Search tips
Search criteria

Results 1-25 (1552955)

Clipboard (0)

Related Articles

1.  Phenotypic and functional characterisation of CCR7+ and CCR7- CD4+ memory T cells homing to the joints in juvenile idiopathic arthritis 
Arthritis Research & Therapy  2005;7(2):R256-R267.
The aim of the study was to characterise CCR7+ and CCR7- memory T cells infiltrating the inflamed joints of patients with juvenile idiopathic arthritis (JIA) and to investigate the functional and anatomical heterogeneity of these cell subsets in relation to the expression of the inflammatory chemokine receptors CXCR3 and CCR5. Memory T cells freshly isolated from the peripheral blood and synovial fluid (SF) of 25 patients with JIA were tested for the expression of CCR7, CCR5, CXCR3 and interferon-γ by flow cytometry. The chemotactic activity of CD4 SF memory T cells from eight patients with JIA to inflammatory (CXCL11 and CCL3) and homeostatic (CCL19, CCL21) chemokines was also evaluated. Paired serum and SF samples from 28 patients with JIA were tested for CCL21 concentrations. CCR7, CXCR3, CCR5 and CCL21 expression in synovial tissue from six patients with JIA was investigated by immunohistochemistry. Enrichment of CD4+, CCR7- memory T cells was demonstrated in SF in comparison with paired blood from patients with JIA. SF CD4+CCR7- memory T cells were enriched for CCR5+ and interferon-γ+ cells, whereas CD4+CCR7+ memory T cells showed higher coexpression of CXCR3. Expression of CCL21 was detected in both SF and synovial membranes. SF CD4+ memory T cells displayed significant migration to both inflammatory and homeostatic chemokines. CCR7+ T cells were detected in the synovial tissue in either diffuse perivascular lymphocytic infiltrates or organised lymphoid aggregates. In synovial tissue, a large fraction of CCR7+ cells co-localised with CXCR3, especially inside lymphoid aggregates, whereas CCR5+ cells were enriched in the sublining of the superficial subintima. In conclusion, CCR7 may have a role in the synovial recruitment of memory T cells in JIA, irrespective of the pattern of lymphoid organisation. Moreover, discrete patterns of chemokine receptor expression are detected in the synovial tissue.
PMCID: PMC1065323  PMID: 15743472
chemokines; memory T lymphocytes; juvenile idiopathic arthritis
2.  Chemokine receptor expression and functional effects of chemokines on B cells: implication in the pathogenesis of rheumatoid arthritis 
Arthritis Research & Therapy  2009;11(5):R149.
Accumulation of B cells in the rheumatoid arthritis (RA) synovium has been reported, and it has been thought that these cells might contribute to the pathogenesis of RA by antigen presentation, autoantibody production, and/or inflammatory cytokine production. Chemokines could enhance the accumulation of B cells in the synovium. The aims of this study were to determine chemokine receptor expression by B cells both in the peripheral blood of normal donors and subjects with RA, and at the inflammatory site in RA, and the effects of chemokines on B cell activation.
Cell surface molecule expression was analyzed by flow cytometry. Cellular migration was assessed using chemotaxis chambers. Cellular proliferation was examined by 3H-thymidine incorporation. Tumor necrosis factor (TNF) production was assayed by enzyme-linked immunosorbent assay.
Significant numbers of peripheral blood B cells of healthy donors and subjects with RA expressed CC chemokine receptor (CCR)5 and CXCR3, and most B cells expressed CCR6, CCR7, CXCR4 and CXCR5. CCR5 expression was more frequent on CD27+ than CD27- peripheral blood B cells of healthy donors and RA. Synovial B cells more frequently expressed CCR5, but less often expressed CCR6, CCR7 and CXCR5 compared to peripheral blood in RA. Further functional analyses were performed on peripheral blood B cells from healthy donors. Migration of peripheral blood B cells, especially CD27+ B cells, was enhanced by CC chemokine ligand (CCL)20, CCL19, CCL21 and CXCL12. All four chemokines alone induced B cell proliferation; with CCL21 being the most effective. CCL21 also enhanced the proliferation of anti-immunoglobulin (Ig)M-stimulated B cells and blockade of CCR7 inhibited this effect. CCL20, CCL21 and CXCL12 enhanced TNF production by anti-IgM mAb-stimulated B cells. Finally, stimulation with CXCL12, but not CCL20, CCL19 and CCL21, enhanced inducible costimulator-ligand (ICOSL) expression by peripheral blood B cells of healthy donors and RA, but did not increase B cell-activating factor receptor or transmembrane activator and CAML-interactor.
The data suggest that CCR5, CCR6, CCR7, CXCR3, CXCR4 and CXCR5 may be important for the B cell migration into the synovium of RA patients, and also their local proliferation, cytokine production and ICOSL expression in the synovium.
PMCID: PMC2787286  PMID: 19804625
3.  Why CCR2 and CCR5 Blockade Failed and Why CCR1 Blockade Might Still Be Effective in the Treatment of Rheumatoid Arthritis 
PLoS ONE  2011;6(7):e21772.
The aim of this study was to provide more insight into the question as to why blockade of CCR1, CCR2, and CCR5 may have failed in clinical trials in rheumatoid arthritis (RA) patients, using an in vitro monocyte migration system model.
Methodology/Principal Findings
Monocytes from healthy donors (HD; n = 8) or from RA patients (for CCR2 and CCR5 antibody n = 8; for CCR1 blockade n = 13) were isolated from peripheral blood and pre-incubated with different concentrations of either anti-CCR1, anti-CCR2, or anti-CCR5 blocking antibodies (or medium or isotype controls). In addition, a small molecule CCR1 antagonist (BX471) was tested. Chemotaxis was induced by CCL2/MCP-1 (CCR2 ligand), CCL5/RANTES (CCR1 and CCR5 ligand), or by a mix of 5 RA synovial fluids (SFs), and cellular responses compared to chemotaxis in the presence of medium alone. Anti-CCR2 antibody treatment blocked CCL2/MCP-1-induced chemotaxis of both HD and RA monocytes compared to isotype control. Similarly, anti-CCR5 antibody treatment blocked CCL5/RANTES-induced chemotaxis of RA monocytes. While neither CCR2 nor CCR5 blocking antibodies were able to inhibit SF-induced monocyte chemotaxis, even when both receptors were blocked simultaneously, both anti-CCR1 antibodies and the CCR1 antagonist were able to inhibit SF-induced monocyte chemotaxis.
The RA synovial compartment contains several ligands for CCR1, CCR2, and CCR5 as well as other chemokines and receptors involved in monocyte recruitment to the site of inflammation. The results suggest that CCR2 and CCR5 are not critical for the migration of monocytes towards the synovial compartment in RA. In contrast, blockade of CCR1 may be effective. Conceivably, CCR1 blockade failed in clinical trials, not because CCR1 is not a good target, but because very high levels of receptor occupancy at all times may be needed to inhibit monocyte migration in vivo.
PMCID: PMC3128605  PMID: 21747955
4.  Abrogation of CC chemokine receptor 9 ameliorates collagen-induced arthritis of mice 
Biological drugs are effective in patients with rheumatoid arthritis (RA), but increase severe infections. The CC chemokine receptor (CCR) 9 antagonist was effective for Crohn’s disease without critical adverse effects including infections in clinical trials. The present study was carried out to explore the pathogenic roles of chemokine (C-C motif) ligand (CCL) 25 and its receptor, CCR9, in autoimmune arthritis and to study if the CCR9 antagonist could be a new treatment for RA.
