Search tips
Search criteria

Results 1-25 (1411127)

Clipboard (0)

Related Articles

1.  Gene–gene interaction in folate-related genes and risk of neural tube defects in a UK population 
Journal of Medical Genetics  2004;41(4):256-260.
Objective: To investigate the contribution of polymorphic variation in genes involved in the folate-dependent homocysteine pathway in the aetiology of neural tube defects (NTD).
Design: Case-control association study.
Subjects: A total of 530 individuals from families affected by NTD, 645 maternal controls, and 602 healthy newborn controls from the northern UK.
Main outcome measures: Seven polymorphisms in six genes coding for proteins in the folate-dependent homocysteine pathway (MTHFR 677C→T, MTHFR 1298A→C, MTRR 66A→G, SHMT 1420C→T, CßS 844ins68, GCPII 1561C→T, RFC-1 80G→A). The impact of each polymorphism and the effect of gene–gene interactions (epistasis) upon risk of NTD were assessed using logistic regression analysis.
Results: The MTHFR 677C→T polymorphism was shown to represent a risk factor in NTD cases (CC v CT+TT odds ratio (OR) 2.03 [95% confidence interval (CI) 1.09, 3.79] p = 0.025) and the MTRR 66A→G polymorphism was shown to exert a protective effect in NTD cases (AA v AG+GG OR 0.31 [95% CI 0.10, 0.94] p = 0.04). When statistical tests for interaction were conducted, three genotype combinations in cases (MTRR/GCPII; MTHFR 677/CßS; MTHFR 677/MTRR) and one combination in case mothers (CßS/RFC-1) were shown to elevate NTD risk. Maternal–fetal interaction was also detected when offspring carried the MTHFR 677C→T variant and mothers carried the MTRR 66A→G variant, resulting in a significantly elevated risk of NTD.
Conclusion: Both independent genetic effects and gene–gene interaction were observed in relation to NTD risk. Multi-locus rather than single locus analysis might be preferable to gain an accurate assessment of genetic susceptibility to NTD.
PMCID: PMC1735724  PMID: 15060097
2.  Association of the Maternal MTHFR C677T Polymorphism with Susceptibility to Neural Tube Defects in Offsprings: Evidence from 25 Case-Control Studies 
PLoS ONE  2012;7(10):e41689.
Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme in folate metabolism and is involved in DNA methylation, DNA synthesis, and DNA repair. In addition, it is a possible risk factor in neural tube defects (NTDs). The association of the C677T polymorphism in the MTHFR gene and NTD susceptibility has been widely demonstrated, but the results remain inconclusive. In this study, we performed a meta-analysis with 2429 cases and 3570 controls to investigate the effect of the MTHFR C677T polymorphism on NTDs.
An electronic search of PubMed and Embase database for papers on the MTHFR C677T polymorphism and NTD risk was performed. All data were analysed with STATA (version 11). Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association. Sensitivity analysis, test of heterogeneity, cumulative meta-analysis, and assessment of bias were performed in our meta-analysis.
A significant association between the MTHFR C677T polymorphism and NTD susceptibility was revealed in our meta-analysis ( TT versus CC: OR  = 2.022, 95% CI: 1.508, 2.712; CT+TT versus CC: OR  = 1.303, 95% CI: 1.089, 1.558; TT versus CC+CT: OR  = 1.716, 95% CI: 1.448, 2.033; 2TT+CT versus 2CC+CT: OR  = 1.330, 95% CI: 1.160, 1.525). Moreover, an increased NTD risk was found after stratification of the MTHFR C677T variant data by ethnicity and source of controls.
The results suggested the maternal MTHFR C677T polymorphism is a genetic risk factor for NTDs. Further functional studies to investigate folate-related gene polymorphisms, periconceptional multivitamin supplements, complex interactions, and the development of NTDs are warranted.
PMCID: PMC3463537  PMID: 23056169
3.  Polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and susceptibility to pediatric acute lymphoblastic leukemia in a German study population 
BMC Medical Genetics  2005;6:23.
Methylenetetrahydrofolate reductase (MTHFR) has a major impact on the regulation of the folic acid pathway due to conversion of 5,10-methylenetetrahydrofolate (methylene-THF) to 5-methyl-THF. Two common polymorphisms (677C>T and 1298A>C) in the gene coding for MTHFR have been shown to reduce MTHFR enzyme activity and were associated with the susceptibility to different disorders, including vascular disease, neural tube defects and lymphoid malignancies. Studies on the role of these polymorphisms in the susceptibility to acute lymphoblastic leukemia (ALL) led to discrepant results.
We retrospectively evaluated the association of the MTHFR 677C>T and 1298A>C polymorphisms with pediatric ALL by genotyping a study sample of 443 ALL patients consecutively enrolled onto the German multicenter trial ALL-BFM 2000 and 379 healthy controls. We calculated odds ratios of MTHFR genotypes based on the MTHFR 677C>T and 1298A>C polymorphisms to examine if one or both of these polymorphisms are associated with pediatric ALL.
No significant associations between specific MTHFR variants or combinations of variants and risk of ALL were observed neither in the total patient group nor in analyses stratified by gender, age at diagnosis, DNA index, immunophenotype, or TEL/AML1 rearrangement.
Our findings suggest that the MTHFR 677C>T and 1298A>C gene variants do not have a major influence on the susceptibility to pediatric ALL in the German population.
PMCID: PMC1164414  PMID: 15921520
4.  Genetic Variants in the Folate Pathway and the Risk of Neural Tube Defects: A Meta-Analysis of the Published Literature 
PLoS ONE  2013;8(4):e59570.
Neural Tube Defects (NTDs) are among the most prevalent and most severe congenital malformations worldwide. Polymorphisms in key genes involving the folate pathway have been reported to be associated with the risk of NTDs. However, the results from these published studies are conflicting. We surveyed the literature (1996–2011) and performed a comprehensive meta-analysis to provide empirical evidence on the association.
Methods and Findings
We investigated the effects of 5 genetic variants from 47 study populations, for a total of 85 case-control comparisons MTHFR C677T (42 studies; 4374 cases, 7232 controls), MTHFR A1298C (22 studies; 2602 cases, 4070 controls), MTR A2756G (9 studies; 843 cases, 1006 controls), MTRR A66G (8 studies; 703 cases, 1572 controls), and RFC-1 A80G (4 studies; 1107 cases, 1585 controls). We found a convincing evidence of dominant effects of MTHFR C677T (OR 1.23; 95%CI 1.07–1.42) and suggestive evidence of RFC-1 A80G (OR 1.55; 95%CI 1.24–1.92). However, we found no significant effects of MTHFR A1298C, MTR A2756G, MTRR A66G in risk of NTDs in dominant, recessive or in allelic models.
