PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (848870)

Clipboard (0)
None

Related Articles

1.  Late Assembly Motifs of Human T-Cell Leukemia Virus Type 1 and Their Relative Roles in Particle Release 
Journal of Virology  2004;78(12):6636-6648.
Three late assembly domain consensus motifs, namely PTAP, PPPY, and LYPXL, have been identified in different retroviruses. They have been shown to interact with the cellular proteins TSG101, Nedd4, and AP2 or AIP, respectively. Human T-cell leukemia virus type 1 (HTLV-1) has a PPPY and a PTAP motif, separated by two amino acids, located at the end of MA, but only the PPPY motif is conserved in the deltaretrovirus group. Like other retroviral peptides carrying the late motif, MA is mono- or di-ubiquitinated. A mutational analysis showed that 90% of PPPY mutant particles were retained in the cell compared to 15% for the wild-type virus. Mutations of the PTAP motif resulted in a 20% decrease in particle release. In single-cycle infectivity assays, the infectious titers of late motif mutants correlated with the amounts of released virus, as determined by an enzyme-linked immunosorbent assay. We observed binding of MA to the WW domains of the Nedd4 family member WWP1 but not to the amino-terminal ubiquitin E2 variant domain of TSG101 in mammalian two-hybrid analyses. The binding to WWP1 was eliminated when the PPPY motif was mutated. However, MA showed binding to TSG101 in the yeast two-hybrid system that was dependent on an intact PTAP motif. A dominant-negative (DN) mutant of WWP1 could inhibit budding of the intact HTLV-1 virus. In contrast, DN TSG101 only affected the release of virus-like particles encoded by Gag expression plasmids. Electron and fluorescent microscopy showed that Gag accumulates in large patches in the membranes of cells expressing viruses with PPPY mutations. Very few tethered immature particles could be detected in these samples, suggesting that budding is impaired at an earlier step than in other retroviruses.
doi:10.1128/JVI.78.12.6636-6648.2004
PMCID: PMC416494  PMID: 15163754
2.  Functional Interchangeability of Late Domains, Late Domain Cofactors and Ubiquitin in Viral Budding 
PLoS Pathogens  2010;6(10):e1001153.
The membrane scission event that separates nascent enveloped virions from host cell membranes often requires the ESCRT pathway, which can be engaged through the action of peptide motifs, termed late (L-) domains, in viral proteins. Viral PTAP and YPDL-like L-domains bind directly to the ESCRT-I and ALIX components of the ESCRT pathway, while PPxY motifs bind Nedd4-like, HECT-domain containing, ubiquitin ligases (e.g. WWP1). It has been unclear precisely how ubiquitin ligase recruitment ultimately leads to particle release. Here, using a lysine-free viral Gag protein derived from the prototypic foamy virus (PFV), where attachment of ubiquitin to Gag can be controlled, we show that several different HECT domains can replace the WWP1 HECT domain in chimeric ubiquitin ligases and drive budding. Moreover, artificial recruitment of isolated HECT domains to Gag is sufficient to stimulate budding. Conversely, the HECT domain becomes dispensable if the other domains of WWP1 are directly fused to an ESCRT-1 protein. In each case where budding is driven by a HECT domain, its catalytic activity is essential, but Gag ubiquitination is dispensable, suggesting that ubiquitin ligation to trans-acting proteins drives budding. Paradoxically, however, we also demonstrate that direct fusion of a ubiquitin moiety to the C-terminus of PFV Gag can also promote budding, suggesting that ubiquitination of Gag can substitute for ubiquitination of trans-acting proteins. Depletion of Tsg101 and ALIX inhibits budding that is dependent on ubiquitin that is fused to Gag, or ligated to trans-acting proteins through the action of a PPxY motif. These studies underscore the flexibility in the ways that the ESCRT pathway can be engaged, and suggest a model in which the identity of the protein to which ubiquitin is attached is not critical for subsequent recruitment of ubiquitin-binding components of the ESCRT pathway and viral budding to proceed.
Author Summary
The release of an enveloped virus particle from an infected cell requires the separation of the viral and cell membranes. Many enveloped viruses accomplish this by parasitizing a set of cellular proteins, termed the ESCRT pathway, that normally separates cellular membranes from each other. In some cases, viral structural proteins encode peptides motifs that bind directly to, and thereby recruit, the ESCRT machinery. Alternatively, viruses can recruit enzymes, termed ubiquitin ligases, that bind to other proteins, and catalyze the addition of ubiquitin to them. It has, heretofore, been somewhat unclear precisely how the recruitment of ubiquitin ligases leads to the engagement of the ESCRT machinery. We show that the simple recruitment of a fragment of a ubiquitin ligase that is responsible for the addition of ubiquitin to other proteins is sufficient to drive virus particle release, even when it is not possible to attach ubiquitin to viral proteins. Paradoxically, we also found that simple attachment of ubiquitin to the same viral protein can also drive particle release. These results show that there is flexibility in the ways in which the ESCRT machinery can be recruited and how ubiquitin can be co-opted to enable this.
doi:10.1371/journal.ppat.1001153
PMCID: PMC2958808  PMID: 20975941
3.  Late Domain-Independent Rescue of a Release-Deficient Moloney Murine Leukemia Virus by the Ubiquitin Ligase Itch ▿  
Journal of Virology  2009;84(2):704-715.