CCL25 and CCR9 expression was examined with immunohistochemistry and Western blotting. Concentration of interleukin (IL)-6, matrix metalloproteinase (MMP)-3 and tumor necrosis factor (TNF)-α was measured with enzyme-linked immunosorbent assays. Effects of abrogating CCR9 on collagen-induced arthritis (CIA) was evaluated using CCR9-deficient mice or the CCR9 antagonist, CCX8037. Fluorescence labeled-CD11b+ splenocytes from CIA mice were transferred to recipient CIA mice and those infiltrating into the synovial tissues of the recipient mice were counted.
CCL25 and CCR9 proteins were found in the RA synovial tissues. CCR9 was expressed on macrophages, fibroblast-like synoviocytes (FLS) and dendritic cells in the synovial tissues. Stimulation with CCL25 increased IL-6 and MMP-3 production from RA FLS, and IL-6 and TNF-α production from peripheral blood monocytes. CIA was suppressed in CCR9-deficient mice. CCX8037 also inhibited CIA and the migration of transferred CD11b+ splenocytes into the synovial tissues.
The interaction between CCL25 and CCR9 may play important roles in cell infiltration into the RA synovial tissues and inflammatory mediator production. Blocking CCL25 or CCR9 may represent a novel safe therapy for RA.
PMCID: PMC4201712  PMID: 25248373
5.  Cytokine, activation marker, and chemokine receptor expression by individual CD4+ memory T cells in rheumatoid arthritis synovium 
Arthritis Research  2000;2(5):415-423.
IL-10, IL-13, IFN-γ, tumor necrosis factor (TNF)-α, LT-α, CD154, and TNF-related activation-induced cytokine (TRANCE) were expressed by 2-20% of rheumatoid arthritis (RA) synovial tissue CD4+ memory T cells, whereas CD4+ cells that produced IL-2, IL-4, or IL-6 were not detected. Expression of none of these molecules by individual CD4+ cells correlated with the exception of TRANCE and IL-10, and TRANCE and TNF-α . A correlation between expression of IL-10 and CCR7, LT-α and CCR6, IFN-γ and CCR5, and TRANCE and CXCR4 was also detected.
In RA large numbers of CD4+ memory T cells infiltrate the inflamed synovium [1,2,3]. The accumulated CD4+ memory T cells in the RA synovium appear to be activated, because they express cytokines and activation markers [4,5,6,7,8]. Expressed cytokines and activation markers should play important roles in the pathogenesis of RA. However, the frequency of cytokine expression by RA synovial CD4+ T cells has not been analyzed accurately. Recently, the roles of chemokine and chemokine receptor interactions in T-cell migration have been intensively examined. Interactions of chemokine and chemokine receptors might therefore be important in the accumulation of the CD4+ T cells in the RA synovium. Accordingly, correlation of cytokine and chemokine receptor expression might be important in delineating the function and potential means of accumulation of individual CD4+ memory T cells in the RA synovium.
In the present study we analyzed cytokine (IL-2, IL-4, IL-6, IL-10, IL-13, IFN-γ , TNF-α , and LT-α ), activation marker (CD154 [CD40 ligand] and TRANCE - also called receptor activator of nuclear factor κ B ligand [RANKL] or osteoclast differentiation factor [ODF]), and chemokine receptor expression by individual CD4+ memory T cells isolated from rheumatoid synovium and blood. To achieve this we employed a single-cell reverse transcription (RT) polymerase chain reaction (PCR) technique. This technique made it possible to correlate mRNAs expressed by individual CD4+ memory T cells in the synovium and blood.
Materials and method:
Synovial tissues from three RA patients and peripheral blood mononuclear cells from two RA patients and a normal donor were analyzed.
Cytokine (IL-2, IL-4, IL-6, IL-10, IL-13, IFN-γ, TNF-α, and LT-α ) and activation marker (CD154 and TRANCE) expression by individual CD4+CD45RO+ T cells from RA synovium or blood were analyzed using a single-cell RT-PCR. In brief, single CD4+CD45RO+T cells was sorted into each well of a 96-well PCR plate using a flow cytometer. cDNA from individual cells was prepared, and then the cDNA was nonspecifically amplified. The product was then amplified by PCR using gene-specific primers to analyze cytokine and activation marker expression.
Cytokine and activation marker expression by individual CD4+CD45RO+T cells from RA synovial tissues was analyzed using a single-cell RT-PCR method. Expression of mRNAs was analyzed in 152 individual synovial tissue CD4+CD45RO+ T cells sorted from three RA patients in which T-cell receptor (TCR) Cβ mRNA was detected. Frequencies of CD4+ memory T cells expressing cytokine and activation marker mRNA in RA synovium are shown in Table 1. IL-2, IL-4, and IL-6 were not expressed by the synovial tissue CD4+CD45RO+ T cells, whereas 2-20% of cells expressed the other cytokine mRNAs.
Few correlations between cytokine and activation marker mRNAs were observed. Notably, no cells contained both IFN-γ and LT-α mRNAs, cytokines that are thought to define the T-helper (Th)1 phenotype [9]. However, the frequency of TRANCE-positive cells in IL-10-positive cells was significantly higher than that in IL-10-negative cells (Table 2). Moreover, the frequency of TRANCE-positive cells in TNF-α-positive cells was also significantly higher than that in TNF-α-negative cells.
Varying percentages of CD4+ memory T cells expressed CC and CXC chemokine receptors. The frequency of CCR5-positive cells in IFN-γ-positive cells was significantly higher than that in IFN-γ-negative cells, whereas the frequency of CCR6-positive cells in LT-α-positive cells was significantly higher than that in LT-α-negative cells, and the frequency of CCR7-positive cells in IL-10-positive cells was significantly higher than that in IL-10-negative cells. Furthermore, the frequency of CXCR4-positive cells in TRANCE-positive cells was significantly higher than that in TRANCE-negative cells.
Expression of cytokine and activation marker mRNAs was also analyzed in 48 individual peripheral blood CD4+CD45RO+ T cells from two RA patients. IL-2, IL-4, IL-6, and LT-α were not expressed by the peripheral CD4+CD45RO+ T cells, whereas 4-17% of cells expressed the other markers. The most striking difference between synovial tissue and peripheral blood CD4+ memory T cells was the presence of LT-α expression in the former, but not in the latter. IFN-γ and TNF-α were not expressed by normal peripheral blood CD4+ memory T cells, although they were expressed by RA peripheral blood CD4+ memory T cells.
The present study employed a single-cell PCR technology to analyze cytokine expression by unstimulated RA synovial tissue CD4+ memory T cells immediately after isolation, without in vitro manipulation. The results confirm the Th1 nature of rheumatoid inflammation. It is noteworthy that no individual synovial CD4+ memory T cells expressed both IFN-γ and LT-α mRNAs, even though these are the prototypic Th1 cytokines [9]. These results imply that, in the synovium, regulation of IFN-γ and LT-α must vary in individual cells, even though both Th1 cytokines can be produced.
The present data showed that CCR5 expression correlated with IFN-γ but not with LT-α expression by synovial CD4+ memory T cells. It has been reported that CCR5 expression is upregulated in RA synovial fluid and synovial tissue T cells [10,11,12] and that CCR5 Δ 32 deletion may have an influence on clinical manifestations of RA [13], suggesting that CCR5 might play an important role in RA. Recently, it has been claimed that CCR5 was preferentially expressed by Th1 cell lines [14,15]. However, in the present study CCR5 was not expressed by all IFN-γ-expressing cells. Moreover, CCR5 expression did not correlate with expression of LT-α by RA synovial CD4+ memory T cells. Therefore, it is unclear whether CCR5 is a marker of Th1 cells in RA synovium.
