Search tips
Search criteria

Results 1-25 (690313)

Clipboard (0)

Related Articles

1.  RIAM and Vinculin Binding to Talin Are Mutually Exclusive and Regulate Adhesion Assembly and Turnover* 
The Journal of Biological Chemistry  2013;288(12):8238-8249.
Background: Talin mediates RIAM-dependent integrin activation and binds vinculin, which stabilizes adhesions.
Results: Structural and biochemical data show that vinculin inhibits RIAM binding to the compact N-terminal region of the talin rod, a region essential for focal adhesion assembly.
Conclusion: Talin·RIAM complexes activate integrins at the leading edge, whereas talin·vinculin promotes adhesion maturation.
Significance: Talin changes partners in response to force-induced conformational change.
Talin activates integrins, couples them to F-actin, and recruits vinculin to focal adhesions (FAs). Here, we report the structural characterization of the talin rod: 13 helical bundles (R1–R13) organized into a compact cluster of four-helix bundles (R2–R4) within a linear chain of five-helix bundles. Nine of the bundles contain vinculin-binding sites (VBS); R2R3 are atypical, with each containing two VBS. Talin R2R3 also binds synergistically to RIAM, a Rap1 effector involved in integrin activation. Biochemical and structural data show that vinculin and RIAM binding to R2R3 is mutually exclusive. Moreover, vinculin binding requires domain unfolding, whereas RIAM binds the folded R2R3 double domain. In cells, RIAM is enriched in nascent adhesions at the leading edge whereas vinculin is enriched in FAs. We propose a model in which RIAM binding to R2R3 initially recruits talin to membranes where it activates integrins. As talin engages F-actin, force exerted on R2R3 disrupts RIAM binding and exposes the VBS, which recruit vinculin to stabilize the complex.
PMCID: PMC3605642  PMID: 23389036
Adhesion; Cell Biology; Integrins; Nuclear Magnetic Resonance; Structural Biology; RIAM; Focal Adhesions; Talin; Vinculin
2.  How Force Might Activate Talin's Vinculin Binding Sites: SMD Reveals a Structural Mechanism 
PLoS Computational Biology  2008;4(2):e24.
Upon cell adhesion, talin physically couples the cytoskeleton via integrins to the extracellular matrix, and subsequent vinculin recruitment is enhanced by locally applied tensile force. Since the vinculin binding (VB) sites are buried in the talin rod under equilibrium conditions, the structural mechanism of how vinculin binding to talin is force-activated remains unknown. Taken together with experimental data, a biphasic vinculin binding model, as derived from steered molecular dynamics, provides high resolution structural insights how tensile mechanical force applied to the talin rod fragment (residues 486–889 constituting helices H1–H12) might activate the VB sites. Fragmentation of the rod into three helix subbundles is prerequisite to the sequential exposure of VB helices to water. Finally, unfolding of a VB helix into a completely stretched polypeptide might inhibit further binding of vinculin. The first events in fracturing the H1–H12 rods of talin1 and talin2 in subbundles are similar. The proposed force-activated α-helix swapping mechanism by which vinculin binding sites in talin rods are exposed works distinctly different from that of other force-activated bonds, including catch bonds.
Author Summary
For cell survival, most eukaryotic cells need to be mechanically anchored to their environment. This is done by transmembrane proteins, including integrins, which externally bind to the extracellular matrix and on the cell interior to the contractile cytoskeleton via scaffolding proteins. One essential scaffolding protein is talin, which binds to integrins via its head and to the cytoskeletal filament f-actin via its rodlike tail. As cells apply tensile forces to newly formed adhesion sites, proteins that are part of such force-bearing networks get stretched and might change their structure and thus function. One of many proteins that are recruited to newly formed adhesions is vinculin, and vinculin recruitment is upregulated by tensile mechanical force—but how? Since talin's vinculin binding sites are buried in its native structure, we used steered molecular dynamics here to derive a high resolution structural model of how tensile mechanical forces might activate talin's vinculin binding sites. Once tensile forces break up the talin rod into helix subbundles, an event that we find here to constitute the main energy barrier, we propose how the strain-induced gradual exposure of the vinculin-binding helices finally allows for their activation and enables helix swapping with the vinculin head.
PMCID: PMC2242828  PMID: 18282082
3.  The Interaction of Vinculin with Actin 
PLoS Computational Biology  2013;9(4):e1002995.
Vinculin can interact with F-actin both in recruitment of actin filaments to the growing focal adhesions and also in capping of actin filaments to regulate actin dynamics. Using molecular dynamics, both interactions are simulated using different vinculin conformations. Vinculin is simulated either with only its vinculin tail domain (Vt), with all residues in its closed conformation, with all residues in an open I conformation, and with all residues in an open II conformation. The open I conformation results from movement of domain 1 away from Vt; the open II conformation results from complete dissociation of Vt from the vinculin head domains. Simulation of vinculin binding along the actin filament showed that Vt alone can bind along the actin filaments, that vinculin in its closed conformation cannot bind along the actin filaments, and that vinculin in its open I conformation can bind along the actin filaments. The simulations confirm that movement of domain 1 away from Vt in formation of vinculin 1 is sufficient for allowing Vt to bind along the actin filament. Simulation of Vt capping actin filaments probe six possible bound structures and suggest that vinculin would cap actin filaments by interacting with both S1 and S3 of the barbed-end, using the surface of Vt normally occluded by D4 and nearby vinculin head domain residues. Simulation of D4 separation from Vt after D1 separation formed the open II conformation. Binding of open II vinculin to the barbed-end suggests this conformation allows for vinculin capping. Three binding sites on F-actin are suggested as regions that could link to vinculin. Vinculin is suggested to function as a variable switch at the focal adhesions. The conformation of vinculin and the precise F-actin binding conformation is dependent on the level of mechanical load on the focal adhesion.
