via inhibition of MMP activity. In cultured murine hippocampal neurons challenged with IS, intracellular proMMP-2 and -9 expression increased 4–10 fold and extracellular latent and active MMP isoform expression increased 2–22 fold. MMP-mediated extracellular gelatinolytic activity increased ∼20–50 fold, causing detachment of 32.1±4.5% of cells from the matrix and extensive plasma membrane degradation (>60% of cells took up vital dyes and >60% of plasma membranes were fragmented or blebbed). DIDS abolished cellular detachment and membrane degradation in neurons and the pathology-induced extracellular expression of latent and active MMPs. DIDS similarly inhibited extracellular MMP expression and cellular detachment induced by the pro-apoptotic agent staurosporine or the general proteinase agonist 4-aminophenylmercuric acetate (APMA). Conversely, DIDS-treatment did not impair stress-induced intracellular proMMP production, nor the intracellular cleavage of proMMP-2 to the active form, suggesting DIDS interferes with the vesicular extrusion of MMPs rather than directly inhibiting proteinase expression or activation. In support of this hypothesis, an antagonist of the V-type vesicular ATPase also inhibited extracellular MMP expression to a similar degree as DIDS. In addition, in a proteinase-independent model of vesicular exocytosis, DIDS prevented stimulus-evoked release of von Willebrand Factor from human umbilical vein endothelial cells. We conclude that DIDS inhibits MMP exocytosis and through this mechanism preserves neuronal membrane integrity during pathological stress.
doi:10.1371/journal.pone.0043995
PMCID: PMC3427179  PMID: 22937143
17.  Extracellular ATP Is Cytotoxic to Mononuclear Phagocytes but Does Not Induce Killing of Intracellular Mycobacterium avium subsp. paratuberculosis▿  
Mycobacterium avium subsp. paratuberculosis is the etiologic agent of Johne's disease, a chronic granulomatous enteritis in ruminants. ATP has been reported to induce cell death of macrophages and killing of Mycobacterium species in human and murine macrophages. In this study we investigated the short-term effect of ATP on the viability of M. avium subsp. paratuberculosis-infected bovine mononuclear phagocytes and the bacilli within them. Addition of 5 mM ATP to M. avium subsp. paratuberculosis-infected bovine monocytes resulted in 50% cytotoxicity of bovine monocytes at 24 h. Addition of 2′(3′)-O-(4-benzoylbenzoyl) ATP triethylammonium salt (Bz-ATP), which is a longer-lived ATP homologue and purinergic receptor agonist, significantly increased the uptake of YO-PRO, which is a marker for membrane pore activation by P2X receptors. Addition of Bz-ATP also stimulated lactate dehydrogenase release and caspase-3 activity in infected bovine monocytes. Neither ATP nor Bz-ATP reduced the survival of M. avium subsp. paratuberculosis in bovine mononuclear phagocytes. Likewise, addition of ATP or Bz-ATP was cytotoxic to murine macrophage cell lines (RAW 264.7 and J774A.1 cells) but did not affect the intracellular survival of M. avium subsp. paratuberculosis, nor were the numbers of viable Mycobacterium avium subsp. avium or Mycobacterium bovis BCG cells altered in bovine mononuclear phagocytes or J774A.1 cells following ATP or Bz-ATP treatment. These data suggest that extracellular ATP does not induce the killing of intracellular M. avium subsp. paratuberculosis in bovine mononuclear phagocytes.
doi:10.1128/CVI.00166-07
PMCID: PMC2043304  PMID: 17634511
18.  Pasteurella haemolytica leukotoxin induces bovine leukocytes to undergo morphologic changes consistent with apoptosis in vitro. 
Infection and Immunity  1996;64(7):2687-2694.
