PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1086809)

Clipboard (0)
None

Related Articles

1.  Analysis of the Neurotoxin Complex Genes in Clostridium botulinum A1-A4 and B1 Strains: BoNT/A3, /Ba4 and /B1 Clusters Are Located within Plasmids 
PLoS ONE  2007;2(12):e1271.
Background
Clostridium botulinum and related clostridial species express extremely potent neurotoxins known as botulinum neurotoxins (BoNTs) that cause long-lasting, potentially fatal intoxications in humans and other mammals. The amino acid variation within the BoNT is used to categorize the species into seven immunologically distinct BoNT serotypes (A–G) which are further divided into subtypes. The BoNTs are located within two generally conserved gene arrangements known as botulinum progenitor complexes which encode toxin-associated proteins involved in toxin stability and expression.
Methodology/Principal Findings
Because serotype A and B strains are responsible for the vast majority of human botulism cases worldwide, the location, arrangement and sequences of genes from eight different toxin complexes representing four different BoNT/A subtypes (BoNT/A1-Ba4) and one BoNT/B1 strain were examined. The bivalent Ba4 strain contained both the BoNT/A4 and BoNT/bvB toxin clusters. The arrangements of the BoNT/A3 and BoNT/A4 subtypes differed from the BoNT/A1 strains and were similar to those of BoNT/A2. However, unlike the BoNT/A2 subtype, the toxin complex genes of BoNT/A3 and BoNT/A4 were found within large plasmids and not within the chromosome. In the Ba4 strain, both BoNT toxin clusters (A4 and bivalent B) were located within the same 270 kb plasmid, separated by 97 kb. Complete genomic sequencing of the BoNT/B1 strain also revealed that its toxin complex genes were located within a 149 kb plasmid and the BoNT/A3 complex is within a 267 kb plasmid.
Conclusions/Significance
Despite their size differences and the BoNT genes they contain, the three plasmids containing these toxin cluster genes share significant sequence identity. The presence of partial insertion sequence (IS) elements, evidence of recombination/gene duplication events, and the discovery of the BoNT/A3, BoNT/Ba4 and BoNT/B1 toxin complex genes within plasmids illustrate the different mechanisms by which these genes move among diverse genetic backgrounds of C. botulinum.
doi:10.1371/journal.pone.0001271
PMCID: PMC2092393  PMID: 18060065
2.  Recombination and insertion events involving the botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains 
BMC Biology  2009;7:66.
Background
Clostridium botulinum is a taxonomic designation for at least four diverse species that are defined by the expression of one (monovalent) or two (bivalent) of seven different C. botulinum neurotoxins (BoNTs, A-G). The four species have been classified as C. botulinum Groups I-IV. The presence of bont genes in strains representing the different Groups is probably the result of horizontal transfer of the toxin operons between the species.
Results
Chromosome and plasmid sequences of several C. botulinum strains representing A, B, E and F serotypes and a C. butyricum type E strain were compared to examine their genomic organization, or synteny, and the location of the botulinum toxin complex genes. These comparisons identified synteny among proteolytic (Group I) strains or nonproteolytic (Group II) strains but not between the two Groups. The bont complex genes within the strains examined were not randomly located but found within three regions of the chromosome or in two specific sites within plasmids. A comparison of sequences from a Bf strain revealed homology to the plasmid pCLJ with similar locations for the bont/bv b genes but with the bont/a4 gene replaced by the bont/f gene. An analysis of the toxin cluster genes showed that many recombination events have occurred, including several events within the ntnh gene. One such recombination event resulted in the integration of the bont/a1 gene into the serotype toxin B ha cluster, resulting in a successful lineage commonly associated with food borne botulism outbreaks. In C. botulinum type E and C. butyricum type E strains the location of the bont/e gene cluster appears to be the result of insertion events that split a rarA, recombination-associated gene, independently at the same location in both species.
Conclusion
The analysis of the genomic sequences representing different strains reveals the presence of insertion sequence (IS) elements and other transposon-associated proteins such as recombinases that could facilitate the horizontal transfer of the bonts; these events, in addition to recombination among the toxin complex genes, have led to the lineages observed today within the neurotoxin-producing clostridia.
doi:10.1186/1741-7007-7-66
PMCID: PMC2764570  PMID: 19804621
3.  A historical and proteomic analysis of botulinum neurotoxin type/G 
BMC Microbiology  2011;11:232.
Background
Clostridium botulinum is the taxonomic designation for at least six diverse species that produce botulinum neurotoxins (BoNTs). There are seven known serotypes of BoNTs (/A through/G), all of which are potent toxins classified as category A bioterrorism agents. BoNT/G is the least studied of the seven serotypes. In an effort to further characterize the holotoxin and neurotoxin-associated proteins (NAPs), we conducted an in silico and proteomic analysis of commercial BoNT/G complex. We describe the relative quantification of the proteins present in the/G complex and confirm our ability to detect the toxin activity in vitro. In addition, we review previous literature to provide a complete description of the BoNT/G complex.
Results
An in-depth comparison of protein sequences indicated that BoNT/G shares the most sequence similarity with the/B serotype. A temperature-modified Endopep-MS activity assay was successful in the detection of BoNT/G activity. Gel electrophoresis and in gel digestions, followed by MS/MS analysis of/G complex, revealed the presence of four proteins in the complexes: neurotoxin (BoNT) and three NAPs--nontoxic-nonhemagglutinin (NTNH) and two hemagglutinins (HA70 and HA17). Rapid high-temperature in-solution tryptic digestions, coupled with MS/MS analysis, generated higher than previously reported sequence coverages for all proteins associated with the complex: BoNT 66%, NTNH 57%, HA70 91%, and HA17 99%. Label-free relative quantification determined that the complex contains 30% BoNT, 38% NTNH, 28% HA70, and 4% HA17 by weight comparison and 17% BoNT, 23% NTNH, 42% HA70, and 17% HA17 by molecular comparison.
