Search tips
Search criteria

Results 1-25 (577183)

Clipboard (0)

Related Articles

1.  Effect of Transcriptional Activators SoxS, RobA, and RamA on Expression of Multidrug Efflux Pump AcrAB-TolC in Enterobacter cloacae 
Antimicrobial Agents and Chemotherapy  2012;56(12):6256-6266.
Control of membrane permeability is a key step in regulating the intracellular concentration of antibiotics. Efflux pumps confer innate resistance to a wide range of toxic compounds such as antibiotics, dyes, detergents, and disinfectants in members of the Enterobacteriaceae. The AcrAB-TolC efflux pump is involved in multidrug resistance in Enterobacter cloacae. However, the underlying mechanism that regulates the system in this microorganism remains unknown. In Escherichia coli, the transcription of acrAB is upregulated under global stress conditions by proteins such as MarA, SoxS, and Rob. In the present study, two clinical isolates of E. cloacae, EcDC64 (a multidrug-resistant strain overexpressing the AcrAB-TolC efflux pump) and Jc194 (a strain with a basal AcrAB-TolC expression level), were used to determine whether similar global stress responses operate in E. cloacae and also to establish the molecular mechanisms underlying this response. A decrease in susceptibility to erythromycin, tetracycline, telithromycin, ciprofloxacin, and chloramphenicol was observed in clinical isolate Jc194 and, to a lesser extent in EcDC64, in the presence of salicylate, decanoate, tetracycline, and paraquat. Increased expression of the acrAB promoter in the presence of the above-described conditions was observed by flow cytometry and reverse transcription-PCR, by using a reporter fusion protein (green fluorescent protein). The expression level of the AcrAB promoter decreased in E. cloacae EcDC64 derivates deficient in SoxS, RobA, and RamA. Accordingly, the expression level of the AcrAB promoter was higher in E. cloacae Jc194 strains overproducing SoxS, RobA, and RamA. Overall, the data showed that SoxS, RobA, and RamA regulators were associated with the upregulation of acrAB, thus conferring antimicrobial resistance as well as a stress response in E. cloacae. In summary, the regulatory proteins SoxS, RobA, and RamA were cloned and sequenced for the first time in this species. The involvement of these proteins in conferring antimicrobial resistance through upregulation of acrAB was demonstrated in E. cloacae.
PMCID: PMC3497196  PMID: 23006750
2.  Organic solvent tolerance and antibiotic resistance increased by overexpression of marA in Escherichia coli. 
We previously reported that overexpression of the soxS or robA gene causes in several Escherichia coli strains the acquisition of higher organic solvent tolerance and also increased resistance to a number of antibiotics (H. Nakajima, K. Kobayashi, M. Kobayashi, H. Asako, and R. Aono, Appl. Environ. Microbiol. 61:2302-2307, 1995). Most E. coli strains cannot grow in the presence of cyclohexane. We isolated the marRAB genes from a Kohara lambda phage clone and cyclohexane-tolerant mutant strain OST3408. We found a substitution of serine for arginine at position 73 in the coding region of marR of OST3408 and designated the gene marR08. Our genetic analysis revealed that marR08 is responsible for the cyclohexane-tolerant phenotype. We observed that the marA gene on high-copy-number plasmids increased the organic solvent tolerance of E. coli strains. Furthermore, exposure of E. coli cells to salicylate, which activates the mar regulon genes, also raised organic solvent tolerance. Overexpression of the marA, soxS, or robA gene increased resistance to numerous antibiotics but not to hydrophilic aminoglycosides.
PMCID: PMC168437  PMID: 9097440
3.  Contributions of mutations in acrR and marR genes to organic solvent tolerance in Escherichia coli 
AMB Express  2012;2:58.
The AcrAB-TolC efflux pump is involved in maintaining intrinsic organic solvent tolerance in Escherichia coli. Mutations in regulatory genes such as marR, soxR, and acrR are known to increase the expression level of the AcrAB-TolC pump. To identify these mutations in organic solvent tolerant E. coli, eight cyclohexane-tolerant E. coli JA300 mutants were isolated and examined by DNA sequencing for mutations in marR, soxR, and acrR. Every mutant carried a mutation in either marR or acrR. Among all mutants, strain CH7 carrying a nonsense mutation in marR (named marR109) and an insertion of IS5 in acrR, exhibited the highest organic solvent-tolerance levels. To clarify the involvement of these mutations in improving organic solvent tolerance, they were introduced into the E. coli JA300 chromosome by site-directed mutagenesis using λ red-mediated homologous recombination. Consequently, JA300 mutants carrying acrR::IS5, marR109, or both were constructed and named JA300 acrRIS, JA300 marR, or JA300 acrRIS marR, respectively. The organic solvent tolerance levels of these mutants were increased in the following order: JA300 < JA300 acrRIS < JA300 marR < JA300 acrRIS marR. JA300 acrRIS marR formed colonies on an agar plate overlaid with cyclohexane and p-xylene (6:4 vol/vol mixture). The organic solvent-tolerance level and AcrAB-TolC efflux pump-expression level in JA300 acrRIS marR were similar to those in CH7. Thus, it was shown that the synergistic effects of mutations in only two regulatory genes, acrR and marR, can significantly increase organic solvent tolerance in E. coli.