Author Summary
The interface between a cell and its substrate is strengthened by the formation of focal adhesions. In this study molecular dynamics simulations are used to explore the connectivity of one focal adhesion forming protein, vinculin, and the cytoskeletal filament, F-actin. The simulations demonstrate: (1) that vinculin can link along F-actin at these focal adhesions when it adopts an open conformation, (2) that the vinculin tail (Vt) can bind F-actin at its barbed-end preventing actin polymerization, (3) that vinculin can adopt two open conformations, and (4) that the second open conformation is necessary for vinculin to cap the actin filament. The results suggest that vinculin can act as a variable switch, changing its shape and the nature of its interaction with F-actin depending on the level of stress seen at a focal adhesion. Under the highest stress vinculin would adopt the open II conformation and link anywhere on F-actin, even its barbed-end. Under less stress vinculin could adopt the open I conformation and bind along F-actin. And under minimal stress vinculin could adopt its closed conformation. This variability allows for vinculin to truly function as the cell's mechanical reinforcing agent.
PMCID: PMC3635976  PMID: 23633939
4.  Structural and biophysical properties of the integrin-associated cytoskeletal protein talin 
Biophysical Reviews  2009;1(2):61-69.
Talin is a large cytoskeletal protein (2541 amino acid residues) which plays a key role in integrin-mediated events that are crucial for cell adhesion, migration, proliferation and survival. This review summarises recent work on the structure of talin and on some of the structurally better defined interactions with other proteins. The N-terminal talin head (approx. 50 kDa) consists of an atypical FERM domain linked to a long flexible rod (approx. 220 kDa) made up of a series of amphipathic helical bundle domains. The F3 FERM subdomain in the head binds the cytoplasmic tail of integrins, but this interaction can be inhibited by an interaction of F3 with a helical bundle in the talin rod, the so-called “autoinhibited form” of the molecule. The talin rod contains a second integrin-binding site, at least two actin-binding sites and a large number of binding sites for vinculin, which is important in reinforcing the initial integrin–actin link mediated by talin. The vinculin binding sites are defined by hydrophobic residues buried within helical bundles, and these must unfold to allow vinculin binding. Recent experiments suggest that this unfolding may be mediated by mechanical force exerted on the talin molecule by actomyosin contraction.
Electronic supplementary material
The online version of this article (doi:10.1007/s12551-009-0009-4) contains supplementary material, which is available to authorized users.
PMCID: PMC2720171  PMID: 19655048
Cell adhesion; Extracellular matrix interactions; Integrin–actin link; Integrins; Talin
5.  The cytoplasmic domain of L-selectin interacts with cytoskeletal proteins via alpha-actinin: receptor positioning in microvilli does not require interaction with alpha-actinin 
The Journal of Cell Biology  1995;129(4):1155-1164.
The leukocyte adhesion molecule L-selectin mediates binding to lymph node high endothelial venules (HEV) and contributes to leukocyte rolling on endothelium at sites of inflammation. Previously, it was shown that truncation of the L-selectin cytoplasmic tail by 11 amino acids abolished binding to lymph node HEV and leukocyte rolling in vivo, but the molecular basis for that observation was not determined. This study examined potential interactions between L-selectin and cytoskeletal proteins. We found that the cytoplasmic domain of L- selectin interacts directly with the cytoplasmic actin-binding protein alpha-actinin and forms a complex with vinculin and possibly talin. Solid phase binding assays using the full-length L-selectin cytoplasmic domain bound to microtiter wells demonstrated direct, specific, and saturable binding of purified alpha-actinin to L-selectin (Kd = 550 nM), but no direct binding of purified talin or vinculin. Interestingly, talin potentiated binding of alpha-actinin to the L- selectin cytoplasmic domain peptide despite the fact that direct binding of talin to L-selectin could not be measured. Vinculin binding to the L-selectin cytoplasmic domain peptide was detectable only in the presence of alpha-actinin. L-selectin coprecipitated with a complex of cytoskeletal proteins including alpha-actinin and vinculin from cells transfected with L-selectin, consistent with the possibility that alpha- actinin binds directly to L-selectin and that vinculin associates by binding to alpha-actinin in vivo to link actin filaments to the L- selectin cytoplasmic domain. In contrast, a deletion mutant of L- selectin lacking the COOH-terminal 11 amino acids of the cytoplasmic domain failed to coprecipitate with alpha-actinin or vinculin. Surprisingly, this mutant L-selectin localized normally to the microvillar projections on the cell surface. These data suggest that the COOH-terminal 11 amino acids of the L-selectin cytoplasmic domain are required for mediating interactions with the actin cytoskeleton via a complex of alpha-actinin and vinculin, but that this portion of the cytoplasmic domain is not necessary for proper localization of L- selectin on the cell surface. Correct L-selectin receptor positioning is therefore insufficient for leukocyte adhesion mediated by L- selectin, suggesting that this adhesion may also require direct interactions with the cytoskeleton.