Moloney murine leukemia virus (MoMLV) Gag utilizes its late (L) domain motif PPPY to bind members of the Nedd4-like ubiquitin ligase family. These interactions recruit components of the cell's budding machinery that are critical for virus release. MoMLV Gag contains two additional L domains, PSAP and LYPAL, that are believed to drive residual MoMLV release via interactions with cellular proteins Tsg101 and Alix, respectively. We found that overexpression of Tsg101 or Alix failed to rescue the release of PPPY-deficient MoMLV via these other L domains. However, low-level expression of the ubiquitin ligase Itch potently rescued the release and infectivity of MoMLV lacking PPPY function. In contrast, other ubiquitin ligases such as WWP1, Nedd4.1, Nedd4.2, and Nedd4.2s did not rescue this release-deficient virus. Efficient rescue required the ubiquitin ligase activity of Itch and an intact C2 domain but not presence of the endophilin-binding site. Additionally, we found Itch to immunoprecipitate with MoMLV Gag lacking the PPPY motif and to be incorporated into rescued MoMLV particles. The PSAP and LYPAL motifs were dispensable for Itch-mediated virus rescue, and their absence did not affect the incorporation of Itch into the rescued particles. Itch-mediated rescue of release-defective MoMLV was sensitive to inhibition by dominant-negative versions of ESCRT-III components and the VPS4 AAA ATPase, indicating that Itch-mediated correction of MoMLV release defects requires the integrity of the host vacuolar sorting protein pathway. RNA interference knockdown of Itch suppressed the residual release of the MoMLV lacking the PPPY motif. Interestingly, Itch stimulation of the PPPY-deficient MoMLV release was accompanied by the enhancement of Gag ubiquitination and the appearance of new ubiquitinated Gag proteins in virions. Together, these results suggest that Itch can facilitate MoMLV release in an L domain-independent manner via a mechanism that requires the host budding machinery and involves Gag ubiquitination.
doi:10.1128/JVI.01319-09
PMCID: PMC2798346  PMID: 19864377
4.  Both the PPPY and PTAP Motifs Are Involved in Human T-Cell Leukemia Virus Type 1 Particle Release 
Journal of Virology  2004;78(3):1503-1512.
In retroviruses, the late (L) domain has been defined as a conserved motif in the Gag polyprotein precursor that, when mutated, leads to the emergence of virus particles that fail to pinch off from the plasma membrane. These domains have been observed to contain the PPXY, PTAP, or YXXL motifs. The deltaretroviruses, which include bovine leukemia virus (BLV) and human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2, have a conserved PPPY motif in the C-terminal region of the matrix (MA) domain of Gag, while HTLV-1 also encodes a PTAP motif in MA. In this study, we analyzed the roles of the PPPY and PTAP motifs in the C terminus of MA in HTLV-1 particle release. Mutation of either motif (i.e., PPPY changed to APPY or PTAP changed to PTRP) reduced budding efficiencies. Particle buds and electron-dense regions of plasma membrane were observed by electron microscopy. When the locations of PPPY and PTAP were switched, particle release was eliminated. Intriguingly, the replacement of the PTAP motif with either the PPPY or YPDL motifs did not influence the release of virus particles, but the replacement of the PPPY motif with either PTAP or YPDL eliminated particle production. This indicates that the role that PPPY plays in HTLV-1 budding cannot be replaced with either PTAP or YPDL. A similar observation was made with the BLV PPPY motif. Finally, HTLV-1 particle release was found to be sensitive to proteasome inhibitors, implicating a role for ubiquitin in HTLV-1 budding. In summary, our observations indicate that (i) the PPPY motif plays a crucial role in virus budding and (ii) the PTAP motif plays a more subtle role in HTLV-1 particle release. Each of these motifs may play an important role in virus release from specific cell types and therefore be important in efficient virus spread and transmission.
doi:10.1128/JVI.78.3.1503-1512.2004
PMCID: PMC321366  PMID: 14722305
5.  Multiple Interactions between the ESCRT Machinery and Arrestin-Related Proteins: Implications for PPXY-Dependent Budding ▿  
Journal of Virology  2010;85(7):3546-3556.
Late domains are short peptide sequences encoded by enveloped viruses to promote the final separation of the nascent virus from the infected cell. These amino acid motifs facilitate viral egress by interacting with components of the ESCRT (endosomal sorting complex required for transport) machinery, ultimately leading to membrane scission by recruiting ESCRT-III to the site of viral budding. PPXY late (L) domains present in viruses such as murine leukemia virus (MLV) or human T-cell leukemia virus type 1 (HTLV-1) access the ESCRT pathway via interaction with HECT ubiquitin ligases (WWP1, WWP2, and Itch). However, the mechanism of ESCRT-III recruitment in this context remains elusive. In this study, we tested the arrestin-related trafficking (ART) proteins, namely, ARRDC1 (arrestin domain-containing protein 1) to ARRDC4 and TXNIP (thioredoxin-interacting protein), for their ability to function as adaptors between HECT ubiquitin ligases and the core ESCRT machinery in PPXY-dependent budding. We present several lines of evidence in support of such a role: ARTs interact with HECT ubiquitin ligases, and they also exhibit multiple interactions with components of the ESCRT pathway, namely, ALIX and Tsg101, and perhaps with an as yet unidentified factor. Additionally, the ARTs can be recruited to the site of viral budding, and their overexpression results in a PPXY-specific inhibition of MLV budding. Lastly, we show that WWP1 changes the ubiquitination status of ARRDC1, suggesting that the ARTs may provide a platform for ubiquitination in PPXY-dependent budding. Taken together, our results support a model whereby ARTs are involved in PPXY-mediated budding by interacting with HECT ubiquitin ligases and providing several alternative routes for ESCRT-III recruitment.
doi:10.1128/JVI.02045-10
PMCID: PMC3067843  PMID: 21191027
6.  Rescue of HIV-1 Release by Targeting Widely Divergent NEDD4-Type Ubiquitin Ligases and Isolated Catalytic HECT Domains to Gag 
PLoS Pathogens  2010;6(9):e1001107.
Retroviruses engage the ESCRT pathway through late assembly (L) domains in Gag to promote virus release. HIV-1 uses a PTAP motif as its primary L domain, which interacts with the ESCRT-I component Tsg101. In contrast, certain other retroviruses primarily use PPxY-type L domains, which constitute ligands for NEDD4-type ubiquitin ligases. Surprisingly, although HIV-1 Gag lacks PPxY motifs, the release of HIV-1 L domain mutants is potently enhanced by ectopic NEDD4-2s, a native isoform with a naturally truncated C2 domain that appears to account for the residual titer of L domain-defective HIV-1. The reason for the unique potency of the NEDD4-2s isoform has remained unclear. We now show that the naturally truncated C2 domain of NEDD4-2s functions as an autonomous Gag-targeting module that can be functionally replaced by the unrelated Gag-binding protein cyclophilin A (CypA). The residual C2 domain of NEDD4-2s was sufficient to transfer the ability to stimulate HIV-1 budding to other NEDD4 family members, including the yeast homologue Rsp5, and even to isolated catalytic HECT domains. The isolated catalytic domain of NEDD4-2s also efficiently promoted HIV-1 budding when targeted to Gag via CypA. We conclude that the regions typically required for substrate recognition by HECT ubiquitin ligases are all dispensable to stimulate HIV-1 release, implying that the relevant target for ubiquitination is Gag itself or can be recognized by divergent isolated HECT domains. However, the mere ability to ubiquitinate Gag was not sufficient to stimulate HIV-1 budding. Rather, our results indicate that the synthesis of K63-linked ubiquitin chains is critical for ubiquitin ligase-mediated virus release.