PMCID: PMC3514110  PMID: 23148659
Escherichia coli; Organic solvent tolerance; MarR; AcrR; AcrAB-TolC; Efflux pump
4.  Overexpression of the robA gene increases organic solvent tolerance and multiple antibiotic and heavy metal ion resistance in Escherichia coli. 
Escherichia coli K-12 OST3410 was isolated previously as a stable cyclohexane-tolerant mutant derived from cyclohexane-sensitive strain JA300. A plasmid which provides cyclohexane tolerance to strain JA300 was isolated from the OST3410 genomic library. Subcloning and sequence analysis showed that the plasmid contained the robA gene, whose gene product was reported to bind specifically to the right border of oriC. We observed that the robA gene on the multicopy plasmid generally increased the organic solvent tolerance of several E. coli strains. We also observed an increase in the organic solvent tolerance of JA300 carrying the lac-robA fusion gene on a low-copy plasmid by isopropyl-beta-D-thiogalactopyranoside induction. Strain JA300 carrying the multicopy robA plasmid also showed an increase in resistance to a number of unrelated antibiotics and heavy metal ions, and the spectrum of resistance was significantly similar to that of the soxS-overexpressing strain.
PMCID: PMC167502  PMID: 7793951
5.  Overexpression of the marA or soxS Regulatory Gene in Clinical Topoisomerase Mutants of Escherichia coli 
The contribution of regulatory genes to fluoroquinolone resistance was studied with clinical Escherichia coli strains bearing mutations in gyrA and parC and with different levels of fluoroquinolone resistance. Expression of marA and soxS was evaluated by Northern blot analysis of isolates that demonstrated increased organic solvent tolerance, a phenotype that has been linked to overexpression of marA, soxS, and rob. Among 25 cyclohexane-tolerant strains detected by a screen for increased organic solvent tolerance (M. Oethinger, W. V. Kern, J. D. Goldman, and S. B. Levy, J. Antimicrob. Chemother. 41:111–114, 1998), we found 5 Mar mutants and 4 Sox mutants. A further Mar mutant was detected among 11 fluoroquinolone-resistant, cyclohexane-susceptible E. coli strains used as controls. Comparison of the marOR sequences of clinical Mar mutants with that of E. coli K-12 (GenBank accession no. M96235) revealed point mutations in marR in all mutants which correlated with loss of repressor function as detected in a marO::lacZ transcriptional assay. We found four other amino acid changes in MarR that did not lead to loss of function. Two of these changes, present in 20 of the 35 sequenced marOR fragments, identified a variant genotype of marOR. Isolates with the same gyrA and parC mutations showed increased fluoroquinolone resistance when the mutations were accompanied by overexpression of marA or soxS. These data support the hypothesis that high-level fluoroquinolone resistance involves mutations at several chromosomal loci, comprising structural and regulatory genes.
PMCID: PMC105868  PMID: 9687412
6.  Different effects of transcriptional regulators MarA, SoxS and Rob on susceptibility of Escherichia coli to cationic antimicrobial peptides (CAMPs): Rob-dependent CAMP induction of the marRAB operon 
Microbiology  2010;156(Pt 2):570-578.
Cationic antimicrobial peptides (CAMPs), a component of the mammalian immune system, protect the host from bacterial infections. The roles of the Escherichia coli transcriptional regulators MarA, SoxS and Rob in susceptibility to these peptides were examined. Overexpression of marA, either in an antibiotic-resistant marR mutant or from a plasmid, decreased bacterial susceptibility to CAMPs. Overexpression of the soxS gene from a plasmid, which decreased susceptibility to antibiotics, unexpectedly caused no decrease in CAMP susceptibility; instead it produced increased susceptibility to different CAMPs. Deletion or overexpression of rob had little effect on CAMP susceptibility. The marRAB operon was upregulated when E. coli was incubated in sublethal amounts of CAMPs polymyxin B, LL-37 or human β-defensin-1; however, this upregulation required Rob. Deletion of acrAB increased bacterial susceptibility to polymyxin B, LL-37 and human β-defensin-1 peptides. Deletion of tolC yielded an even greater increase in susceptibility to these peptides and also led to increased susceptibility to human α-defensin-2. Inhibition of cellular proton-motive force increased peptide susceptibility for wild-type and acrAB deletion strains; however, it decreased susceptibility of tolC mutants. These findings demonstrate that CAMPs are both inducers of marA-mediated drug resistance through interaction with Rob and also substrates for efflux in E. coli. The three related transcriptional regulators show different effects on bacterial cell susceptibility to CAMPs.
