PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (429388)

Clipboard (0)
None

Related Articles

1.  First Isolation of Dengue Virus from the 2010 Epidemic in Nepal 
Tropical Medicine and Health  2013;41(3):103-111.
Dengue is an emerging disease in Nepal and was first observed as an outbreak in nine lowland districts in 2006. In 2010, however, a large epidemic of dengue occurred with 4,529 suspected and 917 serologically-confirmed cases and five deaths reported in government hospitals in Nepal. The collection of demographic information was performed along with an entomological survey and clinical evaluation of the patients. A total of 280 serum samples were collected from suspected dengue patients. These samples were subjected to routine laboratory investigations and IgM-capture ELISA for dengue serological identification, and 160 acute serum samples were used for virus isolation, RT-PCR, sequencing and phylogenetic analysis. The results showed that affected patients were predominately adults, and that 10% of the cases were classified as dengue haemorrhagic fever/ dengue shock syndrome. The genetic characterization of dengue viruses isolated from patients in four major outbreak areas of Nepal suggests that the DENV-1 strain was responsible for the 2010 epidemic. Entomological studies identified Aedes aegypti in all epidemic areas. All viruses belonged to a monophyletic single clade which is phylogenetically close to Indian viruses. The dengue epidemic started in the lowlands and expanded to the highland areas. To our knowledge, this is the first dengue isolation and genetic characterization reported from Nepal.
doi:10.2149/tmh.2012-17
PMCID: PMC3801155  PMID: 24155651
Dengue fever; dengue 1 virus; epidemiology; Nepal
2.  Spatio-Temporal Distribution of Dengue and Lymphatic Filariasis Vectors along an Altitudinal Transect in Central Nepal 
Background
Rapidly increasing temperatures in the mountain region of Nepal and recent reports of dengue fever and lymphatic filariasis cases from mountainous areas of central Nepal prompted us to study the spatio-temporal distribution of the vectors of these two diseases along an altitudinal transect in central Nepal.
Methodology/Principal Findings
We conducted a longitudinal study in four distinct physiographical regions of central Nepal from September 2011 to February 2012. We used BG-Sentinel and CDC light traps to capture adult mosquitoes. We found the geographical distribution of the dengue virus vectors Aedes aegypti and Aedes albopictus along our study transect to extend up to 1,310 m altitude in the Middle Mountain region (Kathmandu). The distribution of the lymphatic filariasis vector Culex quinquefasciatus extended up to at least 2,100 m in the High Mountain region (Dhunche). Statistical analysis showed a significant effect of the physiographical region and month of collection on the abundance of A. aegypti and C. quinquefasciatus only. BG-Sentinel traps captured significantly higher numbers of A. aegypti than CDC light traps. The meteorological factors temperature, rainfall and relative humidity had significant effects on the mean number of A. aegypti per BG-Sentinel trap. Temperature and relative humidity were significant predictors of the number of C. quinquefasciatus per CDC light trap. Dengue fever and lymphatic filariasis cases had previously been reported from all vector positive areas except Dhunche which was free of known lymphatic filariasis cases.
Conclusions/Significance
We conclude that dengue virus vectors have already established stable populations up to the Middle Mountains of Nepal, supporting previous studies, and report for the first time the distribution of lymphatic filariasis vectors up to the High Mountain region of this country. The findings of our study should contribute to a better planning and scaling-up of mosquito-borne disease control programmes in the mountainous areas of Nepal.
Author Summary
Dengue fever, a viral disease transmitted by the bites of infected Aedes aegypti and Aedes albopictus mosquitoes, has been rapidly spreading in Nepal since it was first reported in this country in 2004. Similarly, lymphatic filariasis, a parasitic disease transmitted by Culex quinquefasciatus mosquitoes in Nepal, is a public health problem in terms of morbidity and impact on the social and economic status of poor people living in rural and slum areas. Evidence for more pronounced temperature rises in higher altitudes of Nepal and an increasing frequency of dengue fever and lymphatic filariasis cases reported from mountain areas, in the absence of recent data on the mosquito vectors of these diseases, prompted us to investigate their distribution and abundance in this country. In our study, we document the distribution of A. aegypti and A. albopictus from the lowlands up to 1,310 m altitude in Kathmandu, and the distribution of C. quinquefasciatus up to Dhunche (2,100 m altitude), the highest locality included in this study. The wide distribution of these important disease vectors in the mountains, previously considered non-endemic for dengue fever and lymphatic filariasis, calls for an extension and scaling-up of vector-borne disease surveillance and control programmes in Nepal.
doi:10.1371/journal.pntd.0003035
PMCID: PMC4117448  PMID: 25078276
3.  Dengue virus-specific human T cell clones. Serotype crossreactive proliferation, interferon gamma production, and cytotoxic activity 
The severe complications of dengue virus infections, hemorrhagic manifestation and shock, are much more commonly observed during secondary infections caused by a different serotype of dengue virus than that which caused the primary infections. It has been speculated, therefore, that dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are caused by serotype crossreactive immunopathological mechanisms. We analyzed clones of dengue serotype crossreactive T lymphocytes derived from the PBMC of a donor who had been infected with dengue 3 virus. These PBMC responded best to dengue 3 antigen, but also responded to dengue 1, 2, and 4 antigens, in bulk culture proliferation assays. 12 dengue antigen-specific clones were established using a limiting dilution technique. All of the clones had CD3+ CD4+ CD8 phenotypes. Eight clones responded to dengue 1, 2, 3, and 4 antigens and are crossreactive, while four other clones responded predominantly to dengue 3 antigen. These results indicate that the serotype crossreactive dengue-specific T lymphocyte proliferation observed in bulk cultures reflects the crossreactive responses detected at the clonal level. Serotype crossreactive clones produced high titers of IFN- gamma after stimulation with dengue 3 antigens, and also produced IFN- gamma to lower levels after stimulation with dengue 1, 2, and 4 antigens. The crossreactive clones lysed autologous lymphoblastoid cell line (LCL) pulsed with dengue antigens, and the crossreactivity of CTL lysis by T cell clones was consistent with the crossreactivity observed in proliferation assays. Epidemiological studies have shown that secondary infections with dengue 2 virus cause DHF/DSS at a higher rate than the other serotypes. We hypothesized that the lysis of dengue virus-infected cells by CTL may lead to DHF/DSS; therefore, the clones were examined for cytotoxic activity against dengue 2 virus-infected LCL. All but one of the serotype crossreactive clones lysed dengue 2 virus-infected autologous LCL, and they did not lyse uninfected autologous LCL. The lysis of dengue antigen-pulsed or virus-infected LCL by the crossreactive CTL clones that we have examined is restricted by HLA DP or DQ antigens. These results indicate that primary dengue virus infections induce predominantly crossreactive memory CD4+ T lymphocytes. These crossreactive T lymphocytes proliferate and produce IFN-gamma after stimulation with a virus strain of another serotype, and demonstrate crossreactive cyotoxic activity against autologous cells infected with heterologous dengue viruses.(ABSTRACT TRUNCATED AT 400 WORDS)
PMCID: PMC2189437  PMID: 2475573
4.  Neutralizing Dengue Antibody in Pregnant Thai Women and Cord Blood 
PLoS Neglected Tropical Diseases  2015;9(2):e0003396.
Background
The WHO ‘Global Strategy for Dengue Prevention and Control, 2012–2020’ addresses the growing need for the treatment of dengue, and targets a 25% reduction in morbidity and 50% in mortality (using 2010 estimates as baseline). Achieving these goals requires future dengue prevention strategies that will employ both potential vaccines and sustainable vector-control measures. Maternally transferred dengue antibody is an important factor in determining the optimal age for dengue vaccination.