PMCID: PMC2120488  PMID: 7538138
6.  Vinculin regulation of F-actin bundle formation 
Cell Adhesion & Migration  2013;7(2):219-225.
Vinculin is an essential cell adhesion protein, found at both focal adhesions and adherens junctions, where it couples transmembrane proteins to the actin cytoskeleton. Vinculin is involved in controlling cell shape, motility and cell survival, and has more recently been shown to play a role in force transduction. The tail domain of vinculin (Vt) has the ability to both bind and bundle actin filaments. Binding to actin induces a conformational change in Vt believed to promote formation of a Vt dimer that is able to crosslink actin filaments. We have recently provided additional evidence for the actin-induced Vt dimer and have shown that the vinculin carboxyl (C)-terminal hairpin is critical for both the formation of the Vt dimer and for bundling F-actin. We have also demonstrated the importance of the C-terminal hairpin in cells as deletion of this region impacts both adhesion properties and force transduction. Intriguingly, we have identified bundling deficient variants of vinculin that show different cellular phenotypes. These results suggest additional role(s) for the C-terminal hairpin, distinct from its bundling function. In this commentary, we will expand on our previous findings and further investigate these actin bundling deficient vinculin variants.
PMCID: PMC3954036  PMID: 23307141
vinculin; dimerization; F-actin bundling; focal adhesion; scaffold
7.  Mechanotransduction In Vivo by Repeated Talin Stretch-Relaxation Events Depends upon Vinculin 
PLoS Biology  2011;9(12):e1001223.
The focal adhesion protein talin undergoes cycles of stretching and relaxation in living cells, suggesting a role in the transduction of mechanical into biochemical signals.
Mechanotransduction is a critical function for cells, in terms of cell viability, shaping of tissues, and cellular behavior. In vitro, cellular level forces can stretch adhesion proteins that link extracellular matrix to the actin cytoskeleton exposing hidden binding sites. However, there is no evidence that in vivo forces produce significant in vivo stretching to cause domain unfolding. We now report that the adhesion protein, talin, is repeatedly stretched by 100–350 nm in vivo by myosin contraction of actin filaments. Using a functional EGFP-N-Talin1-C-mCherry to measure the length of single talin molecules, we observed that the C-terminal mCherry was normally displaced in the direction of actin flow by 90 to >250 nm from N-EGFP but only by 50–60 nm (talin's length in vitro) after myosin inhibition. Individual talin molecules transiently stretched and relaxed. Peripheral, multimolecular adhesions had green outside and red proximal edges. They also exhibited transient, myosin-dependent stretching of 50–350 nm for 6–16 s; however, expression of the talin-binding head of vinculin increased stretching to about 400 nm and suppressed dynamics. We suggest that rearward moving actin filaments bind, stretch, and release talin in multiple, stochastic stick-slip cycles and that multiple vinculin binding and release cycles integrate pulling on matrices into biochemical signals.
Author Summary
How are mechanical forces that act on the surface of a cell transformed into biochemical signals within the cell? Studies of isolated proteins suggest that some of them can stretch, but whether this also happens in living cells remains unclear. In this study, we have been able to measure the stretching of single molecules of a cellular adhesion protein called talin in vivo by tagging each end of the protein with a different fluorescent marker and observing changes in the distance between the two markers with a new microscopic method. Talin is a large cellular protein that concentrates at sites where the cell attaches to the substratum and links integrins in the cell membrane to the actin filament network in the cell. In our study, a green tag at the integrin-binding site was close to the cell surface, whereas a red tag at the actin-binding site was displaced inward by actin flow. We observed repeated protein stretching to 5–8 times the native protein length and relaxation linked to the transduction process in living cells in culture. Individual molecules stretched for 6–16 seconds over ranges of 50–350 nm. Cell adhesion sites, where hundreds of talin molecules were displaced in concert, had similar dynamics. These cycles of stretching and relaxation required the contractile protein myosin. The head domain of vinculin—an adhesion site protein that binds strongly to the stretched talin—kept the adhesions stretched and blocked large oscillations in length. These observations indicate that there is repeated stretching of talin, and that adhesion proteins play a role in the transduction of mechanical signals into biochemical signals through binding and release of vinculin and possibly other focal adhesion proteins.
PMCID: PMC3243729  PMID: 22205879
8.  Shigella applies molecular mimicry to subvert vinculin and invade host cells 
The Journal of Cell Biology  2006;175(3):465-475.
Shigella flexneri, the causative agent of bacillary dysentery, injects invasin proteins through a type III secretion apparatus upon contacting the host cell, which triggers pathogen internalization. The invasin IpaA is essential for S. flexneri pathogenesis and binds to the cytoskeletal protein vinculin to facilitate host cell entry. We report that IpaA harbors two vinculin-binding sites (VBSs) within its C-terminal domain that bind to and activate vinculin in a mutually exclusive fashion. Only the highest affinity C-terminal IpaA VBS is necessary for efficient entry and cell–cell spread of S. flexneri, whereas the lower affinity VBS appears to contribute to vinculin recruitment at entry foci of the pathogen. Finally, the crystal structures of vinculin in complex with the VBSs of IpaA reveal the mechanism by which IpaA subverts vinculin's functions, where S. flexneri utilizes a remarkable level of molecular mimicry of the talin–vinculin interaction to activate vinculin. Mimicry of vinculin's interactions may therefore be a general mechanism applied by pathogens to infect the host cell.