IL-10 expression correlated with CCR7 expression by RA synovial CD4+ memory T cells. Recently, it was reported [16] that in the blood CCR7+CD4+ memory T cells express lymph-node homing receptors and lack immediate effector function, but efficiently stimulate dendritic cells. These cells may play a unique role in the synovium as opposed to in the blood. By producing IL-10, they might have an immunoregulatory function. In addition, IL-10 expression also correlated with expression of TRANCE. Although it is possible that IL-10 produced by these cells inhibited T-cell activation in the synovium, TRANCE expressed by these same cells might function to activate dendritic cells and indirectly stimulate T cells, mediating inflammation in the synovium. These results imply that individual T cells in the synovium might have different, and sometimes opposite functional activities.
LT-α expression correlated with CCR6 expression by synovial CD4+ memory T cells. It has been reported that CCR6 is expressed by resting peripheral memory T cells [17], whereas LT-α expression is associated with the presence of lymphocytic aggregates in synovial tissue [7]. The correlation between the expression of these two markers therefore suggests the possibility that CCR6 may play a role in the development of aggregates of CD4+ T cells that are characteristically found in rheumatoid synovium.
TRANCE is known to be expressed by activated T cells, and can stimulate dendritic cells and osteoclasts [18]. Of note, TRANCE-mediated activation of osteoclasts has recently been shown [19] to play an important role in the damage to bone that is found in experimental models of inflammatory arthritis. It is therefore of interest that TRANCE was expressed by 3-16% of the RA synovial CD4+ memory T cells. Of note, 67% of TNF-α-positive cells expressed TRANCE. In concert, TNF-α and TRANCE expressed by this subset of CD4+ memory T cells might make them particularly important in mediating the bony erosions that are characteristic of RA.
Interestingly, there was a correlation between expression of IFN-γ and IL-10 in RA peripheral blood CD4+ memory T cells. In RA peripheral blood, CD154 expression correlated with that of CXCR3 by CD4+ memory T cells. It has been claimed [15] that CXCR3 is preferentially expressed by in vitro generated Th1 cells. However, in the present study CXCR3 did not correlate with IFN-γ expression. Although IFN-γ and TNF-α mRNAs were expressed in vivo by peripheral blood CD4+ T cells from RA patients, LT-α mRNA was not detected, whereas IFN-γ , TNF-α , and LT-α were not detected in samples from healthy donors. These findings indicate that RA peripheral blood CD4+ memory T cells are stimulated in vivo, although they do not express LT-α mRNA. The present studies indicate that the frequencies of CD4+ memory T cells that expressed IFN-γ in the blood and in the synovium are comparable. These results imply that activated CD4+ memory T cells migrate between blood and synovium, although the direction of the trafficking is unknown. The presence of LT-α mRNA in synovium, but not in blood, indicates that CD4+ memory cells are further activated in the synovium, and that these activated CD4+ memory T cells are retained in the synovium until LT-α mRNA decreases.
In conclusion, CD4+ memory T cells are biased toward Th1 cells in RA synovium and peripheral blood. In the synovium, IFN-γ and LT-α were produced by individual cells, whereas in the rheumatoid blood no LT-α-producing cells were detected. Furthermore, there were modest correlations between individual cells that expressed particular cytokines, such as IL-10, and certain chemokine receptor mRNAs.
PMCID: PMC17818  PMID: 11056676
chemokine receptor; cytokine; rheumatoid arthritis; T lymphocyte
6.  Green tea extract inhibits chemokine production, but up-regulates chemokine receptor expression, in rheumatoid arthritis synovial fibroblasts and rat adjuvant-induced arthritis 
Rheumatology (Oxford, England)  2009;49(3):467-479.
Objective. Evaluation of the efficacy of green tea extract (GTE) in regulating chemokine production and chemokine receptor expression in human RA synovial fibroblasts and rat adjuvant-induced arthritis (AIA).
Methods. Fibroblasts isolated from human RA synovium were used in the study. Regulated upon activation normal T cell expressed and secreted (RANTES)/CCL5, monocyte chemoattractant protein (MCP)-1/CCL2, growth-regulated oncogene (GRO)α/CXCL1 and IL-8/CXCL8 production was measured by ELISA. Western blotting was used to study the phosphorylation of protein kinase C (PKC)δ and c-Jun N-terminal kinases (JNK). Chemokine and chemokine receptor expression was determined by quantitative RT–PCR. The benefit of GTE administration in rat AIA was determined.
Results. GTE (2.5–40 μg/ml) inhibited IL-1β-induced MCP-1/CCL2 (10 ng/ml), RANTES/CCL5, GROα/CXCL1 and IL-8/CXCL8 production in human RA synovial fibroblasts (P < 0.05). However, GTE inhibited MCP-1/CCL2 and GROα/CXCL1 mRNA synthesis in RA synovial fibroblasts. Furthermore, GTE also inhibited IL-1β-induced phosphorylation of PKCδ, the signalling pathway mediating IL-1β-induced chemokine production. Interestingly, GTE preincubation enhanced constitutive and IL-1β-induced CCR1, CCR2b, CCR5, CXCR1 and CXCR2 receptor expression. GTE administration (200 mg/kg/day p.o.) modestly ameliorated rat AIA, which was accompanied by a decrease in MCP-1/CCL2 and GROα/CXCL1 levels and enhanced CCR-1, -2, -5 and CXCR1 receptor expression in the joints of GTE administered rats.
Conclusions. Chemokine receptor overexpression with reduced chemokine production by GTE may be one potential mechanism to limit the overall inflammation and joint destruction in RA.
PMCID: PMC2820264  PMID: 20032224
Green tea; Chemokines; Chemokine receptors; Rheumatoid arthritis; Synovial fibroblasts; Complementary and alternative medicine; Adjuvant-induced arthritis
7.  Regulation of Inflammatory Chemokine Receptors on Blood T Cells Associated to the Circulating Versus Liver Chemokines in Dengue Fever 
PLoS ONE  2012;7(7):e38527.
Little is known about the role of chemokines/chemokines receptors on T cells in natural DENV infection. Patients from DENV-2 and -3- outbreaks were studied prospectively during the acute or convalescent phases. Expression of chemokine receptor and activation markers on lymphocyte subpopulations were determined by flow cytometry analysis, plasma chemokine ligands concentrations were measured by ELISA and quantification of CCL5/RANTES+ cells in liver tissues from fatal dengue cases was performed by immunochemistry. In the acute DENV-infection, T-helper/T-cytotoxic type-1 cell (Th1/Tc1)-related CCR5 is significantly higher expressed on both CD4 and CD8 T cells. The Th1-related CXCR3 is up-regulated among CD4 T cells and Tc2-related CCR4 is up-regulated among CD8 T cells. In the convalescent phase, all chemokine receptor or chemokine ligand expression tends to reestablish control healthy levels. Increased CCL2/MCP-1 and CCL4/MIP-1β but decreased CCL5/RANTES levels were observed in DENV-patients during acute infection. Moreover, we showed an increased CD107a expression on CCR5 or CXCR3-expressing T cells and higher expression of CD29, CD44HIGH and CD127LOW markers on CCR4-expressing CD8 T cells in DENV-patients when compared to controls. Finally, liver from dengue fatal patients showed increased number of cells expressing CCL5/RANTES in three out of four cases compared to three death from a non-dengue patient. In conclusion, both Th1-related CCR5 and CXCR3 among CD4 T cells have a potential ability to exert cytotoxicity function. Moreover, Tc1-related CCR5 and Tc2-related CCR4 among CD8 T cells have a potential ability to exert effector function and migration based on cell markers evaluated. The CCR5 expression would be promoting an enhanced T cell recruitment into liver, a hypothesis that is corroborated by the CCL5/RANTES increase detected in hepatic tissue from dengue fatal cases. The balance between protective and pathogenic immune response mediated by chemokines during dengue fever will be discussed.