Conclusions
The in silico protein sequence comparisons established that the/G complex is phenetically related to the other six serotypes of C. botulinum. Proteomic analyses and Endopep-MS confirmed the presence of BoNT and NAPs, along with the activity of the commercial/G complex. The use of data-independent MSE data analysis, coupled to label-free quantification software, suggested that the weight ratio BoNT:NAPs is 1:3, whereas the molar ratio of BoNT:NTNH:HA70:HA17 is 1:1:2:1, within the BoNT/G progenitor toxin.
doi:10.1186/1471-2180-11-232
PMCID: PMC3215672  PMID: 22008244
4.  Analysis of Clostridium botulinum Serotype E Strains by Using Multilocus Sequence Typing, Amplified Fragment Length Polymorphism, Variable-Number Tandem-Repeat Analysis, and Botulinum Neurotoxin Gene Sequencing▿ 
Applied and Environmental Microbiology  2011;77(24):8625-8634.
A total of 41 Clostridium botulinum serotype E strains from different geographic regions, including Canada, Denmark, Finland, France, Greenland, Japan, and the United States, were compared by multilocus sequence typing (MLST), amplified fragment length polymorphism (AFLP) analysis, variable-number tandem-repeat (VNTR) analysis, and botulinum neurotoxin (bont) E gene sequencing. The strains, representing environmental, food-borne, and infant botulism samples collected from 1932 to 2007, were analyzed to compare serotype E strains from different geographic regions and types of botulism and to determine whether each of the strains contained the transposon-associated recombinase rarA, involved with bont/E insertion. MLST examination using 15 genes clustered the strains into several clades, with most members within a cluster sharing the same BoNT/E subtype (BoNT/E1, E2, E3, or E6). Sequencing of the bont/E gene identified two new variants (E7, E8) that showed regions of recombination with other E subtypes. The AFLP dendrogram clustered the 41 strains similarly to the MLST dendrogram. Strains that could not be differentiated by AFLP, MLST, or bont gene sequencing were further examined using three VNTR regions. Both intact and split rarA genes were amplified by PCR in each of the strains, and their identities were confirmed in 11 strains by amplicon sequencing. The findings suggest that (i) the C. botulinum serotype E strains result from the targeted insertion of the bont/E gene into genetically conserved bacteria and (ii) recombination events (not random mutations) within bont/E result in toxin variants or subtypes within strains.
doi:10.1128/AEM.05155-11
PMCID: PMC3233090  PMID: 22003031
5.  Differentiation of Clostridium botulinum Serotype A Strains by Multiple-Locus Variable-Number Tandem-Repeat Analysis▿ †  
Ten variable-number tandem-repeat (VNTR) regions identified within the complete genomic sequence of Clostridium botulinum strain ATCC 3502 were used to characterize 59 C. botulinum strains of the botulism neurotoxin A1 (BoNT/A1) to BoNT/A4 (BoNT/A1-A4) subtypes to determine their ability to discriminate among the serotype A strains. Two strains representing each of the C. botulinum serotypes B to G, including five bivalent strains, and two strains of the closely related species Clostridium sporogenes were also tested. Amplified fragment length polymorphism analyses revealed the genetic diversity among the serotypes and the high degree of similarity among many of the BoNT/A1 strains. The 10 VNTR markers amplified fragments within all of the serotype A strains but were less successful with strains of other serotypes. The composite multiple-locus VNTR analysis of the 59 BoNT/A1-A4 strains and 3 bivalent B strains identified 38 different genotypes. Thirty genotypes were identified among the 53 BoNT/A1 and BoNT/A1(B) strains, demonstrating discrimination below the subtype level. Contaminating DNA within crude toxin preparations of three BoNT/A subtypes (BoNT/A1 to BoNT/A3) also supported amplification of all of the VNTR regions. These markers provide clinical and forensics laboratories with a rapid, highly discriminatory tool to distinguish among C. botulinum BoNT/A1 strains for investigations of botulism outbreaks.
doi:10.1128/AEM.01539-07
PMCID: PMC2227714  PMID: 18083878
6.  Isolation and Functional Characterization of the Novel Clostridium botulinum Neurotoxin A8 Subtype 
PLoS ONE  2015;10(2):e0116381.
Botulism is a severe neurological disease caused by the complex family of botulinum neurotoxins (BoNT). Based on the different serotypes known today, a classification of serotype variants termed subtypes has been proposed according to sequence diversity and immunological properties. However, the relevance of BoNT subtypes is currently not well understood. Here we describe the isolation of a novel Clostridium botulinum strain from a food-borne botulism outbreak near Chemnitz, Germany. Comparison of its botulinum neurotoxin gene sequence with published sequences identified it to be a novel subtype within the BoNT/A serotype designated BoNT/A8. The neurotoxin gene is located within an ha-orfX+ cluster and showed highest homology to BoNT/A1, A2, A5, and A6. Unexpectedly, we found an arginine insertion located in the HC domain of the heavy chain, which is unique compared to all other BoNT/A subtypes known so far. Functional characterization revealed that the binding characteristics to its main neuronal protein receptor SV2C seemed unaffected, whereas binding to membrane-incorporated gangliosides was reduced in comparison to BoNT/A1. Moreover, we found significantly lower enzymatic activity of the natural, full-length neurotoxin and the recombinant light chain of BoNT/A8 compared to BoNT/A1 in different endopeptidase assays. Both reduced ganglioside binding and enzymatic activity may contribute to the considerably lower biological activity of BoNT/A8 as measured in a mouse phrenic nerve hemidiaphragm assay. Despite its reduced activity the novel BoNT/A8 subtype caused severe botulism in a 63-year-old male. To our knowledge, this is the first description and a comprehensive characterization of a novel BoNT/A subtype which combines genetic information on the neurotoxin gene cluster with an in-depth functional analysis using different technical approaches. Our results show that subtyping of BoNT is highly relevant and that understanding of the detailed toxin function might pave the way for the development of novel therapeutics and tailor-made antitoxins.
doi:10.1371/journal.pone.0116381
PMCID: PMC4320087  PMID: 25658638
7.  Clostridium botulinum Strains Producing BoNT/F4 or BoNT/F5 
Applied and Environmental Microbiology  2014;80(10):3250-3257.