Author Summary
To promote its escape from cells, HIV-1 hijacks cellular budding machinery through so-called L domains in its structural Gag protein. However, HIV-1 lacks a type of L domain that recruits NEDD4 ubiquitin ligases, a family of cellular enzymes that attach one or more copies of a small protein called ubiquitin to other proteins. Surprisingly, one NEDD4 family member, which is known as NEDD4-2s and stands out because its membrane-binding domain is uniquely truncated, can nevertheless potently stimulate HIV-1 release. Our study reveals that NEDD4-2s can do this because its altered membrane-binding domain allows it to associate with HIV-1 Gag. Remarkably, when tagged with the altered membrane-binding domain of NEDD4-2s, even a distantly related yeast protein becomes capable of stimulating the release of HIV-1. We also show that only the portion of NEDD4-2s that acts as an enzyme is required when targeted to HIV-1 Gag in an alternative manner. Taken together, our findings indicate that it is not simply the ability to attach ubiquitin to Gag, but rather the ability to form a particular type of ubiquitin chain in the immediate vicinity of Gag, that is critical to stimulate virus release.
doi:10.1371/journal.ppat.1001107
PMCID: PMC2940739  PMID: 20862313
7.  Role of the Human T-Cell Leukemia Virus Type 1 PTAP Motif in Gag Targeting and Particle Release 
Journal of Virology  2006;80(7):3634-3643.
Human T-cell leukemia virus type 1 (HTLV-1) Gag is targeted to the plasma membrane for particle assembly and release. How HTLV-1 Gag targeting occurs is not well understood. The PPPY and PTAP motifs were previously shown to be involved in HTLV-1 particle release with PTAP playing a more subtle role in virus budding. These L domains function through the interaction with host cellular proteins normally involved in multivesicular body (MVB) morphogenesis. The plasma membrane pathway rather than the MVB pathway was found to be the primary pathway for HTLV-1 particle release in HeLa cells. Intriguingly, disruption of the PTAP motif led to a defect in the targeting of Gag from the plasma membrane to CD63-positive MVBs. Particles or particle buds were observed to be associated with MVBs by electron microscopy, implying that Gag targeting to the MVB resulted in particle budding. Blocking clathrin-dependent endocytosis was found not to influence localization of the HTLV-1 Gag PTAP mutant, indicating that Gag did not reach the MVBs through clathrin-dependent endocytosis. Our observations imply that the interaction between Gag and TSG101 is not required for Gag targeting to the MVB. Overexpression of dynamitin p50 increased particle release, suggesting that there was an increase in the intracellular transport of MVBs to the cell periphery by the utilization of the dynein-dynactin motor complex. Intriguingly, virus particle release with this mutant was reduced by 20-fold compared to that of wild type in HeLa cells, which is in marked contrast to the less-than-twofold defect observed for particle production of the HTLV-1 Gag PTAP mutant from 293T cells. These results indicate that the role of the PTAP motif in L domain function is cell type dependent.
doi:10.1128/JVI.80.7.3634-3643.2006
PMCID: PMC1440400  PMID: 16537631
8.  Infectivity of Moloney Murine Leukemia Virus Defective in Late Assembly Events Is Restored by Late Assembly Domains of Other Retroviruses 
Journal of Virology  2000;74(16):7250-7260.
The p12 region of the Moloney murine leukemia virus (M-MuLV) Gag protein contains a PPPY motif important for efficient virion assembly and release. To probe the function of the PPPY motif, a series of insertions of homologous and heterologous motifs from other retroviruses were introduced at various positions in a mutant gag gene lacking the PPPY motif. The assembly defects of the PPPY deletion mutant could be rescued by insertion of a wild-type PPPY motif and flanking sequences at several ectopic positions in the Gag protein. The late assembly domain (L-domain) of Rous sarcoma virus (RSV) or human immunodeficiency virus type 1 (HIV-1) could also fully or partially restore M-MuLV assembly when introduced into matrix, p12, or nucleocapsid domains of the mutant M-MuLV Gag protein lacking the PPPY motif. Strikingly, mutant viruses carrying the RSV or the HIV-1 L-domain at the original location of the deleted PPPY motif were replication competent in rodent cells. These data suggest that the PPPY motif of M-MuLV acts in a partially position-independent manner and is functionally interchangeable with L-domains of other retroviruses. Electron microscopy studies revealed that deletion of the entire p12 region resulted in the formation of tube-like rather than spherical particles. Remarkably, the PPPY deletion mutant formed chain structures composed of multiple viral particles linked on the cell surface. Many of the mutants with heterologous L-domains released virions with wild-type morphology.
PMCID: PMC112246  PMID: 10906179
9.  An LYPSL Late Domain in the Gag Protein Contributes to the Efficient Release and Replication of Rous Sarcoma Virus▿  
Journal of Virology  2010;84(13):6276-6287.