PMCID: PMC3398008  PMID: 22815692
8.  Borrelia burgdorferi stimulation of chemokine secretion by cells of monocyte lineage in patients with Lyme arthritis 
Arthritis Research & Therapy  2010;12(5):R168.
Joint fluid in patients with Lyme arthritis often contains high levels of CCL4 and CCL2, which are chemoattractants for monocytes and some T cells, and CXCL9 and CXCL10, which are chemoattractants for CD4+ and CD8+ T effector cells. These chemokines are produced primarily by cells of monocyte lineage in TH1-type immune responses. Our goal was to begin to learn how infection with Borrelia burgdorferi leads to the secretion of these chemokines, using patient cell samples. We hypothesized that B. burgdorferi stimulates chemokine secretion from monocytes/macrophages in multiple ways, thereby linking innate and adaptive immune responses.
Peripheral blood mononuclear cells (PBMC) from 24 Lyme arthritis patients were stimulated with B. burgdorferi, interferon (IFN)-γ, or both, and the levels of CCL4, CCL2, CXCL9 and CXCL10 were measured in culture supernatants. CD14+ monocytes/macrophages from PBMC and synovial fluid mononuclear cells (SFMC) were stimulated in the same way, using available samples. CXCR3, the receptor for CXCL9 and CXCL10, and CCR5, the receptor for CCL4, were assessed on T cells from PBMC and SFMC.
In patients with Lyme arthritis, B. burgdorferi but not IFN-γ induced PBMC to secrete CCL4 and CCL2, and B. burgdorferi and IFN-γ each stimulated the production of CXCL9 and CXCL10. However, with the CD14+ cell fraction, B. burgdorferi alone stimulated the secretion of CCL4; B. burgdorferi and IFN-γ together induced CCL2 secretion, and IFN-γ alone stimulated the secretion of CXCL9 and CXCL10. The percentage of T cells expressing CXCR3 or CCR5 was significantly greater in SFMC than PBMC, confirming that TH1 effector cells were recruited to inflamed joints. However, when stimulated with B. burgdorferi or IFN-γ, SFMC and PBMC responded similarly.
B. burgdorferi stimulates PBMC or CD14+ monocytes/macrophages directly to secrete CCL4, but spirochetal stimulation of other intermediate cells, which are present in PBMC, is required to induce CD14+ cells to secrete CCL2, CXCL9 and CXCL10. We conclude that B. burgdorferi stimulates monocytes/macrophages directly and indirectly to guide innate and adaptive immune responses in patients with Lyme arthritis.
PMCID: PMC2990995  PMID: 20828409
9.  CCR2 expressing CD4+ T lymphocytes are preferentially recruited to the ileum in Crohn’s disease 
Gut  2004;53(9):1287-1294.
Background and aims: Chemokine receptors are key determinants of leucocyte trafficking. While the chemokine receptor CCR9 and its chemokine ligand CCL25 (TECK) mediate lymphocyte homing to the healthy small intestine, the chemokine receptors important for recruitment during intestinal inflammation are undefined. Animal studies have suggested potential roles for CCR2 and CCR5 in inflammatory bowel disease (IBD). The aim of this study was to understand the role of CCR2 in human IBD.
Methods: Resections of ileum or colon were obtained from patients undergoing surgery for small bowel Crohn’s disease (SBCD; n = 10), Crohn’s colitis (n = 5), ulcerative colitis (n = 6), and non-IBD related conditions (control ileum n = 11; control colon n = 11). Expression of CCR2 by lamina propria lymphocytes (LPLs) was determined by both flow cytometry and immunohistochemistry. As a functional correlate, chemotaxis assays using the CCR2 ligand, CCL2 (MCP-1), were performed. Expression of CCR2 by peripheral blood lymphocytes was determined by flow cytometry.
Results: There were greater than 30-fold more CCR2+ LPLs in SBCD than in control ileum (29.3% (19.9–55.1) v 0.9% (0.4–11.5); p = 0.0007). Specifically, CCR2+CD4+ LPLs were increased (p = 0.002) whereas CCR2+CD8+ LPLs were not. Increased expression included both memory (CD45RO+; p = 0.005) and naïve (CD45RO−; p = 0.01) CCR2+ populations. The increase in CCR2+ LPLs in SBCD was confirmed by both immunohistochemistry (p = 0.0002) and enhanced chemotactic responses to CCL2. CCR2 expression was not increased in the peripheral blood of patients with SBCD, suggesting ongoing recruitment of the CCR2+ population to the ileum. In contrast with SBCD, there was no significant increase in CCR2+ LPLs in Crohn’s colitis or ulcerative colitis samples.
Conclusions: The chemokine receptor CCR2 appears to be an important contributor to accumulation of CD4+ T lymphocytes in the ileum in small bowel Crohn’s disease. Blockade of CCR2 may provide a novel therapeutic alternative.
PMCID: PMC1774196  PMID: 15306587
inflammatory bowel disease; mucosal immunology; T cell trafficking; chemokine receptors; CCR2
10.  Differential expression of chemokine receptors on peripheral blood B cells from patients with rheumatoid arthritis and systemic lupus erythematosus 
Arthritis Research & Therapy  2005;7(5):R1001-R1013.
Chemokines and their receptors are essential in the recruitment and positioning of lymphocytes. To address the question of B cell migration into the inflamed synovial tissue of patients with rheumatoid arthritis (RA), peripheral blood naive B cells, memory B cells and plasma cells were analyzed for cell surface expression of the chemokine receptors CXCR3, CXCR4, CXCR5, CCR5, CCR6, CCR7 and CCR9. For comparison, B cells in the peripheral blood of patients with the autoimmune disease systemic lupus erythematosus (SLE) or with the degenerative disease osteoarthritis (OA) were analyzed. Expression levels of chemokine receptors were measured by flow cytometry and were compared between the different patient groups and healthy individuals. The analysis of chemokine receptor expression showed that the majority of peripheral blood B cells is positive for CXCR3, CXCR4, CXCR5, CCR6 and CCR7. Whereas a small fraction of B cells were positive for CCR5, practically no expression of CCR9 was found. In comparison with healthy individuals, in patients with RA a significant fraction of B cells showed a decreased expression of CXCR5 and CCR6 and increased levels of CXCR3. The downregulation of CXCR5 correlated with an upregulation of CXCR3. In patients with SLE, significant changes in CXCR5 expression were seen. The functionality of the chemokine receptors CXCR3 and CXCR4 was demonstrated by transmigration assays with the chemokines CXCL10 and CXCL12, respectively. Our results suggest that chronic inflammation leads to modulation of chemokine receptor expression on peripheral blood B cells. However, differences between patients with RA and patients with SLE point toward a disease-specific regulation of receptor expression. These differences may influence the migrational behavior of B cells.
PMCID: PMC1257429  PMID: 16207316
11.  Role of the CCL21 and CCR7 pathway in rheumatoid arthritis angiogenesis 
Arthritis and rheumatism  2012;64(8):2471-2481.
These studies were performed to determine the role of CCL21 and its corresponding receptor CCR7 in the pathogenesis of Rheumatoid Arthritis (RA).