PMCID: PMC2890090  PMID: 19926649
7.  Involvement of Outer Membrane Protein TolC, a Possible Member of the mar-sox Regulon, in Maintenance and Improvement of Organic Solvent Tolerance of Escherichia coli K-12 
Journal of Bacteriology  1998;180(4):938-944.
Escherichia coli mutants with improved organic solvent tolerance levels showed high levels of outer membrane protein TolC and inner membrane protein AcrA. The TolC level was regulated positively by MarA, Rob, or SoxS. A possible mar-rob-sox box sequence was found upstream of the tolC gene. These findings suggest that tolC is a member of the mar-sox regulon responsive to stress conditions. When a defective tolC gene was transferred to n-hexane- or cyclohexane-tolerant strains by P1 transduction, the organic solvent tolerance level was lowered dramatically to the decane-tolerant and nonane-sensitive level. The tolerance level was restored by transformation of the transductants with a wild-type tolC gene. Therefore, it is evident that TolC is essential for E. coli to maintain organic solvent tolerance.
PMCID: PMC106975  PMID: 9473050
8.  Constitutive SoxS Expression in a Fluoroquinolone-Resistant Strain with a Truncated SoxR Protein and Identification of a New Member of the marA-soxS-rob Regulon, mdtG▿  
Elevated levels of fluoroquinolone resistance are frequently found among Escherichia coli clinical isolates. This study investigated the antibiotic resistance mechanisms of strain NorE5, derived in vitro by exposing an E. coli clinical isolate, PS5, to two selection steps with increasing concentrations of norfloxacin. In addition to the amino acid substitution in GyrA (S83L) present in PS5, NorE5 has an amino acid change in ParC (S80R). Furthermore, we now find by Western blotting that NorE5 has a multidrug resistance phenotype resulting from the overexpression of the antibiotic resistance efflux pump AcrAB-TolC. Microarray and gene fusion analyses revealed significantly increased expression in NorE5 of soxS, a transcriptional activator of acrAB and tolC. The high soxS activity is attributable to a frameshift mutation that truncates SoxR, rendering it a constitutive transcriptional activator of soxS. Furthermore, microarray and reverse transcription-PCR analyses showed that mdtG (yceE), encoding a putative efflux pump, is overexpressed in the resistant strain. SoxS, MarA, and Rob activated an mdtG::lacZ fusion, and SoxS was shown to bind to the mdtG promoter, showing that mdtG is a member of the marA-soxS-rob regulon. The mdtG marbox sequence is in the backward or class I orientation within the promoter, and its disruption resulted in a loss of inducibility by MarA, SoxS, and Rob. Thus, chromosomal mutations in parC and soxR are responsible for the increased antibiotic resistance of NorE5.
PMCID: PMC2825980  PMID: 20008776
9.  mgtA Expression Is Induced by Rob Overexpression and Mediates a Salmonella enterica Resistance Phenotype▿  
Journal of Bacteriology  2008;190(14):4951-4958.
Rob is a member of the Sox/Mar subfamily of AraC/XylS-type transcriptional regulators implicated in bacterial multidrug, heavy metal, superoxide, and organic solvent resistance phenotypes. We demonstrate that, in Salmonella enterica, Rob overexpression upregulates the transcription of mgtA, which codes for the MgtA Mg2+ transporter. mgtA was previously characterized as a member of the Mg2+-modulated PhoPQ regulon. Here we demonstrate that Rob (but not its paralog protein SoxS or MarA) is able to induce mgtA transcription in a PhoP-independent fashion by binding to a conserved Mar/Sox/Rob motif localized downstream of the PhoP-box and overlapping the PhoP-dependent transcriptional start site. We found that Rob-induced mgtA expression confers low-level cyclohexane resistance on Salmonella. Because mgtA intactness is required for Rob-induced cyclohexane resistance, provided the AcrAB multidrug efflux pump can be expressed, we postulate that MgtA is involved in the AcrAB-mediated cyclohexane detoxification mechanism promoted by Rob in Salmonella.
PMCID: PMC2447000  PMID: 18487336
10.  An Excretory Function for the Escherichia coli Outer Membrane Pore TolC: Upregulation of marA and soxS Transcription and Rob Activity Due to Metabolites Accumulated in tolC Mutants ▿  
Journal of Bacteriology  2009;191(16):5283-5292.
Efflux pumps function to rid bacteria of xenobiotics, including antibiotics, bile salts, and organic solvents. TolC, which forms an outer membrane channel, is an essential component of several efflux pumps in Escherichia coli. We asked whether TolC has a role during growth in the absence of xenobiotics. Because tolC transcription is activated by three paralogous activators, MarA, SoxS, and Rob, we examined the regulation of these activators in tolC mutants. Using transcriptional fusions, we detected significant upregulation of marRAB and soxS transcription and Rob protein activity in tolC mutants. Three mechanisms could be distinguished: (i) activation of marRAB transcription was independent of marRAB, soxR, and rob functions; (ii) activation of soxS transcription required SoxR, a sensor of oxidants; and (iii) Rob protein was activated posttranscriptionally. This mechanism is similar to the mechanisms of upregulation of marRAB, soxS, and Rob by treatment with certain phenolics, superoxides, and bile salts, respectively. The transcription of other marA/soxS/rob regulon promoters, including tolC itself, was also elevated in tolC mutants. We propose that TolC is involved in the efflux of certain cellular metabolites, not only xenobiotics. As these metabolites accumulate during growth, they trigger the upregulation of MarA, SoxS, and Rob, which in turn upregulate tolC and help rid the bacteria of these metabolites, thereby restoring homeostasis.