PMCID: PMC2064523  PMID: 17088427
9.  Identification of a talin binding site in the cytoskeletal protein vinculin 
The Journal of Cell Biology  1989;109(6):2917-2927.
Binding of the cytoskeletal protein vinculin to talin is one of a number of interactions involved in linking F-actin to cell-matrix junctions. To identify the talin binding domain in vinculin, we expressed the NH2-terminal region of the molecule encoded by two closely similar, but distinct vinculin cDNAs, using an in vitro transcription translation system. The 5' Eco RI-Bam HI fragment of a partial 2.89-kb vinculin cDNA encodes a 45-kD polypeptide containing the first 398 amino acids of the molecule. The equivalent restriction enzyme fragment of a second vinculin cDNA (cVin5) lacks nucleotides 746- 867, and encodes a 41-kD polypeptide missing amino acids 167-207. The radiolabeled 45-kD vinculin polypeptide bound to microtiter wells coated with talin, but not BSA, and binding was inhibited by unlabeled vinculin. In contrast, the 41-kD vinculin polypeptide was devoid of talin binding activity. The role of residues 167-207 in talin binding was further analyzed by making a series of deletions spanning this region, each deletion of seven amino acids contiguous with the next. Loss of residues 167-173, 174-180, 181-187, 188-194, or 195-201 resulted in a marked reduction in talin binding activity, although loss of residues 202-208 had much less effect. When the 45-kD vinculin polypeptide was expressed in Cos cells, it localized to cell matrix junctions, whereas the 41-kD polypeptide, lacking residues 167-207, was unable to do so. Interestingly, some deletion mutants with reduced ability to bind talin in vitro, were still able to localize to cell matrix junctions.
PMCID: PMC2115903  PMID: 2512301
10.  Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation 
Scientific Reports  2014;4:4610.
The force-dependent interaction between talin and vinculin plays a crucial role in the initiation and growth of focal adhesions. Here we use magnetic tweezers to characterise the mechano-sensitive compact N-terminal region of the talin rod, and show that the three helical bundles R1–R3 in this region unfold in three distinct steps consistent with the domains unfolding independently. Mechanical stretching of talin R1–R3 enhances its binding to vinculin and vinculin binding inhibits talin refolding after force is released. Mutations that stabilize R3 identify it as the initial mechano-sensing domain in talin, unfolding at ∼5 pN, suggesting that 5 pN is the force threshold for vinculin binding and adhesion progression.
PMCID: PMC3980218  PMID: 24714394
11.  Vinculin controls focal adhesion formation by direct interactions with talin and actin 
The Journal of Cell Biology  2007;179(5):1043-1057.
Focal adhesions (FAs) regulate cell migration. Vinculin, with its many potential binding partners, can interconnect signals in FAs. Despite the well-characterized structure of vinculin, the molecular mechanisms underlying its action have remained unclear. Here, using vinculin mutants, we separate the vinculin head and tail regions into distinct functional domains. We show that the vinculin head regulates integrin dynamics and clustering and the tail regulates the link to the mechanotransduction force machinery. The expression of vinculin constructs with unmasked binding sites in the head and tail regions induces dramatic FA growth, which is mediated by their direct interaction with talin. This interaction leads to clustering of activated integrin and an increase in integrin residency time in FAs. Surprisingly, paxillin recruitment, induced by active vinculin constructs, occurs independently of its potential binding site in the vinculin tail. The vinculin tail, however, is responsible for the functional link of FAs to the actin cytoskeleton. We propose a new model that explains how vinculin orchestrates FAs.
PMCID: PMC2099183  PMID: 18056416
12.  The domain structure of talin: Residues 1815–1973 form a five-helix bundle containing a cryptic vinculin-binding site 
Febs Letters  2010;584(11):2237-2241.
Talin is a large flexible rod-shaped protein that activates the integrin family of cell adhesion molecules and couples them to cytoskeletal actin. Its rod region consists of a series of helical bundles. Here we show that residues 1815–1973 form a 5-helix bundle, with a topology unique to talin which is optimally suited for formation of a long rod such as talin. This is much more stable than the 4-helix (1843–1973) domain described earlier and as a result its vinculin binding sequence is inaccessible to vinculin at room temperature, with implications for the overall mechanism of the talin-vinculin interaction.
Structured summary
MINT-7722300, MINT-7760951: Talin-1 (uniprotkb:P26039) and Vinculin (uniprotkb:P12003) bind (MI:0407) by molecular sieving (MI:0071)
PMCID: PMC2887493  PMID: 20399778
HSQC, heteronuclear single quantum coherence; SCOP, structural classification of proteins; VBS, vinculin-binding site; Talin; Vinculin; NMR; Domain structure; Helical bundle
13.  Characterization of an F-actin-binding domain in the cytoskeletal protein vinculin 
The Journal of Cell Biology  1994;126(5):1231-1240.