Objectives
To estimate the seroprevalence of dengue antibodies among mothers living in an area of high endemicity – Ban Pong, Ratchaburi Province – and to assess maternal dengue antibodies transferred to cord blood.
Materials & Methods
A cross-sectional study was conducted with 141 pregnant women who delivered at Ban Pong Hospital, Ratchaburi, Thailand. Maternal-cord paired sera were tested for dengue neutralizing (NT) antibody by PRNT50 assay. A ratio of ≥ 1:10 NT titer to dengue serotype was considered seropositive.
Results
Most mothers (137/141, 97.2%) had NT antibodies to at least one dengue serotype in their sera. At birth, the proportion of cord sera with NT antibodies to DEN-1, DEN-2, DEN-3, and DEN-4, were high and similar to the sera of their mothers, at 93.6%, 97.2%, 97.9%, and 92.2%, respectively. The dengue geometric mean titers (GMT) in cord blood were significantly higher than the maternal antibodies (p<0.001): highest in DEN-2, followed by DEN-3, and then DEN-1. The GMT of DEN-4 was the lowest among all four serotypes.
Conclusions
Dengue infection is highly prevalent among pregnant women in this dengue-endemic area. Most of the cord blood had transferred dengue antibodies, which may have an impact on the disease burden in this population.
Author Summary
Dengue is the fastest spreading mosquito-borne viral infection. Infections cause mild to severe diseases, including dengue hemorrhagic fever (DHF), a severe form that may kill infants and young children. Dengue virus antibody transfer from mother to fetus in pregnancy confers protection at birth, thereafter subsiding to a lower level that may cause DHF in infants. Infant dengue antibodies levels also influence the optimal age for dengue vaccination because of neutralization of the proposed live virus vaccine by the protective antibody levels in the newborn. To establish the optimal age, we identified mother-child pairs in which maternal dengue antibodies were transferred from mother to fetus in this study. Then a follow-up study would measure the infant antibody levels. Our study found that 97.2% of pregnant women giving birth in a dengue-endemic area had evidence of previous dengue infection. All umbilical cord blood from fetuses had the same proportion of positive tests for the presence of dengue antibodies, but had a higher dengue antibody levels compared to their mothers. The period of protection provided by maternally transferred dengue antibodies might affect the disease burden among infants and offer a better understanding of the optimal age for dengue vaccination.
doi:10.1371/journal.pntd.0003396
PMCID: PMC4320096  PMID: 25658481
5.  Dengue Infection in Children in Ratchaburi, Thailand: A Cohort Study. I. Epidemiology of Symptomatic Acute Dengue Infection in Children, 2006–2009 
Background
There is an urgent need to field test dengue vaccines to determine their role in the control of the disease. Our aims were to study dengue epidemiology and prepare the site for a dengue vaccine efficacy trial.
Methods and Findings
We performed a prospective cohort study of children in primary schools in central Thailand from 2006 through 2009. We assessed the epidemiology of dengue by active fever surveillance for acute febrile illness as detected by school absenteeism and telephone contact of parents, and dengue diagnostic testing. Dengue accounted for 394 (6.74%) of the 5,842 febrile cases identified in 2882, 3104, 2717 and 2312 student person-years over the four years, respectively. Dengue incidence was 1.77% in 2006, 3.58% in 2007, 5.74% in 2008 and 3.29% in 2009. Mean dengue incidence over the 4 years was 3.6%. Dengue virus (DENV) types were determined in 333 (84.5%) of positive specimens; DENV serotype 1 (DENV-1) was the most common (43%), followed by DENV-2 (29%), DENV-3 (20%) and DENV-4 (8%). Disease severity ranged from dengue hemorrhagic fever (DHF) in 42 (10.5%) cases, dengue fever (DF) in 142 (35.5%) cases and undifferentiated fever (UF) in 210 (52.5%) cases. All four DENV serotypes were involved in all disease severity. A majority of cases had secondary DENV infection, 95% in DHF, 88.7% in DF and 81.9% in UF. Two DHF (0.5%) cases had primary DENV-3 infection.
Conclusion
The results illustrate the high incidence of dengue with all four DENV serotypes in primary school children, with approximately 50% of disease manifesting as mild clinical symptoms of UF, not meeting the 1997 WHO criteria for dengue. Severe disease (DHF) occurred in one tenth of cases. Data of this type are required for clinical trials to evaluate the efficacy of dengue vaccines in large scale clinical trials.
Author Summary
There is an urgent need to field test dengue vaccine. Efficacy trials need to be conducted in study sites with sufficiently high dengue incidence to make a robust estimate of vaccine efficacy and where all dengue virustypes circulate frequently. In this paper, we report on dengue disease surveillance on approximately 3000 primary-school children in seven schools in Muang district of Ratchaburi province, central Thailand, from 2006 through 2009. We report on the characteristics of children in this cohort who fell ill with laboratory confirmed dengue disease. The study showed that approximately four percent of the children had laboratory confirmed dengue per year. All four dengue virus types were found to be the causes of illness in children in all seven schools. This study has shown Muang district of Ratchaburi province to be suitable for dengue vaccine testing and the site has been selected for the world’s first dengue vaccine safety and efficacy study, being conducted from 2009–2014 in children aged 4–11 years.
doi:10.1371/journal.pntd.0001732
PMCID: PMC3409110  PMID: 22860141
6.  Evaluation of a Rapid Immunochromatographic Test for Diagnosis of Dengue Virus Infection 
Journal of Clinical Microbiology  1998;36(1):234-238.
A rapid (<7-min) immunochromatographic test for immunoglobulin M (IgM) and IgG antibodies to dengue viruses was evaluated by using hospital admission and discharge sera from 124 patients. The reference laboratory diagnosis was based on the results of virus isolation, hemagglutination-inhibition assay (HAI), and enzyme immunoassay (EIA). By the standard assays, patients experienced primary dengue virus infection (n = 30), secondary dengue virus infection (n = 48), Japanese encephalitis (JE) virus infection (n = 20), or no flavivirus infection (n = 26). The rapid test demonstrated 100% sensitivity in the diagnosis of dengue virus infection and was able to distinguish between primary and secondary dengue virus infections through the separate determinations of IgM and IgG. For all patients with primary dengue virus infection a positive test for IgM to dengue virus and a negative test for IgG to dengue virus were obtained, whereas for 46 of 48 patients (96%) with secondary dengue virus infection, a positive test for IgG to dengue virus with or without a positive test for IgM to dengue virus was obtained. The remaining two patients with secondary dengue virus infection had positive IgM test results and negative IgG test results. Furthermore, the rapid test was positive for patients confirmed to be infected with different dengue virus serotypes (12 infected with dengue virus serotype 1, 4 infected with dengue virus serotype 2, 3 infected with dengue virus serotype 3, and 2 infected with dengue virus serotype 4). The specificity of the test for nonflavivirus infections was 88% (3 of 26 positive), while for JE virus infections the specificity of the test was only 50% (10 of 20). However, most patients with secondary dengue virus infection were positive for both IgM and IgG antibodies to dengue virus, while no patients with JE virus infection had this profile, so cross-reactivity was only a concern for a small proportion of patients with secondary dengue infections. The rapid test demonstrated a good correlation with the reference EIA and HAI and should be useful for the rapid diagnosis of dengue virus infections.