PMCID: PMC2725600  PMID: 19502391
11.  Two functions of the C-terminal domain of Escherichia coli Rob: mediating “sequestration-dispersal” as a novel off-on switch for regulating Rob’s activity as a transcription activator and preventing degradation of Rob by Lon protease 
Journal of molecular biology  2009;388(3):415-430.
In Escherichia coli, Rob activates transcription of the SoxRS/MarA/Rob regulon. Previous work revealed that Rob resides in 3–4 immunostainable foci, that dipyridyl and bile salts are inducers of its activity, and that inducers bind to Rob’s C-terminal domain (CTD). We propose that sequestration inactivates Rob by blocking its access to the transcriptional machinery and that inducers activate Rob by mediating its dispersal, allowing interaction with RNA polymerase. To test “sequestration-dispersal” as a new mechanism for regulating the activity of transcriptional activators, we fused Rob’s CTD to SoxS and used indirect immunofluorescence microscopy to determine the effect of inducers on SoxS-Rob’s cellular localization. Unlike native SoxS, which is uniformly distributed throughout the cell, SoxS-Rob is sequestered without inducer, but is rapidly dispersed when cells are treated with inducer. In this manner, Rob’s CTD serves as an anti-sigma factor in regulating the co-sigma factor-like activity of SoxS when fused to it. Rob’s CTD also protects its N-terminus from Lon protease, since Lon’s normally rapid degradation of SoxS is blocked in the chimera. Accordingly, Rob’s CTD has novel regulatory properties that can be bestowed on another E. coli protein.
PMCID: PMC2728042  PMID: 19289129
gene regulation; intracellular localization; immunofluorescence microscopy; anti-sigma factor; proteolysis
12.  A rob-like gene of Enterobacter cloacae affecting porin synthesis and susceptibility to multiple antibiotics. 
A chromosomal gene of Enterobacter cloacae affecting the synthesis of major outer membrane proteins in E. cloacae and Escherichia coli was cloned by using selection for resistance to cefoxitin in E. coli. The presence of the gene, when plasmid-borne, led to a decrease in the amount of porin F in E. cloacae and the amount of OmpF in E. coli and caused 2- to 32-fold increases in the MICs of chloramphenicol, tetracycline, quinolones, and beta-lactam antibiotics. The gene encoded a 33-kDa protein, similar (83% identity) to the protein Rob involved in the initiation of DNA replication in E. coli, which was called RobA(EC1) by analogy. RobA from E. cloacae was found to inhibit ompF expression at the posttranscriptional level via activation of micF, a gene also apparently present in E. cloacae, as detected by PCR. As with its homolog from E. coli, RobA(EC1) is related to the XylS-AraC class of positive transcriptional regulators, along with MarA and SoxS, which also cause a micF-mediated decrease in the level of ampF expression.
PMCID: PMC163467  PMID: 8878575
13.  Role of AcrR and RamA in Fluoroquinolone Resistance in Clinical Klebsiella pneumoniae Isolates from Singapore 
The MICs of ciprofloxacin for 33 clinical isolates of K. pneumoniae resistant to extended-spectrum cephalosporins from three hospitals in Singapore ranged from 0.25 to >128 μg/ml. Nineteen of the isolates were fluoroquinolone resistant according to the NCCLS guidelines. Strains for which the ciprofloxacin MIC was ≥0.5 μg/ml harbored a mutation in DNA gyrase A (Ser83→Tyr, Leu, or IIe), and some had a secondary Asp87→Asn mutation. Isolates for which the MIC was 16 μg/ml possessed an additional alteration in ParC (Ser80→IIe, Trp, or Arg). Tolerance of the organic solvent cyclohexane was observed in 10 of the 19 fluoroquinolone-resistant strains; 3 of these were also pentane tolerant. Five of the 10 organic solvent-tolerant isolates overexpressed AcrA and also showed deletions within the acrR gene. Complementation of the mutated acrR gene with the wild-type gene decreased AcrA levels and produced a two- to fourfold reduction in the fluoroquinolone MICs. None of the organic solvent-tolerant clinical isolates overexpressed another efflux-related gene, acrE. While marA and soxS were not overexpressed, another marA homologue, ramA, was overexpressed in 3 of 10 organic solvent-tolerant isolates. These findings indicate that multiple target and nontarget gene changes contribute to fluoroquinolone resistance in K. pneumoniae. Besides AcrR mutations, ramA overexpression (but not marA or soxS overexpression) was related to increased AcrAB efflux pump expression in this collection of isolates.