Histological studies were performed to compare the expression of CCR7 and CCL21 in RA synovial tissues. Next the role of CCL21 and/or CCR7 in angiogenesis was examined employing in vitro chemotaxis, tube formation and in vivo matrigel plug assays. Finally the mechanism by which CCL21 mediates angiogenesis was determined by Western blot analysis, endothelial chemotaxis and tube formation.
In this study, we document that CCR7 and CCL21 colocolize in VWF+ cells where their expression is elevated in RA synovial tissue. Hence the ability to induce angiogenesis was examined for CCR7 ligands, CCL19 and CCL21. CCL21, but not CCL19, at concentrations present in the RA joint, induces human microvascular endothelial cell (HMVEC) migration that is mediated through CCR7 ligation. Further, suppression of the PI3K pathway markedly reduces CCL21-induced HMVEC chemotaxis and tube formation, however suppression of ERK and JNK pathways has no effect on these processes. Neutralization of either CCL21 in RA synovial fluids or CCR7 on HMVECs significantly reduces the induction of HMVEC migration and/or tube formation by RA synovial fluid. We further demonstrate that CCL21 is angiogenic, by showing its ability to promote blood vessel growth in matrigel plugs in vivo at concentrations present in RA joint.
These observations identify a novel function for CCL21 as an angiogenic mediator in RA, supporting CCL21/CCR7 as a therapeutic target in RA.
PMCID: PMC3409328  PMID: 22392503
CCL21; CCR7; RA synovial fluid; angiogenesis and migration
12.  Myocardial Chemokine Expression and Intensity of Myocarditis in Chagas Cardiomyopathy Are Controlled by Polymorphisms in CXCL9 and CXCL10 
Chronic Chagas cardiomyopathy (CCC), a life-threatening inflammatory dilated cardiomyopathy, affects 30% of the approximately 8 million patients infected by Trypanosoma cruzi. Even though the Th1 T cell-rich myocarditis plays a pivotal role in CCC pathogenesis, little is known about the factors controlling inflammatory cell migration to CCC myocardium.
Methods and Results
Using confocal immunofluorescence and quantitative PCR, we studied cell surface staining and gene expression of the CXCR3, CCR4, CCR5, CCR7, CCR8 receptors and their chemokine ligands in myocardial samples from end-stage CCC patients. CCR5+, CXCR3+, CCR4+, CCL5+ and CXCL9+ mononuclear cells were observed in CCC myocardium. mRNA expression of the chemokines CCL5, CXCL9, CXCL10, CCL17, CCL19 and their receptors was upregulated in CCC myocardium. CXCL9 mRNA expression directly correlated with the intensity of myocarditis, as well as with mRNA expression of CXCR3, CCR4, CCR5, CCR7, CCR8 and their ligands. We also analyzed single-nucleotide polymorphisms for genes encoding the most highly expressed chemokines and receptors in a cohort of Chagas disease patients. CCC patients with ventricular dysfunction displayed reduced genotypic frequencies of CXCL9 rs10336 CC, CXCL10 rs3921 GG, and increased CCR5 rs1799988CC as compared to those without dysfunction. Significantly, myocardial samples from CCC patients carrying the CXCL9/CXCL10 genotypes associated to a lower risk displayed a 2–6 fold reduction in mRNA expression of CXCL9, CXCL10, and other chemokines and receptors, along with reduced intensity of myocarditis, as compared to those with other CXCL9/CXCL10 genotypes.
Results may indicate that genotypes associated to reduced risk in closely linked CXCL9 and CXCL10 genes may modulate local expression of the chemokines themselves, and simultaneously affect myocardial expression of other key chemokines as well as intensity of myocarditis. Taken together our results may suggest that CXCL9 and CXCL10 are master regulators of myocardial inflammatory cell migration, perhaps affecting clinical progression to the life-threatening form of CCC.
Author Summary
Chronic Chagas cardiomyopathy (CCC) is an inflammatory heart disease that affects millions in Latin America, and in growing numbers in USA and Europe. Survival among CCC patients is shorter than among patients with cardiomyopathy of non-inflammatory etiology. This suggests that the inflammatory cell influx plays an important pathogenic role in CCC. However, little is known about the factors that maintain this myocardial inflammation. We hypothesized that Th1 T cell-attracting chemokines, involved in driving leukocyte migration, could play a role in myocardial inflammation. Herein, we have analyzed expression of several chemokines and receptors in heart tissue from patients with CCC and controls. We found inflammatory cells expressing chemokines and receptors consistent with Th1 T cell influx into CCC myocardium. mRNA expression levels of the chemokine CXCL9 correlated with inflammation. We also studied whether genetic variations in these genes could be associated to CCC development. Polymorphisms in CXCL9, CXCL10 and CCR5 were associated to differential risk of progression to the more severe form of CCC. Polymorphisms of CXCL9 and CXCL10 were also associated to the intensity of myocardial inflammation and chemokine expression. These results suggest that such chemokines may be master regulators of myocardial inflammatory cell migration, perhaps affecting clinical progression to severe CCC.
PMCID: PMC3493616  PMID: 23150742
13.  Amelioration of Rat Adjuvant-Induced Arthritis by Met-RANTES 
Arthritis and rheumatism  2005;52(6):1907-1919.
CC chemokines and their receptors play a fundamental role in trafficking and activation of leukocytes at sites of inflammation, contributing to joint damage in rheumatoid arthritis. Met-RANTES, an amino-terminal–modified methionylated form of RANTES (CCL5), antagonizes the binding of the chemokines RANTES and macrophage inflammatory protein 1α (MIP-1α; CCL3) to their receptors CCR1 and CCR5, respectively. The aim of this study was to investigate whether Met-RANTES could ameliorate adjuvant-induced arthritis (AIA) in the rat.
Using immunohistochemistry, enzyme-linked immunosorbent assay, real-time reverse transcription–polymerase chain reaction, Western blot analysis, adoptive transfer, and chemotaxis, we defined joint inflammation, bony destruction, neutrophil and macrophage migration, Met-RANTES binding affinity to rat receptors, proinflammatory cytokine and bone marker levels, CCR1 and CCR5 expression and activation, and macrophage homing into joints with AIA.
Administration of Met-RANTES as a preventative reduced the severity of joint inflammation. Administration of Met-RANTES to ankles with AIA showed decreases in inflammation, radiographic soft tissue swelling, and bone erosion. Met-RANTES significantly reduced the number of neutrophils and macrophages at the peak of arthritis compared with saline-injected controls. Competitive chemotaxis in peripheral blood mononuclear cells demonstrated that Met-RANTES inhibited MIP-1α and MIP-1β at 50% inhibition concentrations of 5 nM and 2 nM, respectively. Furthermore, levels of tumor necrosis factor α, interleukin-1β, macrophage colony-stimulating factor, and RANKL were decreased in joints with AIA in the Met-RANTES group compared with the control group. Interestingly, the expression and activation of CCR1 and CCR5 in the joint were down-regulated in the Met-RANTES group compared with the control group. Functionally, Met-RANTES administration decreased adoptively transferred peritoneal macrophage homing into the joint.
The data suggest that the targeting of Th1-associated chemokine receptors reduce joint inflammation, bone destruction, and cell recruitment into joints with AIA.