Infection of the bovine lung with Pasteurella haemolytica results in an acute respiratory disorder known as pneumonic pasteurellosis. One of the key virulence determinants used by this bacterium is secretion of an exotoxin that is specific for ruminant leukocytes (leukotoxin). At low concentrations, the leukotoxin can activate ruminant leukocytes, whereas at higher concentrations, it inhibits leukocyte functions and is cytolytic, presumably as a result of pore formation and subsequent membrane permeabilization. We have investigated the possibility that the activation-inhibition paradox is explained in part by leukotoxin-mediated apoptosis (i.e., activation-induced cell death) of bovine leukocytes. Incubation of bovine leukocytes with P. haemolytica leukotoxin caused marked cytoplasmic membrane blebbing (zeiosis) and chromatin condensation and margination, both of which are hallmarks of apoptosis. The observed morphologic changes in bovine leukocytes were leukotoxin dependent, because they were significantly diminished in the presence of an anti-leukotoxin monoclonal antibody. In addition, bovine leukocytes incubated with culture supernatant from a mutant strain of P. haemolytica that does not produce any detectable leukotoxin failed to exhibit the morphologic changes characteristic of cells undergoing apoptosis. These observations may represent an important mechanism by which P. haemolytica overwhelms host defenses, contributing to the fibrinous pleuropneumonia characteristic of bovine pasteurellosis.
PMCID: PMC174127  PMID: 8698496
19.  Clostridium perfringens Beta-Toxin Induces Necrostatin-Inhibitable, Calpain-Dependent Necrosis in Primary Porcine Endothelial Cells 
PLoS ONE  2013;8(5):e64644.
Clostridium perfringens β-toxin (CPB) is a β-barrel pore-forming toxin and an essential virulence factor of C. perfringens type C strains, which cause fatal hemorrhagic enteritis in animals and humans. We have previously shown that CPB is bound to endothelial cells within the intestine of affected pigs and humans, and that CPB is highly toxic to primary porcine endothelial cells (pEC) in vitro. The objective of the present study was to investigate the type of cell death induced by CPB in these cells, and to study potential host cell mechanisms involved in this process. CPB rapidly induced lactate dehydrogenase (LDH) release, propidium iodide uptake, ATP depletion, potassium efflux, a marked rise in intracellular calcium [Ca2+]i, release of high-mobility group protein B1 (HMGB1), and caused ultrastructural changes characteristic of necrotic cell death. Despite a certain level of caspase-3 activation, no appreciable DNA fragmentation was detected. CPB-induced LDH release and propidium iodide uptake were inhibited by necrostatin-1 and the two dissimilar calpain inhibitors PD150606 and calpeptin. Likewise, inhibition of potassium efflux, chelation of intracellular calcium and treatment of pEC with cyclosporin A also significantly inhibited CPB-induced LDH release. Our results demonstrate that rCPB primarily induces necrotic cell death in pEC, and that necrotic cell death is not merely a passive event caused by toxin-induced membrane disruption, but is propagated by host cell-dependent biochemical pathways activated by the rise in intracellular calcium and inhibitable by necrostatin-1, consistent with the emerging concept of programmed necrosis (“necroptosis”).
doi:10.1371/journal.pone.0064644
PMCID: PMC3667183  PMID: 23734212
20.  Oridonin induces apoptosis in gastric cancer through Apaf-1, cytochrome c and caspase-3 signaling pathway 
AIM: To investigate the effect and mechanism of oridonin on the gastric cancer cell line HGC-27 in vitro.
METHODS: The inhibitory effect of oridonin on HGC-27 cells was detected using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. After treatment with 10 μg/mL oridonin for 24 h and 48 h, the cells were stained with acridine orange/ethidium bromide. The morphologic changes were observed under an inverted fluorescence microscope. DNA fragmentation (a hallmark of apoptosis) and lactate dehydrogenase activity were examined using DNA ladder assay and lactate dehydrogenase-release assay. After treated with oridonin (0, 1.25, 2.5, 5 and 10 μg/mL), HGC-27 cells were collected for anexin V-phycoerythrin and 7-amino-actinomycin D double staining and tested by flow cytometric analysis, and oridonin- induced apoptosis in HGC-27 cells was detected. After treatment with oridonin for 24 h, the effects of oridonin on expression of Apaf-1, Bcl-2, Bax, caspase-3 and cytochrome c were also analyzed using reverse-transcript polymerase chain reaction (RT-PCR) and Western blotting.