Botulinum neurotoxin type F (BoNT/F) may be produced by Clostridium botulinum alone or in combination with another toxin type such as BoNT/A or BoNT/B. Type F neurotoxin gene sequences have been further classified into seven toxin subtypes. Recently, the genome sequence of one strain of C. botulinum (Af84) was shown to contain three neurotoxin genes (bont/F4, bont/F5, and bont/A2). In this study, eight strains containing bont/F4 and seven strains containing bont/F5 were examined. Culture supernatants produced by these strains were incubated with BoNT/F-specific peptide substrates. Cleavage products of these peptides were subjected to mass spectral analysis, allowing detection of the BoNT/F subtypes present in the culture supernatants. PCR analysis demonstrated that a plasmid-specific marker (PL-6) was observed only among strains containing bont/F5. Among these strains, Southern hybridization revealed the presence of an approximately 242-kb plasmid harboring bont/F5. Genome sequencing of four of these strains revealed that the genomic backgrounds of strains harboring either bont/F4 or bont/F5 are diverse. None of the strains analyzed in this study were shown to produce BoNT/F4 and BoNT/F5 simultaneously, suggesting that strain Af84 is unusual. Finally, these data support a role for the mobility of a bont/F5-carrying plasmid among strains of diverse genomic backgrounds.
doi:10.1128/AEM.00284-14
PMCID: PMC4018930  PMID: 24632257
8.  Crystal structure of the receptor binding domain of the botulinum C-D mosaic neurotoxin reveals potential roles of lysines 1118 and 1136 in membrane interactions 
The botulinum neurotoxins (BoNTs) produced by different strains of the bacterium Clostridium botulinum are responsible for the disease botulism and include a group of immunologically distinct serotypes (A, B, E, and F) that are considered to be the most lethal natural proteins known for humans. Two BoNT serotypes, C and D, while rarely associated with human infection, are responsible for deadly botulism outbreaks afflicting animals. Also associated with animal infections is the BoNT C-D mosaic protein (BoNT/CD), a BoNT subtype that is essentially a hybrid of the BoNT/C (~two-thirds) and BoNT/D (~one-third) serotypes. While the amino acid sequence of the heavy chain receptor binding (HCR) domain of BoNT/CD (BoNT/CD-HCR) is very similar to the corresponding amino acid sequence of BoNT/D, BoNT/CD-HCR binds synaptosome membranes better than BoNT/D-HCR. To obtain structural insights for the different membrane binding properties, the crystal structure of BoNT/CD-HCR (S867-E1280) was determined at 1.56 Å resolution and compared to previously reported structures for BoNT/D-HCR. Overall, the BoNT/CD-HCR structure is similar to the two sub-domain organization observed for other BoNT HCRs: an N-terminal jellyroll barrel motif and a C-terminal β-trefoil fold. Comparison of the structure of BoNT/CD-HCR with BoNT/D-HCR indicates that K1118 has a similar structural role as the equivalent residue, E1114, in BoNT/D-HCR, while K1136 has a structurally different role than the equivalent residue, G1132, in BoNT/D-HCR. Lysine-1118 forms a salt bridge with E1247 and may enhance membrane interactions by stabilizing the putative membrane binding loop (K1240-N1248). Lysine-1136 is observed on the surface of the protein. A sulfate ion bound to K1136 may mimic a natural interaction with the negatively changed phospholipid membrane surface. Liposome-binding experiments demonstrate that BoNT/CD-HCR binds phosphatidylethanolamine liposomes more tightly than BoNT/D-HCR.
doi:10.1016/j.bbrc.2010.11.134
PMCID: PMC3019264  PMID: 21130733
botulinum neurotoxin; C-D mosaic; botulism; phosphatidylethanolamine; membrane recognition
9.  Genetic Diversity among Clostridium botulinum Strains Harboring bont/A2 and bont/A3 Genes 
Applied and Environmental Microbiology  2012;78(24):8712-8718.
Clostridium botulinum type A strains are known to be genetically diverse and widespread throughout the world. Genetic diversity studies have focused mainly on strains harboring one type A botulinum toxin gene, bont/A1, although all reported bont/A gene variants have been associated with botulism cases. Our study provides insight into the genetic diversity of C. botulinum type A strains, which contain bont/A2 (n = 42) and bont/A3 (n = 4) genes, isolated from diverse samples and geographic origins. Genetic diversity was assessed by using bont nucleotide sequencing, content analysis of the bont gene clusters, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). Sequences of bont genes obtained in this study showed 99.9 to 100% identity with other bont/A2 or bont/A3 gene sequences available in public databases. The neurotoxin gene clusters of the subtype A2 and A3 strains analyzed in this study were similar in gene content. C. botulinum strains harboring bont/A2 and bont/A3 genes were divided into six and two MLST profiles, respectively. Four groups of strains shared a similarity of at least 95% by PFGE; the largest group included 21 out of 46 strains. The strains analyzed in this study showed relatively limited genetic diversity using either MLST or PFGE.