PMCID: PMC124841  PMID: 9431954
7.  Spatio-Temporal Tracking and Phylodynamics of an Urban Dengue 3 Outbreak in São Paulo, Brazil 
The dengue virus has a single-stranded positive-sense RNA genome of ∼10.700 nucleotides with a single open reading frame that encodes three structural (C, prM, and E) and seven nonstructural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins. It possesses four antigenically distinct serotypes (DENV 1–4). Many phylogenetic studies address particularities of the different serotypes using convenience samples that are not conducive to a spatio-temporal analysis in a single urban setting. We describe the pattern of spread of distinct lineages of DENV-3 circulating in São José do Rio Preto, Brazil, during 2006. Blood samples from patients presenting dengue-like symptoms were collected for DENV testing. We performed M-N-PCR using primers based on NS5 for virus detection and identification. The fragments were purified from PCR mixtures and sequenced. The positive dengue cases were geo-coded. To type the sequenced samples, 52 reference sequences were aligned. The dataset generated was used for iterative phylogenetic reconstruction with the maximum likelihood criterion. The best demographic model, the rate of growth, rate of evolutionary change, and Time to Most Recent Common Ancestor (TMRCA) were estimated. The basic reproductive rate during the epidemics was estimated. We obtained sequences from 82 patients among 174 blood samples. We were able to geo-code 46 sequences. The alignment generated a 399-nucleotide-long dataset with 134 taxa. The phylogenetic analysis indicated that all samples were of DENV-3 and related to strains circulating on the isle of Martinique in 2000–2001. Sixty DENV-3 from São José do Rio Preto formed a monophyletic group (lineage 1), closely related to the remaining 22 isolates (lineage 2). We assumed that these lineages appeared before 2006 in different occasions. By transforming the inferred exponential growth rates into the basic reproductive rate, we obtained values for lineage 1 of R0 = 1.53 and values for lineage 2 of R0 = 1.13. Under the exponential model, TMRCA of lineage 1 dated 1 year and lineage 2 dated 3.4 years before the last sampling. The possibility of inferring the spatio-temporal dynamics from genetic data has been generally little explored, and it may shed light on DENV circulation. The use of both geographic and temporally structured phylogenetic data provided a detailed view on the spread of at least two dengue viral strains in a populated urban area.
Author Summary
Most of the molecular phylogeny studies of dengue fever, an important public health problem, use convenience samples for their analysis, and they do not evaluate the spatial and temporal features involved in the spread of the different serotypes (and genotypes) circulating in urban settings during an outbreak. Our study describes the patterns of spread of different lineages of dengue 3 virus circulating in a medium-sized city from Brazil, and we also analyzed the dynamics and microevolution of the disease during the 2006 outbreak. We used both geographic and temporally structured phylogenetic data, which provided a relatively detailed view on the spread of at least two dengue viral lineages circulating in an urban area. The pattern of dengue virus circulation might be similar to many other settings all over the world, and the information provided by our study can help a better understanding of dengue outbreaks, providing important information for public-health systems. We could identify at least two lineages, which were introduced in different occasions. They circulated and spread at different rates within the city, and this differential spread and the role of socioeconomic features in this phenomenon are discussed.
doi:10.1371/journal.pntd.0000448
PMCID: PMC2682200  PMID: 19478848
8.  Statistical Modeling Reveals the Effect of Absolute Humidity on Dengue in Singapore 
Weather factors are widely studied for their effects on indicating dengue incidence trends. However, these studies have been limited due to the complex epidemiology of dengue, which involves dynamic interplay of multiple factors such as herd immunity within a population, distinct serotypes of the virus, environmental factors and intervention programs. In this study, we investigate the impact of weather factors on dengue in Singapore, considering the disease epidemiology and profile of virus serotypes. A Poisson regression combined with Distributed Lag Non-linear Model (DLNM) was used to evaluate and compare the impact of weekly Absolute Humidity (AH) and other weather factors (mean temperature, minimum temperature, maximum temperature, rainfall, relative humidity and wind speed) on dengue incidence from 2001 to 2009. The same analysis was also performed on three sub-periods, defined by predominant circulating serotypes. The performance of DLNM regression models were then evaluated through the Akaike's Information Criterion. From the correlation and DLNM regression modeling analyses of the studied period, AH was found to be a better predictor for modeling dengue incidence than the other unique weather variables. Whilst mean temperature (MeanT) also showed significant correlation with dengue incidence, the relationship between AH or MeanT and dengue incidence, however, varied in the three sub-periods. Our results showed that AH had a more stable impact on dengue incidence than temperature when virological factors were taken into consideration. AH appeared to be the most consistent factor in modeling dengue incidence in Singapore. Considering the changes in dominant serotypes, the improvements in vector control programs and the inconsistent weather patterns observed in the sub-periods, the impact of weather on dengue is modulated by these other factors. Future studies on the impact of climate change on dengue need to take all the other contributing factors into consideration in order to make meaningful public policy recommendations.
Author Summary
As dengue virus transmission is through a human-to-mosquito-to-human cycle, the influence of meteorological factors on dengue is likely to be associated with their impact on mosquito populations and behavior. Other than the influence of weather factors, the shift of dominant serotypes and pre-emptive measures taken against dengue vectors may possibly affect the dengue transmission trend. In this study, we investigate the impact of weather factors on dengue in tropical Singapore, taking into consideration the disease epidemiology and profile of virus serotypes. We found that absolute humidity, as a composite index of mean temperature and relative humidity, is a more stable and better predictor for modeling dengue incidence than the other unique weather variables when virological factors are taken into consideration. This research suggests that absolute humidity needs to be considered together with all the other contributing factors in order to make meaningful public policy recommendations for dengue control.
doi:10.1371/journal.pntd.0002805
PMCID: PMC4006725  PMID: 24786517
9.  Serotype-Specific Detection of Dengue Viruses in a Fourplex Real-Time Reverse Transcriptase PCR Assay 
Journal of Clinical Microbiology  2005;43(10):4977-4983.
The dengue (DEN) viruses are positive-strand RNA viruses in the genus Flavivirus. Dengue fever and dengue hemorrhagic fever/dengue shock syndrome are important human arboviral diseases caused by infection with one of four closely related but serologically distinct DEN viruses, designated DEN-1, DEN-2, DEN-3, and DEN-4 viruses. All four DEN serotypes are currently cocirculating throughout the subtropics and tropics, and genotypic variation occurs among isolates within a serotype. A real-time quantitative nucleic acid amplification assay has been developed to detect viral RNA of a single DEN virus serotype. Each primer-probe set is DEN serotype specific, yet detects all genotypes in a panel of 7 to 10 representative isolates of a serotype. In single reactions and in fourplex reactions (containing four primer-probe sets in a single reaction mixture), standard dilutions of virus equivalent to 0.002 PFU of DEN-2, DEN-3, and DEN-4 viruses were detected; the limit of detection of DEN-1 virus was 0.5 equivalent PFU. Singleplex and fourplex reactions were evaluated in a panel of 40 viremic serum specimens with 10 specimens per serotype, containing 0.002 to 6,000 equivalent PFU/reaction (0.4 to 1.2 × 106 PFU/ml). Viral RNA was detected in all viremic serum specimens in singleplex and fourplex reactions. Thus, this serotype-specific, fourplex real-time reverse transcriptase PCR nucleic acid detection assay can be used as a method for differential diagnosis of a specific DEN serotype in viremic dengue patients and as a tool for rapid identification and serotyping of DEN virus isolates.
doi:10.1128/JCM.43.10.4977-4983.2005
PMCID: PMC1248506  PMID: 16207951
10.  A Prospective Nested Case-Control Study of Dengue in Infants: Rethinking and Refining the Antibody-Dependent Enhancement Dengue Hemorrhagic Fever Model 
PLoS Medicine  2009;6(10):e1000171.
Analyses of a prospective case-control study of infant dengue by Daniel Libraty and colleagues casts doubt on the antibody-dependent enhancement model for dengue hemorrhagic fever.
Background
Dengue hemorrhagic fever (DHF) is the severe and life-threatening syndrome that can develop after infection with any one of the four dengue virus (DENV) serotypes. DHF occurs almost exclusively in individuals with secondary heterologous DENV infections and infants with primary DENV infections born to dengue immune mothers. The widely accepted explanation for the pathogenesis of DHF in these settings, particularly during infancy, is antibody-dependent enhancement (ADE) of DENV infection.