Our meta-analysis strongly suggested a significant association of the variant MTHFR C677T and a suggestive association of RFC-1 A80G with increased risk of NTDs. However, other variants involved in folate pathway do not demonstrate any evidence for a significant marginal association on susceptibility to NTDs.
PMCID: PMC3617174  PMID: 23593147
5.  Methylenetetrahydrofolate reductase C677T polymorphism in patients with lung cancer in a Korean population 
BMC Medical Genetics  2011;12:28.
This study was designed to investigate an association between methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and the risk of lung cancer in a Korean population.
We conducted a large-scale, case-control study involving 3938 patients with newly diagnosed lung cancer and 1700 healthy controls. Genotyping was performed with peripheral blood DNA for MTHFR C677T polymorphisms. Statistical significance was estimated by logistic regression analysis.
The MTHFR C677T frequencies of CC, CT, and TT genotypes were 34.5%, 48.5%, and 17% among lung cancer patients, and 31.8%, 50.7%, and 17.5% in the controls, respectively. The MTHFR 677CT and TT genotype showed a weak protection against lung cancer compared with the homozygous CC genotype, although the results did not reach statistical significance. The age- and gender-adjusted odds ratio (OR) of overall lung cancer was 0.90 (95% confidence interval (CI), 0.77-1.04) for MTHFR 677 CT and 0.88 (95% CI, 0.71-1.07) for MTHFR 677TT. However, after stratification analysis by histological type, the MTHFR 677CT genotype showed a significantly decreased risk for squamous cell carcinoma (age- and gender-adjusted OR, 0.78; 95% CI, 0.64-0.96). The combination of 677 TT homozygous with 677 CT heterozygous also appeared to have a protection effect on the risk of squamous cell carcinoma. We observed no significant interaction between the MTHFR C677T polymorphism and age and gender or smoking habit.
This is the first reported study focusing on the association between MTHFR C677T polymorphisms and the risk of lung cancer in a Korean population. The T allele was found to provide a weak protective association with lung squamous cell carcinoma.
PMCID: PMC3048494  PMID: 21342495
6.  5,10-Methylenetetrahydrofolate Reductase 677 and 1298 Polymorphisms, Folate Intake, and Microsatellite Instability in Colon Cancer 
The 5,10-methylenetetrahydrofolate reductase (MTHFR) gene plays a critical role in folate metabolism. Studies on the association between MTHFR polymorphisms and length changes in short tandem repeat DNA sequences [microsatellite instability (MSI)] are inconsistent. Using data from colon cancer cases (n = 503) enrolled as part of an existing population-based case-control study, we investigated the association between MTHFR 677 and MTHFR 1298 polymorphisms and MSI. We also examined whether the association was modified by folate intake. Participants were case subjects enrolled as part of the North Carolina Colon Cancer Study. Consenting cases provided information about lifestyle and diet during in-home interviews as well as blood specimens and permission to obtain tumor blocks. DNA from normal and tumor tissue sections was used to determine microsatellite status (MSI). Tumors were classified as MSI if two or more microsatellite markers (BAT25, BAT26, D5S346, D2S123, and D17S250) had changes in the number of DNA sequence repeats compared with matched nontumor tissue. Tumors with one positive marker (MSI-low) or no positive markers (microsatellite stable) were grouped together as non-MSI tumors (microsatellite stable). MTHFR 677 and MTHFR 1298 genotypes were determined by real-time PCR using the 5′ exonuclease (Taqman) assay. Logistic regression was used to calculate odds ratio (OR) and 95% confidence intervals (95% CI). MSI was more common in proximal tumors (OR, 3.8; 95% CI, 1.7–8.4) and in current smokers (OR, 4.0; 95% CI, 1.6–9.7). Compared with MTHFR 677 CC referent, MTHFR 677 CT/TT genotype was inversely associated with MSI among White cases (OR, 0.36; 95% CI, 0.16–0.81) but not significant among African Americans. Although not statistically significant, a similar inverse association was observed between MTHFR 677 CT/TT genotype and MSI among the entire case subjects (OR, 0.54; 95% CI, 0.26–1.10). Among those with adequate folate intake (>400 μg total folate), we found strong inverse associations between combined MTHFR genotypes and MSI (677 CC + 1298 AC/CC, OR, 0.09; 95% CI, 0.01–0.59; 677 CT/TT + 1298 AA, OR, 0.13; 95% CI, 0.02–0.85) compared with the combined wild-type genotypes (677 CC + 1298 AA). This protective effect was not evident among those with low folate (<400 μg total folate) intake. Our results suggest that MTHFR variant genotypes are associated with reduced risk of MSI tumors under conditions of adequate folate intake, although the data are imprecise due to small numbers. These results indicate that the relationship between MTHFR genotypes and MSI is influenced by folate status.
PMCID: PMC4540476  PMID: 16103455
7.  Association of MTHFR C677T polymorphism with schizophrenia and its effect on episodic memory and gray matter density in patients 
Behavioural brain research  2013;243:146-152.
Growing evidence suggests that the methylenetetrahydrofolate reductase (MTHFR) may play a role in the pathogenesis of schizophrenia. Recent studies suggested that the MTHFR 677T, as a risk allele, has an impact on brain activation and memory function in schizophrenia patients. To confirm further the association between this functional polymorphism and schizophrenia, we detected genotypes of MTHFR C677T polymorphism in 1,002 schizophrenic patients and 1,036 controls of Chinese Han population, by using direct DNA sequencing method. To explore further effects of MTHFR C677T polymorphism on memory and brain function in schizophrenia, 33 schizophrenia patients and 29 healthy participants were selected from above samples to be assessed with MRI scanning and episodic memory (EM) examination. The case - control association study results showed that the MTHFR C677T was associated with schizophrenia (χ2 = 14.11, P = 1.74 × 10−4, OR = 0.79; 95% CI = 0.70 – 0.89). We also found that the MTHFR 677T allele had a load-dependent effect on EM in schizophrenic patients, but not in healthy control participants. Further analysis on gray matter density (GMD) revealed significant diagnostic effects in bilateral frontal cortices, bilateral insula, left medial temporal cortex and bilateral occipital cortices, effects of MTHFR genotype in the right insula, right inferior frontal gyrus, right rolandic opercula, right parahippocampal gyrus and right medial temporal pole, and effects of genotype-diagnosis interaction in the right temporal gyrus. Our findings suggested that the MTHFR 677T allele might have effect on risk of schizophrenia, memory impairment and GMD changes in patients.