PMCID: PMC1282452  PMID: 15934086
14.  Expression and regulation of CCL18 in synovial fluid neutrophils of patients with rheumatoid arthritis 
Rheumatoid arthritis (RA) is characterized by the recruitment of leukocytes and the accumulation of inflammatory mediators within the synovial compartment. Release of the chemokine CCL18 has been widely attributed to antigen-presenting cells, including macrophages and dendritic cells. This study investigates the production of CCL18 in polymorphonuclear neutrophils (PMN), the predominant cell type recruited into synovial fluid (SF). Microarray analysis, semiquantitative and quantitative reverse transcriptase polymerase chain reaction identified SF PMN from patients with RA as a novel source for CCL18 in diseased joints. Highly upregulated expression of other chemokine genes was observed for CCL3, CXCL8 and CXCL10, whereas CCL21 was downregulated. The chemokine receptor genes were differentially expressed, with upregulation of CXCR4, CCRL2 and CCR5 and downregulation of CXCR1 and CXCR2. In cell culture experiments, expression of CCL18 mRNA in blood PMN was induced by tumor necrosis factor α, whereas synthesis of CCL18 protein required additional stimulation with a combination of IL-10 and vitamin D3. In comparison, recruited SF PMN from patients with RA were sensitized for CCL18 production, because IL-10 alone was sufficient to induce CCL18 release. These results suggest a release of the T cell-attracting CCL18 by PMN when recruited to diseased joints. However, its production is tightly regulated at the levels of mRNA expression and protein synthesis.
PMCID: PMC2212580  PMID: 17875202
15.  Monocytes/macrophages express chemokine receptor CCR9 in rheumatoid arthritis and CCL25 stimulates their differentiation 
Arthritis Research & Therapy  2010;12(4):R161.
Monocytes/macrophages accumulate in the rheumatoid (RA) synovium where they play a central role in inflammation and joint destruction. Identification of molecules involved in their accumulation and differentiation is important to inform therapeutic strategies. This study investigated the expression and function of chemokine receptor CCR9 in the peripheral blood (PB) and synovium of RA, non-RA patients and healthy volunteers.
CCR9 expression on PB monocytes/macrophages was analysed by flow cytometry and in synovium by immunofluorescence. Chemokine receptor CCR9 mRNA expression was examined in RA and non-RA synovium, monocytes/macrophages from PB and synovial fluid (SF) of RA patients and PB of healthy donors using the reverse transcription polymerase chain reaction (RT-PCR). Monocyte differentiation and chemotaxis to chemokine ligand 25 (CCL25)/TECK were used to study CCR9 function.
CCR9 was expressed by PB monocytes/macrophages in RA and healthy donors, and increased in RA. In RA and non-RA synovia, CCR9 co-localised with cluster of differentiation 14+ (CD14+) and cluster of differentiation 68+ (CD68+) macrophages, and was more abundant in RA synovium. CCR9 mRNA was detected in the synovia of all RA patients and in some non-RA controls, and monocytes/macrophages from PB and SF of RA and healthy controls. CCL25 was detected in RA and non-RA synovia where it co-localised with CD14+ and CD68+ cells. Tumour necrosis factor alpha (TNFα) increased CCR9 expression on human acute monocytic leukemia cell line THP-1 monocytic cells. CCL25 induced a stronger monocyte differentiation in RA compared to healthy donors. CCL25 induced significant chemotaxis of PB monocytes but not consistently among individuals.
CCR9 expression by monocytes is increased in RA. CCL25 may be involved in the differentiation of monocytes to macrophages particularly in RA.
PMCID: PMC2945064  PMID: 20738854
16.  Identification of human CCR8 as a CCL18 receptor 
The Journal of Experimental Medicine  2013;210(10):1889-1898.
CCL18 is an endogenous agonist of the human CCR8 receptor.
The CC chemokine ligand 18 (CCL18) is one of the most highly expressed chemokines in human chronic inflammatory diseases. An appreciation of the role of CCL18 in these diseases has been hampered by the lack of an identified chemokine receptor. We report that the human chemokine receptor CCR8 is a CCL18 receptor. CCL18 induced chemotaxis and calcium flux of human CCR8-transfected cells. CCL18 bound with high affinity to CCR8 and induced its internalization. Human CCL1, the known endogenous CCR8 ligand, and CCL18 competed for binding to CCR8-transfected cells. Further, CCL1 and CCL18 induced heterologous cross-desensitization of CCR8-transfected cells and human Th2 cells. CCL18 induced chemotaxis and calcium flux of human activated highly polarized Th2 cells through CCR8. Wild-type but not Ccr8-deficient activated mouse Th2 cells migrated in response to CCL18. CCL18 and CCR8 were coexpressed in esophageal biopsy tissue from individuals with active eosinophilic esophagitis (EoE) and were present at markedly higher levels compared with esophageal tissue isolated from EoE patients whose disease was in remission or in normal controls. Identifying CCR8 as a chemokine receptor for CCL18 will help clarify the biological role of this highly expressed chemokine in human disease.
PMCID: PMC3782048  PMID: 23999500
17.  CCR5 is Involved in Resolution of Inflammation in Proteoglycan-Induced Arthritis 
Arthritis and rheumatism  2009;60(10):2945-2953.
CCR5 and its ligands (CCL3, CCL4 and CCL5) may play a role in inflammatory cell recruitment into the joint. However, recently it has been reported that CCR5 on T cells and neutrophils acts as a decoy receptor for CCL3 and CCL5 to assist in resolution of inflammation. To determine whether CCR5 functions as a pro-inflammatory or anti-inflammatory mediator in arthritis, we examined the role of CCR5 in proteoglycan (PG)-induced arthritis (PGIA).
PGIA was induced by immunization of BALB/c wild type (WT) and CCR5-deficient (CCR5−/−) mice with human PG in adjuvant. The onset and severity were monitored overtime. Met-RANTES was used to block CCR5 in vivo. Arthritis was transferred to SCID mice with spleen cells from arthritis WT and CCR5−/− mice. Cytokines and chemokines were measured by ELISA.
Treatment with the CCR5 inhibitor, Met-RANTES, and CCR5−/− mice developed exacerbated arthritis late in the course of disease. The increase in arthritis severity in CCR5−/− correlated with elevated serum levels of CCL5. However, exacerbated arthritis was not intrinsic to the CCR5−/− lymphoid cells as arthritis transferred into SCID recipients was similar in WT and CCR5−/− mice. CCR5 expression in the SCID was sufficient to clear CCL5 as serum levels of CCL5 were the same in SCID recipients receiving WT or CCR5−/− cells.
These data demonstrate that CCR5 is a key player in controlling the resolution of inflammation in experimental arthritis.
PMCID: PMC2826270  PMID: 19790057
Autoimmunity; Inflammation; Rheumatoid Arthritis; Chemokine and Rodent
18.  Deficiency of CXCR2, but not other chemokine receptors, attenuates a murine model of autoantibody-mediated arthritis 
Arthritis and rheumatism  2010;62(7):1921-1932.
Chemokines coordinate leukocyte trafficking in homeostasis and during immune responses. Prior studies of their role in arthritis have employed animal models with both an initial adaptive immune response and an inflammatory effector phase. This study focused on chemokines and their receptors in the effector phase of arthritis using the K/BxN serum-transfer model.
A time-course microarray analysis of serum-transferred arthritis was performed, examining ankle, synovial fluid and peripheral blood. Upregulation of chemokines was confirmed by quantitative RT-PCR. The functional relevance of chemokine induction was assessed by transferring serum into mice deficient in CCR1–CCR7, CCR9, CXCR2, CXCR3, CXCR5, CX3CR1, CCL2 or CCL3. Further mechanistic analysis of CXCR2 involved treatment of arthritic mice with a CXCR2 antagonist, bone-marrow transfers with CXCR2+/− and CXCR2−/− donors and recipients, flow cytometry of synovial cells, and competition experiments measuring enrichment of CXCR2-expressing neutrophils in arthritic joints of mice with mixed CXCR2+/+ and CXCR2−/− bone-marrow.