The efficient release of newly assembled retrovirus particles from the plasma membrane requires the recruitment of a network of cellular proteins (ESCRT machinery) normally involved in the biogenesis of multivesicular bodies and in cytokinesis. Retroviruses and other enveloped viruses recruit the ESCRT machinery through three classes of short amino acid consensus sequences termed late domains: PT/SAP, PPXY, and LYPXnL. The major late domain of Rous sarcoma virus (RSV) has been mapped to a PPPY motif in Gag that binds members of the Nedd4 family of ubiquitin ligases. RSV Gag also contains a second putative late domain motif, LYPSL, positioned 5 amino acids downstream of PPPY. LYPXnL motifs have been shown to support budding in other retroviruses by binding the ESCRT adaptor protein Alix. To investigate a possible role of the LYPSL motif in RSV budding, we constructed PPPY and LYPSL mutants in the context of an infectious virus and then analyzed the budding rates, spreading profiles, and budding morphology. The data imply that the LYPSL motif acts as a secondary late domain and that its role in budding is amplified in the absence of a fully functional PPPY motif. The LYPXL motif proved to be a stronger late domain when an aspartic acid was substituted for the native serine, recapitulating the properties of the LYPDL late domain of equine infectious anemia virus. The overexpression of human Alix in the absence of a fully functional PPPY late domain partially rescued both the viral budding rate and viral replication, supporting a model in which the RSV LYPSL motif mediates budding through an interaction with the ESCRT adaptor protein Alix.
doi:10.1128/JVI.00238-10
PMCID: PMC2903267  PMID: 20392845
10.  Role of Nedd4 and Ubiquitination of Rous Sarcoma Virus Gag in Budding of Virus-Like Particles from Cells 
Journal of Virology  2004;78(24):13943-13953.
Rous sarcoma virus (RSV) budding requires an interaction of the L domain within the p2b region of Gag with cellular Nedd4-family E3 ubiquitin protein ligases. Members of our laboratories previously demonstrated that overexpression of a fragment of the chicken Nedd4-like protein (LDI-1 WW) inhibits Gag release in a dominant-negative manner (A. Kikonyogo, F. Bouamr, M. L. Vana, Y. Xiang, A. Aiyar, C. Carter, and J. Leis, Proc. Natl. Acad. Sci. USA 98:11199-11204, 2001). We have now identified the complete 3′ end of LDI-1 and determined that it has a C-terminal ubiquitin ligase HECT domain, similar to other Nedd4 family members. While overexpression of the full-length LDI-1 clone (LDI-1 FL) had little effect on Gag budding, an LDI-1 FL mutant with a substitution in the HECT domain catalytic site blocked Gag release, similar to LDI-1 WW. The coexpression of Gag and hemagglutinin-tagged ubiquitin (HA-Ub) resulted in the detection of mono- and polyubiquitinated forms of Gag in cells and mostly monoubiquitinated Gag in virus-like particles (VLPs). When the Nedd4-binding site (L domain) was deleted, ubiquitinated Gag was not detected. Interestingly, the release of Gag with ubiquitin covalently linked to the C terminus (Gag-Ub) was still blocked by LDI-1 WW. To understand the mechanism of this inhibition, we examined cells expressing Gag and LDI-1 WW by electron microscopy. In the presence of LDI-1 WW, VLPs were found in electron-dense inclusion bodies in the cytoplasm of transfected cells. In contrast, when cells that coexpressed Gag-Ub and LDI-1 WW were examined, inclusion bodies were detected but did not contain VLPs. These results indicate that the ubiquitination of Gag is dependent upon Nedd4 binding to the L domain and suggest that Nedd4 has additional functions during RSV release besides the ubiquitination of Gag.
doi:10.1128/JVI.78.24.13943-13953.2004
PMCID: PMC533940  PMID: 15564502
11.  PPPYEPTAP Motif Is the Late Domain of Human T-Cell Leukemia Virus Type 1 Gag and Mediates Its Functional Interaction with Cellular Proteins Nedd4 and Tsg101 
Journal of Virology  2003;77(22):11882-11895.
The human T-cell leukemia virus type 1 (HTLV-1) Gag polyprotein contains two adjacent proline-rich motifs (sequence PPPYEPTAP) in the C terminus of the matrix domain. Proline-to-alanine mutations were introduced into either or both motifs of HTLV-1 to determine the effect on the release of HTLV-1 virus-like particles from 293T cells. The release of both single mutants was significantly reduced, whereas a double mutation in both motifs abolished the release of the HTLV-1 particles. Two-hybrid and in vitro binding assays showed that the HTLV-1 Gag polyprotein binds both Tsg101 and Nedd4 proteins. The interaction with HTLV-1 Gag required the central WW domain of Nedd4 and the ubiquitin enzyme variant (UEV) domain of Tsg101. We expressed various fragments of Nedd4 and Tsg101 proteins in 293T cells and tested for their ability to interfere with virion release mediated by the HTLV-1 Gag-Pro polyprotein. Fragments consisting of the N-terminal UEV domain of Tsg101 and the central WW and C-terminal Hect domains of Nedd4 protein all caused transdominant inhibition of HTLV-1 particle release. Similarly, inhibition of the proteasome significantly decreased HTLV-1 particle release. Furthermore, the WW domain overexpression caused an early arrest of HTLV-1 particle morphogenesis before the membrane is deformed into the typical half-shell structure. This result suggests that Nedd4 is involved early in budding of HTLV-1.
doi:10.1128/JVI.77.22.11882-11895.2003
PMCID: PMC253756  PMID: 14581525
12.  A Proline-Rich Motif (PPPY) in the Gag Polyprotein of Mason-Pfizer Monkey Virus Plays a Maturation-Independent Role in Virion Release 
Journal of Virology  1998;72(5):4095-4103.
Virus assembly represents one of the last steps in the retrovirus life cycle. During this process, Gag polyproteins assemble at specific sites within the cell to form viral capsids and induce membrane extrusion (viral budding) either as assembly progresses (type C virus) or following formation of a complete capsid (type B and type D viruses). Finally, the membrane must undergo a fusion event to pinch off the particle in order to release a complete enveloped virion. Structural elements within the MA region of the Gag polyprotein define the route taken to the plasma membrane and direct the process of virus budding. Results presented here suggest that a distinct region of Gag is necessary for virus release. The pp24 and pp16 proteins of the type D retrovirus Mason-Pfizer monkey virus (M-PMV) are phosphoproteins that are encoded in the gag gene of the virus. The pp16 protein is a C-terminally located cleavage product of pp24 and contains a proline-rich motif (PPPY) that is conserved among the Gag proteins of a wide variety of retroviruses. By performing a functional analysis of this coding region with deletion mutants, we have shown that the pp16 protein is dispensable for capsid assembly but essential for virion release. Moreover, additional experiments indicated that the virus release function of pp16 was abolished by the deletion of only the PPPY motif and could be restored when this motif alone was reinserted into a Gag polyprotein lacking the entire pp16 domain. Single-amino-acid substitutions for any of the residues within this motif confer a similar virion release-defective phenotype. It is unlikely that the function of the proline-rich motif is simply to inhibit premature activation of protease, since the PPPY deletion blocked virion release in the context of a protease-defective provirus. These results demonstrate that in type D retroviruses a PPPY motif plays a key role in a late stage of virus budding that is independent of and occurs prior to virion maturation.