doi:10.1128/AEM.02428-12
PMCID: PMC3502935  PMID: 23042179
10.  De novo subtype and strain identification of botulinum neurotoxin type B through toxin proteomics 
Botulinum neurotoxins (BoNTs) cause the disease botulism, which can be lethal if untreated. There are seven known serotypes of BoNT, A–G, defined by their response to antisera. Many serotypes are distinguished into differing subtypes based on amino acid sequence, and many subtypes are further differentiated into toxin variants. Previous work in our laboratory described the use of a proteomics approach to distinguish subtype BoNT/A1 from BoNT/A2 where BoNT identities were confirmed after searching data against a database containing protein sequences of all known BoNT/A subtypes. We now describe here a similar approach to differentiate subtypes BoNT/B1, /B2, /B3, /B4, and /B5. Additionally, to identify new subtypes or hitherto unpublished amino acid substitutions, we created an amino acid substitution database covering every possible amino acid change. We used this database to differentiate multiple toxin variants within subtypes of BoNT/B1 and B2. More importantly, with our amino acid substitution database, we were able to identify a novel BoNT/B subtype, designated here as BoNT/B7. These techniques allow for subtype and strain level identification of both known and unknown BoNT/B rapidly with no DNA required.
FigureIdentification of an existing or new BoNT/B can be accomplished through MS/MS analysis of digestion fragments of the protein.
doi:10.1007/s00216-012-5767-3
PMCID: PMC3309144  PMID: 22395449
Botulinum neurotoxin; Botulism; Mass spectrometry; Proteomics
11.  Universal and specific quantitative detection of botulinum neurotoxin genes 
BMC Microbiology  2010;10:267.
Background
Clostridium botulinum, an obligate anaerobic spore-forming bacterium, produces seven antigenic variants of botulinum toxin that are distinguished serologically and termed "serotypes". Botulinum toxin blocks the release of acetylcholine at neuromuscular junctions resulting in flaccid paralysis. The potential lethality of the disease warrants a fast and accurate means of diagnosing suspected instances of food contamination or human intoxication. Currently, the Food and Drug Administration (FDA)-accepted assay to detect and type botulinum neurotoxins (BoNTs) is the mouse protection bioassay. While specific and sensitive, this assay requires the use of laboratory animals, may take up to four days to achieve a diagnosis, and is unsuitable for high-throughput analysis. We report here a two-step PCR assay that identifies all toxin types, that achieves the specificity of the mouse bioassay while surpassing it in equivalent sensitivity, that has capability for high-throughput analysis, and that provides quantitative results within hours. The first step of our assay consists of a conventional PCR that detects the presence of C. botulinum regardless of the neurotoxin type. The second step uses quantitative PCR (qPCR) technology to determine the specific serotype of the neurotoxin.
Results
We assayed purified C. botulinum DNA and crude toxin preparations, as well as food and stool from healthy individuals spiked with purified BoNT DNA, and one stool sample from a case of infant botulism for the presence of the NTNH gene, which is part of the BoNT gene cluster, and for the presence of serotype-specific BoNT genes. The PCR surpassed the mouse bioassay both in specificity and sensitivity, detecting positive signals in BoNT preparations containing well below the 1 LD50 required for detection via the mouse bioassay. These results were type-specific and we were reliably able to quantify as few as 10 genomic copies.
Conclusions
While other studies have reported conventional or quantitative PCR-based assays for the detection of C. botulinum genes, our procedure's high-throughput capability and its portability allows most laboratories to quickly assess the possible presence of BoNTs either in food processing samples or in suspected cases of botulism. Thus, this assay provides rapid and specific detection of BoNT and toxin complex genes and would enable the targeting of appropriate therapeutics to infected individuals in a timely manner.
doi:10.1186/1471-2180-10-267
PMCID: PMC2973968  PMID: 20961439
12.  Analysis of a unique Clostridium botulinum strain from the Southern hemisphere producing a novel type E botulinum neurotoxin subtype 
BMC Microbiology  2012;12:245.
Background
Clostridium botulinum strains that produce botulinum neurotoxin type E (BoNT/E) are most commonly isolated from botulism cases, marine environments, and animals in regions of high latitude in the Northern hemisphere. A strain of C. botulinum type E (CDC66177) was isolated from soil in Chubut, Argentina. Previous studies showed that the amino acid sequences of BoNT/E produced by various strains differ by < 6% and that the type E neurotoxin gene cluster inserts into the rarA operon.
Results
Genetic and mass spectral analysis demonstrated that the BoNT/E produced by CDC66177 is a novel toxin subtype (E9). Toxin gene sequencing indicated that BoNT/E9 differed by nearly 11% at the amino acid level compared to BoNT/E1. Mass spectrometric analysis of BoNT/E9 revealed that its endopeptidase substrate cleavage site was identical to other BoNT/E subtypes. Further analysis of this strain demonstrated that its 16S rRNA sequence clustered with other Group II C. botulinum (producing BoNT types B, E, and F) strains. Genomic DNA isolated from strain CDC66177 hybridized with fewer probes using a Group II C. botulinum subtyping microarray compared to other type E strains examined. Whole genome shotgun sequencing of strain CDC66177 revealed that while the toxin gene cluster inserted into the rarA operon similar to other type E strains, its overall genome content shared greater similarity with a Group II C. botulinum type B strain (17B).
Conclusions
These results expand our understanding of the global distribution of C. botulinum type E strains and suggest that the type E toxin gene cluster may be able to insert into C. botulinum strains with a more diverse genetic background than previously recognized.
doi:10.1186/1471-2180-12-245
PMCID: PMC3558463  PMID: 23113872
Botulism; Mass spectrometry; Genomics; Whole genome sequencing
13.  Sequence Diversity of Genes Encoding Botulinum Neurotoxin Type F ▿ †  
Applied and Environmental Microbiology  2010;76(14):4805-4812.