Methods and Findings
We conducted a prospective nested case-control study of DENV infections during infancy. Clinical data and blood samples were collected from 4,441 mothers and infants in up to two pre-illness study visits, and surveillance was performed for symptomatic and inapparent DENV infections. Pre-illness plasma samples were used to measure the associations between maternally derived anti-DENV3 antibody-neutralizing and -enhancing capacities at the time of DENV3 infection and development of infant DHF.
The study captured 60 infants with DENV infections across a wide spectrum of disease severity. DENV3 was the predominant serotype among the infants with symptomatic (35/40) and inapparent (15/20) DENV infections, and 59/60 infants had a primary DENV infection. The estimated in vitro anti-DENV3 neutralizing capacity at birth positively correlated with the age of symptomatic primary DENV3 illness in infants. At the time of symptomatic DENV3 infection, essentially all infants had low anti-DENV3 neutralizing activity (50% plaque reduction neutralizing titers [PRNT50] ≤50) and measurable DENV3 ADE activity. The infants who developed DHF did not have significantly higher frequencies or levels of DENV3 ADE activity compared to symptomatic infants without DHF. A higher weight-for-age in the first 3 mo of life and at illness presentation was associated with a greater risk for DHF from a primary DENV infection during infancy.
Conclusions
This prospective nested case-control study of primarily DENV3 infections during infancy has shown that infants exhibit a full range of disease severity after primary DENV infections. The results support an initial in vivo protective role for maternally derived antibody, and suggest that a DENV3 PRNT50 >50 is associated with protection from symptomatic DENV3 illness. We did not find a significant association between DENV3 ADE activity at illness onset and the development of DHF compared with less severe symptomatic illness. The results of this study should encourage rethinking or refinement of the current ADE pathogenesis model for infant DHF and stimulate new directions of research into mechanisms responsible for the development of DHF during infancy.
Trial registration
ClinicalTrials.gov NCT00377754
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Every year, dengue infects 50–100 million people living in tropical and subtropical areas. The four closely related viruses that cause dengue (DENV1–4) are transmitted to people through the bites of female Aedes aegypti mosquitoes, which acquire the viruses by feeding on the blood of an infected person. Many people who become infected with DENV have no symptoms but some develop dengue fever, a severe, flu-like illness that lasts a few days. Other people—about half a million a year—develop a potentially fatal condition called dengue hemorrhagic fever (DHF). In DHF, which can be caused by any of the DENVs, small blood vessels become leaky and friable. This leakiness causes nose and gum bleeds, bruising and, in the worst cases, failure of the circulatory system and death. There is no vaccine to prevent dengue and no specific treatment for dengue fever or DHF. However, with standard medical care—in particular, replacement of lost fluids—most people can survive DHF.
Why Was This Study Done?
DHF is increasingly common, but why do only some people develop DHF after infection with DENV? The widely accepted explanation for the development of DHF is “antibody-dependent enhancement” (ADE) of DENV infection. DHF occurs almost exclusively in two settings; (i) children and adults who become infected with a second DENV serotype after an initial “primary” DENV infection with a different serotype, and (ii) infants with primary DENV infections whose mothers have some DENV immunity. The ADE model suggests that in individuals who develop DHF, although there are some antibodies (proteins made by the immune system to fight infections) against DENV in their blood (in secondary heterologous infections, antibodies left over from the primary infection; in infants with primary infections, antibodies acquired from their mothers before birth), these antibodies cannot “neutralize” the virus. Instead, they bind to it and enhance its uptake by certain immune system cells, thus increasing viral infectivity and triggering an immunological cascade that results in DHF. In this prospective, nested case-control study, the researchers directly test the ADE model for infant DHF. In a prospective study, a group of people is selected and followed to see if they develop a disease; in a nested case-control study, each case is compared with people in the group who do not develop the disease.
What Did the Researchers Do and Find?
The researchers collected clinical data and blood samples from 4,441 mothers and their babies at up to two pre-illness study visits. They then followed the infants for a year to see which of them developed symptomatic and symptom-free DENV infections. Finally, they used the pre-illness blood samples to estimate the maternally derived anti-DENV antibody-neutralizing and -enhancing capacities in the infants at the time of DENV infection. 60 infants were infected with DENV—mainly DENV3—during the study. All but one infection was a primary infection. The infected infants showed a wide range of disease severity. Infants who had a high DENV3 neutralizing capacity at birth tended to develop symptomatic DENV3 infections later than infants who had a low DENV3 neutralizing capacity at birth. All the infants who developed a symptomatic DENV3 infection had a low estimated DENV3 neutralizing activity at the time of infection, and nearly all had measurable levels of DENV3 ADE activity. Infants who developed DHF did not have significantly higher frequencies or levels of DENV3 ADE activity than DENV3-infected infants with less severe symptoms.
What Do These Findings Mean?
These findings indicate that maternally derived anti-DENV3 antibody initially provides protection against dengue infections. That is, babies born to DENV immune mothers are protected against dengue infections by maternally derived antibodies. Over time, the level of these antibodies declines until eventually the infant becomes susceptible to DENV infections. However, the lack of a significant association between the estimated level of DENV3 ADE activity at illness onset and the development of DHF rather than a less severe illness throws doubt onto (but does not completely rule out) the current ADE pathogenesis model for infant DHF, at least for DENV3 infections. The results of this study, the researchers conclude, should encourage rethinking or refinement of the ADE model for infant DHF and should promote further prospective studies into the development of DHF during infancy.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000171.
TropIKA.net provides review articles, news, opinions, research articles, and reports on dengue (in English)
The US Centers for Disease Control and Prevention provide detailed information about dengue fever and dengue hemorrhagic fever (in English and Spanish)
The World Health Organization provides information on dengue fever and dengue hemorrhagic fever around the world (in several languages)
Links to additional resources about dengue are provided by MedlinePlus (in English and Spanish)
Wikipedia has a page on antibody-dependent enhancement of viral infections (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.1000171
PMCID: PMC2762316  PMID: 19859541
11.  A Tetravalent Dengue Vaccine Based on a Complex Adenovirus Vector Provides Significant Protection in Rhesus Monkeys against All Four Serotypes of Dengue Virus▿  
Journal of Virology  2008;82(14):6927-6934.
Nearly a third of the human population is at risk of infection with the four serotypes of dengue viruses, and it is estimated that more than 100 million infections occur each year. A licensed vaccine for dengue viruses has become a global health priority. A major challenge to developing a dengue vaccine is the necessity to produce fairly uniform protective immune responses to all four dengue virus serotypes. We have developed two bivalent dengue virus vaccines, using a complex adenovirus vector, by incorporating the genes expressing premembrane (prM) and envelope (E) proteins of dengue virus types 1 and 2 (dengue-1 and -2, respectively) (CAdVax-Den12) or dengue-3 and -4 (CAdVax-Den34). Rhesus macaques were vaccinated by intramuscular inoculation of a tetravalent dengue vaccine formulated by combining the two bivalent vaccine constructs. Vaccinated animals produced high-titer antibodies that neutralized all four serotypes of dengue viruses in vitro. The ability of the vaccine to induce rapid, as well as sustained, protective immune responses was examined with two separate live-virus challenges administered at 4 and 24 weeks after the final vaccination. For both of these virus challenge studies, significant protection from viremia was demonstrated for all four dengue virus serotypes in vaccinated animals. Viremia from dengue-1 and dengue-3 challenges was completely blocked, whereas viremia from dengue-2 and dengue-4 was significantly reduced, as well as delayed, compared to that of control-vaccinated animals. These results demonstrate that the tetravalent dengue vaccine formulation provides significant protection in rhesus macaques against challenge with all four dengue virus serotypes.