PMCID: PMC109639  PMID: 9557699
13.  Mutations in the PPPY Motif of Vesicular Stomatitis Virus Matrix Protein Reduce Virus Budding by Inhibiting a Late Step in Virion Release 
Journal of Virology  2000;74(21):9818-9827.
The N terminus of the matrix (M) protein of vesicular stomatitis virus (VSV) and of other rhabdoviruses contains a highly conserved PPPY sequence (or PY motif) similar to the late (L) domains in the Gag proteins of some retroviruses. These L domains in retroviral Gag proteins are required for efficient release of virus particles. In this report, we show that mutations in the PPPY sequence of the VSV M protein reduce virus yield by blocking a late stage in virus budding. We also observed a delay in the ability of mutant viruses to cause inhibition of host gene expression compared to wild-type (WT) VSV. The effect of PY mutations on virus budding appears to be due to a block at a stage just prior to virion release, since electron microscopic examination of PPPA mutant-infected cells showed a large number of assembled virions at the plasma membrane trapped in the process of budding. Deletion of the glycoprotein (G) in addition to these mutations further reduced the virus yield to less than 1% of WT levels, and very few particles were assembled at the cell surface. This observation suggested that G protein aids in the initial stage of budding, presumably during the formation of the bud site. Overall, our results confirm that the PPPY sequence of the VSV M protein possesses L domain activity analogous to that of the retroviral Gag proteins.
PMCID: PMC102018  PMID: 11024108
14.  The Mason-Pfizer Monkey Virus PPPY and PSAP Motifs Both Contribute to Virus Release 
Journal of Virology  2003;77(17):9474-9485.
Late (L) domains are required for the efficient release of several groups of enveloped viruses. Three amino acid motifs have been shown to provide L-domain function, namely, PPXY, PT/SAP, or YPDL. The retrovirus Mason-Pfizer monkey virus (MPMV) carries closely spaced PPPY and PSAP motifs. Mutation of the PPPY motif results in a complete loss of virus release. Here, we show that the PSAP motif acts as an additional L domain and promotes the efficient release of MPMV but requires an intact PPPY motif to perform its function. Examination of HeLaP4 cells expressing PSAP mutant virus by electron microscopy revealed mostly late budding structures and chains of viruses accumulating at the cell surface with little free virus. In the case of the PPPY mutant virus, budding appeared to be mostly arrested at an earlier stage before induction of membrane curvature. The cellular protein TSG101, which interacts with the human immunodeficiency virus type 1 (HIV-1) PTAP L domain, was packaged into MPMV in a PSAP-dependent manner. Since TSG101 is crucial for HIV-1 release, this result suggests that the Gag-TSG101 interaction is responsible for the virus release function of the MPMV PSAP motif. Nedd4, which has been shown to interact with viral PPPY motifs, was also detected in MPMV particles, albeit at much lower levels. Consistent with a role of VPS4A in the budding of both PPPY and PTAP motif-containing viruses, the overexpression of ATPase-defective GFP-VPS4A fusion proteins blocked both wild-type and PSAP mutant virus release.
doi:10.1128/JVI.77.17.9474-9485.2003
PMCID: PMC187385  PMID: 12915562
15.  Regulation of HTLV-1 Gag budding by Vps4A, Vps4B, and AIP1/Alix 
Virology Journal  2007;4:66.
Background
HTLV-1 Gag protein is a matrix protein that contains the PTAP and PPPY sequences as L-domain motifs and which can be released from mammalian cells in the form of virus-like particles (VLPs). The cellular factors Tsg101 and Nedd4.1 interact with PTAP and PPPY, respectively, within the HTLV-1 Gag polyprotein. Tsg101 forms a complex with Vps28 and Vps37 (ESCRT-I complex) and plays an important role in the class E Vps pathway, which mediates protein sorting and invagination of vesicles into multivesicular bodies. Nedd4.1 is an E3 ubiquitin ligase that binds to the PPPY motif through its WW motif, but its function is still unknown. In the present study, to investigate the mechanism of HTLV-1 budding in detail, we analyzed HTLV-1 budding using dominant negative (DN) forms of the class E proteins.
Results
Here, we report that DN forms of Vps4A, Vps4B, and AIP1 inhibit HTLV-1 budding.
Conclusion
These findings suggest that HTLV-1 budding utilizes the MVB pathway and that these class E proteins may be targets for prevention of mother-to-infant vertical transmission of the virus.
doi:10.1186/1743-422X-4-66
PMCID: PMC1920503  PMID: 17601348
16.  Retroviruses Have Differing Requirements for Proteasome Function in the Budding Process 
Journal of Virology  2003;77(6):3384-3393.
Proteasome inhibitors reduce the budding of human immunodeficiency virus types 1 (HIV-1) and 2, simian immunodeficiency virus, and Rous sarcoma virus. To investigate this effect further, we examined the budding of other retroviruses from proteasome inhibitor-treated cells. The viruses tested differed in their Gag organization, late (L) domain usage, or assembly site from those previously examined. We found that proteasome inhibition decreased the budding of murine leukemia virus (plasma membrane assembly, PPPY L domain) and Mason-Pfizer monkey virus (cytoplasmic assembly, PPPY L domain), similar to the reduction observed for HIV-1. Thus, proteasome inhibitors can affect the budding of a virus that assembles within the cytoplasm. However, the budding of mouse mammary tumor virus (MMTV; cytoplasmic assembly, unknown L domain) was unaffected by proteasome inhibitors, similar to the proteasome-independent budding previously observed for equine infectious anemia virus (plasma membrane assembly, YPDL L domain). Examination of MMTV particles detected Gag-ubiquitin conjugates, demonstrating that an interaction with the ubiquitination system occurs during assembly, as previously found for other retroviruses. For all of the cell lines tested, the inhibitor treatment effectively inactivated proteasomes, as measured by the accumulation of polyubiquitinated proteins. The ubiquitination system was also inhibited, as evidenced by the loss of monoubiquitinated histones from treated cells. These results and those from other viruses show that proteasome inhibitors reduce the budding of viruses that utilize either a PPPY- or PTAP-based L domain and that this effect does not depend on the assembly site or the presence of monoubiquitinated Gag in the virion.
doi:10.1128/JVI.77.6.3384-3393.2003
PMCID: PMC149504  PMID: 12610113
17.  Lysines Close to the Rous Sarcoma Virus Late Domain Critical for Budding 
Journal of Virology  2004;78(19):10606-10616.