Gene-expression profiling revealed upregulation of the CXCR2 ligands CXCL1, CXCL2 and CXCL5 in the joint in parallel with disease activity. CXCR2−/− mice had attenuated disease relative to CXCR2+/− littermates, as did mice receiving the CXCR2 inhibitor, while deficiency of other chemokine receptors did not affect arthritis severity. CXCR2 was required only on hematopoietic cells and was widely expressed on synovial neutrophils. CXCR2-expressing neutrophils were preferentially recruited to arthritic joints in the presence of CXCR2-deficient neutrophils.
CXCR2 (but not other chemokine receptors) is critical for the development of autoantibody-mediated arthritis, exhibiting a cell-autonomous role in neutrophil recruitment to inflamed joints.
PMCID: PMC2994550  PMID: 20506316
19.  Increased CCL19 and CCL21 levels promote fibroblast ossification in ankylosing spondylitis hip ligament tissue 
It is well-documented that both chemokine (C-C motif) ligand 19 (CCL19) and 21 (CCL21) mediate cell migration and angiogenesis in many diseases. However, these ligands’ precise pathological role in ankylosing spondylitis (AS) has not been elucidated. The objective of this study was to examine the expression of CCL19 and CCL21 (CCL19/CCL21) in AS hip ligament tissue (LT) and determine their pathological functions.
The expression levels of CCL19, CCL21 and their receptor CCR7 in AS (n = 31) and osteoarthritis (OA, n = 21) LT were analyzed via real-time polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC). The expression of CCL19, CCL21 and CCR7 in AS ligament fibroblasts was also detected. The proliferation of ligament fibroblasts was measured via a cell counting kit-8 (CCK8) assay after exogenous CCL19/CCL21 treatment. Additionally, the role of CCL19/CCL21 in osteogenesis was evaluated via RT-PCR and enzyme-linked immunosorbent assay (ELISA) in individual AS fibroblast cultures. Furthermore, the expression of the bone markers alkaline phosphatase (ALP), osteocalcin (OCN), collagenase I (COL1), integrin-binding sialoprotein (IBSP) and the key regulators runt-related transcription factor-2 (Runx-2) and osterix were investigated. Moreover, the CCL19/CCL21 levels in serum and LT were measured via ELISA.
The mRNA levels of CCL19/CCL21 in AS hip LT were significantly higher than that in OA LT, and IHC analysis revealed a similar result. Exogenous CCL19/CCL21 treatment did not affect the proliferation of ligament fibroblasts but significantly up-regulated the expression of bone markers, including ALP and OCN, and the key regulators Runx-2 and osterix. In addition, the serum levels of CCL19/CCL21 were apparently elevated in AS patients compared to healthy controls (HC), and the expression of the two chemokines correlated significantly in AS patients.
CCL19 and CCL21, two chemokines displaying significantly associated expression in serum, indicating a synergistic effect on AS pathogenesis, may function as promoters of ligament ossification in AS patients.
PMCID: PMC4190335  PMID: 25260647
CCL19; CCL21; Ankylosing spondylitis; Fibroblast; Ossification
20.  Preferential type 1 chemokine receptors and cytokine production of CD28− T cells in ankylosing spondylitis 
Annals of the Rheumatic Diseases  2005;65(5):647-653.
To examine serum levels of type 1 and type 2 chemokines and lymphocytic expression of chemokine receptors, and to compare the results with lymphocytic cytokine production in patients with ankylosing spondylitis (AS).
Twelve patients with AS (mean (SD) age 44.9 (14.7) years) and 27 healthy controls (46.4 (12.8) years) were enrolled into the study. The expression of chemokine receptors (CCR‐5, CXCR‐3, CCR‐4) and cytokines (interferon γ (IFNγ), interleukin (IL)2, IL4, IL10, tumour necrosis factor α (TNFα)) on CD28+ and CD28− T cell subtypes was analysed by a three colour FACS technique of peripheral blood samples. Serum ELISAs were performed to detect the CCR‐5 ligands CCL‐5, CCL‐3; the CXCR‐3 ligands CXCL‐10, CXCL‐9; and the CCR‐4 ligand, CCL‐17 before and after administration of the TNFα blocking agent infliximab.
CD4+CD28− T cells had higher ratios of CXCR‐3 to CCR‐4 than CD4+CD28+ T cells. Both, CD4+ and CD8+CD28− T cells of patients with AS produced more IFNγ, TNFα, and IL10 than their CD28+ counterparts (p<0.05), and lacked the production of IL2 and IL4. Serum levels of CXCL‐9 were increased in patients with AS to 59.2 pg/ml (34.1–730.5) compared with 32.5 pg/ml (20.0–79.5) in healthy controls (p = 0.016). The levels of both type 1 (CCL‐5, CXCL‐9) and type 2 chemokines (CCL‐17) decreased under blockade of TNFα (p<0.05).
The profile of chemokine receptor expression and cytokine production by CD28− T cells suggests a type 1 immune reaction in AS, although IL10 is frequently produced by CD28− T cells. Treatment with TNFα blocking antibodies decreased both types of chemokines in patients' sera.
PMCID: PMC1798130  PMID: 16219708
ankylosing spondylitis; chemokines; chemokine receptors; cytokines; tumour necrosis factor α
21.  Involvement of CCR6/CCL20/IL-17 Axis in NSCLC Disease Progression 
PLoS ONE  2011;6(9):e24856.
Autocrine and paracrine chemokine/chemokine receptor-based interactions promote non-small-cell-lung-cancer (NSCLC) carcinogenesis. CCL20/CCR6 interactions are involved in prostatic and colonic malignancy pathogenesis. The expression and function of CCL20/CCR6 and its related Th-17 type immune response in NSCLC is not yet defined. We sought to characterize the role of the CCL20/CCR6/IL-17 axis in NSCLC tumor growth.
A specialized histopathologist blindly assessed CCL20/CCR6 expression levels in 49 tissue samples of NSCLC patients operated in our department. Results were correlated to disease progression. Colony assays, ERK signaling and chemokine production were measured to assess cancer cell responsiveness to CCL20 and IL-17 stimulation.
CCL20 was highly expressed in the majority (38/49, 77.5%) of tumor samples. Only a minority of samples (8/49, 16.5%) showed high CCR6 expression. High CCR6 expression was associated with a shorter disease-free survival (P = 0.008) and conferred a disease stage-independent 4.87-fold increased risk for disease recurrence (P = 0.0076, CI 95% 1.52–15.563). Cancerous cell colony-forming capacity was increased by CCL20 stimulation; this effect was dependent in part on ERK phosphorylation and signaling. IL-17 expression was detected in NSCLC; IL-17 potentiated the production of CCL20 by cancerous cells.
Our findings suggest that the CCL20/CCR6 axis promotes NSCLC disease progression. CCR6 is identified as a potential new prognostic marker and the CCL20/CCR6/IL-17 axis as a potential new therapeutic target. Larger scale studies are required to consolidate these observations.
PMCID: PMC3174223  PMID: 21949768
22.  Differential gene expression during capillary morphogenesis in a microcarrier-based three-dimensional in vitro model of angiogenesis with focus on chemokines and chemokine receptors 
AIM: To globally compare the gene expression profiles during the capillary morphogenesis of human microvascular endothelial cells (HMVECs) in an in vitro angiogenesis system with affymetrix oligonucleotide array.