RESULTS: Oridonin significantly inhibited the proliferation of HGC-27 cells in a dose- and time-dependent manner. The inhibition rates of HGC-27 treated with four different concentrations of oridonin for 24 h (1.25, 2.5, 5 and 10 μg/mL) were 1.78% ± 0.36%, 4.96% ± 1.59%, 10.35% ± 2.76% and 41.6% ± 4.29%, respectively, which showed a significant difference (P < 0.05). The inhibition rates of HGC-27 treated with oridonin at the four concentrations for 48 h were 14.77% ± 4.21%, 21.57% ± 3.75%, 30.31% ± 4.91% and 61.19% ± 5.81%, with a significant difference (P < 0.05). The inhibition rates of HGC-27 treated with oridonin for 72 h at the four concentrations were 25.77% ± 4.85%, 31.86% ± 3.86%, 48.30% ± 4.16% and 81.80% ± 6.72%, with a significant difference (P < 0.05). Cells treated with oridonin showed typical apoptotic features with acridine orange/ethidium bromide staining. After treatment with oridonin, the cells became round, shrank, and developed small buds around the nuclear membrane while forming apoptotic bodies. Lactate dehydrogenase (LDH) release assay showed that after treated with 1.25 μg/mL and 20 μg/mL oridonin for 24 h, LDH release of HGC-27 caused by apoptosis increased from 22.94% ± 3.8% to 52.68% ± 2.4% (P < 0.001). However, the change in the release of LDH caused by necrosis was insignificant, suggesting that the major cause of oridonin-induced HGC-27 cell death was apoptosis. Flow cytometric analysis also revealed that oridonin induced significant apoptosis compared with the controls (P < 0.05). And the apoptosis rates of HGC-27 induced by the four different concentrations of oridonin were 5.3% ± 1.02%, 12.8% ± 2.53%, 28.5% ± 4.23% and 49.6% ± 3.76%, which were in a dose-dependent manner (P < 0.05). After treatment for 24 h, DNA ladder showed that oridonin induced a significant increase in DNA fragmentation in a dose-dependent manner. RT-PCR revealed that mRNA expression levels were up-regulated compared with the controls in caspase-3 (0.917 ± 0.103 vs 0.357 ± 0.019, P < 0.05), cytochrome c (1.429 ± 0.111 vs 1.002 ± 0.014, P < 0.05), Apaf-1 (0.688 ± 0.101 vs 0.242 ± 0.037, P < 0.05) and Bax (0.856 ± 0.101 vs 0.278 ± 0.027, P < 0.05) (P < 0.05), whereas down-regulated in Bcl-2 (0.085 ± 0.012 vs 0.175 ± 0.030, P < 0.05). Western blotting analysis also confirmed this result.
CONCLUSION: Apoptosis of HGC-27 induced by oridonin may be associated with differential expression of Apaf-1, caspase-3 and cytochrome c, which are highly dependent upon the mitochondrial pathway.
doi:10.3748/wjg.v18.i48.7166
PMCID: PMC3544018  PMID: 23326121
Oridonin; Gastric cancer; Proliferation; Apoptosis; Apaf-1/caspase-3/cytochrome C
21.  SAPK2/p38-dependent F-Actin Reorganization Regulates Early Membrane Blebbing during Stress-induced Apoptosis  
The Journal of Cell Biology  1998;143(5):1361-1373.