PMCID: PMC182603  PMID: 12936981
14.  Activation of multiple antibiotic resistance and binding of stress-inducible promoters by Escherichia coli Rob protein. 
Journal of Bacteriology  1995;177(7):1655-1661.
Multiple antibiotic resistance in Escherichia coli can be mediated by induction of the SoxS or MarA protein, triggered by oxygen radicals (in the soxRS regulon) or certain antibiotics (in the marRAB regulon), respectively. These small proteins (SoxS, 107 residues; MarA, 127 residues) are homologous to the C terminus of the XylS-AraC family of proteins and are more closely related to a approximately 100-residue segment in the N terminus of Rob protein, which binds the right arm of the replication origin, oriC. We investigated whether the SoxS-MarA homology in Rob might extend to the regulation of some of the same inducible genes. Overexpression of Rob indeed conferred multiple antibiotic resistance similar to that known for SoxS and MarA (against chloramphenicol, tetracycline, nalidixic acid, and puromycin), as well as resistance to the superoxide-generating compound phenazine methosulfate. The Rob-induced antibiotic resistance depended only partially on the micF antisense RNA that down-regulates the OmpF outer membrane porin to limit antibiotic uptake. Similar antibiotic resistance was conferred by expression of a Rob fragment containing only the N-terminal 123 residues that constitute the SoxS-MarA homology. Both intact Rob and the N-terminal fragment activated expression of stress genes (inaA, fumC, sodA) but with a pattern distinct from that found for SoxS and MarA. Purified Rob protein bound a DNA fragment containing the micF promoter (50% bound at approximately 10(-9) M Rob) as strongly as it did oriC, and it bound more weakly to DNA containing the sodA, nfo, or zwf promoter (50% bound at 10(-8) to 10(-7) M). Rob formed multiple DNA-protein complexes with these fragments, as seen previously for SoxS. These data point to a DNA-binding gene activator module used in different protein contexts.
PMCID: PMC176790  PMID: 7896685
15.  The Salmonella typhimurium mar locus: molecular and genetic analyses and assessment of its role in virulence. 
Journal of Bacteriology  1997;179(6):1857-1866.
The marRAB operon is a regulatory locus that controls multiple drug resistance in Escherichia coli. marA encodes a positive regulator of the antibiotic resistance response, acting by altering the expression of unlinked genes. marR encodes a repressor of marRAB transcription and controls the production of MarA in response to environmental signals. A molecular and genetic study of the homologous operon in Salmonella typhimurium was undertaken, and the role of marA in virulence in a murine model was assessed. Expression of E. coli marA (marAEC) present on a multicopy plasmid in S. typhimurium resulted in a multiple antibiotic resistance (Mar) phenotype, suggesting that a similar regulon exists in this organism. A genomic plasmid library containing S. typhimurium chromosomal sequences was introduced into an E. coli strain that was deleted for the mar locus and contained a single-copy marR'-'lacZ translational fusion. Plasmid clones that contained both S. typhimurium marR (marRSt) and marA (marASt) genes were identified as those that were capable of repressing expression of the fusion and which resulted in a Mar phenotype. The predicted amino acid sequences of MarRSt, MarASt, and MarBSt were 91, 86, and 42% identical, respectively, to the same genes from E. coli, while the operator/promoter region of the operon was 86% identical to the same 98-nucleotide-upstream region in E. coli. The marRAB transcriptional start sites for both organisms were determined by primer extension, and a marRABSt transcript of approximately 1.1 kb was identified by Northern blot analysis. Its accumulation was shown to be inducible by sodium salicylate. Open reading frames flanking the marRAB operon were also conserved. An S. typhimurium marA disruption strain was constructed by an allelic exchange method and compared to the wild-type strain for virulence in a murine BALB/c infection model. No effect on virulence was noted. The endogenous S. typhimurium plasmid that is associated with virulence played no role in marA-mediated multiple antibiotic resistance. Taken together, the data show that the S. typhimurium mar locus is structurally and functionally similar to marRABEc and that a lesion in marASt has no effect on S. typhimurium virulence for BALB/c mice.
PMCID: PMC178907  PMID: 9068629
16.  SoxS Increases the Expression of the Zinc Uptake System ZnuACB in an Escherichia coli Murine Pyelonephritis Model 
Journal of Bacteriology  2012;194(5):1177-1185.