PMCID: PMC3755007  PMID: 23318463
schizophrenia; methylenetetrahydrofolate reductase (MTHFR); association study; gray matter density (GMD); episodic memory (EM)
8.  Evidence of Paternal N5, N10 - Methylenetetrahydrofolate Reductase (MTHFR) C677T Gene Polymorphism in Couples with Recurrent Spontaneous Abortions (RSAs) in Kolar District- A South West of India 
Introduction: Recurrent spontaneous abortion (RSA) is a multifactorial clinical obstetrics complication commonly occurring in pregnancy. Many research studies have noted the mutations such as C677T in N5, N10 - Methylenetetrahydrofolate reductase (MTHFR)gene which is regarded as RSA risk factor. This study was carried out to determine the occurrence of frequency of C677T of the MTHFR gene mutations with RSA. Aim: The purpose of present study is to determine the frequency of MTHFR C677T polymorphisms in couples with recurrent pregnancy loss and the impact of paternal polymorphisms of MTHFR C677T in recurrent pregnancy loss in population of couples living in Kolar district of Karnataka with RSA.
Design: A total of 15 couples with a history of two or more unexplained RSA were enrolled as subjects in the study and a total of 15 couples with normal reproductive history, having two or more children and no history of miscarriages were enrolled as controls.
Materials and Methods: DNA extraction from samples case and control group couples and its quantification by Agarose gel electrophoresis, assessment of DNA purity, MTHFR C 677T gene mutation detection by PCR-RFLP method.
Statistical analysis: Carried out by web based online SPSS tool.
Results: The frequency of C677T genotype showed homozygous wild type CC (80%), heterozygous CT type (13.3%) and homozygous mutation TT type (6.67%) observed in males. Similarly from female’s homozygous wild type CC (86.6%), heterozygous type (13.3%), and homozygous type mutations TT (0%) was recorded. In couple control groups, we observed homozygous wild type CC (86.6%), heterozygous CT type (13.3%) and homozygous type mutations TT type (0%).
Conclusion: We noticed a high frequency of MTHFR specifically T allele associated with paternal side.Therefore, the present study indicated the impact of paternal gene polymorphism of MTHFR C677T on screening in couples with recurrent pregnancy loss.
PMCID: PMC4378727  PMID: 25859445
MTHFR C677T; MTHFR A1298C; Paternal polymorphism; RSA couples; T-allele
9.  Methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms and the risk of primary Hepatocellular Carcinoma (HCC) in a Chinese population 
Cancer causes & control : CCC  2007;18(6):665-675.
Methylenetetrahydrofolate reductase (MTHFR), which is expressed in the liver, may be involved in both DNA methylation and DNA synthesis. It is also indicated as a potential risk factor of liver cancer in patients with chronic liver disease. To date, no study has been conducted on MTHFR and hepatocellular carcinoma (HCC) using a population-based design. The objective of this study was to evaluate the effects of polymorphisms of the MTHFR gene on the risk of primary liver cancer and their possible effect modifications on various environmental risk factors.
A population-based case–control study was conducted in Taixing, China. MTHFR C677T and A1298C were assayed by PCR-RFLP techniques.
The frequency of MTHFR 677 C/C wild homo-zygotes genotype was 25.8% in cases, which was lower than that in controls (34.5%). The adjusted odds ratios (ORs) for the MTHFR 677 C/T and T/T genotype were 1.66(95% CI: 1.06–2.61), 1.21(95% CI: 0.65–2.28) respectively when compared with the MTHFR 677 C/C genotype. Subjects carrying any T genotype have the increased risk of 1.55(95% CI: 1.01–2.40) for development of primary hepatocellular carcinoma. A high degree of linkage disequilibrium was observed between the C677T and A1298C polymorphisms, with the D′ of 0.887 and p < 0.01. The MTHFR 677 any T genotype was suggested to have potentially more than multiplicative interactions with raw water drinking with p-value for adjusted interaction of 0.03.
We observed that the MTHFR 677 C/T genotype was associated with an increased risk of primary liver cancer in a Chinese population. The polymorphism of MTHFR 677 might modify the effects of raw water drinking on the risk of primary hepatocellular carcinoma.
PMCID: PMC4165489  PMID: 17503006
MTHFR (5, 10-methylenetetralydrofolate reductase); Genetic polymorphism; Primary liver cancer; Case–control study; Effect modification
10.  Influence of Combined Methionine Synthase (MTR 2756A > G) and Methylenetetrahydrofolate Reductase (MTHFR 677C > T) Polymorphisms to Plasma Homocysteine Levels in Korean Patients with Ischemic Stroke 
Yonsei Medical Journal  2007;48(2):201-209.
Methionine synthase (MTR) and 5,10-methylenetetrahydrofolate reductase (MTHFR) are the main regulatory enzymes for homocysteine metabolism. The present case-control study was conducted to determine whether there is an association between the MTR 2756A > G or MTHFR 677C > T polymorphism and plasma homocysteine concentration in Korean subjects with ischemic stroke.
Materials and Methods
DNA samples of 237 patients who had an ischemic stroke and 223 age and sex-matched controls were studied. MTR 2756A > G and MTHFR 677C > T genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).
Frequencies of mutant alleles for MTR and MTHFR polymorphisms were not significantly different between the controls and cases. The patient group, however, had significantly higher homocysteine concentrations of the MTR 2756AA and MTHFR 677TT genotypes than the control group (p = 0.04 for MTR, p = 0.01 for MTHFR). The combined MTR 2756AA and MTHFR 677TT genotype (p = 0.04) and the homocysteine concentrations of the patient group were also higher than those of the controls. In addition, the genotype distribution was significant in the MTHFR 677TT genotype (p = 0.008) and combined MTR 2756AA and MTHFR 677TT genotype (p = 0.03), which divided the groups into the top 20% and bottom 20% based on their homocysteine levels.
The results of the present study demonstrate that the MTR 2756A > G and MTHFR 677C > T polymorphisms interact with elevated total homocysteine (tHcy) levels, leading to an increased risk of ischemic stroke.
PMCID: PMC2628129  PMID: 17461517
Methylenetetrahydrofolate reductase (MTHFR); methionine synthase (MTR); ischemic stroke; hyperhomocysteinemia; polymorphism
11.  MTHFR Genetic Polymorphism As a Risk Factor in Egyptian Mothers with Down Syndrome Children 
Disease markers  2007;24(1):19-26.