Vinculin, a major structural component of vertebrate cell-cell and cell- matrix adherens junctions, has been found to interact with several other junctional components. In this report, we have identified and characterized a binding site for filamentous actin. These results included studies with gizzard vinculin, its proteolytic head and tail fragments, and recombinant proteins containing various gizzard vinculin sequences fused to the maltose binding protein (MBP) of Escherichia coli. In cosedimentation assays, only the vinculin tail sequence mediated a direct interaction with actin filaments. The binding was saturable, with a dissociation constant value in the micromolar range. Experiments with deletion clones localized the actin-binding domain to a region confined by residues 893-1016 in the 170-residue-long carboxyterminal segment, while the proline-rich hinge connecting the globular head to the rodlike tail was not required for this interaction. In fixed and permeabilized cells (cell models), as well as after microinjection, proteins containing the actin-binding domain specifically decorated stress fibers and the cortical network of fibroblasts and epithelial cells, as well as of brush border type microvilli. These results corroborated the sedimentation experiments. Our data support and extend previous work showing that vinculin binds directly to actin filaments. They are consistent with a model suggesting that in adhesive cells, the NH2-terminal head piece of vinculin directs this molecule to the focal contact sites, while its tail segment causes bundling of the actin filament ends into the characteristic spear tip-shaped structures.
PMCID: PMC2120156  PMID: 8063860
14.  Structural Determinants of Integrin Binding to the Talin Rod*S⃞ 
The Journal of Biological Chemistry  2009;284(13):8866-8876.
The adaptor protein talin serves both to activate the integrin family of cell adhesion molecules and to couple integrins to the actin cytoskeleton. Integrin activation has been shown to involve binding of the talin FERM domain to membrane proximal sequences in the cytoplasmic domain of the integrin β-subunit. However, a second integrin-binding site (IBS2) has been identified near the C-terminal end of the talin rod. Here we report the crystal structure of IBS2 (residues 1974-2293), which comprises two five-helix bundles, “IBS2-A” (1974-2139) and “IBS2-B” (2140-2293), connected by a continuous helix with a distinct kink at its center that is stabilized by side-chain H-bonding. Solution studies using small angle x-ray scattering and NMR point to a fairly flexible quaternary organization. Using pull-down and enzyme-linked immunosorbent assays, we demonstrate that integrin binding requires both IBS2 domains, as does binding to acidic phospholipids and robust targeting to focal adhesions. We have defined the membrane proximal region of the integrin cytoplasmic domain as the major binding region, although more membrane distal regions are also required for strong binding. Alanine-scanning mutagenesis points to an important electrostatic component to binding. Thermal unfolding experiments show that integrin binding induces conformational changes in the IBS2 module, which we speculate are linked to vinculin and membrane binding.
PMCID: PMC2659244  PMID: 19176533
15.  Talin requires beta-integrin, but not vinculin, for its assembly into focal adhesion-like structures in the nematode Caenorhabditis elegans. 
Molecular Biology of the Cell  1996;7(8):1181-1193.
In cultured cells, the 230-kDa protein talin is found at discrete plasma membrane foci known as focal adhesions, sites that anchor the intracellular actin cytoskeleton to the extracellular matrix. The regulated assembly of focal adhesions influences the direction of cell migrations or the reorientation of cell shapes. Biochemical studies of talin have shown that it binds to the proteins integrin, vinculin, and actin in vitro. To understand the function of talin in vivo and to correlate its in vitro and in vivo biochemical properties, various genetic approaches have been adopted. With the intention of using genetics in the study of talin, we identified a homologue to mouse talin in a genetic model system, the nematode Caenorhabditis elegans. C. elegans talin is 39% identical and 59% similar to mouse talin. In wild-type adult C. elegans, talin colocalizes with integrin, vinculin, and alpha-actinin in the focal adhesion-like structures found in the body-wall muscle. By examining the organization of talin in two different C. elegans mutant strains that do not make either beta-integrin or vinculin, we were able to determine that talin does not require vinculin for its initial organization at the membrane, but that it depends critically on the presence of integrin for its initial assembly at membrane foci.
PMCID: PMC275971  PMID: 8856663
16.  Vinculin Is Part of the Cadherin–Catenin Junctional Complex: Complex Formation between α-Catenin and Vinculin  
The Journal of Cell Biology  1998;141(3):755-764.
In epithelial cells, α-, β-, and γ-catenin are involved in linking the peripheral microfilament belt to the transmembrane protein E-cadherin. α-Catenin exhibits sequence homologies over three regions to vinculin, another adherens junction protein. While vinculin is found in cell–matrix and cell–cell contacts, α-catenin is restricted to the latter. To elucidate, whether vinculin is part of the cell–cell junctional complex, we investigated complex formation and intracellular targeting of vinculin and α-catenin. We show that α-catenin colocalizes at cell–cell contacts with endogenous vinculin and also with the transfected vinculin head domain forming immunoprecipitable complexes. In vitro, the vinculin NH2-terminal head binds to α-catenin, as seen by immunoprecipitation, dot overlay, cosedimentation, and surface plasmon resonance measurements. The Kd of the complex was determined to 2–4 × 10−7 M. As seen by overlays and affinity mass spectrometry, the COOH-terminal region of α-catenin is involved in this interaction.
Complex formation of vinculin and α-catenin was challenged in transfected cells. In PtK2 cells, intact α-catenin and α-catenin1-670, harboring the β-catenin– binding site, were directed to cell–cell contacts. In contrast, α-catenin697–906 fragments were recruited to cell–cell contacts, focal adhesions, and stress fibers. Our results imply that in vivo α-catenin, like vinculin, is tightly regulated in its ligand binding activity.