Paralogous transcriptional regulators MarA, Rob, and SoxS act individually and together to control expression of more than 80 Escherichia coli genes. Deletion of marA, rob, and soxS from an E. coli clinical isolate prevents persistence beyond 2 days postinfection in a mouse model of pyelonephritis. We used microarray analysis to identify 242 genes differentially expressed between the triple deletion mutant and its parent strain at 2 days postinfection in the kidney. One of these, znuC of the zinc transport system ZnuACB, displayed decreased expression in the triple mutant compared to that in the parental strain, and deletion of znuC from the parental strain reduced persistence. The marA rob soxS triple deletion mutant was less viable in vitro under limited-Zn and Zn-depleted conditions, while disruption of znuC caused a reduction in the growth rates for the parental and triple mutant strains to equally low levels under limited-Zn or Zn-depleted conditions. Complementation of the triple mutant with soxS, but not marA or rob, restored the parental growth rate in Zn-depleted medium, while deletion of only soxS from the parental strain led to low growth in Zn-depleted medium. Both results suggested that SoxS is a major regulator responsible for growth under Zn-depleted conditions. Gel shift experiments failed to show direct binding of SoxS to the znuCB promoter, thus suggesting indirect control of znuCB expression by SoxS. While SoxS expression in the triple mutant fully restored persistence, increased expression of znuACB via a plasmid in this mutant only partially restored wild-type levels of persistence in the kidney. This work implicates SoxS control of znuCB expression as a key factor in persistence of E. coli in murine pyelonephritis.
PMCID: PMC3294818  PMID: 22210763
17.  Genetic relationship between soxRS and mar loci in promoting multiple antibiotic resistance in Escherichia coli. 
Multiple antibiotic resistance in Escherichia coli has typically been associated with mutations at the mar locus, located at 34 min on the E. coli chromosome. A new mutant, marC, isolated on the basis of a Mar phenotype but which maps to the soxRS (encoding the regulators of the superoxide stress response) locus located at 92 min, is described here. This mutant shares several features with a known constitutive allele of the soxRS gene, prompting the conclusion that it is a highly active allele of this gene. The marC mutation has thus been given the designation soxR201. This new mutant was used to examine the relationship between the mar and sox loci in promoting antibiotic resistance. The results of these studies indicate that full antibiotic resistance resulting from the soxR201 mutation is partially dependent on an intact mar locus and is associated with an increase in the steady-state level of mar-specific mRNA. In addition, paraquat treatment of wild-type cells is shown to increase the level of antibiotic resistance in a dose-dependent manner that requires an intact soxRS locus. Conversely, overexpression of MarA from a multicopy plasmid results in weak activation of a superoxide stress response target gene. These findings are consistent with a model in which the regulatory factors encoded by the marA and soxS genes control the expression of overlapping sets of target genes, with MarA preferentially acting on targets involved with antibiotic resistance and SoxS directed primarily towards components of the superoxide stress response. Furthermore, compounds frequently used to induce the superoxide stress response, including paraquat, menadione, and phenazine methosulfate, differ with respect to the amount of protection provided against them by the antibiotic resistance response.
PMCID: PMC284635  PMID: 7986007
18.  Autoactivation of the marRAB multiple antibiotic resistance operon by the MarA transcriptional activator in Escherichia coli. 
Journal of Bacteriology  1996;178(8):2216-2223.
Transcriptional activation of the promoters of the mar/soxRS regulons by the sequence-related but independently inducible MarA and SoxS proteins renders Escherichia coli resistant to a broad spectrum of antibiotics and superoxide generators. Here, the effects of MarA and SoxS on transcription of the marRAB promoter itself were assayed in vitro by using a minimal transcription system and in vivo by assaying beta-galactosidase synthesized from marR::lacZ fusions. Purified MarA and MalE-SoxS proteins stimulated mar transcription about 6- and 15-fold, respectively, when the RNA polymerase/DNA ratio was 1. Purified MarA bound as a monomer to a 16-bp "marbox" located 69 to 54 nucleotides upstream of a putative RNA initiation site. Deletion of the marbox reduced MarA-mar binding 100-fold, abolished the stimulatory effects of MarA and SoxS on transcription in vitro, and reduced marR::lacZ synthesis about 4-fold in vivo. Deletion of upstream DNA adjoining the marbox reduced MarA binding efficiency 30-fold and transcriptional activation 2- to 3-fold, providing evidence for an accessory marbox. Although MarA and the mar operon repressor, MarR, bound to independent sites, they competed for promoter DNA in band shift experiments. Assays of marR::lacZ transcriptional fusions in marRAB deletion or soxRS deletion strains showed that the superoxide generator paraquat stimulates mar transcription via soxRS and that salicylate stimulates mar transcription both by antagonizing MarR and by a MarR-independent mechanism. Thus, transcription of the marRAB operon is autorepressed by MarR and autoactivated by MarA at a site that also can be activated by SoxS.
PMCID: PMC177928  PMID: 8636021
19.  Transcriptional activation of promoters of the superoxide and multiple antibiotic resistance regulons by Rob, a binding protein of the Escherichia coli origin of chromosomal replication. 
Journal of Bacteriology  1996;178(9):2507-2513.