Recent reports linking Down syndrome (DS) to maternal polymorphisms at the methylenetetrahydrofolate reductase (MTHFR) gene locus have generated great interest among investigators in the field. The present study aimed at evaluation of MTHFR 677C/T and 1298A/C polymorphisms in the MTHFR gene as maternal risk factors for DS. Forty two mothers of proven DS outcomes and forty eight control mothers with normal offspring were included. Complete medical and nutritional histories for all mothers were taken with special emphasis on folate intake. Folic acid intake from food or vitamin supplements was significantly low (below the Recommended Daily Allowance) in the group of case mothers compared to control mothers. Frequencies of MTHFR 677T and MTHFR 1298C alleles were significantly higher among case mothers (32.1% and 57.1%, respectively) compared to control mothers (18.7% and 32.3%, respectively). Heterozygous and homozygous genotype frequencies of MTHFR at position 677 (CT and TT) were higher among case mothers than controls (40.5% versus 25% and 11.9% versus 6.2%, respectively) with an odds ratio of 2.34 (95% confidence interval [CI] 0.93–5.89) and 2.75 (95% CI 0.95–12.77), respectively. Interestingly, the homozygous genotype frequency (CC) at position 1298 was significantly higher in case mothers than in controls (33.3% versus 2.1% respectively) with an odds ratio of 31.5 (95% CI 3.51 to 282.33) indicating that this polymorphism may have more genetic impact than 677 polymorphism. Heterozygous genotype (AC) did not show significant difference between the two groups. We here report on the first pilot study of the possible genetic association between DS and MTHFR 1298A/C genotypes among Egyptians. Further extended studies are recommended to confirm the present work.
PMCID: PMC3850629  PMID: 18057532
Methylenetetrahydrofolate reductase (MTHFR); Down syndrome; polymorphism; MTHFR 677C/T polymorphism; MTHFR 1298A/C polymorphism; Egyptian
12.  Homocysteine and Coronary Heart Disease: Meta-analysis of MTHFR Case-Control Studies, Avoiding Publication Bias 
PLoS Medicine  2012;9(2):e1001177.
Robert Clarke and colleagues conduct a meta-analysis of unpublished datasets to examine the causal relationship between elevation of homocysteine levels in the blood and the risk of coronary heart disease. Their data suggest that an increase in homocysteine levels is not likely to result in an increase in risk of coronary heart disease.
Moderately elevated blood levels of homocysteine are weakly correlated with coronary heart disease (CHD) risk, but causality remains uncertain. When folate levels are low, the TT genotype of the common C677T polymorphism (rs1801133) of the methylene tetrahydrofolate reductase gene (MTHFR) appreciably increases homocysteine levels, so “Mendelian randomization” studies using this variant as an instrumental variable could help test causality.
Methods and Findings
Nineteen unpublished datasets were obtained (total 48,175 CHD cases and 67,961 controls) in which multiple genetic variants had been measured, including MTHFR C677T. These datasets did not include measurements of blood homocysteine, but homocysteine levels would be expected to be about 20% higher with TT than with CC genotype in the populations studied. In meta-analyses of these unpublished datasets, the case-control CHD odds ratio (OR) and 95% CI comparing TT versus CC homozygotes was 1.02 (0.98–1.07; p = 0.28) overall, and 1.01 (0.95–1.07) in unsupplemented low-folate populations. By contrast, in a slightly updated meta-analysis of the 86 published studies (28,617 CHD cases and 41,857 controls), the OR was 1.15 (1.09–1.21), significantly discrepant (p = 0.001) with the OR in the unpublished datasets. Within the meta-analysis of published studies, the OR was 1.12 (1.04–1.21) in the 14 larger studies (those with variance of log OR<0.05; total 13,119 cases) and 1.18 (1.09–1.28) in the 72 smaller ones (total 15,498 cases).
The CI for the overall result from large unpublished datasets shows lifelong moderate homocysteine elevation has little or no effect on CHD. The discrepant overall result from previously published studies reflects publication bias or methodological problems.
Please see later in the article for the Editors' Summary
Editors' Summary
Coronary heart disease (CHD) is the leading cause of death among adults in developed countries. With age, fatty deposits (atherosclerotic plaques) coat the walls of the coronary arteries, the blood vessels that supply the heart with oxygen and nutrients. The resultant restriction of the heart's blood supply causes shortness of breath, angina (chest pains that are usually relieved by rest), and sometimes fatal heart attacks. Many established risk factors for CHD, including smoking, physical inactivity, being overweight, and eating a fat-rich diet, can be modified by lifestyle changes. Another possible modifiable risk factor for CHD is a high blood level of the amino acid homocysteine. Methylene tetrahydofolate reductase, which is encoded by the MTHFR gene, uses folate to break down and remove homocysteine so fortification of cereals with folate can reduce population homocysteine blood levels. Pooled results from prospective observational studies that have looked for an association between homocysteine levels and later development of CHD suggest that the reduction in homocysteine levels that can be achieved by folate supplementation is associated with an 11% lower CHD risk.
Why Was This Study Done?
Prospective observational studies cannot prove that high homocysteine levels cause CHD because of confounding, the potential presence of other unknown shared characteristics that really cause CHD. However, an approach called “Mendelian randomization” can test whether high blood homocysteine causes CHD. A common genetic variant of the MTHFR gene—the C677T polymorphism—reduces MTHFR efficiency so TT homozygotes (individuals in whom both copies of the MTHFR gene have the nucleotide thymine at position 677; the human genome contains two copies of most genes) have 25% higher blood homocysteine levels than CC homozygotes. In meta-analyses (statistical pooling of the results of several studies) of published Mendelian randomized studies, TT homozygotes have a higher CHD risk than CC homozygotes. Because gene variants are inherited randomly, they are not subject to confounding, so this result suggests that high blood homocysteine causes CHD. But what if only Mendelian randomization studies that found an association have been published? Such publication bias would affect this aggregate result. Here, the researchers investigate the association of the MTHFR C677T polymorphism with CHD in unpublished datasets that have analyzed this polymorphism incidentally during other genetic studies.
What Did the Researchers Do and Find?
The researchers obtained 19 unpublished datasets that contained data on the MTHFR C677T polymorphism in thousands of people with and without CHD. Meta-analysis of these datasets indicates that the excess CHD risk in TT homozygotes compared to CC homozygotes was 2% (much lower than predicted from the prospective observational studies), a nonsignificant difference (that is, it could have occurred by chance). When the probable folate status of the study populations (based on when national folic acid fortification legislation came into effect) was taken into account, there was still no evidence that TT homozygotes had an excess CHD risk. By contrast, in an updated meta-analysis of 86 published studies of the association of the polymorphism with CHD, the excess CHD risk in TT homozygotes compared to CC homozygotes was 15%. Finally, in a meta-analysis of randomized trials on the use of vitamin B supplements for homocysteine reduction, folate supplementation had no significant effect on the 5-year incidence of CHD.
What Do These Findings Mean?
