Search tips
Search criteria

Results 1-25 (1114677)

Clipboard (0)

Related Articles

1.  A GATA Transcription Factor Recruits Hda1 in Response to Reduced Tor1 Signaling to Establish a Hyphal Chromatin State in Candida albicans 
PLoS Pathogens  2012;8(4):e1002663.
Candida albicans is an important opportunistic fungal pathogen of immunocompromised individuals. One critical virulence attribute is its morphogenetic plasticity. Hyphal development requires two temporally linked changes in promoter chromatin, which is sequentially regulated by temporarily clearing the transcription inhibitor Nrg1 upon activation of the cAMP/PKA pathway and promoter recruitment of the histone deacetylase Hda1 under reduced Tor1 signaling. Molecular mechanisms for the temporal connection and the link to Tor1 signaling are not clear. Here, through a forward genetic screen, we report the identification of the GATA family transcription factor Brg1 as the factor that recruits Hda1 to promoters of hypha-specific genes during hyphal elongation. BRG1 expression requires both the removal of Nrg1 and a sub-growth inhibitory level of rapamycin; therefore, it is a sensitive readout of Tor1 signaling. Interestingly, promoters of hypha-specific genes are not accessible to Brg1 in yeast cells. Furthermore, ectopic expression of Brg1 cannot induce hyphae, but can sustain hyphal development. Nucleosome mapping of a hypha-specific promoter shows that Nrg1 binding sites are in nucleosome free regions in yeast cells, whereas Brg1 binding sites are occupied by nucleosomes. Nucleosome disassembly during hyphal initiation exposes the binding sites for both regulators. During hyphal elongation, Brg1-mediated Hda1 recruitment causes nucleosome repositioning and occlusion of Nrg1 binding sites. We suggest that nucleosome repositioning is the underlying mechanism for the yeast-hyphal transition. The hypha-specific regulator Ume6 is a key downstream target of Brg1 and functions after Brg1 as a built-in positive feedback regulator of the hyphal transcriptional program to sustain hyphal development. With the levels of Nrg1 and Brg1 dynamically and sensitively controlled by the two major cellular growth pathways, temporal changes in nucleosome positioning during the yeast-to-hypha transition provide a mechanism for signal integration and cell fate specification. This mechanism is likely used broadly in development.
Author Summary
Candida is part of the gut microflora in healthy individuals, but can disseminate and cause systemic disease when the host's immune system is suppressed. Its ability to grow as yeast and hyphae in response to environmental cues is a major virulence attribute. Hyphal development requires temporary clearing of the transcription inhibitor Nrg1 upon activation of cAMP/PKA for initiation and promoter recruitment of the histone deacetylase Hda1 under reduced Tor1 signaling for maintenance. Here, we show that, during hyphal initiation when Nrg1 is gone, expression of the GATA family transcription factor Brg1 is activated under reduced Tor1 signaling. Accumulated Brg1 recruits Hda1 to hyphal promoters to reposition nucleosomes, leading to obstruction of Nrg1 binding sites and sustained hyphal development. The nucleosome repositioning during the yeast-hyphal transition provides a mechanism for temporal integration of extracellular signals and cell-fate specification. The hypha-specific transcription factor Ume6 functions after Brg1 in this succession of feed-forward regulation of hyphal development. Since misregulation of either Nrg1 or Ume6 causes altered virulence, and Brg1 regulates both Nrg1 accessibility and Ume6 transcription, our findings should provide a better understanding of how Candida controls its morphological program in different host niches to exist as a commensal and a pathogen.
PMCID: PMC3334898  PMID: 22536157
2.  A G1 Cyclin Is Necessary for Maintenance of Filamentous Growth in Candida albicans 
Molecular and Cellular Biology  1999;19(6):4019-4027.
Candida albicans undergoes a dramatic morphological transition in response to various growth conditions. This ability to switch from a yeast form to a hyphal form is required for its pathogenicity. The intractability of Candida to traditional genetic approaches has hampered the study of the molecular mechanism governing this developmental switch. Our approach is to use the more genetically tractable yeast Saccharomyces cerevisiae to yield clues about the molecular control of filamentation for further studies in Candida. G1 cyclins Cln1 and Cln2 have been implicated in the control of morphogenesis in S. cerevisiae. We show that C. albicans CLN1 (CaCLN1) has the same cell cycle-specific expression pattern as CLN1 and CLN2 of S. cerevisiae. To investigate whether G1 cyclins are similarly involved in the regulation of cell morphogenesis during the yeast-to-hypha transition of C. albicans, we mutated CaCLN1. Cacln1/Cacln1 cells were found to be slower than wild-type cells in cell cycle progression. The Cacln1/Cacln1 mutants were also defective in hyphal colony formation on several solid media. Furthermore, while mutant strains developed germ tubes under several hypha-inducing conditions, they were unable to maintain the hyphal growth mode in a synthetic hypha-inducing liquid medium and were deficient in the expression of hypha-specific genes in this medium. Our results suggest that CaCln1 may coordinately regulate hyphal development with signal transduction pathways in response to various environmental cues.
PMCID: PMC104361  PMID: 10330142
3.  Hyphal Development in Candida albicans Requires Two Temporally Linked Changes in Promoter Chromatin for Initiation and Maintenance 
PLoS Biology  2011;9(7):e1001105.