The release of retroviruses from the plasma membrane requires host factors that are believed to be recruited to the site of budding by the late (L) domain of the virus-encoded Gag protein. The L domain of Rous sarcoma virus (RSV) has been shown to interact with a ubiquitin (Ub) ligase, and budding of this virus is dependent on Ub. RSV is similar to other retroviruses in that it contains ∼100 molecules of Ub, but it is unique in that none of these molecules has been found to be conjugated to Gag. If transient ubiquitination of RSV Gag is required for budding, then replacement of the target lysine(s) with arginine should prevent the addition of Ub and reduce budding. Based on known sites of ubiquitination in other viruses, the important lysines would likely reside near the L domain. In RSV, there are five lysines located just upstream of the L domain in a region of the matrix (MA) protein that is dispensable for membrane binding, and replacement of these with arginine (mutant 1-5KR) reduced budding 80 to 90%. The block to budding was found to be on the plasma membrane; however, the few virions that were released had normal size, morphology, and infectivity. Budding was restored when any one of the residues was changed back to lysine or when lysines were inserted in novel positions, either within this region of MA or within the downstream p10 sequence. Moreover, the 1-5KR mutant could be rescued into particles by coexpression of budding-competent Gag molecules. These data argue that the phenotype of mutant 1-5KR is not due to a conformational defect. Consistent with the idea that efficient budding requires a specific role for lysines, human T-cell leukemia virus type 1, which does not bud well compared to RSV and lacks lysines close to its L domain, was found to be released at a higher level upon introduction of lysines near its L domain. This report strongly supports the hypothesis that ubiquitination of the RSV Gag protein (and perhaps those of other retroviruses) is needed for efficient budding.
doi:10.1128/JVI.78.19.10606-10616.2004
PMCID: PMC516377  PMID: 15367628
18.  Late Assembly Domain Function Can Exhibit Context Dependence and Involves Ubiquitin Residues Implicated in Endocytosis 
Journal of Virology  2002;76(11):5472-5479.
Retroviral Gag polyproteins contain regions that promote the separation of virus particles from the plasma membrane and from each other. These Gag regions are often referred to as late assembly (L) domains. The L domain of human immunodeficiency virus type 1 (HIV-1) is in the C-terminal p6gag domain and harbors an essential P(T/S)APP motif, whereas the L domains of oncoretroviruses are in the N-terminal half of the Gag precursor and have a PPXY core motif. We recently observed that L domains induce the ubiquitination of a minimal HIV-1 Gag construct and that point mutations which abolish L domain activity prevent Gag ubiquitination. In that study, a peptide from the Ebola virus L domain with overlapping P(T/S)APP and PPXY motifs showed exceptional activity in promoting Gag ubiquitination and the release of virus-like particles. We now show that a substitution which disrupts the PPXY motif but leaves the P(T/S)APP motif intact abolishes L domain activity in the minimal Gag context, but not in the context of a near full-length HIV-1 Gag precursor. Our results reveal that the P(T/S)APP motif does not function autonomously and indicate that the HIV-1 nucleocapsid-p1 region, which is proximal to p6gag, can cooperate with the conserved L domain core motif. We have also examined the effects of ubiquitin mutants on virus-like particle production, and the results indicate that residues required for the endocytosis function of ubiquitin are also involved in virus budding.
doi:10.1128/JVI.76.11.5472-5479.2002
PMCID: PMC137019  PMID: 11991975
19.  Notch3 Interactome Analysis Identified WWP2 as a Negative Regulator of Notch3 Signaling in Ovarian Cancer 
PLoS Genetics  2014;10(10):e1004751.
The Notch3 signaling pathway is thought to play a critical role in cancer development, as evidenced by the Notch3 amplification and rearrangement observed in human cancers. However, the molecular mechanism by which Notch3 signaling contributes to tumorigenesis is largely unknown. In an effort to identify the molecular modulators of the Notch3 signaling pathway, we screened for Notch3-intracellular domain (N3-ICD) interacting proteins using a human proteome microarray. Pathway analysis of the Notch3 interactome demonstrated that ubiquitin C was the molecular hub of the top functional network, suggesting the involvement of ubiquitination in modulating Notch3 signaling. Thereby, we focused on functional characterization of an E3 ubiquitin-protein ligase, WWP2, a top candidate in the Notch3 interactome list. Co-immunoprecipitation experiments showed that WWP2 interacted with N3-ICD but not with intracellular domains from other Notch receptors. Wild-type WWP2 but not ligase-deficient mutant WWP2 increases mono-ubiquitination of the membrane-tethered Notch3 fragment, therefore attenuating Notch3 pathway activity in cancer cells and leading to cell cycle arrest. The mono-ubiquitination by WWP2 may target an endosomal/lysosomal degradation fate for Notch3 as suggested by the fact that the process could be suppressed by the endosomal/lysosomal inhibitor. Analysis of The Cancer Genome Atlas dataset showed that the majority of ovarian carcinomas harbored homozygous or heterozygous deletions in WWP2 locus, and there was an inverse correlation in the expression levels between WWP2 and Notch3 in ovarian carcinomas. Furthermore, ectopic expression of WWP2 decreased tumor development in a mouse xenograft model and suppressed the Notch3-induced phenotypes including increase in cancer stem cell-like cell population and platinum resistance. Taken together, our results provide evidence that WWP2 serves as a tumor suppressor by negatively regulating Notch3 signaling in ovarian cancer.