These analyses of unpublished datasets are consistent with lifelong moderate elevation of homocysteine levels having no significant effect on CHD risk. In other words, these findings indicate that circulating homocysteine levels within the normal range are not causally related to CHD risk. The meta-analysis of the randomized trials of folate supplementation also supports this conclusion. So why is there a discrepancy between these findings and those of meta-analyses of published Mendelian randomization studies? The discrepancy is too large to be dismissed as a chance finding, suggest the researchers, but could be the result of publication bias—some studies might have been prioritized for publication because of the positive nature of their results whereas the unpublished datasets used in this study would not have been affected by any failure to publish null results. Overall, these findings reveal a serious example of publication bias and argue against the use of folate supplements as a means of reducing CHD risk.
Additional Information
Please access these Web sites via the online version of this summary at
The American Heart Association provides information about CHD and tips on keeping the heart healthy; it also provides information on homocysteine, folic acid, and CHD, general information on supplements and heart health, and personal stories about CHD
The UK National Health Service Choices website provides information about CHD, including personal stories about CHD
Information is available from the British Heart Foundation on heart disease and keeping the heart healthy
The US National Heart Lung and Blood Institute also provides information on CHD (in English and Spanish)
MedlinePlus provides links to many other sources of information on CHD (in English and Spanish)
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC3283559  PMID: 22363213
13.  The Importance of Homozygous Polymorphisms of Methylenetetrahydrofolate Reductase Gene in Romanian Patients with Idiopathic Venous Thromboembolism 
Balkan medical journal  2013;30(2):197-203.
Methylenetetrahydrofolate reductase (MTHFR) polymorphisms have recently raised the interest as a possible thrombophilic factors.
We aimed to assess the frequency of the methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms in idiopathic venous thromboembolism (VTE) in a Romanian population and the associated risk of VTE.
Study Design:
We performed a case-control transversal study including 90 patients diagnosed with VTE and 75 sex- and age-matched controls.
MTHFR C677T and A1298C polymorphisms were detected using PCR-RFLP method.
The homozygous MTHFR 677TT genotype, present in 18.8% of patients with VTE versus 6.6% of controls, was significantly associated with VTE (p= 0.021, OR= 3.26, 95%CI (1.141–9.313)). The heterozygous MTHFR A1298C genotype, presenting the highest prevalence in the VTE group (34.4%) as well as in controls (37.3%), was not associated with VTE (p=0.7). No associations were found for heterozygous MTHFR C677T (with a frequency of 32.2% in VTE and 37.3% in controls, p=0.492), respective homozygous MTHFR A1298C genotype (with a frequency of 1.1% in VTE and 2.6% in controls, p=0.456).
Among MTHFR polymorphisms, only homozygosity for MTHFR 677TT may be considered a risk factor for VTE; the MTHFR A1298C polymorphism is not significantly associated with an increased risk of VTE.
PMCID: PMC4115973  PMID: 25207100
Methylenetetrahydrofolate reductase C677T polymorphism; methylenetetrahydrofolate reductase A1298C polymorphism; venous thromboembolism; thrombophilia
14.  MTHFR (C677T) polymorphism and PR (PROGINS) mutation as genetic factors for preterm delivery, fetal death and low birth weight: A Northeast Indian population based study 
Meta Gene  2015;3:31-42.
Preterm delivery (PTD) is one of the most significant contributors to neonatal mortality, morbidity, and long-term adverse consequences for health; with highest prevalence reported from India. The incidence of PTD is alarmingly very high in Northeast India. The objective of the present study is to evaluate the associative role of MTHFR gene polymorphism and progesterone receptor (PR) gene mutation (PROGINS) in susceptibility to PTD, negative pregnancy outcome and low birth weights (LBW) in Northeast Indian population.
A total of 209 PTD cases {extreme preterm (< 28 weeks of gestation, n = 22), very preterm (28–32 weeks of gestation, n = 43) and moderate preterm (32–37 weeks of gestation, n = 144) and 194 term delivery cases were studied for MTHFR C677T polymorphism and PR (PROGINS) gene mutation. Statistical analysis was performed using SPSS software.
Distribution of MTHFR and PR mutation was higher in PTD cases. Presence of MTHFR C677T polymorphism was significantly associated and resulted in the increased risk of PTD (p < 0.001), negative pregnancy outcome (p < 0.001) and LBW (p = 0.001); more significantly in extreme and very preterm cases. Presence of PR mutation (PROGINS) also resulted in increased risk of PTD and negative pregnancy outcome; but importantly was found to increase the risk of LBW significantly in case of very preterm (p < 0.001) and moderately preterm (p < 0.001) delivery cases.
Both MTHFR C677T polymorphism and PR (PROGINS) mutation are evident genetic risk factors associated with the susceptibility of PTD, negative pregnancy outcome and LBW. MTHFR C677T may be used as a prognostic marker to stratify subpopulation of pregnancy cases predisposed to PTD; thereby controlling the risks associated with PTD.
•This is the first study involving the analysis of genetic risk factors associated with preterm delivery in Northeast India.•MTHFR C677T polymorphism and PR (PROGINS) mutation in predisposition to preterm delivery, negative pregnancy outcome and low birth weight.•MTHFR C677T polymorphism may be used as a prognostic marker to stratify subpopulation of pregnancy cases predisposed to PTD; thereby controlling the risks associated with PTD.
PMCID: PMC4329826  PMID: 25709895
Preterm delivery; Negative pregnancy outcome; Low birth weight; MTHFR C677T polymorphism; PR (PROGINS) mutation; Northeast India
15.  Association between Selected Folate Pathway Polymorphisms and Nonsyndromic Limb Reduction Defects: A Case-Parental Analysis 
Inadequate folate status due to either genetic variation or nutritional deficiencies has been associated with an increased risk of congenital malformations including orofacial clefting, limb, cardiac and neural tube defects. Few epidemiologic studies have examined the association between limb reduction defects (LRDs) and folate-related genetic polymorphisms other than MTHFR 677C→T. We conducted a case–parental analysis of 148 families who participated in the National Birth Defects Prevention Study (NBDPS) to examine the association between nonsyndromic transverse and longitudinal LRDs with five single nucleotide polymorphisms (SNPs) in genes encoding for enzymes in folate and methionine pathways. Log-linear Poisson regression, adapted for analysis of case–parental data, assuming an additive genetic model was used to estimate genetic relative risks and 95% confidence intervals for the association between LRDs and each SNP. Among women who did not take multivitamin supplements, the MTHFR 677T variant acts via the offspring’s genome to increase the risk of LRDs. No association between LRDs and any fetal SNP was found among women who used multivitamin supplements. These results suggest the possibility that initiating folic acid supplementation prior to pregnancy may reduce the risk of having a LRD-affected pregnancy, especially in women whose offspring inherit one or two copies of the MTHFR 677T variant.