Botulism due to type F botulinum neurotoxin (BoNT/F) is rare (<1% of cases), and only a limited number of clostridial strains producing this toxin type have been isolated. As a result, analysis of the diversity of genes encoding BoNT/F has been challenging. In this study, the entire bont/F nucleotide sequences were determined from 33 type F botulinum toxin-producing clostridial strains isolated from environmental sources and botulism outbreak investigations. We examined proteolytic and nonproteolytic Clostridium botulinum type F strains, bivalent strains, including Bf and Af, and Clostridium baratii type F strains. Phylogenetic analysis revealed that the bont/F genes examined formed 7 subtypes (F1 to F7) and that the nucleotide sequence identities of these subtypes differed by up to 25%. The genes from proteolytic (group I) C. botulinum strains formed subtypes F1 through F5, while the genes from nonproteolytic (group II) C. botulinum strains formed subtype F6. Subtype F7 was composed exclusively of bont/F genes from C. baratii strains. The region of the bont/F5 gene encoding the neurotoxin light chain was found to be highly divergent compared to the other subtypes. Although the bont/F5 nucleotide sequences were found to be identical in strains harboring this gene, the gene located directly upstream (ntnh/F) demonstrated sequence variation among representative strains of this subtype. These results demonstrate that extensive nucleotide diversity exists among genes encoding type F neurotoxins from strains with different phylogenetic backgrounds and from various geographical sources.
doi:10.1128/AEM.03109-09
PMCID: PMC2901728  PMID: 20511432
14.  Characterization of the Antibody Response to the Receptor Binding Domain of Botulinum Neurotoxin Serotypes A and E 
Infection and Immunity  2005;73(10):6998-7005.
Clostridium botulinum neurotoxins (BoNTs) are the most toxic proteins for humans. The current clostridial-derived vaccines against BoNT intoxication have limitations including production and accessibility. Conditions were established to express the soluble receptor binding domain (heavy-chain receptor [HCR]) of BoNT serotypes A and E in Escherichia coli. Sera isolated from mice and rabbits immunized with recombinant HCR/A1 (rHCR/A1) from the classical type A-Hall strain (ATCC 3502) (BoNT/A1) and rHCR/E from BoNT serotype E Beluga (BoNT/EB) neutralized the homologous serotype of BoNT but displayed differences in cross-recognition and cross-protection. Enzyme-linked immunosorbent assay and Western blotting showed that α-rHCR/A1 recognized epitopes within the C terminus of the HCR/A and HCR/E, while α-rHCR/E recognized epitopes within the N terminus or interface between the N and C termini of the HCR proteins. α-rHCR/EB sera possessed detectable neutralizing capacity for BoNT/A1, while α-rHCR/A1 did not neutralize BoNT/E. rHCR/A was an effective immunogen against BoNT/A1 and the Kyoto F infant strain (BoNT/A2), but not BoNT serotype E Alaska (BoNT/EA), while rHCR/EB neutralized BoNT/EA, and under hyperimmunization conditions protected against BoNT/A1 and BoNT/A2. The protection elicited by rHCR/A1 to BoNT/A1 and BoNT/A2 and by rHCR/EB to BoNT/EA indicate that immunization with receptor binding domains elicit protection within sub-serotypes of BoNT. The protection elicited by hyperimmunization with rHCR/E against BoNT/A suggests the presence of common neutralizing epitopes between the serotypes E and A. These results show that a receptor binding domain subunit vaccine protects against serotype variants of BoNTs.
doi:10.1128/IAI.73.10.6998-7005.2005
PMCID: PMC1230911  PMID: 16177380
15.  Unique Ganglioside Binding by Botulinum Neurotoxins C and D-SA 
The FEBS journal  2011;278(23):4486-4496.
Summary
The botulinum neurotoxins (BoNTs) are the most potent protein toxins for humans. There are seven serotypes of BoNTs (A-G) based on a lack of cross anti-sera neutralization. BoNT/C and BoNT/D serotypes include mosaic toxins that are organized as D-C and C-D toxins. One BoNT D-C mosaic toxin, BoNT/D-South Africa (BoNT/D-SA), was not fully neutralized by immunization with a vaccine composed of either prototype BoNT/C-Stockholm or BoNT/D-1873. While several BoNT serotypes utilize dual receptors (gangliosides and proteins) to bind and enter neurons, the basis for BoNT/C and BoNT/D entry into neurons is less well understood. Recent studies solved the crystal structures of the receptor binding domains of BoNT/C, BoNT/D, and BoNT/D-SA. Comparative structural analysis showed that BoNT/C, BoNT/D, and BoNT/D-SA lacked components of the ganglioside binding pocket that exist within other BoNT serotypes. Utilizing structure based alignments, biochemical analyses, and cell binding approaches, BoNT/C and BoNT/D-SA have been shown to possess a unique ganglioside binding domain, the ganglioside binding loop. Defining how BoNTs enter host cells provides insight towards understanding the evolution and extending the potential therapeutic and immunologic values of the BoNT serotypes.
doi:10.1111/j.1742-4658.2011.08166.x
PMCID: PMC3170675  PMID: 21554541
16.  Genetic Diversity of the Flagellin Genes of Clostridium botulinum Groups I and II 
Applied and Environmental Microbiology  2013;79(13):3926-3932.