doi:10.1128/JVI.02724-07
PMCID: PMC2446963  PMID: 18480438
12.  Identification of Conserved and HLA Promiscuous DENV3 T-Cell Epitopes 
Anti-dengue T-cell responses have been implicated in both protection and immunopathology. However, most of the T-cell studies for dengue include few epitopes, with limited knowledge of their inter-serotype variation and the breadth of their human leukocyte antigen (HLA) affinity. In order to expand our knowledge of HLA-restricted dengue epitopes, we screened T-cell responses against 477 overlapping peptides derived from structural and non-structural proteins of the dengue virus serotype 3 (DENV3) by use of HLA class I and II transgenic mice (TgM): A2, A24, B7, DR2, DR3 and DR4. TgM were inoculated with peptides pools and the T-cell immunogenic peptides were identified by ELISPOT. Nine HLA class I and 97 HLA class II novel DENV3 epitopes were identified based on immunogenicity in TgM and their HLA affinity was further confirmed by binding assays analysis. A subset of these epitopes activated memory T-cells from DENV3 immune volunteers and was also capable of priming naïve T-cells, ex vivo, from dengue IgG negative individuals. Analysis of inter- and intra-serotype variation of such an epitope (A02-restricted) allowed us to identify altered peptide ligands not only in DENV3 but also in other DENV serotypes. These studies also characterized the HLA promiscuity of 23 HLA class II epitopes bearing highly conserved sequences, six of which could bind to more than 10 different HLA molecules representing a large percentage of the global population. These epitope data are invaluable to investigate the role of T-cells in dengue immunity/pathogenesis and vaccine design.
Author Summary
Although there is an increased recognition of the role of T-cells in both dengue pathogenesis and protection, comprehensive analysis of T-cell activation during dengue infection is hampered by the small repertoire of known human dengue T-cell epitopes. Although dengue serotype 3 (DENV3) is responsible for numerous outbreaks worldwide, most of the known epitopes are from studies of dengue 2 serotype (DENV2). In this study, we identified novel DENV3 T-cell epitopes in HLA transgenic mice that were confirmed by HLA binding assays. A subset of these epitopes activated memory T-cells from subjects who were dengue IgG positive and primed naïve T-cells from dengue IgG negative individuals. Notably, some of HLA class II epitopes bearing highly conserved regions common to all four dengue serotypes could bind to multiple HLAs. We postulate that these highly conserved and HLA promiscuous T-helper epitopes can be important components of a dengue tetravalent vaccine.
doi:10.1371/journal.pntd.0002497
PMCID: PMC3794980  PMID: 24130917
13.  Recent Epidemiological Trends of Dengue in the French Territories of the Americas (2000–2012): A Systematic Literature Review 
Dengue is a public health concern across the globe, and an escalating problem in the Americas. As part of a wider programme (covering Latin America and South East Asia) to characterize the epidemiology of dengue in dengue endemic areas, we undertook a systematic literature review to assess epidemiological trends (incidence, timing and duration of outbreaks/epidemics, age and sex distribution, serotype distribution, seroprevalence and disease severity) for dengue across the French Territories of the Americas (FTA), in French Guiana, Guadeloupe, Martinique, Saint Martin and Saint Barthélemy between 2000 and 2012 (CRD42012002341: http://www.crd.york.ac.uk/prospero/display_record.asp?ID=CRD42012002341). Of 413 relevant data sources identified, 45 were eligible for inclusion. A large proportion of the available data were from national surveillance reports, and 12 publications were from peer-reviewed journals. During the review period, 3–5 epidemics were identified in each of the island territories and French Guiana, and epidemics were often associated with a shift in the predominant circulating dengue virus serotype. Substantial gaps in epidemiological knowledge were identified. In particular, information regarding dengue virus genotype distribution, seroprevalence and age distribution of dengue were lacking. Additionally, much of the available data were from epidemic years; data from inter-epidemic periods were sparse. Nevertheless, the available epidemiological data showed that dengue is endemic across the FTA and suggest an evolution towards hyperendemicity, highlighting the need to continue the efforts with the existing surveillance programmes to assist in planning an effective vaccination programme once a dengue vaccine is deployed.
Protocol registration
PROSPERO CRD42012002341
Author Summary
Dengue disease is a mosquito-borne viral illness and is a major health concern in the Americas. We conducted a literature analysis and review to describe the epidemiology of dengue in the French Territories of the Americas (FTA), comprising French Guiana, Guadeloupe, Martinique, Saint Martin and Saint Barthélemy, to determine the impact of dengue on the population and to identify research priorities. We used well-defined methods to search for and identify relevant research conducted between 2000 and 2012. We identified an increase in the frequency, magnitude and severity of dengue epidemics across all the territories, an increase in the co-circulation of serotypes and the evolution to a hyperendemic state. Countries sharing geographical and environmental characteristics (e.g., Martinique and Guadeloupe, and Saint Barthélemy and Saint Martin) also shared characteristics in dengue epidemiology and its evolution, including timing of epidemics and circulating serotypes. Gaps in epidemiological knowledge provide several avenues for research, such as dengue virus genotype distribution, seroprevalence and age distribution of dengue cases. Epidemiological and virological surveillance of dengue in the FTA is evolving, and improved knowledge of the disease in these territories will improve anticipation of epidemics and aid implementation of control measures.
doi:10.1371/journal.pntd.0003235
PMCID: PMC4222734  PMID: 25375627
14.  High Content Screening of a Kinase-Focused Library Reveals Compounds Broadly-Active against Dengue Viruses 
Dengue virus is a mosquito-borne flavivirus that has a large impact in global health. It is considered as one of the medically important arboviruses, and developing a preventive or therapeutic solution remains a top priority in the medical and scientific community. Drug discovery programs for potential dengue antivirals have increased dramatically over the last decade, largely in part to the introduction of high-throughput assays. In this study, we have developed an image-based dengue high-throughput/high-content assay (HT/HCA) using an innovative computer vision approach to screen a kinase-focused library for anti-dengue compounds. Using this dengue HT/HCA, we identified a group of compounds with a 4-(1-aminoethyl)-N-methylthiazol-2-amine as a common core structure that inhibits dengue viral infection in a human liver-derived cell line (Huh-7.5 cells). Compounds CND1201, CND1203 and CND1243 exhibited strong antiviral activities against all four dengue serotypes. Plaque reduction and time-of-addition assays suggests that these compounds interfere with the late stage of viral infection cycle. These findings demonstrate that our image-based dengue HT/HCA is a reliable tool that can be used to screen various chemical libraries for potential dengue antiviral candidates.