PMCID: PMC3050483  PMID: 21281325
Folic acid; homocysteine; MTHFR; polymorphisms; case-parental analysis
16.  Thermolabile Methylenetetrahydrofolate Reductase C677T Polymorphism and Homocysteine Are Risk Factors for Coronary Artery Disease in Moroccan Population 
Increased plasma total homocysteine (tHcy) levels have been shown to be a risk factor for coronary artery disease (CAD). The common methylenetetrahydrofolate reductase C677T (MTHFR C677T) polymorphism has been reported to be a strong predictor of mild hyperhomocysteinaemia (HHcy). We assessed whether this mutation was associated with increased risk of CAD and plasma levels of tHcy. We also evaluated interactions between this polymorphism, mild elevated tHcy levels and conventional risk factors of CAD. Method. Using PCR-RFLP analysis, we studied the frequency of the C677T genotypes and its effect on CAD and on tHcy concentrations in 400 subjects without and with CAD angiographically confirmed. There were 210 subjects with CAD and 190 subjects without CAD. Results. The frequencies of the C677T genotypes were 53% (59.5% in controls versus 48.1% in cases), 34.8% (32.1 in controls versus 37.1 in cases), and 11.8% (8.4% in controls versus 14.8% in cases), respectively, for 677CC, 677CT, and 677TT. The genotype frequencies were significantly different between case and control groups (P < .05). The 677T allele enhances the risk of CAD associated to HHcy (P < .01). In multivariate analysis models, MTHFR C677T polymorphism effect on CAD was masked by other risk factors. HHcy was only and independently influenced by MTHFR polymorphism and smoking habits, and it is a strong predictor of CAD independently of conventional risk factors. Conclusion. Our data suggest that HHcy is strongly and independently associated to CAD risk increase; and MTHFR C677T polymorphism and smoking habits were the main predictors of tHcy levels. The CAD risk increase is mainly associated with mild HHcy in 677TT, whereas in 677CT and 677CC it is mainly associated with the conventional risk factors.
PMCID: PMC1852902  PMID: 17497026
17.  Functional Inference of Methylenetetrahydrofolate Reductase Gene Polymorphisms on Enzyme Stability as a Potential Risk Factor for Down Syndrome in Croatia 
Disease markers  2010;28(5):293-298.
Understanding the biochemical structure and function of the methylenetetrahydrofolate reductase gene (MTHFR) provides new evidence in elucidating the risk of having a child with Down syndrome (DS) in association with two common MTHFR polymorphisms, C677T and A1298C. The aim of this study was to evaluate the risk for DS according to the presence of MTHFR C677T and A1298C polymorphisms as well as the stability of the enzyme configuration. This study included mothers from Croatia with a liveborn DS child (n = 102) or DS pregnancy (n = 9) and mothers with a healthy child (n = 141). MTHFR C677T and A1298C polymorphisms were assessed by PCR-RFLP. Allele/genotype frequencies differences were determined using χ2 test. Odds ratio and the 95% confidence intervals were calculated to evaluate the effects of different alleles/genotypes. No statistically significant differences were found between the frequencies of allele/genotype or genotype combinations of the MTHFR C677T and A1298C polymorphisms in the case and the control groups. Additionally, the observed frequencies of the stable (677CC/1298AA, 677CC/1298AC, 677CC/1298CC) and unstable (677CT/1298AA, 677CT/1298AC, 677TT/1298AA) enzyme configurations were not significantly different. We found no evidence to support the possibility that MTHFR polymorphisms and the stability of the enzyme configurations were associated with risk of having a child with DS in Croatian population.
PMCID: PMC3833613  PMID: 20592453
Down syndrome; enzyme configuration; MTHFR; polymorphisms
18.  Meta-analysis on MTHFR polymorphism and lung cancer susceptibility in East Asian populations 
Biomedical Reports  2013;1(3):440-446.
Lung cancer is the most frequently occurring type of cancer worldwide and the leading cause of cancer mortality. Environmental and genetic factors play important roles in lung carcinogenesis. The aim of this meta-analysis was to investigate the association between methylenetetrahydrofolate reductase (MTHFR) polymorphism and the risk of lung cancer in East Asian populations. Related articles were identified through searching literature databases, such as PubMed, EMBASE, Web of Science, Chinese Biomedicine and CNKI. The odds ratio (OR) values in those studies were incorporated by meta-analysis to assess lung cancer susceptibility associated with the MTHFR mutation genotype. The MTHFR C677TT genotype exhibited a significantly increased risk of lung cancer compared to the MTHFR 677CC/CT genotype (OR=1.24; 95% CI, 1.01–1.52). No relationship was identified between the other MTHFR C677T genetic models and the risk of lung cancer and there was no significantly increased risk of lung cancer in A1298C genetic models. In a subgroup of hospital-based controls, according to the source of controls, the C677TT genotype exhibited a significantly increased risk of lung cancer, compared to the C677CC genotype (OR=3.01; 95% CI, 1.07–8.46). In the stratified analysis, the study indicated that the MTHFR 677TT genotype was associated with a significant increase in the risk of lung squamous carcinoma (OR=1.53; 95% CI, 1.09–2.14), whereas no association was observed between the MTHFR C677TT genotype and the risk of lung adenocarcinoma. No association was observed between MTHFR C677TT polymorphism and the risk of lung cancer when smoking was considered. In conclusion, the meta-analysis results suggested that MTHFR C677T polymorphisms exhibit a significantly increased risk of lung cancer and that the MTHFR 677TT genotype is associated with a significantly increased risk of lung squamous carcinoma.
PMCID: PMC3917083  PMID: 24648965
lung cancer; methylenetetrahydrofolate reductase; polymorphisms; meta-analysis
19.  Lack of association of methylenetetrahydrofolate reductase 677C>T mutation with coronary artery disease in a Pakistani population 
Pakistanis belong to the South Asian population which has the highest known rate of coronary artery disease. Folic acid deficiency also appears to be highly prevalent in this population. Methylenetetrahydrofolate reductase (MTHFR) 677C>T polymorphism decreases the activity of this enzyme and can be associated with mild to moderate hyperhomocysteinemia in homozygotes, particularly when there is folic acid deficiency, as well as with coronary artery disease. To assess the value of genotyping the MTHFR 677C>T dimorphism, we carried out a case-control study of dimorphism 677C>T for putative association with myocardial infarction (MI) among Pakistani nationals. We investigated a sample population of 622 Pakistanis consisting of 225 controls and 397 patients with clinical diagnosis of acute MI (AMI). MTHFR C677T alleles were determined by assays based on polymerase chain reaction and restriction endonuclease analysis. Frequencies of C alleles were 0.87 among controls and 0.86 among AMI patients. The MTHFR 677C>T dimorphism showed no association with MI (χ2 = 0.25, 1df, P=0.62), serum levels of folate and vitamin B12 and plasma level of vitamin B6. A significant association, however, was found between homozygous 677T genotype and plasma levels of homocysteine. Multivariate analysis of the data showed that in case of log homocysteine, age and MTHFR genotypes were significantly different (P<0.001). In case of B12, smoking and age were found to be statistically significant (P<0.001), while in case of serum folate only smoking was found to be significant (P<0.001). The results indicate that MTHFR 677C>T polymorphism, though associated with homocysteine levels, confers no significant risk of coronary artery disease in the Pakistani population investigated here. We suggest that the higher incidence of AMI in South Asia occurs through mechanisms other than the MTHFR related pathways.