The Rob protein, isolated on the basis of its ability to bind to the right arm of the Escherichia coli origin of chromosomal replication, is about 50% identical in amino acid sequence to SoxS and MarA, the direct regulators of the superoxide (soxRS) and multiple antibiotic resistance (mar) regulons, respectively. Having previously demonstrated that SoxS (as a MalE-SoxS fusion protein) and MarA are essentially identical in their abilities to activate in vitro transcription of genes of the sox-mar regulons, we investigated the properties of Rob as a transcriptional activator. We found that Rob (i) activates the transcription of zwf,fpr,fumC, micF, nfo, and sodA, (ii) requires a 21-bp soxbox-marbox-robbox sequence to activate zwf transcription, (iii) protects the soxbox/marbox/robbox from attack by DNase 1, (iv) is ambidextrous, i.e., requires the C-terminal domain of the alpha subunit of RNA polymerase for activation of zwf but not fumC or micF, (v) bends zwf and fumC DNA, and (vi) binds zwf and fumC DNA as a monomer. Since these transcription activation properties of Rob are virtually identical to those of MalE-SoxS and MarA, it appears as if the E. coli genome encodes three genes with the same functional capacity. However, in contrast to SoxS and MarA, whose syntheses are induced by specific environmental stimuli and elicit a clear defense response, Rob is expressed constitutively and its normal function is unknown.
PMCID: PMC177972  PMID: 8626315
20.  Defining a rob Regulon in Escherichia coli by Using Transposon Mutagenesis 
Journal of Bacteriology  2000;182(13):3794-3801.
The Rob protein of Escherichia coli is a member of the AraC-XylS family of prokaryotic transcriptional regulators and is expressed constitutively. Deletion of the rob gene increases susceptibility to organic solvents, while overexpression of Rob increases tolerance to organic solvents and resistance to a variety of antibiotics and to the superoxide-generating compound phenazine methosulfate. To determine whether constitutive levels of Rob regulate basal gene expression, we performed a MudJ transposon screen in a rob deletion mutant containing a plasmid that allows for controlled rob gene expression. We identified eight genes and confirmed that seven are transcriptionally activated by normal expression of Rob from the chromosomal rob gene (inaA, marR, aslB, ybaO, mdlA, yfhD, and ybiS). One gene, galT, was repressed by Rob. We also demonstrated by Northern analysis that basal expression of micF is significantly higher in wild-type E. coli than in a rob deletion mutant. Rob binding to the promoter regions of most of these genes was substantiated in electrophoretic mobility shift assays. However, Mu insertions in individual Rob-regulated genes did not affect solvent sensitivity. This phenotype may depend on changes in the expression of several of these Rob-regulated genes or on other genes that were not identified. Rob clearly affects the basal expression of genes with a broad range of functions, including antibiotic resistance, acid adaptation, carbon metabolism, cell wall synthesis, central intermediary metabolism, and transport. The magnitudes of Rob's effects are modest, however, and the protein may thus play a role as a general transcription cofactor.
PMCID: PMC94552  PMID: 10850996
21.  Organic Solvent Tolerance of Escherichia coli Is Independent of OmpF Levels in the Membrane 
The organic solvent tolerance of Escherichia coli was measured under conditions in which OmpF levels were controlled by various means as follows: alteration of NaCl concentration in the medium, transformation with a stress-responsive gene (marA, robA, or soxS), or disruption of the ompF gene. It was shown that solvent tolerance of E. coli did not depend upon OmpF levels in the membrane.
PMCID: PMC91017  PMID: 9872794
22.  In Vivo Increase in Resistance to Ciprofloxacin in Escherichia coli Associated with Deletion of the C-Terminal Part of MarR 
We recovered two isolates (EP1 and EP2) of Escherichia coli from the same patient that had identical pulsed-field gel electrophoresis patterns but required different MICs of ciprofloxacin (CIP): 16 and 256 mg/liter for EP1 and EP2, respectively. Both isolates had mutations in the quinolone resistance-determining regions of GyrA (Ser83Leu and Asp87Tyr) and ParC (Ser80Ile), but not in those regions of GyrB or ParE. Isolate EP2 was also more resistant to chloramphenicol, tetracyclines, cefuroxime, and organic solvents. A deletion of adenine (A) 1821 was found in marR of isolate EP2, which resulted in an 18-amino-acid C-terminal deletion in the MarR protein. The causative relationship between ΔA1821 and the Mar phenotype was demonstrated both by the replacement of the wild-type marR by marR ΔA1821 in isolate EP1 and by complementation with the wild-type marR in trans in isolate EP2. In isolate EP2 complemented with wild-type marR, susceptibility to chloramphenicol was restored completely, whereas susceptibility to CIP was restored only incompletely. Northern blotting demonstrated increased expression of marA and acrAB but not of soxS in isolate EP2 compared to EP1. In conclusion, the deletion of A1821 in marR in the clinical isolate EP2 caused an increase in the MICs of CIP and unrelated antibiotics. Presumably, the C-terminal part of MarR is necessary for proper repressor function.