Author Summary
Dengue, a re-emergent human disease that places nearly half of the world's population at risk, threatens to further expand in geographical distribution. The lack of an available effective dengue vaccine has encouraged the search for antiviral drugs as an alternative approach. In recent years, drug discovery through high-throughput screening has become a trend in the search for dengue antivirals. In this study, we developed an image-based dengue high-throughput/high-content assay using prevalent viral strains of three dengue serotypes (DENV1, DENV2 and DENV3) isolated from dengue outbreaks in South America and a laboratory-adapted strain of DENV4. We demonstrated the usefulness of our image-based dengue HT/HCA in identifying potential dengue antivirals by screening a small subset of chemical compounds for inhibition of dengue virus infection in a human-derived host cell line (Huh-7.5), and partially characterized their activities against dengue infection in a mosquito host cell line (C6/36), a distantly-related virus (hepatitis C virus), and an unrelated virus that is transmitted by the same mosquito vector (chikungunya virus).
doi:10.1371/journal.pntd.0002073
PMCID: PMC3578765  PMID: 23437413
15.  A single nine-amino acid peptide induces virus-specific, CD8+ human cytotoxic T lymphocyte clones of heterogeneous serotype specificities 
It is generally accepted that virus-specific CD8+ cytotoxic T lymphocytes (CTLs) recognize nine-amino acid peptides in conjunction with HLA class I molecules. We recently reported that dengue virus- specific CD8+ CTLs of two different serotype specificities, which were established by stimulation with dengue virus, recognize a single nine- amino acid peptide of the nonstructural protein NS3 of dengue virus type 4 (D4V) in an HLA-B35-restricted fashion. To further analyze the relationships between the serotype specificities of T cells and the amino acid sequence of the recognized peptides, we examined the ability of this viral peptide D4.NS3.500-508 (TPEGIIPTL) to stimulate T lymphocytes of an HLA-B35-positive, dengue virus type 4-immune donor. Peptide stimulation of the PBMC generated dengue virus-specific, HLA-B- 35-restricted CD8+ CTL clones. These clones lysed dengue virus-infected autologous cells, as well as autologous target cells pulsed with this peptide. Four patterns of dengue virus serotype specificities were demonstrated on target cells infected with dengue-vaccinia recombinant viruses or pulsed with synthetic peptides corresponding to amino acid sequences of four dengue virus serotypes. Two serotype-specific clones recognized only D4V. Three dengue virus subcomplex-specific clones recognized D1V, D3V, and D4V, and one subcomplex-specific clone recognized D2V and D4V. Three dengue virus serotype-cross-reactive clones recognized D1V-D4V. Thus, a single nine-amino acid peptide induces proliferation of a heterogeneous panel of dengue virus-specific CD8+ CTL clones that are all restricted by HLA-B35 but have a variety of serotype specificities. Peptides that contain a single amino acid substitution at each position of D4.NS3.500-508 were recognized differently by the T cell clones. These results indicate that a single epitope can be recognized by multiple CD8+ CTLs that have a variety of serotype specificities, but the manner of recognition by these multiple CTLs is heterogeneous.
PMCID: PMC2192165  PMID: 7544398
16.  Dengue Serosurvey in Sint Eustatius 
PLoS ONE  2014;9(6):e95002.
Four distinct serotypes of dengue viruses (DENV) are the cause of re-emerging dengue fever (DF) and dengue hemorrhagic fever (DHF). Dengue circulation in the Caribbean has gone from none or single serotype to multiple serotypes co-circulating with reports of continuing cycles of progressively more severe disease in the region. Few studies have investigated dengue on Sint Eustatius. Blood samples were collected to determine the prevalence of antibodies against dengue in the Sint Eustatius population. Greater than 90% of the serum samples (184 of 204) were positive for anti-flavivirus antibodies by enzyme linked immunosorbance assay (ELISA). Plaque reduction neutralization test (PRNT), specific for dengue viruses, showed that 171 of these 184 flavivirus antibody positive sera had a neutralization titer against one or more DENV serotypes. A majority of the sera (62%) had neutralizing antibody to all four dengue serotypes. Only 26 PRNT positive sera (15%) had monotypic dengue virus neutralizing antibody, most of which (20 of 26) were against DENV2. Evidence of infection with all four serotypes was observed across all age groups except in the youngest age group (10–19 years) which contained only DENV2 positive individuals. In a multiple logistic regression model, only the length of residence on the island was a predictor of a positive dengue PRNT50 result. To our knowledge this is the first dengue serosurveillance study conducted on Sint Eustatius since the 1970s. The lack of antibodies to the DEN1, 3, and 4 in the samples collected from participants under 20 years of age suggests that only DEN2 has circulated on island since the early 1990s. The high prevalence of antibodies against dengue (83.8%) and the observation that the length of time on the island was the strongest predictor of infection suggests dengue is endemic on Sint Eustatius and a public health concern that warrants further investigation.
doi:10.1371/journal.pone.0095002
PMCID: PMC4051585  PMID: 24914538
17.  Comparison of Vector Competence of Aedes mediovittatus and Aedes aegypti for Dengue Virus: Implications for Dengue Control in the Caribbean 
PLoS Neglected Tropical Diseases  2015;9(2):e0003462.
Background
Aedes mediovittatus mosquitoes are found throughout the Greater Antilles in the Caribbean and often share the same larval habitats with Ae. Aegypti, the primary vector for dengue virus (DENV). Implementation of vector control measures to control dengue that specifically target Ae. Aegypti may not control DENV transmission in Puerto Rico (PR). Even if Ae. Aegypti is eliminated or DENV refractory mosquitoes are released, DENV transmission may not cease when other competent mosquito species like Ae. Mediovittatus are present. To compare vector competence of Ae. Mediovittatus and Ae. Aegypti mosquitoes, we studied relative infection and transmission rates for all four DENV serotypes.
Methods
To compare the vector competence of Ae. Mediovittatus and Ae. Aegypti, mosquitoes were exposed to DENV 1–4 per os at viral titers of 5–6 logs plaque-forming unit (pfu) equivalents. At 14 days post infectious bloodmeal, viral RNA was extracted and tested by qRT-PCR to determine infection and transmission rates. Infection and transmission rates were analyzed with a generalized linear model assuming a binomial distribution.
Results
Ae. Aegypti had significantly higher DENV-4 infection and transmission rates than Ae. mediovittatus.
Conclusions
This study determined that Ae. Mediovittatus is a competent DENV vector. Therefore dengue prevention programs in PR and the Caribbean should consider both Ae. Mediovittatus and Ae. Aegypti mosquitoes in their vector control programs.
Author Summary
Dengue is a potentially life-threatening tropical disease caused by four serotypes of virus, dengue virus 1, -2, -3, and -4. Worldwide, as many as 390 million people become infected with dengue virus each year after being bitten by infectious Aedes mosquitoes. Unfortunately, there is no commercially available vaccine to prevent dengue; so, dengue prevention is attempted by controlling Aedes mosquitoes. Since the Aedes aegypti mosquito is responsible for most dengue virus infections worldwide, most dengue control efforts target this mosquito. However, Aedes mediovittatus, a common mosquito in the Caribbean, may also transmit dengue virus in Puerto Rico. Our goal was to compare dengue virus transmission by Aedes mediovittatus and Aedes aegypti mosquitoes for four serotypes of dengue virus. In the laboratory, we exposed Aedes mediovittatus and Aedes aegypti mosquitoes with dengue virus-1–4. We found that similar numbers of Aedes mediovittatus and Aedes aegypti mosquitoes became infected with dengue virus-1–3, but differed in dengue virus 4 infection rates.
doi:10.1371/journal.pntd.0003462
PMCID: PMC4319915  PMID: 25658951
18.  The Type-Specific Neutralizing Antibody Response Elicited by a Dengue Vaccine Candidate Is Focused on Two Amino Acids of the Envelope Protein 
PLoS Pathogens  2013;9(12):e1003761.
Dengue viruses are mosquito-borne flaviviruses that circulate in nature as four distinct serotypes (DENV1-4). These emerging pathogens are responsible for more than 100 million human infections annually. Severe clinical manifestations of disease are predominantly associated with a secondary infection by a heterotypic DENV serotype. The increased risk of severe disease in DENV-sensitized populations significantly complicates vaccine development, as a vaccine must simultaneously confer protection against all four DENV serotypes. Eliciting a protective tetravalent neutralizing antibody response is a major goal of ongoing vaccine development efforts. However, a recent large clinical trial of a candidate live-attenuated DENV vaccine revealed low protective efficacy despite eliciting a neutralizing antibody response, highlighting the need for a better understanding of the humoral immune response against dengue infection. In this study, we sought to identify epitopes recognized by serotype-specific neutralizing antibodies elicited by monovalent DENV1 vaccination. We constructed a panel of over 50 DENV1 structural gene variants containing substitutions at surface-accessible residues of the envelope (E) protein to match the corresponding DENV2 sequence. Amino acids that contribute to recognition by serotype-specific neutralizing antibodies were identified as DENV mutants with reduced sensitivity to neutralization by DENV1 immune sera, but not cross-reactive neutralizing antibodies elicited by DENV2 vaccination. We identified two mutations (E126K and E157K) that contribute significantly to type-specific recognition by polyclonal DENV1 immune sera. Longitudinal and cross-sectional analysis of sera from 24 participants of a phase I clinical study revealed a markedly reduced capacity to neutralize a E126K/E157K DENV1 variant. Sera from 77% of subjects recognized the E126K/E157K DENV1 variant and DENV2 equivalently (<3-fold difference). These data indicate the type-specific component of the DENV1 neutralizing antibody response to vaccination is strikingly focused on just two amino acids of the E protein. This study provides an important step towards deconvoluting the functional complexity of DENV serology following vaccination.