PMCID: PMC2702065  PMID: 19565010
Coronary artery disease; folic acid; homocysteine; methylenetetrahydrofolate reductase; mutation; myocardial infarction; Pakistani population
20.  Analysis of MTHFR and MTRR Gene Polymorphisms in Iranian Ventricular Septal Defect Subjects 
Ventricular septal defect (VSD) is one of the most common types of congenital heart defects (CHD). There are vivid multifactorial causes for VSD in which both genetic and environmental risk factors are consequential in the development of CHD. Methionine synthase reductase (MTRR) and methylenetetrahydrofolate reductase (MTHFR) are two of the key regulatory enzymes involved in the metabolic pathway of homocysteine. Genes involved in homocysteine/folate metabolism may play an important role in CHDs. In this study; we determined the association of A66G and C524T polymorphisms of the MTRR gene and C677T polymorphism of the MTHFR gene in Iranian VSD subjects. A total of 123 children with VSDs and 125 healthy children were included in this study. Genomic DNA was extracted from the buccal cells of all the subjects. The restriction fragment length polymorphism polymerase chain reaction (PCR-RFLP) method was carried out to amplify the A66G and C524T polymorphism of MTRR and C677T polymorphism of MTHFR genes digested with Hinf1, Xho1 and Nde1 enzymes, respectively. The genotype frequencies of CC, CT and TT of MTRR gene among the studied cases were 43.1%, 40.7% and 16.3%, respectively, compared to 52.8%, 43.2% and 4.0%, respectively among the controls. For the MTRR A66G gene polymorphism, the genotypes frequencies of AA, AG and GG among the cases were 33.3%, 43.9% and 22.8%, respectively, while the frequencies were 49.6%, 42.4% and 8.0%, respectively, among control subjects. The frequencies for CC and CT genotypes of the MTHFR gene were 51.2% and 48.8%, respectively, in VSD patients compared to 56.8% and 43.2% respectively, in control subjects. Apart from MTHFR C677T polymorphism, significant differences were noticed (p < 0.05) in C524T and A66G polymorphisms of the MTRR gene between cases and control subjects.
PMCID: PMC3588012  PMID: 23358257
MTHFR; MTRR; polymorphism; congenital heart disease; ventricular septal defect
21.  Methylenetetrahydrofolate reductase polymorphisms and interaction with smoking and alcohol consumption in lung cancer risk: a case-control study in a Japanese population 
BMC Cancer  2011;11:459.
Cigarette smoking is an established risk factor of lung cancer development while the current epidemiological evidence is suggestive of an increased lung cancer risk associated with alcohol consumption. Dietary folate, which is present in a wide range of fresh fruits and vegetables, may be a micronutrient that has a beneficial impact on lung carcinogenesis. Methylenetetrahydrofolate reductase (MTHFR) plays a crucial role in regulating folate metabolism, which affects both DNA synthesis/repair and methylation. We examined if smoking or alcohol consumption modify associations between MTHFR polymorphisms and lung cancer risk.
We evaluated the role of the MTHFR C677T (rs1801133) and A1298C (rs1801131) polymorphisms in a case-control study comprised of 462 lung cancer cases and 379 controls in a Japanese population. Logistic regression was used to assess the adjusted odds ratios (OR) and 95% confidence intervals (95% CI).
The TT genotype of the C677T polymorphism was significantly associated with an increased risk of lung cancer (OR = 2.27, 95% CI = 1.42 - 3.62, P < 0.01) while the A1298C polymorphism was not associated with lung cancer risk. The minor alleles of both polymorphisms behaved in a recessive fashion. The highest risks were seen for 677TT-carriers with a history of smoking or excessive drinking (OR = 6.16, 95% CI = 3.48 - 10.9 for smoking; OR = 3.09, 95% CI = 1.64 - 5.81 for drinking) compared with C-carriers without a history of smoking or excessive drinking, but no interactions were seen. The 1298CC genotype was only associated with increased risk among non-smokers (P < 0.05), and smoking was only associated with increased risks among 1298A-carriers (P < 0.01), but no significant interaction was seen. There was a synergistic interaction between the A1298C polymorphism and drinking (P < 0.05). The highest risk was seen for the CC-carriers with excessive drinking (OR = 7.24, 95% CI = 1.89 - 27.7) compared with the A-carriers without excessive drinking).
The C677T polymorphism was significantly associated with lung cancer risk. Although the A1298C polymorphism was not associated with lung cancer risk, a significant interaction with drinking was observed. Future studies incorporating data on folate intake may undoubtedly lead to a more thorough understanding of the role of the MTHFR polymorphisms in lung cancer development.
PMCID: PMC3213117  PMID: 22024018
22.  MTHFR C677T Predisposes to POAG but Not to PACG in a North Indian Population: A Case Control Study 
PLoS ONE  2014;9(7):e103063.
Hyperhomocysteinemia induced by the C677T genetic variant in MTHFR (methylenetetrahydrofolate reductase) has been implicated in neuronal cell death of retinal ganglion cells (RGC), which is a characteristic feature of glaucoma. However, association of MTHFR C677T with glaucoma has been controversial because of inconsistent results across association studies. Association between MTHFR C677T and glaucoma has not been reported in Indian population. Therefore, with a focus on neurodegenerative death of RGC in glaucoma, the current study aimed to investigate association of MTHFR C677T with Primary Open Angle Glaucoma (POAG) and Primary Angle Closure Glaucoma (PACG) in a North Indian population. A total of 404 participants (231 patients and 173 controls) were included in this study. Genotyping was performed by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism. A few random samples were also tested by direct sequencing. Genotypic and allelic distributions of the POAG and PACG cohorts were compared to that of controls by chi-square test and odds ratios were reported with 95% confidence intervals. Genotypic and allelic distributions between POAG cases and controls were significantly different (p = 0.03 and p = 0.01 respectively). Unlike POAG, we did not find significant difference in the genotypic and allelic distributions of C677T between PACG cases and controls (p>0.05). We also observed a higher proportion of TT associated POAG in females than that in males. However, this is a preliminary indication of gender specific risk of C677T that needs to be replicated in a larger cohort of males and females. The present investigation on MTHFR C677T and glaucoma reveals that the TT genotype and T allele of this polymorphism are significant risk factors for POAG but not for PACG in North Indian population. Ours is the first report demonstrating association of MTHFR C677T with POAG but not PACG in individuals from North India.