METHODS: A microcarrier-based in vitro angiogenesis system was developed, in which ECs migrated into the matrix, proliferated, and formed capillary sprouts. The sprouts elongated, branched and formed networks. The total RNA samples from the HMVECs at the selected time points (0.5, 24, and 72 h) during the capillary morphogenesis were used for microarray analyses, and the data were processed with the softwares provided by the manufacturers. The expression patterns of some genes were validated and confirmed by semi-quantitative RT-PCR. The regulated genes were grouped based on their molecular functions and expression patterns, and among them the expression of chemokines and chemokine receptors was specially examined and their functional implications were analyzed.
RESULTS: A total of 1961 genes were up- or downreg-ulated two-folds or above, and among them, 468 genes were up- or down-regulated three-folds or above. The regulated genes could be grouped into categories based on their molecular functions, and were also clustered into six groups based on their patterns of expression. As for chemokines and chemokine receptors, CXCL1/GRO-α, CXCL2/GRO-β, CXCL5/ENA-78, CXCL6/GCP2, IL-8/CXCL8, CXCL12/SDF-1, CXCL9/Mig, CXC11/ITAC, CX3CL1/fractalkine, CCL2/MCP-1, CCL3, CCL5/RANTES, CCL7, CCL15, CCL21, CCL23, CCL28, and CCR1, CCR9, CXCR4 were identified. Moreover, these genes demonstrated different changing patterns during the capillary morphogenesis, which implied that they might have different roles in the sequential process. Among the chemokines identified, CCL2/MCP-1, CCL5/RANTES and CX3CL1 were specially up-regulated at the 24-h time point when the sprouting characterized the morphological change. It was thus suggested that they might exert crucial roles at the early stage of angiogenesis.
CONCLUSION: The present study demonstrates a global profile of gene expression during endothelial capillary morphogenesis, and the results provide us much information about the molecular mechanisms of angiogenesis, with which further evaluation of individual genes can be conducted.
PMCID: PMC4305813  PMID: 15818740
Angiogenesis; In vitro model; Endothelial cell; Oligonucleotide array
23.  Expansion of CCR8+ inflammatory myeloid cells in cancer patients with urothelial and renal carcinomas 
Chemokines are involved in cancer-related inflammation and malignant progression. In this study we evaluated expression of CCR8 and its natural cognate ligand CCL1 in patients with urothelial carcinomas of bladder and renal cell carcinomas.
Experimental Design
We examined CCR8 expression in peripheral blood and tumor tissues from patients with bladder and renal carcinomas. CCR8-positive myeloid cells were isolated from cancer tissues with magnetic beads and tested in vitro for cytokine production and ability to modulate T cell function.
We demonstrate that monocytic and granulocytic myeloid cell subsets in peripheral blood of cancer patients with urothelial and renal carcinomas display increased expression of chemokine receptor CCR8. Up-regulated expression of CCR8 is also detected within human cancer tissues and primarily limited to tumor-associated macrophages (TAMs). When isolated, CD11b+CCR8+ cell subset produces the highest levels of pro-inflammatory and pro-angiogenic factors among intratumoral CD11b myeloid cells. Tumor-infiltrating CD11b+CCR8+ cells selectively display activated Stat3 and are capable of inducing FoxP3 expression in autologous T lymphocytes. Primary human tumors produce substantial amounts of the natural CCR8 ligand CCL1.
This study provides the first evidence that CCR8+ myeloid cell subset is expanded in cancer patients. Elevated secretion of CCL1 by tumors, increased presence of CCR8+ myeloid cells in peripheral blood and cancer tissues indicate that CCL1/CCR8 axis is a component of cancer-related inflammation and may contribute to immune evasion. Obtained results also implicate that blockade of CCR8 signals may provide an attractive strategy for therapeutic intervention in human urothelial and renal cancers.
PMCID: PMC3618575  PMID: 23363815
24.  Unique Chemotactic Response Profile and Specific Expression of Chemokine Receptors Ccr4 and Ccr8 by Cd4+Cd25+ Regulatory T Cells 
Chemokines dictate regional trafficking of functionally distinct T cell subsets. In rodents and humans, a unique subset of CD4+CD25+ cytotoxic T lymphocyte antigen (CTLA)-4+ regulatory T cells (Treg) has been proposed to control peripheral tolerance. However, the molecular basis of immune suppression and the trafficking properties of Treg cells are still unknown. Here, we determined the chemotactic response profile and chemokine receptor expression of human blood-borne CD4+CD25+ Treg cells. These Treg cells were found to vigorously respond to several inflammatory and lymphoid chemokines. Treg cells specifically express the chemokine receptors CCR4 and CCR8 and represent a major subset of circulating CD4+ T cells responding to the chemokines macrophage-derived chemokine (MDC)/CCL22, thymus and activation-regulated chemokine (TARC)/CCL17, I-309/CCL1, and to the virokine vMIP-I (ligands of CCR4 and CCR8). Blood-borne CD4+ T cells that migrate in response to CCL1 and CCL22 exhibit a reduced alloproliferative response, dependent on the increased frequency of Treg cells in the migrated population. Importantly, mature dendritic cells preferentially attract Treg cells among circulating CD4+ T cells, by secretion of CCR4 ligands CCL17 and CCL22. Overall, these results suggest that CCR4 and/or CCR8 may guide Treg cells to sites of antigen presentation in secondary lymphoid tissues and inflamed areas to attenuate T cell activation.
PMCID: PMC2195967  PMID: 11560999
chemokines; lymphocyte homing; cytokines; T lymphocyte subsets; immunosuppression
25.  The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. 
Journal of Clinical Investigation  1998;101(4):746-754.
T cells infiltrating inflammatory sites are usually of the activated/memory type. The precise mechanism for the positioning of these cells within tissues is unclear. Adhesion molecules certainly play a role; however, the intricate control of cell migration appears to be mediated by numerous chemokines and their receptors. Particularly important chemokines for activated/memory T cells are the CXCR3 ligands IP-10 and Mig and the CCR5 ligands RANTES, macrophage inflammatory protein-1alpha, and macrophage inflammatory protein-1beta. We raised anti-CXCR3 mAbs and were able to detect high levels of CXCR3 expression on activated T cells. Surprisingly, a proportion of circulating blood T cells, B cells, and natural killer cells also expressed CXCR3. CCR5 showed a similar expression pattern as CXCR3, but was expressed on fewer circulating T cells. Blood T cells expressing CXCR3 (and CCR5) were mostly CD45RO+, and generally expressed high levels of beta1 integrins. This phenotype resembled that of T cells infiltrating inflammatory lesions. Immunostaining of T cells in rheumatoid arthritis synovial fluid confirmed that virtually all such T cells expressed CXCR3 and approximately 80% expressed CCR5, representing high enrichment over levels of CXCR3+ and CCR5+ T cells in blood, 35 and 15%, respectively. Analysis by immunohistochemistry of various inflamed tissues gave comparable findings in that virtually all T cells within the lesions expressed CXCR3, particularly in perivascular regions, whereas far fewer T cells within normal lymph nodes expressed CXCR3 or CCR5. These results demonstrate that the chemokine receptor CXCR3 and CCR5 are markers for T cells associated with certain inflammatory reactions, particularly TH-1 type reactions. Moreover, CXCR3 and CCR5 appear to identify subsets of T cells in blood with a predilection for homing to these sites.
PMCID: PMC508621  PMID: 9466968

Results 1-25 (1552955)