PMCID: PMC2132754  PMID: 9566974
17.  Vinculin Regulates the Recruitment and Release of Core Focal Adhesion Proteins in a Force-Dependent Manner 
Current Biology  2013;23(4):271-281.
Cells sense the extracellular environment using adhesion receptors (integrins) linked to the intracellular actin cytoskeleton through a complex network of regulatory proteins that, all together, form focal adhesions (FAs). The molecular basis of how these sensing units are regulated, how they are implicated in transducing mechanical stimuli, and how this leads to a spatiotemporal coordination of FAs is unclear.
Here we show that vinculin, through its links to the talin-integrin complex and F-actin, regulates the transmission of mechanical signals from the extracellular matrix to the actomyosin machinery. We demonstrate that the vinculin interaction with the talin-integrin complex drives the recruitment and release of core FA components. The activation state of vinculin is itself regulated by force, as underscored by our observation that vinculin localization to FAs is dependent on actomyosin contraction. Using a variety of vinculin mutants, we establish which components of the cell-matrix adhesion network are coordinated through direct and indirect associations with vinculin. Moreover, using cyclic stretching, we demonstrate that vinculin plays a key role in the transmission of extracellular mechanical stimuli leading to the reorganization of cell polarity. Of particular importance is the actin-binding tail region of vinculin, without which the cell’s ability to repolarize in response to cyclic stretching is perturbed.
Overall our data promote a model whereby vinculin controls the transmission of intracellular and extracellular mechanical cues that are important for the spatiotemporal assembly, disassembly, and reorganization of FAs to coordinate polarized cell motility.
► Intracellular tension is required to maintain vinculin in focal adhesions ► Vinculin activity stabilizes the talin-integrin complex and increases cell adhesion ► Vinculin coordinates the release of FA proteins through the talin-integrin complex ► Vinculin coordinates stretch-induced cell polarization via its link to actin
PMCID: PMC3580286  PMID: 23375895
18.  Paxillin: a new vinculin-binding protein present in focal adhesions 
The Journal of Cell Biology  1990;111(3):1059-1068.
The 68-kD protein (paxillin) is a cytoskeletal component that localizes to the focal adhesions at the ends of actin stress fibers in chicken embryo fibroblasts. It is also present in the focal adhesions of Madin- Darby bovine kidney (MDBK) epithelial cells but is absent, like talin, from the cell-cell adherens junctions of these cells. Paxillin purified from chicken gizzard smooth muscle migrates as a diffuse band on SDS- PAGE gels with a molecular mass of 65-70 kD. It is a protein of multiple isoforms with pIs ranging from 6.31 to 6.85. Using purified paxillin, we have demonstrated a specific interaction in vitro with another focal adhesion protein, vinculin. Cleavage of vinculin with Staphylococcus aureus V8 protease results in the generation of two fragments of approximately 85 and 27 kD. Unlike talin, which binds to the large vinculin fragment, paxillin was found to bind to the small vinculin fragment, which represents the rod domain of the molecule. Together with the previous observation that paxillin is a major substrate of pp60src in Rous sarcoma virus-transformed cells (Glenney, J. R., and L. Zokas. 1989. J. Cell Biol. 108:2401-2408), this interaction with vinculin suggests paxillin may be a key component in the control of focal adhesion organization.
PMCID: PMC2116264  PMID: 2118142
19.  Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling 
The Journal of Cell Biology  2012;196(5):641-652.
A specialized subset of VE-cadherin adhesions senses cytoskeletal force and recruits Vinculin to control the stability of endothelial cell–cell junctions during their force-dependent remodeling.
To remodel endothelial cell–cell adhesion, inflammatory cytokine- and angiogenic growth factor–induced signals impinge on the vascular endothelial cadherin (VE-cadherin) complex, the central component of endothelial adherens junctions. This study demonstrates that junction remodeling takes place at a molecularly and phenotypically distinct subset of VE-cadherin adhesions, defined here as focal adherens junctions (FAJs). FAJs are attached to radial F-actin bundles and marked by the mechanosensory protein Vinculin. We show that endothelial hormones vascular endothelial growth factor, tumor necrosis factor α, and most prominently thrombin induced the transformation of stable junctions into FAJs. The actin cytoskeleton generated pulling forces specifically on FAJs, and inhibition of Rho-Rock-actomyosin contractility prevented the formation of FAJs and junction remodeling. FAJs formed normally in cells expressing a Vinculin binding-deficient mutant of α-catenin, showing that Vinculin recruitment is not required for adherens junction formation. Comparing Vinculin-devoid FAJs to wild-type FAJs revealed that Vinculin protects VE-cadherin junctions from opening during their force-dependent remodeling. These findings implicate Vinculin-dependent cadherin mechanosensing in endothelial processes such as leukocyte extravasation and angiogenesis.
PMCID: PMC3307691  PMID: 22391038
20.  Differential response of myofibrillar and cytoskeletal proteins in cells treated with phorbol myristate acetate 
The Journal of Cell Biology  1989;108(3):1079-1091.