Author Summary
Notch pathway is important for many cellular activities, and its dysregulation leads to several diseases in humans, including cancer. Although Notch hyperactivity has been observed in many types of cancers, the interactome of Notch receptor remains largely unknown, especially for Notch3, which is involved in ovarian cancer pathogenesis. This article is the first study, to our knowledge, that delineates the Notch3 interacting network, and demonstrates that one of the Notch3 interacting proteins, WWP2, an E3 ubiquitin-protein ligase, plays a major role in negative regulation of Notch3 signaling in cancer cells. WWP2 locus was found to be deleted, and its mRNA down-regulated in a significant fraction of ovarian carcinomas. Ectopic expression of WWP2 reduced tumorigenicity of ovarian cancer cells, and counteracted Notch3-mediated phenotypes, including promotion of cancer stem-like cell phenotype and platinum resistance, further supporting its tumor suppressor role. The results from this study provide new insights into how Notch3 signaling contributes to cancer development, and should have implications for the design of Notch3-based cancer therapy.
doi:10.1371/journal.pgen.1004751
PMCID: PMC4214668  PMID: 25356737
20.  Ubiquitin conjugation to Gag is essential for ESCRT-mediated HIV-1 budding 
Retrovirology  2013;10:79.
Background
HIV-1 relies on the host ESCRTs for release from cells. HIV-1 Gag engages ESCRTs by directly binding TSG101 or Alix. ESCRTs also sort ubiquitinated membrane proteins through endosomes to facilitate their lysosomal degradation. The ability of ESCRTs to recognize and process ubiquitinated proteins suggests that ESCRT-dependent viral release may also be controlled by ubiquitination. Although both Gag and ESCRTs undergo some level of ubiquitination, definitive demonstration that ubiquitin is required for viral release is lacking. Here we suppress ubiquitination at viral budding sites by fusing the catalytic domain of the Herpes Simplex UL36 deubiquitinating enzyme (DUb) onto TSG101, Alix, or Gag.
Results
Expressing DUb-TSG101 suppressed Alix-independent HIV-1 release and viral particles remained tethered to the cell surface. DUb-TSG101 had no effect on budding of MoMLV or EIAV, two retroviruses that rely on the ESCRT machinery for exit. Alix-dependent virus release such as EIAV’s, and HIV-1 lacking access to TSG101, was instead dramatically blocked by co-expressing DUb-Alix. Finally, Gag-DUb was unable to support virus release and dominantly interfered with release of wild type HIV-1. Fusion of UL36 did not effect interactions with Alix, TSG101, or Gag and all of the inhibitory effects of UL36 fusion were abolished when its catalytic activity was ablated. Accordingly, Alix, TSG101 and Gag fused to inactive UL36 functionally replaced their unfused counterparts. Interestingly, coexpression of the Nedd4-2s ubiquitin ligase suppressed the ability of DUb-TSG101 to inhibit HIV-1 release while also restoring detectable Gag ubiquitination at the membrane. Similarly, incorporation of Gag-Ub fusion proteins into virions lifted DUb-ESCRT inhibitory effect. In contrast, Nedd4-2s did not suppress the inhibition mediated by Gag-DUb despite restoring robust ubiquitination of TSG101/ESCRT-I at virus budding sites.
Conclusions
These studies demonstrate a necessary and natural role for ubiquitin in ESCRT-dependent viral release and indicate a critical role for ubiquitination of Gag rather than ubiquitination of ESCRTs themselves.
doi:10.1186/1742-4690-10-79
PMCID: PMC3751857  PMID: 23895345
Ubiquitin; HIV budding; ESCRT; Deubiquitination; Gag
21.  Selective targeting of activating and inhibitory Smads by distinct WWP2 ubiquitin ligase isoforms differentially modulates TGFβ signalling and EMT 
Oncogene  2011;30(21):2451-2462.
Ubiquitin-dependent mechanisms have emerged as essential regulatory elements controlling cellular levels of Smads and TGFβ-dependent biological outputs such as epithelial-mesenchymal transition (EMT). Here, we identify a HECT E3 ubiquitin ligase known as WWP2 (Full-length WWP2-FL), together with two WWP2 isoforms (N-terminal, WWP2-N; C-terminal WWP2-C), as novel Smad binding partners. We show that WWP2-FL interacts exclusively with Smad2, Smad3 and Smad7 in the TGFβ pathway. Interestingly, the WWP2-N isoform interacts with Smad2 and Smad3, whereas WWP2-C interacts only with Smad7. In addition, WWP2-FL and WWP2-C have a preference for Smad7 based on protein turnover and ubiquitination studies. Unexpectedly, we also find that WWP2-N, which lacks the HECT ubiquitin ligase domain, can also interact with WWP2-FL in a TGFβ-regulated manner and activate endogenous WWP2 ubiquitin ligase activity causing degradation of unstimulated Smad2 and Smad3. Consistent with our protein interaction data, overexpression and knockdown approaches reveal that WWP2 isoforms differentially modulate TGFβ-dependent transcription and EMT. Finally, we show that selective disruption of WWP2 interactions with inhibitory Smad7 can stabilise Smad7 protein levels and prevent TGFβ-induced EMT. Collectively, our data suggest that WWP2-N can stimulate WWP2-FL leading to increased activity against unstimulated Smad2 and Smad3, and that Smad7 is a preferred substrate for WWP2-FL and WWP2-C following prolonged TGFβ stimulation. Significantly, this is the first report of an inter-dependent biological role for distinct HECT E3 ubiquitin ligase isoforms, and highlights an entirely novel regulatory paradigm that selectively limits the level of inhibitory and activating Smads.
doi:10.1038/onc.2010.617
PMCID: PMC4073228  PMID: 21258410
TGFβ; Smads; transcription; Ubiquitin ligase
22.  The E3 Ubiquitin Ligase WWP1 Selectively Targets HER4 and Its Proteolytically Derived Signaling Isoforms for Degradation▿  
Molecular and Cellular Biology  2008;29(3):892-906.