Author Summary
Despite decades of research, there remains a critical need for a dengue virus (DENV) vaccine. Vaccine development efforts are complicated by a requirement to protect against four DENV serotypes (DENV1-4), and incomplete immunity as a risk factor for severe disease. Antibodies play a major protective role against DENV. However, they also have been implicated in severe clinical manifestations of DENV infection. The antibody response to DENV is composed of antibodies that neutralize only the infecting DENV serotype (type-specific), as well as those that are cross-reactive. Cross-reactive antibodies are hypothesized to contribute to severe dengue following heterologous infections. Identifying DENV epitopes that are targets of type-specific neutralizing antibodies may facilitate vaccine development and the identification of correlates of protection. In this study, we identified amino acids on DENV1 recognized by type-specific neutralizing antibodies elicited by DENV1 vaccination. Our results indicate that the type-specific DENV1 response is remarkably focused on just two regions of the DENV1 envelope protein. Furthermore, a significant contribution of antibodies with this specificity was a common feature among vaccine recipients. This study identifies targets of neutralizing antibodies elicited by DENV1 vaccination and provides an important first step toward identifying epitopes recognized by each component of a tetravalent vaccine.
doi:10.1371/journal.ppat.1003761
PMCID: PMC3857832  PMID: 24348242
19.  Concurrent infections by all four dengue virus serotypes during an outbreak of dengue in 2006 in Delhi, India 
Virology Journal  2008;5:1.
Background
Co-circulation of multiple dengue virus serotypes has been reported from many parts of the world including India, however concurrent infection with more than one serotype of dengue viruses in the same individual is rarely documented. An outbreak of dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) occurred in and around Delhi in 2006. This is the first report from India with high percentage of concurrent infections with different dengue virus serotypes circulating during one outbreak.
Results
Acute phase sera from patients were tested for the presence of dengue virus RNA by RT-PCR assay. Of the 69 samples tested for dengue virus RNA, 48 (69.5%) were found to be positive. All the four dengue virus serotypes were found to be co-circulating in this outbreak with DENV-3 being the predominant serotype. In addition in 9 of 48 (19%) dengue virus positive samples, concurrent infection with more than one dengue virus serotype were identified.
Conclusion
This is the first report in which concurrent infections with different dengue virus serotypes is being reported during an outbreak from India. Delhi is now truly hyperendemic for dengue.
doi:10.1186/1743-422X-5-1
PMCID: PMC2253528  PMID: 18182120
20.  Two Complex, Adenovirus-Based Vaccines That Together Induce Immune Responses to All Four Dengue Virus Serotypes▿  
Clinical and Vaccine Immunology  2006;14(2):182-189.
Dengue virus infections can cause hemorrhagic fever, shock, encephalitis, and even death. Worldwide, approximately 2.5 billion people live in dengue-infested regions with about 100 million new cases each year, although many of these infections are believed to be silent. There are four antigenically distinct serotypes of dengue virus; thus, immunity from one serotype will not cross-protect from infection with the other three. The difficulties that hamper vaccine development include requirements of the natural conformation of the envelope glycoprotein to induce neutralizing immune responses and the necessity of presenting antigens of all four serotypes. Currently, the only way to meet these requirements is to use a mixture of four serotypes of live attenuated dengue viruses, but safety remains a major problem. In this study, we have developed the basis for a tetravalent dengue vaccine using a novel complex adenovirus platform that is capable of expressing multiple antigens de novo. This dengue vaccine is constructed as a pair of vectors that each expresses the premembrane and envelope genes of two different dengue virus serotypes. Upon vaccination, the vaccine expressed high levels of the dengue virus antigens in cells to mimic a natural infection and induced both humoral and cellular immune responses against multiple serotypes of dengue virus in an animal model. Further analyses show the humoral responses were indeed neutralizing against all four serotypes. Our studies demonstrate the concept of mimicking infections to induce immune responses by synthesizing dengue virus membrane antigens de novo and the feasibility of developing an effective tetravalent dengue vaccine by vector-mediated expression of glycoproteins of the four serotypes.
doi:10.1128/CVI.00330-06
PMCID: PMC1797786  PMID: 17192403
21.  Molecular Surveillance of Dengue in Semarang, Indonesia Revealed the Circulation of an Old Genotype of Dengue Virus Serotype-1 
Dengue disease is currently a major health problem in Indonesia and affects all provinces in the country, including Semarang Municipality, Central Java province. While dengue is endemic in this region, only limited data on the disease epidemiology is available. To understand the dynamics of dengue in Semarang, we conducted clinical, virological, and demographical surveillance of dengue in Semarang and its surrounding regions in 2012. Dengue cases were detected in both urban and rural areas located in various geographical features, including the coastal and highland areas. During an eight months' study, a total of 120 febrile patients were recruited, of which 66 were serologically confirmed for dengue infection using IgG/IgM ELISA and/or NS1 tests. The cases occurred both in dry and wet seasons. Majority of patients were under 10 years old. Most patients were diagnosed as dengue hemorrhagic fever, followed by dengue shock syndrome and dengue fever. Serotyping was performed in 31 patients, and we observed the co-circulation of all four dengue virus (DENV) serotypes. When the serotypes were correlated with the severity of the disease, no direct correlation was observed. Phylogenetic analysis of DENV based on Envelope gene sequence revealed the circulation of DENV-2 Cosmopolitan genotype and DENV-3 Genotype I. A striking finding was observed for DENV-1, in which we found the co-circulation of Genotype I with an old Genotype II. The Genotype II was represented by a virus strain that has a very slow mutation rate and is very closely related to the DENV strain from Thailand, isolated in 1964 and never reported in other countries in the last three decades. Moreover, this virus was discovered in a cool highland area with an elevation of 1,001 meters above the sea level. The discovery of this old DENV strain may suggest the silent circulation of old virus strains in Indonesia.
Author Summary
We studied dengue disease in Semarang municipality, Central Java, one of the endemic regions in Indonesia. The disease occurred in wide geographical regions which include urban, rural, coastal, and highland areas. All four dengue virus serotypes were found. The infecting serotypes were not associated with disease severities. We also determined the genotype of the circulating viruses. One of the interesting findings was the presence of an old genotype of DENV-1 which has never been reported in the last three decades, which may suggest the silent circulation of this particular genotype in Semarang. These findings offer the first information of the clinical, virological and demographical aspects of the dengue disease in Semarang, Indonesia.
doi:10.1371/journal.pntd.0002354
PMCID: PMC3738473  PMID: 23951374
22.  Lethal Antibody Enhancement of Dengue Disease in Mice Is Prevented by Fc Modification 
PLoS Pathogens  2010;6(2):e1000790.