PMCID: PMC4108368  PMID: 25054348
23.  Genetic Association Analyses of Nitric Oxide Synthase Genes and Neural Tube Defects Vary by Phenotype 
Neural tube defects (NTDs) are caused by improper neural tube closure during the early stages of embryonic development. NTDs are hypothesized to have a complex genetic origin and numerous candidate genes have been proposed. The nitric oxide synthase 3 (NOS3) G594T polymorphism has been implicated in risk for spina bifida, and interactions between that single nucleotide polymorphism (SNP) and the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism have also been observed. To evaluate other genetic variation in the NO pathway in the development of NTDs, we examined all three NOS genes: NOS1, NOS2, and NOS3. Using 3109 Caucasian samples in 745 families, we evaluated association in the overall dataset and within specific phenotypic subsets. Haplotype tagging SNPs in the NOS genes were tested for genetic association with NTD subtypes, both for main effects as well as for the presence of interactions with the MTHFR C677T polymorphism. Nominal main effect associations were found with all subtypes, across all three NOS genes, and interactions were observed between SNPs in all three NOS genes and MTHFR C677T. Unlike the previous report, the most significant associations in our dataset were with cranial subtypes and the AG genotype of rs4795067 in NOS2 (p = 0.0014) and the interaction between the rs9658490 G allele in NOS1 and MTHFR 677TT genotype (p = 0.0014). Our data extend the previous findings by implicating a role for all three NOS genes, independently and through interactions with MTHFR, in risk not only for spina bifida, but all NTD subtypes.
PMCID: PMC4169175  PMID: 24323870
NOS1; NOS2; NOS3; MTHFR; neural tube defect; NTD; anencephaly; spina bifida
24.  Interaction of methylenetetrahydrofolate reductase C677T, cytochrome P4502E1 polymorphism and environment factors in esophageal cancer in Kazakh population 
AIM: To evaluate the association and interaction of genetic polymorphisms in methylenetetrahydrofolate reductase (MTHER) and cytochrome P4502E1 (CYP4502E1), environment risk factors with esophageal cancer (EC) in Kazakh, a high EC incidence area of Xinjiang Uygur Autonomous Region, China.
METHODS: A 1:2 matched case-control study was conducted with 120 cases of EC and 240 population- or hospital-based controls. The controls were matched for sex, nationality, area of residence and age within a 5-year difference. MTHER and CYP4502E1 genotypes were identified by PCR-based restriction fragment length polymorphism (RFLP). A conditional logistic regression model was established to identify risk factors. The strata method was adopted in interaction analysis.
RESULTS: Low consumption of green vegetables and fresh fruits, alcohol drinking, and unsafe water (shallow well, or river) were found to be the risk factors for EC. Individuals with the MTHFR677 (C/T + T/T) genotype had a 2.62-fold (95% CI: 1.61-4.28) risk of developing EC compared with those who carried the C/C genotype. Individuals with the CYP4502E1C1/C1 genotype had a 3.00-fold (95% CI: 1.82-4.96) risk compared with those who carried the CYP4502E1 (C1/C2 + C2/C2) genotype. Gene-environment interaction analysis showed that MTHFR677 gene polymorphism was correlated with consumption of green vegetables and fresh fruit, while CYP4502E1 C1/C1 was correlated with alcohol drinking and unsafe drinking water. MTHFR and CYP4502E1 analysis of gene-gene interaction showed that individuals with the MTHFR677 (C/T + T/T) and CYP4502E1C1/C1 genotypes had a 7.41-fold (95% CI: 3.60-15.25) risk of developing EC compared with those who carried the MTHFR677C/C and CYP4502E1 RsaI C1/C2 + C2/C2 genes, and the interaction rate was higher than that of the two factors alone.
CONCLUSION: Low consumption of green vegetables and fresh fruits, alcohol drinking, and unsafe water (shallow well, or river) and polymorphisms in MTHFR and CYP4502E1 genes are important risk factors for EC. There is a synergistic interaction among polymorphisms in MTHFR and CYP4502E1 genes and environment factors. MTHFR and CYP4502E1 genes can be used as biomarkers for prevention of EC in Kazakh, Xinjiang Uygur Autonomous Region, China.
PMCID: PMC2773864  PMID: 19058336
Kazakh; Esophageal Cancer; Methylenetetrahydrofolate reductase C677T; Cytochrome P4502E1; Genetic polymorphism; Environment risk factors; Interaction; Case control study
25.  Methylenetetrahydrofolate reductase C677T polymorphism in patients with gastric and colorectal cancer in a Korean population 
BMC Cancer  2010;10:236.
This study was designed to investigate an association between the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and the risk of gastric and colorectal cancer in the Korean population.
We conducted a population-based large-scale case-control study involving 2,213 patients with newly diagnosed gastric cancer, 1,829 patients with newly diagnosed colorectal cancer, and 1,700 healthy controls. Genotyping was performed with peripheral blood DNA for MTHFR C677T polymorphisms. The statistical significance was estimated by logistic regression analysis.
The MTHFR C677T frequencies of CC, CT, and TT genotypes were 35.2%, 47.5%, and 17.3% among stomach cancer, 34%, 50.5%, and 15.5% in colorectal cancer, and 31.8%, 50.7%, and 17.5% in the controls, respectively. The MTHFR 677TT genotype showed a weak opposite association with colorectal cancer compared to the homozygous CC genotype [adjusted age and sex odds ratio (OR) = 0.792, 95% confidence interval (CI) = 0.638-0.984, P = 0.035]. Subjects with the MTHFR 677CT showed a significantly reduced risk of gastric cancer compared whose with the 677CC genotype (age- and sex-adjusted OR = 0.810; 95% CI = 0.696-0.942, P = 0.006). We also observed no significant interactions between the MTHFR C677T polymorphism and smoking or drinking in the risk of gastric and colorectal cancer.
The T allele was found to provide a weak protective association with gastric cancer and colorectal cancer.
PMCID: PMC2893109  PMID: 20504332

Results 1-25 (1411127)