Muscle-specific and nonmuscle contractile protein isoforms responded in opposite ways to 12-o-tetradecanoyl phorbol-13-acetate (TPA). Loss of Z band density was observed in day-4-5 cultured chick myotubes after 2 h in the phorbol ester, TPA. By 5-10 h, most I-Z-I complexes were selectively deleted from the myofibril, although the A bands remained intact and longitudinally aligned. The deletion of I-Z-I complexes was inversely related to the appearance of numerous cortical, alpha-actinin containing bodies (CABs), transitory structures approximately 3.0 microns in diameter. Each CAB consisted of a filamentous core that costained with antibodies to alpha-actin and sarcomeric alpha-actinin. In turn each CAB was encaged by a discontinuous rim that costained with antibodies to vinculin and talin. Vimentin and desmin intermediate filaments and most cell organelles were excluded from the membrane-free CABs. These curious bodies disappeared over the next 10 h so that in 30- h myosacs all alpha-actin and sarcomeric alpha-actinin structures had been eliminated. On the other hand vinculin and talin adhesion plaques remained prominent even in 72-h myosacs. Disruption of the A bands was first initiated after 15-20 h in TPA (e.g., 15-20-h myosacs). Thick filaments of apparently normal length and structure were progressively released from A segments, and by 40 h all A bands had been broken down into enormous numbers of randomly dispersed, but still intact single thick filaments. This breakdown correlated with the formation of amorphous cytoplasmic aggregates which invariably colocalized antibodies to myosin heavy chain, MLC 1-3, myomesin, and C protein. Complete elimination of all immunoreactive thick filament proteins required 60-72 h of TPA exposure. The elimination of the thick filament- associated proteins did not involve the participation of vinculin or talin. In contrast to its effects on myofibrils, TPA did not induce the disassembly of the contractile proteins in stress fibers and microfilaments either in myosacs or in fibroblastic cells. Similarly, TPA, which rapidly induces the translocation of vinculin and talin to ectopic sites in many types of immortalized cells, had no gross effect on the adhesion plaques of myosacs, primary fibroblastic cells, or presumptive myoblasts. Clearly, the response to TPA of contractile protein and some cytoskeletal isoforms not only varies among phenotypes, but even within the domains of a given myotube the myofibrils respond one way, the stress fibers/microfilaments another.
PMCID: PMC2115379  PMID: 2493458
21.  Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding 
The Journal of Cell Biology  1996;135(4):1109-1123.
Paxillin is a 68-kD focal adhesion phosphoprotein that interacts with several proteins including members of the src family of tyrosine kinases, the transforming protein v-crk, and the cytoskeletal proteins vinculin and the tyrosine kinase, focal adhesion kinase (FAK). This suggests a function for paxillin as a molecular adaptor, responsible for the recruitment of structural and signaling molecules to focal adhesions. The current study defines the vinculin- and FAK-interaction domains on paxillin and identifies the principal paxillin focal adhesion targeting motif. Using truncation and deletion mutagenesis, we have localized the vinculin-binding site on paxillin to a contiguous stretch of 21 amino acids spanning residues 143-164. In contrast, maximal binding of FAK to paxillin requires, in addition to the region of paxillin spanning amino acids 143-164, a carboxyl-terminal domain encompassing residues 265-313. These data demonstrate the presence of a single binding site for vinculin, and at least two binding sites for FAK that are separated by an intervening stretch of 100 amino acids. Vinculin- and FAK-binding activities within amino acids 143-164 were separable since mutation of amino acid 151 from a negatively charged glutamic acid to the uncharged polar residue glutamine (E151Q) reduced binding of vinculin to paxillin by >90%, with no reduction in the binding capacity for FAK. The requirement for focal adhesion targeting of the vinculin- and FAK-binding regions within paxillin was determined by transfection into CHO.K1 fibroblasts. Significantly and surprisingly, paxillin constructs containing both deletion and point mutations that abrogate binding of FAK and/or vinculin were found to target effectively to focal adhesions. Additionally, expression of the amino-terminal 313 amino acids of paxillin containing intact vinculin- and FAK-binding domains failed to target to focal adhesions. This indicated other regions of paxillin were functioning as focal adhesion localization motifs. The carboxyl-terminal half of paxillin (amino acids 313-559) contains four contiguous double zinc finger LIM domains. Transfection analyses of sequential carboxyl-terminal truncations of the four individual LIM motifs and site-directed mutagenesis of LIM domains 1, 2, and 3, as well as deletion mutagenesis, revealed that the principal mechanism of targeting paxillin to focal adhesions is through LIM3. These data demonstrate that paxillin localizes to focal adhesions independent of interactions with vinculin and/or FAK, and represents the first definitive demonstration of LIM domains functioning as a primary determinant of protein subcellular localization to focal adhesions.
PMCID: PMC2133378  PMID: 8922390
22.  The adhesion plaque protein, talin, is phosphorylated in vivo in chicken embryo fibroblasts exposed to a tumor-promoting phorbol ester. 
Cell Regulation  1990;1(2):227-236.
Talin is a high molecular weight phosphoprotein that is localized at adhesion plaques. We have found that talin phosphorylation increases 3.0-fold upon exposure of chicken embryo fibroblasts to the tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate. Talin isolated from tumor promoter-treated cells is phosphorylated on serine and threonine residues. Vinculin, a 130 kDa talin-binding protein, also exhibits increased phosphorylation in vivo in response to tumor promoter, but to a lesser degree than does talin. Because tumor-promoting phorbol esters augment protein kinase C activity, we have compared the ability of purified protein kinase C to phosphorylate talin and vinculin in vitro. Both talin and vinculin were found to be substrates for protein kinase C; however, talin was phosphorylated to a greater extent than was vinculin. Cleavage of protein kinase C-phosphorylated talin by the calcium-dependent protease (Type II) revealed that while both the resulting 190-200 and 46 kDa proteolytic peptides were phosphorylated, the majority of label was contained within the 46-kDa fragment. Although incubation of chicken embryo fibroblasts with tumor-promoting phorbol ester induces a dramatic increase in talin phosphorylation, we detected no change in the organization of stress fibers and focal contacts in these cells. Exposure of the cells to tumor promoter did, however, result in a loss of actin and talin-rich cell surface elaborations that resemble focal contact precursor structures.