PMCID: PMC89976  PMID: 10858345
23.  Escherichia coli mar and acrAB Mutants Display No Tolerance to Simple Alcohols 
The inducible Mar phenotype of Escherichia coli is associated with increased tolerance to multiple hydrophobic antibiotics as well as some highly hydrophobic organic solvents such as cyclohexane, mediated mainly through the AcrAB/TolC efflux system. The influence of water miscible alcohols ethanol and 1-propanol on a Mar constitutive mutant and a mar deletion mutant of E. coli K-12, as well as the corresponding strains carrying the additional acrAB deletion, was investigated. In contrast to hydrophobic solvents, all strains were killed in exponential phase by 1-propanol and ethanol at rates comparable to the parent strain. Thus, the Mar phenotype does not protect E. coli from killing by these more polar solvents. Surprisingly, AcrAB does not contribute to an increased alcohol tolerance. In addition, sodium salicylate, at concentrations known to induce the mar operon, was unable to increase 1-propanol or ethanol tolerance. Rather, the toxicity of both solvents was increased in the presence of sodium salicylate. Collectively, the results imply that the resilience of E. coli to water miscible alcohols, in contrast to more hydrophobic solvents, does not depend upon the AcrAB/TolC efflux system, and suggests a lower limit for substrate molecular size and functionality. Implications for the application of microbiological systems in environments containing high contents of water miscible organic solvents, e.g., phage display screening, are discussed.
PMCID: PMC2871122  PMID: 20480026
solvent tolerance; salicylate; ethanol; 1-propanol; mar regulon; hydrophobicity; solvent
24.  SoxRS-Regulated Expression and Genetic Analysis of the yggX Gene of Escherichia coli 
Journal of Bacteriology  2003;185(22):6624-6632.
Genomic studies with bacteria have identified redox-responsive genes without known roles in counteracting oxidative damage. Previous transcriptional profiling showed that expression of one such gene, yggX, was activated by superoxide stress in Escherichia coli. Here we show that this activation could be mimicked by artificial expression of the regulatory protein SoxS. Northern analysis confirmed the transcriptional activation of yggX by oxidative stress or SoxS expression but not in response to the related MarA or Rob proteins. Northern analysis showed that mltC, which codes for a peptidoglycan hydrolase and is positioned immediately downstream of yggX, was also regulated by oxidative stress or ectopic expression of SoxS. Purified SoxS protein bound to the predicted yggX promoter region, between positions 223 and 163 upstream from the yggX translational start site. Within this region, a 20-bp sequence was found to be necessary for oxidative stress-mediated activation of yggX transcription. A yggX deletion strain was hypersensitive to the redox-cycling agent paraquat, and a plasmid expressing YggX complemented the sensitivity of the deletion strain. Under exposure to paraquat, the yggX deletion strain showed a deficiency in aconitase activity compared to the isogenic wild-type strain, while expression of YggX from a multicopy plasmid increased the aconitase levels above those of the wild-type strain. These results demonstrate the direct regulation of the yggX gene by the redox-sensing SoxRS system and provide further evidence for the involvement of yggX in protection of iron-sulfur proteins against oxidative damage.
PMCID: PMC262090  PMID: 14594836
25.  ramR Mutations Involved in Efflux-Mediated Multidrug Resistance in Salmonella enterica Serovar Typhimurium▿  
In the sequenced genome of Salmonella enterica serovar Typhimurium strain LT2, an open reading frame (STM0580) coding for a putative regulatory protein of the TetR family is found upstream of the ramA gene. Overexpression of ramA results in increased expression of the AcrAB efflux pump and, consequently, multidrug resistance (MDR) in several bacterial species. The inactivation of the putative regulatory protein gene upstream of ramA in a susceptible serovar Typhimurium strain resulted in an MDR phenotype with fourfold increases in the MICs of unrelated antibiotics, such as quinolones/fluoroquinolones, phenicols, and tetracycline. The inactivation of this gene also resulted in a fourfold increase in the expression of ramA and a fourfold increase in the expression of the AcrAB efflux pump. These results indicated that the gene encodes a local repressor of ramA and was thus named ramR. In contrast, the inactivation of marR, marA, soxR, and soxS did not affect the susceptibilities of the strain. In quinolone- or fluoroquinolone-resistant strains of serovar Typhimurium overexpressing AcrAB, several point mutations which resulted in amino acid changes or an in-frame shift were identified in ramR; in addition, mutations interrupting ramR with an IS1 element were identified in high-level fluoroquinolone-resistant serovar Typhimurium DT204 strains. One serovar Typhimurium DT104 isolate had a 2-nucleotide deletion in the putative RamR binding site found upstream of ramA. These mutations were confirmed to play a role in the MDR phenotype by complementing the isolates with an intact ramR gene or by inactivating their respective ramA gene. No mutations in the mar or sox region were found in the strains studied. In conclusion, mutations in ramR appear to play a major role in the upregulation of RamA and AcrAB and, consequently, in the efflux-mediated MDR phenotype of serovar Typhimurium.
PMCID: PMC2443889  PMID: 18443112

Results 1-25 (577183)