Botulinum neurotoxins (BoNTs) are produced by phenotypically and genetically different Clostridium species, including Clostridium botulinum and some strains of Clostridium baratii (serotype F) and Clostridium butyricum (serotype E). BoNT-producing clostridia responsible for human botulism encompass strains of group I (secreting proteases, producing toxin serotype A, B, or F, and growing optimally at 37°C) and group II (nonproteolytic, producing toxin serotype E, B, or F, and growing optimally at 30°C). Here we report the development of real-time PCR assays for genotyping C. botulinum strains of groups I and II based on flaVR (variable region sequence of flaA) sequences and the flaB gene. Real-time PCR typing of regions flaVR1 to flaVR10 and flaB was optimized and validated with 62 historical and Canadian C. botulinum strains that had been previously typed. Analysis of 210 isolates of European origin allowed the identification of four new C. botulinum flaVR types (flaVR11 to flaVR14) and one new flaVR type specific to C. butyricum type E (flaVR15). The genetic diversity of the flaVR among C. botulinum strains investigated in the present study reveals the clustering of flaVR types into 5 major subgroups. Subgroups 1, 3, and 4 contain proteolytic Clostridium botulinum, subgroup 2 is made up of nonproteolytic C. botulinum only, and subgroup 5 is specific to C. butyricum type E. The genetic variability of the flagellin genes carried by C. botulinum and the possible association of flaVR types with certain geographical areas make gene profiling of flaVR and flaB promising in molecular surveillance and epidemiology of C. botulinum.
doi:10.1128/AEM.00686-13
PMCID: PMC3697585  PMID: 23603687
17.  Clostridium botulinum Group I Strain Genotyping by 15-Locus Multilocus Variable-Number Tandem-Repeat Analysis ▿ †  
Journal of Clinical Microbiology  2011;49(12):4252-4263.
Clostridium botulinum is a taxonomic designation that encompasses a broad variety of spore-forming, Gram-positive bacteria producing the botulinum neurotoxin (BoNT). C. botulinum is the etiologic agent of botulism, a rare but severe neuroparalytic disease. Fine-resolution genetic characterization of C. botulinum isolates of any BoNT type is relevant for both epidemiological studies and forensic microbiology. A 10-locus multiple-locus variable-number tandem-repeat analysis (MLVA) was previously applied to isolates of C. botulinum type A. The present study includes five additional loci designed to better address proteolytic B and F serotypes. We investigated 79 C. botulinum group I strains isolated from human and food samples in several European countries, including types A (28), B (36), AB (4), and F (11) strains, and 5 nontoxic Clostridium sporogenes. Additional data were deduced from in silico analysis of 10 available fully sequenced genomes. This 15-locus MLVA (MLVA-15) scheme identified 86 distinct genotypes that clustered consistently with the results of amplified fragment length polymorphism (AFLP) and MLVA genotyping in previous reports. An MLVA-7 scheme, a subset of the MLVA-15, performed on a lab-on-a-chip device using a nonfluorescent subset of primers, is also proposed as a first-line assay. The phylogenetic grouping obtained with the MLVA-7 does not differ significantly from that generated by the MLVA-15. To our knowledge, this report is the first to analyze genetic variability among all of the C. botulinum group I serotypes by MLVA. Our data provide new insights into the genetic variability of group I C. botulinum isolates worldwide and demonstrate that this group is genetically highly diverse.
doi:10.1128/JCM.05396-11
PMCID: PMC3232984  PMID: 22012011
18.  Conjugative Botulinum Neurotoxin-Encoding Plasmids in Clostridium botulinum 
PLoS ONE  2010;5(6):e11087.
Background
Clostridium botulinum produces seven distinct serotypes of botulinum neurotoxins (BoNTs). The genes encoding different subtype neurotoxins of serotypes A, B, F and several dual neurotoxin-producing strains have been shown to reside on plasmids, suggesting that intra- and interspecies transfer of BoNT-encoding plasmids may occur. The objective of the present study was to determine whether these C. botulinum BoNT-encoding plasmids are conjugative.
Methodology/Principal Findings
C. botulinum BoNT-encoding plasmids pBotCDC-A3 (strain CDC-A3), pCLJ (strain 657Ba) and pCLL (strain Eklund 17B) were tagged with the erythromycin resistance marker (Erm) using the ClosTron mutagenesis system by inserting a group II intron into the neurotoxin genes carried on these plasmids. Transfer of the tagged plasmids from the donor strains CDC-A3, 657Ba and Eklund 17B to tetracycline-resistant recipient C. botulinum strains was evaluated in mating experiments. Erythromycin and tetracycline resistant transconjugants were isolated from donor∶recipient mating pairs tested. Transfer of the plasmids to the transconjugants was confirmed by pulsed-field gel electrophoresis (PFGE) and Southern hybridizations. Transfer required cell-to-cell contact and was DNase resistant. This indicates that transfer of these plasmids occurs via a conjugation mechanism.
Conclusions/Significance
This is the first evidence supporting conjugal transfer of native botulinum neurotoxin-encoding plasmids in C. botulinum, and provides a probable mechanism for the lateral distribution of BoNT-encoding plasmids to other C. botulinum strains. The potential transfer of C. botulinum BoNT-encoding plasmids to other bacterial hosts in the environment or within the human intestine is of great concern for human pathogenicity and necessitates further characterization of these plasmids.
doi:10.1371/journal.pone.0011087
PMCID: PMC2884020  PMID: 20552020
19.  MOLECULAR BASIS OF ACTIVATION OF ENDOPEPTIDASE ACTIVITY OF BOTULINUM NEUROTOXIN TYPE E 
Biochemistry  2010;49(11):2510-2519.