PMCID: PMC361449  PMID: 2129221
23.  Structures linking microfilament bundles to the membrane at focal contacts 
The Journal of Cell Biology  1993;122(2):485-496.
We used quick-freeze, deep-etch, rotary replication and immunogold cytochemistry to identify a new structure at focal contacts. In Xenopus fibroblasts, elongated aggregates of particles project from the membrane to contact bundles of actin microfilaments. Before terminating, a single bundle of microfilaments interacts with several aggregates that appear intermittently over a distance of several microns. Aggregates are enriched in proteins believed to mediate actin- membrane interactions at focal contacts, including beta 1-integrin, vinculin, and talin, but they appear to contain less alpha-actinin and filamin. We also identified a second, smaller class of aggregates of membrane particles that contained beta 1-integrin but not vinculin or talin and that were not associated with actin microfilaments. Our results indicate that vinculin, talin, and beta 1-integrin are assembled into distinctive structures that mediate multiple lateral interactions between microfilaments and the membrane at focal contacts.
PMCID: PMC2119644  PMID: 7686554
24.  Cytoplasmic Tail Regulates the Intercellular Adhesion Function of the Epithelial Cell Adhesion Molecule 
Molecular and Cellular Biology  1998;18(8):4833-4843.
Ep-CAM, an epithelium-specific cell-cell adhesion molecule (CAM) not structurally related to the major families of CAMs, contains a cytoplasmic domain of 26 amino acids. The chemical disruption of the actin microfilaments, but not of the microtubuli or intermediate filaments, affected the localization of Ep-CAM at the cell-cell boundaries, suggesting that the molecule interacts with the actin-based cytoskeleton. Mutated forms of Ep-CAM were generated with the cytoplasmic domain truncated at various lengths. All of the mutants were transported to the cell surface in the transfectants; however, the mutant lacking the complete cytoplasmic domain was not able to localize to the cell-cell boundaries, in contrast to mutants with partial deletions. Both the disruption of the actin microfilaments and a complete truncation of the cytoplasmic tail strongly affected the ability of Ep-CAM to mediate aggregation of L cells. The capability of direct aggregation was reduced for the partially truncated mutants but remained cytochalasin D sensitive. The tail truncation did not affect the ability of the transfectants to adhere to solid-phase-adsorbed Ep-CAM, suggesting that the ability to form stable adhesions and not the ligand specificity of the molecule was affected by the truncation. The formation of intercellular adhesions mediated by Ep-CAM induced a redistribution to the cell-cell boundaries of α-actinin, but not of vinculin, talin, filamin, spectrin, or catenins. Coprecipitation demonstrated direct association of Ep-CAM with α-actinin. Binding of α-actinin to purified mutated and wild-type Ep-CAMs and to peptides representing different domains of the cytoplasmic tail of Ep-CAM demonstrates two binding sites for α-actinin at positions 289 to 296 and 304 to 314 of the amino acid sequence. The results demonstrate that the cytoplasmic domain of Ep-CAM regulates the adhesion function of the molecule through interaction with the actin cytoskeleton via α-actinin.
PMCID: PMC109068  PMID: 9671492
25.  Mapping in vivo associations of cytoplasmic proteins with integrin beta 1 cytoplasmic domain mutants. 
Molecular Biology of the Cell  1995;6(2):151-160.
Integrins promote formation of focal adhesions and trigger intracellular signaling pathways through cytoplasmic proteins such as talin, alpha-actinin, and focal adhesion kinase (FAK). The beta 1 integrin subunit has been shown to bind talin and alpha-actinin in in vitro assays, and these proteins may link integrin to the actin cytoskeleton either directly or through linkages to other proteins such as vinculin. However, it is unknown which of these associations are necessary in vivo for formation of focal contacts, or which regions of beta 1 integrin bind to specific cytoskeletal proteins in vivo. We have developed an in vivo assay to address these questions. Microbeads were coated with anti-chicken beta 1 antibodies to selectively cluster chicken beta 1 integrins expressed in cultured mouse fibroblasts. The ability of cytoplasmic domain mutant beta 1 integrins to induce co-localization of proteins was assessed by immunofluorescence and compared with that of wild-type integrin. As expected, mutant beta 1 lacking the entire cytoplasmic domain had a reduced ability to induce co-localization of talin, alpha-actinin, F-actin, vinculin, and FAK. The ability of beta 1 integrin to co-localize talin and FAK was found to require a sequence near the C-terminus of beta 1. The region of beta 1 required to co-localize alpha-actinin was found to reside in a different sequence, several amino acids further from the C-terminus of beta 1. Deletion of 13 residues from the C-terminus blocked co-localization of talin, FAK, and actin, but not alpha-actinin. Association of alpha-actinin with clustered integrin is therefore not sufficient to induce the co-localization of F-actin.
PMCID: PMC275825  PMID: 7540435

Results 1-25 (690313)