In endothelial cells, H2O2 induces the rapid formation of focal adhesion complexes at the ventral face of the cells and a major reorganization of the actin cytoskeleton into dense transcytoplasmic stress fibers. This change in actin dynamics results from the activation of the mitogen-activated protein (MAP) kinase stress-activated protein kinase-2/p38 (SAPK2/p38), which, via MAP kinase-activated protein (MAPKAP) kinase-2/3, leads to the phosphorylation of the actin polymerization modulator heat shock protein of 27 kD (HSP27). Here we show that the concomitant activation of the extracellular signal-regulated kinase (ERK) MAP kinase pathway by H2O2 accomplishes an essential survival function during this process. When the activation of ERK was blocked with PD098059, the focal adhesion complexes formed under the plasma membrane, and the actin polymerization activity led to a rapid and intense membrane blebbing. The blebs were delimited by a thin F-actin ring and contained enhanced levels of HSP27. Later, the cells displayed hallmarks of apoptosis, such as DEVD protease activities and internucleosomal DNA fragmentation. Bleb formation but not apoptosis was blocked by extremely low concentrations of the actin polymerization inhibitor cytochalasin D or by the SAPK2 inhibitor SB203580, indicating that the two processes are not in the same linear cascade. The role of HSP27 in mediating membrane blebbing was assessed in fibroblastic cells. In control fibroblasts expressing a low level of endogenous HSP27 or in fibroblasts expressing a high level of a nonphosphorylatable HSP27, H2O2 did not induce F-actin accumulation, nor did it generate membrane blebbing activity in the presence or absence of PD098059. In contrast, in fibroblasts that expressed wild-type HSP27 to a level similar to that found in endothelial cells, H2O2 induced accumulation of F-actin and caused bleb formation when the ERK pathway was inhibited. Cis-platinum, which activated SAPK2 but induced little ERK activity, also induced membrane blebbing that was dependent on the expression of HSP27. In these cells, membrane blebbing was not followed by caspase activation or DNA fragmentation. We conclude that the HSP27-dependent actin polymerization–generating activity of SAPK2 associated with a misassembly of the focal adhesions is responsible for induction of membrane blebbing by stressing agents.
PMCID: PMC2133090  PMID: 9832563
SAPK2/p38; HSP27; F-actin; blebbing; apoptosis
22.  How apoptotic cells aid in the removal of their own cold dead bodies 
Cell Death and Differentiation  2012;19(5):735-742.
Apoptotic cell clearance facilitates the removal of aged, damaged, infected or dangerous cells although minimizing perturbation of surrounding tissues, and is a vital process in the development and homeostasis of multicellular organisms. Importantly, failure to correctly execute programmed cell death and subsequent corpse clearance is broadly associated with chronic inflammatory and/or autoimmune diseases such as systemic lupus erythematosus. Apoptotic cells develop dramatic morphological changes including contraction, membrane blebbing and apoptotic body formation, which were among the first and most readily identifiable features of cellular suicide. However, understanding the purpose of apoptotic cell morphological changes has proven to be elusive, and recent studies have made somewhat surprising, and occasionally opposing, conclusions about the contribution of blebbing to phagocytic clearance and prevention of inflammatory/autoimmune disease. We review the evidence indicating how apoptotic blebs actively promote corpse recognition, uptake, and generation of auto-reactive antibodies.
doi:10.1038/cdd.2012.25
PMCID: PMC3321633  PMID: 22421963
apoptosis; cytoskeleton; actin; efferocytosis
23.  Electric Field Exposure Triggers and Guides Formation of Pseudopod-Like Blebs in U937 Monocytes 
The Journal of membrane biology  2012;245(9):521-529.
We describe a new phenomenon of anodotropic pseudopod-like blebbing in U937 cells stimulated by nanosecond pulsed electric field (nsPEF). In contrast to “regular,” round-shaped blebs, which are often seen in response to cell damage, pseudopod-like blebs (PLBs) formed as longitudinal membrane protrusions toward anode. PLB length could exceed the cell diameter in 2 min of exposure to 60-ns, 10-kV/cm pulses delivered at 10–20 Hz. Both PLBs and round-shaped nsPEF-induced blebs could be efficiently inhibited by partial isosmotic replacement of bath NaCl for a larger solute (sucrose), thereby pointing to the colloid-osmotic water uptake as the principal driving force for bleb formation. In contrast to round-shaped blebs, PLBs retracted within several minutes after exposure. Cells treated with 1 nM of the actin polymerization blocker cytochalasin D were unable to form PLBs and instead produced stationary, spherical blebs with no elongation or retraction capacity. Live cell fluorescent actin tagging showed that during elongation actin promptly entered the PLB interior, forming bleb cortex and scaffold, which was not seen in stationary blebs. Overall, PLB formation was governed by both passive (physicochemical) effects of membrane permeabilization and active cytoskeleton assembly in the living cell. To a certain extent, PLB mimics the membrane extension in the process of cell migration and can be employed as a nonchemical model for studies of cytomechanics, membrane–cytoskeleton interaction and cell motility.
doi:10.1007/s00232-012-9433-7
PMCID: PMC3509747  PMID: 22638933
Electroporation; Nanosecond pulsed electric field; Colloid-osmotic swelling; Blebbing; Membrane protrusion; Cell motility
24.  Chlamydia pneumoniae induces aponecrosis in human aortic smooth muscle cells 
BMC Microbiology  2005;5:2.