Immunity to one of the four dengue virus (DV) serotypes can increase disease severity in humans upon subsequent infection with another DV serotype. Serotype cross-reactive antibodies facilitate DV infection of myeloid cells in vitro by promoting virus entry via Fcγ receptors (FcγR), a process known as antibody-dependent enhancement (ADE). However, despite decades of investigation, no in vivo model for antibody enhancement of dengue disease severity has been described. Analogous to human infants who receive anti-DV antibodies by transplacental transfer and develop severe dengue disease during primary infection, we show here that passive administration of anti-DV antibodies is sufficient to enhance DV infection and disease in mice using both mouse-adapted and clinical DV isolates. Antibody-enhanced lethal disease featured many of the hallmarks of severe dengue disease in humans, including thrombocytopenia, vascular leakage, elevated serum cytokine levels, and increased systemic viral burden in serum and tissue phagocytes. Passive transfer of a high dose of serotype-specific antibodies eliminated viremia, but lower doses of these antibodies or cross-reactive polyclonal or monoclonal antibodies all enhanced disease in vivo even when antibody levels were neutralizing in vitro. In contrast, a genetically engineered antibody variant (E60-N297Q) that cannot bind FcγR exhibited prophylactic and therapeutic efficacy against ADE-induced lethal challenge. These observations provide insight into the pathogenesis of antibody-enhanced dengue disease and identify a novel strategy for the design of therapeutic antibodies against dengue.
Author Summary
Dengue is the most common vector-borne viral disease of humans, with over 3 billion people at risk for infection and 50–100 million infections in tropical and subtropical regions each year. Dengue virus (DV) causes a spectrum of clinical disease ranging from an acute debilitating, self-limited febrile illness (DF) to a life-threatening vascular leakage syndrome, referred to as dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). There are four serotypes of DENV; infection with one serotype is thought to protect against re-infection with the same serotype, but may either protect against or enhance infection with one of the other three serotypes. Epidemiological and in vitro data has implicated anti-DENV antibodies in mediating pathogenesis of a second DENV infection. However, it is unclear which antibody conditions are protective and which exacerbate disease in vivo, in part because no animal model of antibody-enhanced dengue disease has been available. Here, we present the first animal model of antibody-enhanced severe DENV infection. Importantly, this model recapitulates many aspects of human disease, including vascular leakage, elevated serum cytokine levels, reduced platelet count, and disseminated infection of tissue phagocytes. Furthermore, we demonstrate the utility of this model by showing that a genetically modified anti-DENV antibody that fails to bind the Fcγ receptor has prophylactic and therapeutic efficacy against lethal DENV challenge in vivo.
doi:10.1371/journal.ppat.1000790
PMCID: PMC2820409  PMID: 20168989
23.  Cost-Effective Real-Time Reverse Transcriptase PCR (RT-PCR) To Screen for Dengue Virus followed by Rapid Single-Tube Multiplex RT-PCR for Serotyping of the Virus▿  
Journal of Clinical Microbiology  2007;45(3):935-941.
Virus detection methodology provides detection of dengue virus in the early phase of the disease. PCR, targeting cDNA derived from viral RNA, has been used as a laboratory-based molecular tool for the detection of Dengue virus. We report the development and use of three real-time one-step reverse transcriptase PCR (RT-PCR) assays to detect dengue cases and serotype the virus involved. The first RT-PCR assay uses SYBR green I as the reporting dye for the purpose of cost-effective screening for dengue virus. The detection limit of the SYBR green I assay was 10 PFU/ml (0.01 equivalent PFU per assay) for all four dengue virus serotypes. The second RT-PCR assay is a duplex fluorogenic probe-based real-time RT-PCR for serotyping clinical samples for dengue viruses. The detection threshold of the probe-based RT-PCR format was 0.1 PFU for serotypes Dengue-1 and Dengue-2, 1 PFU for serotype Dengue-3, and 0.01 PFU for serotype Dengue-4. The third is a fourplex assay that detects any of the four serotypes in a single closed tube with comparable sensitivity. Validation of the assays with local clinical samples collected from 2004 to 2006 revealed that there was an 88% positive correlation between virus isolation and RT-PCR with regard to dengue virus detection and a 100% correlation with seroconversion in subsequent samples. The serotyping results derived from duplex and fourplex assays agree fully with each other and with that derived from immunofluorescence assays.
doi:10.1128/JCM.01258-06
PMCID: PMC1829098  PMID: 17215345
24.  Analysis of Murine CD8+ T-Cell Clones Specific for the Dengue Virus NS3 Protein: Flavivirus Cross-Reactivity and Influence of Infecting Serotype 
Journal of Virology  1999;73(1):398-403.
Serotype-cross-reactive dengue virus-specific cytotoxic T lymphocytes (CTL) induced during a primary dengue virus infection are thought to play a role in the immunopathogenesis of dengue hemorrhagic fever (DHF) during a secondary dengue virus infection. Although there is no animal model of DHF, we previously reported that murine dengue virus-specific CTL responses are qualitatively similar to human dengue virus-specific CTL responses. We used BALB/c mice to study the specificity of the CTL response to an immunodominant epitope on the dengue virus NS3 protein. We mapped the minimal H-2Kd-restricted CTL epitope to residues 298 to 306 of the dengue type 2 virus NS3 protein. In short-term T-cell lines and clones, the predominant CD8+ CTL to this epitope in mice immunized with dengue type 2 virus or vaccinia virus expressing the dengue type 4 virus NS3 protein were cross-reactive with dengue type 2 or type 4 virus, while broadly serotype-cross-reactive CTL were a minority population. In dengue type 3 virus-immunized mice, the predominant CTL response to this epitope was broadly serotype cross-reactive. All of the dengue virus-specific CTL clones studied also recognized the homologous NS3 sequences of one or more closely related flaviviruses, such as Kunjin virus. The critical contact residues for the CTL clones with different specificities were mapped with peptides having single amino acid substitutions. These data demonstrate that primary dengue virus infection induces a complex population of flavivirus-cross-reactive NS3-specific CTL clones in mice and suggest that CTL responses are influenced by the viral serotype. These findings suggest an additional mechanism by which the order of sequential flavivirus infections may influence disease manifestations.
PMCID: PMC103845  PMID: 9847344
25.  Immunologic hypo- or non-responder in natural dengue virus infection 
Serologically defined primary dengue virus infection and/or subsequent homologous serotype infection is known to be associated with less severe disease as compared with secondary subsequent heterologous serotype infection. In geographical locales of high dengue endemicity, almost all individuals in the population are infected at some point in time and should therefore are at high risk of secondary infection. Interestingly, dengue viremia in healthy blood donors whose sera apparently lack detectable levels of specific antibody to dengue viral antigens has been reported. The incidence rate of potential immunologic hypo- or non-responders following natural primary dengue virus infection in dengue endemic regions, who do become immune responders only after repeated exposure, has not been described. These are the patients who may be diagnosed as primary infection in the subsequent infection, but actually are secondary infection. This concept has important implications with regards to the hypothesis of immunological enhancement of dengue pathogenesis, which has largely been advanced based on empirical observations and/or from in vitro experimental assays. The fact that dengue naïve travelers can suffer from severe dengue upon primary exposure while visiting dengue endemic countries underscores one of the major problems in explaining the role of immune enhancement in the pathogenesis of severe dengue virus infection. This evidence suggests that the mechanism(s) leading to severe dengue may not be associated with pre-existing enhancing antibody. Consequently, we propose a new paradigm for dengue virus infection classification. These include a) patients with naïve primary infection, b) those that are serologically defined primary in dengue endemic zones and c) those who are serologically defined secondary dengue virus infection. We submit that clarity with regards to such definitions may help facilitate the delineation of the potential mechanisms of severe dengue virus infection.
doi:10.1186/1423-0127-20-34
PMCID: PMC3680176  PMID: 23725050
Nonresponder; Naïve; Flavivirus; Dengue fever; DHF

Results 1-25 (429388)