Botulinum neurotoxins (BoNTs) are a group of large proteins that are responsible for the clinical syndrome of botulism. The seven immunologically distinct serotypes of BoNTs (A-G), each produced by various strains of Clostridium botulinum, act on the neuromuscular junction by blocking the release of the neurotransmitter acetylcholine thereby resulting in flaccid muscle paralysis. BoNTs are synthesized as single inactive polypeptide chains that are cleaved by endogenous or exogenous proteases to generate the active di-chain form of the toxin. Nicking of the single chain BoNT/E to the di-chain form is associated with 100-fold increase in toxicity. Here we investigated the activation mechanism of botulinum neurotoxin type E upon nicking and subsequent reduction of disulfide bond. It was observed that nicking of BoNT/E significantly enhances its endopeptidase activity and that at the physiological temperature of 37 °C, the reduced form of nicked BoNT/E adopts a dynamically flexible conformation resulting from the exposure of hydrophobic segments and facilitating optimal cleavage of its substrate SNAP-25. Such reduction induced increase in the flexibility of the polypeptide folding provides a rationale for the mechanism of BoNT/E endopeptidase against its intracellular substrate, SNAP-25, and complements current understanding of the mechanistics of interaction between the substrate and BoNT endopeptidase.
doi:10.1021/bi902096r
PMCID: PMC3720690  PMID: 20178376
botulinum neurotoxin; botulism; endopeptidase; SNAP-25; light chain
20.  Characterization of Botulinum Neurotoxin A Subtypes 1 Through 5 by Investigation of Activities in Mice, in Neuronal Cell Cultures, and In Vitro 
Infection and Immunity  2013;81(10):3894-3902.
Botulinum neurotoxins (BoNTs) are synthesized by Clostridium botulinum and exist as seven immunologically distinct serotypes designated A through G. For most serotypes, several subtypes have now been described based on nominal differences in the amino acid sequences. BoNT/A1 is the most well-characterized subtype of the BoNT/A serotype, and many of its properties, including its potency, its prevalence as a food poison, and its utility as a pharmaceutical, have been thoroughly studied. In contrast, much remains unknown of the other BoNT/A subtypes. In this study, BoNT/A subtype 1 (BoNT/A1) to BoNT/A5 were characterized utilizing a mouse bioassay, an in vitro cleavage assay, and several neuronal cell-based assays. The data indicate that BoNT/A1 to -5 have distinct in vitro and in vivo toxicological properties and that, unlike those for BoNT/A1, the neuronal and mouse results for BoNT/A2 to -5 do not correlate with their enzymatic activity. These results indicate that BoNT/A1 to -5 have distinct characteristics, which are of importance for a greater understanding of botulism and for pharmaceutical applications.
doi:10.1128/IAI.00536-13
PMCID: PMC3811745  PMID: 23918782
21.  Whole-Genome Single-Nucleotide-Polymorphism Analysis for Discrimination of Clostridium botulinum Group I Strains 
Clostridium botulinum is a genetically diverse Gram-positive bacterium producing extremely potent neurotoxins (botulinum neurotoxins A through G [BoNT/A-G]). The complete genome sequences of three strains harboring only the BoNT/A1 nucleotide sequence are publicly available. Although these strains contain a toxin cluster (HA+ OrfX−) associated with hemagglutinin genes, little is known about the genomes of subtype A1 strains (termed HA− OrfX+) that lack hemagglutinin genes in the toxin gene cluster. We sequenced the genomes of three BoNT/A1-producing C. botulinum strains: two strains with the HA+ OrfX− cluster (69A and 32A) and one strain with the HA− OrfX+ cluster (CDC297). Whole-genome phylogenic single-nucleotide-polymorphism (SNP) analysis of these strains along with other publicly available C. botulinum group I strains revealed five distinct lineages. Strains 69A and 32A clustered with the C. botulinum type A1 Hall group, and strain CDC297 clustered with the C. botulinum type Ba4 strain 657. This study reports the use of whole-genome SNP sequence analysis for discrimination of C. botulinum group I strains and demonstrates the utility of this analysis in quickly differentiating C. botulinum strains harboring identical toxin gene subtypes. This analysis further supports previous work showing that strains CDC297 and 657 likely evolved from a common ancestor and independently acquired separate BoNT/A1 toxin gene clusters at distinct genomic locations.
doi:10.1128/AEM.03934-13
PMCID: PMC3993156  PMID: 24463972
22.  Genetic Characterization of Clostridium botulinum Associated with Type B Infant Botulism in Japan▿  
Journal of Clinical Microbiology  2009;47(9):2720-2728.
The 15 proteolytic Clostridium botulinum type B strains, including 3 isolates associated with infant botulism in Japan, were genetically characterized by phylogenetic analysis of boNT/B gene sequences, genotyping, and determination of the boNT/B gene location by using pulsed-field gel electrophoresis (PFGE) for molecular epidemiological analysis of infant botulism in Japan. Strain Osaka05, isolated from a case in 2005, showed a unique boNT/B gene sequence and was considered to be a new BoNT/B subtype by phylogenetic analysis. Strain Osaka06, isolated from a case in 2006, was classified as the B2 subtype, the same as strain 111, isolated from a case in 1995. The five isolates associated with infant botulism in the United States were classified into the B1 subtype. Isolates from food samples in Japan were divided into the B1 and the B2 subtypes, although no relation with infant botulism was shown by PFGE genotyping. The results of PFGE and Southern blot hybridization with undigested DNA suggested that the boNT/B gene is located on large plasmids (approximately 150 kbp, 260 kbp, 275 kbp, or 280 kbp) in five strains belonging to three BoNT/B subtypes from various sources. The botulinum neurotoxin (BoNT) of Osaka05 was suggested to have an antigenicity different from the antigenicities of BoNT/B1 and BoNT/B2 by a sandwich enzyme-linked immunosorbent assay with the recombinant BoNT/B-C-terminal domain. We established a multiplex PCR assay for BoNT/B subtyping which will be useful for epidemiological studies of type B strains and the infectious diseases that they cause.
doi:10.1128/JCM.00077-09
PMCID: PMC2738102  PMID: 19571018
23.  Insights into the evolutionary origins of clostridial neurotoxins from analysis of the Clostridium botulinum strain A neurotoxin gene cluster 
Background
Clostridial neurotoxins (CNTs) are the most deadly toxins known and causal agents of botulism and tetanus neuroparalytic diseases. Despite considerable progress in understanding CNT structure and function, the evolutionary origins of CNTs remain a mystery as they are unique to Clostridium and possess a sequence and structural architecture distinct from other protein families. Uncovering the origins of CNTs would be a significant contribution to our understanding of how pathogens evolve and generate novel toxin families.