In general, epidermal growth factor receptor family members stimulate cell proliferation. In contrast, at least one HER4 isoform, JM-a/Cyt1, inhibits cell growth after undergoing a two-step proteolytic cleavage that first produces a membrane-anchored 80-kDa fragment (m80HER4) and subsequently liberates a soluble 80-kDa fragment, s80HER4. Here we report that s80HER4 Cyt1 action increased the expression of WWP1 (for WW domain-containing protein 1), an E3 ubiquitin ligase, but not other members of the Nedd4 E3 ligase family. The HER4 Cyt1 isoform contains three proline-rich tyrosine (PY) WW binding motifs, while Cyt2 has only two. WWP1 binds to all three Cyt1 PY motifs; the interaction with PY2 found exclusively in Cyt1 was strongest. WWP1 ubiquitinated and caused the degradation of HER4 but not of EGFR, HER2, or HER3. The HER4-WWP1 interaction also accelerated WWP1 degradation. Membrane HER4 (full length and m80HER4, the product of the first proteolytic cleavage) were the preferred targets of WWP1, correlating with the membrane localization of WWP1. Conversely s80HER4, a poorer WWP1 substrate, was found in the cell nucleus, while WWP1 was not. Deletion of the C2 membrane association domain of WWP1 allowed more efficient s80HER4 degradation, suggesting that WWP1 is normally part of a membrane complex that regulates HER4 membrane species levels, with a predilection for the growth-inhibitory Cyt1 isoform. Finally, WWP1 expression diminished HER4 biologic activity in MCF-7 cells. We previously showed that nuclear s80HER4 is ubiquitinated and degraded by the anaphase-promoting complex, suggesting that HER4 ubiquitination within specific cellular compartments helps regulate the unique HER4 signaling capabilities.
doi:10.1128/MCB.00595-08
PMCID: PMC2630679  PMID: 19047365
23.  HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway 
The Journal of Cell Biology  2005;168(1):89-101.
Many enveloped viruses exploit the class E vacuolar protein-sorting (VPS) pathway to bud from cells, and use peptide motifs to recruit specific class E VPS factors. Homologous to E6AP COOH terminus (HECT) ubiquitin ligases have been implicated as cofactors for PPXY motif–dependent budding, but precisely which members of this family are responsible, and how they access the VPS pathway is unclear. Here, we show that PPXY-dependent viral budding is unusually sensitive to inhibitory fragments derived from specific HECT ubiquitin ligases, namely WWP1 and WWP2. We also show that WWP1, WWP2, or Itch ubiquitin ligase recruitment promotes PPXY-dependent virion release, and that this function requires that the HECT ubiquitin ligase domain be catalytically active. Finally, we show that several mammalian HECT ubiquitin ligases, including WWP1, WWP2, and Itch are recruited to class E compartments induced by dominant negative forms of the class E VPS ATPase, VPS4. These data indicate that specific HECT ubiquitin ligases can link PPXY motifs to the VPS pathway to induce viral budding.
doi:10.1083/jcb.200408155
PMCID: PMC2171676  PMID: 15623582
24.  Tsg101 can replace Nedd4 function in ASV Gag release but not membrane targeting 
Virology  2008;377(1):30-38.
SUMMARY
The Late (L) domain of the avian sarcoma virus (ASV) Gag protein binds Nedd4 ubiquitin ligase E3 family members and is the determinant of efficient virus release in avian and mammalian cells. We previously demonstrated that Nedd4 and Tsg101 constitutively interact raising the possibility that Nedd4 links ASV Gag to the ESCRT machinery. We now demonstrate that covalently linking Tsg101 to ASV Gag lacking the Nedd4 binding site (Δp2b-Tsg101) ablates the requirement for Nedd4, but the rescue of budding occurs by use of a different budding mechanism than that used by wild type ASV Gag. The evidence that Tsg101 and Nedd4 direct release by different pathways is: (i) Release of the virus-like particles (VLPs) assembled from Gag in DF-1, an avian cell line, was resistant to dominant-negative interference by a Tsg101 mutant previously shown to inhibit release of both HIV and Mo-MLV. (ii) Release of VLPs from DF-1 cells was resistant to siRNA-mediated depletion of the endogenous pool of Tsg101 in these cells. (iii) VLPs assembled from wild-type ASV Gag exhibited highly efficient release from endosome-like membrane domains enriched in the tetraspanin protein CD63 or a fluorescent analogue of the phospholipid phosphatidylethanolamine. However, the VLPs assembled from the L domain mutant Δp2b or a chimeric Δp2b-Tsg101 Gag lacked these domain markers even though the chimeric Gag was released efficiently compared to the Δp2b mutant. These results suggest that Tsg101 and Nedd4 facilitate Gag release through functionally exchangeable but independent routes and that Tsg101 can replace Nedd4 function in facilitating budding but not directing through the same membranes.
doi:10.1016/j.virol.2008.04.024
PMCID: PMC2528022  PMID: 18555885
25.  Murine Leukemia Virus Particle Assembly Quantitated by Fluorescence Microscopy: Role of Gag-Gag Interactions and Membrane Association 
Journal of Virology  2003;77(21):11651-11660.
In order to track the assembly of murine leukemia virus (MLV), we used fluorescence microscopy to visualize particles containing Gag molecules fused to fluorescent proteins (FPs). Gag-FP chimeras budded from cells to produce fluorescent spots, which passed through the same pore-size filters and sedimented at the same velocity as authentic MLV. N-terminal myristylation of Gag-FPs was necessary for particle formation unless wild-type Gag was coexpressed. By labeling nonmyristylated Gag with yellow FP and wild-type Gag with cyan FP, we could quantitate the coincorporation of two proteins into single particles. This experiment showed that nonmyristylated Gag was incorporated into mixed particles at approximately 50% the efficiency of wild-type Gag. Mutations that inhibit Gag-Gag interactions (K. Alin and S. P. Goff, Virology 216:418-424, 1996; K. Alin and S. P. Goff, Virology 222:339-351, 1996) were then introduced into the capsid (CA) region of Gag-FPs. The mutations P150L and R119C/P133L inhibited fluorescent particle formation by these Gag-FPs, but Gag-FPs containing these mutations could be efficiently incorporated into particles when coexpressed with wild-type Gag. When these mutations were introduced into nonmyristylated Gag-FPs, no incorporation into particles in the presence of wild-type Gag was detected. These data suggest that two independent mechanisms, CA interactions and membrane association following myristylation, cooperate in MLV Gag assembly and budding.
doi:10.1128/JVI.77.21.11651-11660.2003
PMCID: PMC229285  PMID: 14557651

Results 1-25 (848870)