Background
The intracellular bacterium Chlamydia pneumoniae is suspected to play a role in formation and progression of atherosclerosis. Many studies investigated cell death initiation versus inhibition by Chlamydia pneumoniae in established cell lines but nothing is known in primary human aortic smooth muscle cells, a cell type among others known to be involved in the formation of the atherosclerotic plaque. Type of cell death was analyzed by various methods in primary aortic smooth muscle cells after infection with Chlamydia pneumoniae to investigate a possible pathogenic link in atherosclerosis.
Results
Chlamydiae were found to be localized up to 72 h post infection in aortic smooth muscle cells either as single bacteria or inside of large inclusions. Quantification of host cell death by lactate dehydrogenase release assay revealed strictly dose and time dependent lysis for all tested isolates of Chlamydia pneumoniae. Phosphatidylserine exposure was detected by flow cytometry in Chlamydia pneumoniae infected cells. Ultrastructure of Chlamydia pneumoniae infected human aortic smooth muscle cells showed extensive membrane- and organelle damage, chromatin condensation but no nuclear fragmentation. DNA fragmentation as well as cell membrane permeability was analyzed by TUNEL and NHS-biotin staining and occurred exclusively in cells carrying Chlamydia pneumoniae spots but not in smooth muscle cells with inclusions. These morphological features of cell death were not accompanied by an activation of caspase-3 as revealed by analysis of enzyme activity but involved mitochondrial membrane depolarization as shown by TMRE uptake and release of cytochrome c from mitochondria.
Conclusion
This study provides evidence that Chlamydia pneumoniae induce a spot like infection in human aortic smooth muscle cells, which results in a chimeric cell death with both apoptotic and necrotic characteristics. This aponecrotic cell death may assist chronic inflammation in atherosclerotic blood vessels.
doi:10.1186/1471-2180-5-2
PMCID: PMC547904  PMID: 15663783
25.  Cytotoxicity in Macrophages Infected with Rough Brucella Mutants Is Type IV Secretion System Dependent▿  
Infection and Immunity  2007;76(1):30-37.
Smooth Brucella spp. inhibit macrophage apoptosis, whereas rough Brucella mutants induce macrophage oncotic and necrotic cell death. However, the mechanisms and genes responsible for Brucella cytotoxicity have not been identified. In the current study, a random mutagenesis approach was used to create a mutant bank consisting of 11,354 mutants by mariner transposon mutagenesis using Brucella melitensis rough mutant 16MΔmanBA as the parental strain. Subsequent screening identified 56 mutants (0.49% of the mutant bank) that failed to cause macrophage cell death (release of 10% or less of the lactate dehydrogenase). The absence of cytotoxicity during infection with these mutants was independent of demonstrable defects in in vitro bacterial growth or uptake and survival in macrophages. Interrupted genes in 51 mutants were identified by DNA sequence analysis, and the mutations included interruptions in virB encoding the type IV secretion system (T4SS) (n = 36) and in vjbR encoding a LuxR-like regulatory element previously shown to be required for virB expression (n = 3), as well as additional mutations (n = 12), one of which also has predicted roles in virB expression. These results suggest that the T4SS is associated with Brucella cytotoxicity in macrophages. To verify this, deletion mutants were constructed in B. melitensis 16M by removing genes encoding phosphomannomutase/phosphomannoisomerase (ΔmanBA) and the T4SS (ΔvirB). As predicted, deletion of virB from 16MΔmanBA and 16M resulted in a complete loss of cytotoxicity in rough strains, as well as the low level cytotoxicity observed with smooth strains at extreme multiplicities of infection (>1,000). Taken together, these results demonstrate that Brucella cytotoxicity in macrophages is T4SS dependent.
doi:10.1128/IAI.00379-07
PMCID: PMC2223635  PMID: 17938217

Results 1-25 (668713)