Results
The C. botulinum strain A genome was examined for potential homologues of CNTs. A key link was identified between the neurotoxin and the flagellin gene (CBO0798) located immediately upstream of the BoNT/A neurotoxin gene cluster. This flagellin sequence displayed the strongest sequence similarity to the neurotoxin and NTNH homologue out of all proteins encoded within C. botulinum strain A. The CBO0798 gene contains a unique hypervariable region, which in closely related flagellins encodes a collagenase-like domain. Remarkably, these collagenase-containing flagellins were found to possess the characteristic HEXXH zinc-protease motif responsible for the neurotoxin's endopeptidase activity. Additional links to collagenase-related sequences and functions were detected by further analysis of CNTs and surrounding genes, including sequence similarities to collagen-adhesion domains and collagenases. Furthermore, the neurotoxin's HCRn domain was found to exhibit both structural and sequence similarity to eukaryotic collagen jelly-roll domains.
Conclusion
Multiple lines of evidence suggest that the neurotoxin and adjacent genes evolved from an ancestral collagenase-like gene cluster, linking CNTs to another major family of clostridial proteolytic toxins. Duplication, reshuffling and assembly of neighboring genes within the BoNT/A neurotoxin gene cluster may have lead to the neurotoxin's unique architecture. This work provides new insights into the evolution of C. botulinum neurotoxins and the evolutionary mechanisms underlying the origins of virulent genes.
doi:10.1186/1471-2148-8-316
PMCID: PMC2605760  PMID: 19014598
24.  Neurotoxin Gene Clusters in Clostridium botulinum Type Ab Strains▿ †  
Applied and Environmental Microbiology  2009;75(19):6094-6101.
There is limited knowledge of the neurotoxin gene diversity among Clostridium botulinum type Ab strains. Only the sequences of the bont/A and bont/B genes in C. botulinum type Ab strain CDC1436 and the sequence of the bont/B gene in C. botulinum type Ab strain CDC588 have been reported. In this study, we sequenced the entire bont/A- and bont/B-associated neurotoxin gene clusters of C. botulinum type Ab strain CDC41370 and the bont/A gene of strain CDC588. In addition, we analyzed the organization of the neurotoxin gene clusters in strains CDC588 and CDC1436. The bont/A nucleotide sequence of strain CDC41370 differed from those of the known bont/A subtypes A1 to A4 by 2 to 7%, and the predicted amino acid sequence differed by 4% to 14%. The bont/B nucleotide sequence in strain CDC41370 showed 99.7% identity to the sequence of subtype B1. The bont/A nucleotide sequence of strain CDC588 was 99.9% identical to that of subtype A1. Although all of the C. botulinum type Ab strains analyzed contained the two sets of neurotoxin clusters, similar to what has been found in other bivalent strains, the intergenic spacing of p21-orfX1 and orfX2-orfX3 varied among these strains. The type Ab strains examined in this study had differences in their toxin gene cluster compositions and bont/A and bont/B nucleotide sequences, suggesting that they may have arisen from separate recombination events.
doi:10.1128/AEM.01009-09
PMCID: PMC2753052  PMID: 19684172
25.  Epitope Characterization and Variable Region Sequence of F1-40, a High-Affinity Monoclonal Antibody to Botulinum Neurotoxin Type A (Hall Strain) 
PLoS ONE  2009;4(3):e4924.
Background
Botulism, an often fatal neuroparalytic disease, is caused by botulinum neurotoxins (BoNT) which consist of a family of seven serotypes (A-H) produced by the anaerobic bacterium Clostridium botulinum. BoNT, considered the most potent biological toxin known, is a 150 kDa protein consisting of a 100 kDa heavy-chain (Hc) and a 50 kDa light-chain (Lc). F1-40 is a mouse-derived, IgG1 monoclonal antibody that binds the light chain of BoNT serotype A (BoNT/A) and is used in a sensitive immunoassay for toxin detection. We report the fine epitope mapping of F1-40 and the deduced amino acid sequence of the variable regions of the heavy and light chains of the antibody.
Methods and Findings
To characterize the binding epitope of F1-40, three complementary experimental approaches were selected. Firstly, recombinant peptide fragments of BoNT/A light-chain were used in Western blots to identify the epitope domains. Secondly, a peptide phage-display library was used to identify the specific amino acid sequences. Thirdly, the three-dimensional structure of BoNT/A was examined in silico, and the amino acid sequences determined from the phage-display studies were mapped onto the three-dimensional structure in order to visualize the epitope. F1-40 was found to bind a peptide fragment of BoNT/A, designated L1-3, which spans from T125 to L200. The motif QPDRS was identified by phage-display, and was mapped to a region within L1-3. When the three amino acids Q138, P139 and D140 were all mutated to glycine, binding of F1-40 to the recombinant BoNT/A light chain peptide was abolished. Q-138, P-139 and D-140 form a loop on the external surface of BoNT/A, exposed to solvent and accessible to F1-40 binding.
Conclusions
The epitope of F1-40 was localized to a single exposed loop (ß4, ß5) on the Lc of BoNT. Furthermore amino acids Q138, P139 and D140 forming the tip of the loop appear critical for binding.
doi:10.1371/journal.pone.0004924
PMCID: PMC2654115  PMID: 19290051

Results 1-25 (1086809)