Phenotypic plasticity is common in development. For Candida albicans, the most common cause of invasive fungal infections in humans, morphological plasticity is its defining feature and is critical for its pathogenesis. Unlike other fungal pathogens that exist primarily in either yeast or hyphal forms, C. albicans is able to switch reversibly between yeast and hyphal growth forms in response to environmental cues. Although many regulators have been found involved in hyphal development, the mechanisms of regulating hyphal development and plasticity of dimorphism remain unclear. Here we show that hyphal development involves two sequential regulations of the promoter chromatin of hypha-specific genes. Initiation requires a rapid but temporary disappearance of the Nrg1 transcriptional repressor of hyphal morphogenesis via activation of the cAMP-PKA pathway. Maintenance requires promoter recruitment of Hda1 histone deacetylase under reduced Tor1 (target of rapamycin) signaling. Hda1 deacetylates a subunit of the NuA4 histone acetyltransferase module, leading to eviction of the NuA4 acetyltransferase module and blockage of Nrg1 access to promoters of hypha-specific genes. Promoter recruitment of Hda1 for hyphal maintenance happens only during the period when Nrg1 is gone. The sequential regulation of hyphal development by the activation of the cAMP-PKA pathway and reduced Tor1 signaling provides a molecular mechanism for plasticity of dimorphism and how C. albicans adapts to the varied host environments in pathogenesis. Such temporally linked regulation of promoter chromatin by different signaling pathways provides a unique mechanism for integrating multiple signals during development and cell fate specification.
Author Summary
Many organisms are able to change their phenotype in response to changes in the environment, a phenomenon referred to as plasticity. Candida albicans, a major opportunistic fungal pathogen of humans, can undergo reversible morphological changes between yeast (spherical) and hyphal (filamentous) forms of growth in response to environmental cues. This morphological plasticity is essential for its pathogenesis and survival in its hosts. In this study, we show that hyphal development is initiated and maintained by two major nutrient-sensing cellular growth pathways that act by removing the inhibition provided by the transcriptional repressor Nrg1. While initiation requires a rapid but temporary disappearance of Nrg1 via activation of the cAMP-dependent protein kinase A pathway, maintenance requires the recruitment to promoters of the Hda1 histone deacetylase under conditions of reduced signaling by the target of rapamycin (TOR) kinase, leading to chromatin remodeling that blocks Nrg1 access to the promoters of hypha-specific genes. We observed that recruitment of Hda1 to promoters happens only during the time window when Nrg1 is absent. Such temporally linked regulation of promoter chromatin by different signaling pathways provides a unique mechanism for integrating multiple signals in the regulation of gene expression and phenotypic plasticity during development and cell fate specification.
PMCID: PMC3139633  PMID: 21811397
4.  Conjugated Linoleic Acid Inhibits Hyphal Growth in Candida albicans by Modulating Ras1p Cellular Levels and Downregulating TEC1 Expression▿† 
Eukaryotic Cell  2011;10(4):565-577.
The polymorphic yeast Candida albicans exists in yeast and filamentous forms. Given that the morphogenetic switch coincides with the expression of many virulence factors, the yeast-to-hypha transition constitutes an attractive target for the development of new antifungal agents. Since an untapped therapeutic potential resides in small molecules that hinder C. albicans filamentation, we characterized the inhibitory effect of conjugated linoleic acid (CLA) on hyphal growth and addressed its mechanism of action. CLA inhibited hyphal growth in a dose-dependent fashion in both liquid and solid hypha-inducing media. The fatty acid blocked germ tube formation without affecting cellular growth rates. Global transcriptional profiling revealed that CLA downregulated the expression of hypha-specific genes and abrogated the induction of several regulators of hyphal growth, including TEC1, UME6, RFG1, and RAS1. However, neither UME6 nor RFG1 was necessary for CLA-mediated hyphal growth inhibition. Expression analysis showed that the downregulation of TEC1 expression levels by CLA depended on RAS1. In addition, while RAS1 transcript levels remained constant in CLA-treated cells, its protein levels declined with time. With the use of a strain expressing GFP-Ras1p, CLA treatment was also shown to affect Ras1p localization to the plasma membrane. These findings suggest that CLA inhibits hyphal growth by affecting the cellular localization of Ras1p and blocking the increase in RAS1 mRNA and protein levels. Combined, these effects should prevent the induction of the Ras1p signaling pathway. This study provides the biological and molecular explanations that underlie CLA's ability to inhibit hyphal growth in C. albicans.
PMCID: PMC3127650  PMID: 21357478
5.  Role of Hyphal Formation in Interactions of Candida albicans with Endothelial Cells 
Infection and Immunity  2000;68(6):3485-3490.
The ability to change from yeast to hyphal morphology is a major virulence determinant of Candida albicans. Mutants with defined defects in filamentation regulatory pathways have reduced virulence in mice. However, is it poorly understood why hyphal formation is critical for C. albicans to cause hematogenously disseminated infections. We used recently constructed mutants to examine the role of hyphal formation in the interactions of C. albicans with endothelial cells in vitro. These interactions included the ability of the mutants to invade and injure endothelial cells. Because the formation of hyphae may influence the host inflammatory response to C. albicans, we also investigated the capacity of these mutants to stimulate endothelial cells to express E-selectin and intercellular adhesion molecule 1. We infected endothelial cells with C. albicans strains containing homozygous null mutations in the following filamentation regulatory genes: CLA4, CPH1, EFG1, and TUP1. Whereas the wild-type strain formed true hyphae on endothelial cells, we found that neither the Δefg1 nor the Δcph1 Δefg1 double mutant germinated. The Δtup1 mutant formed only pseudohyphae. We also found that the Δefg1, Δcph1 Δefg1, and Δtup1 mutants had significantly reduced capacities to invade and injure endothelial cells. Therefore, Efg1p and Tup1p contribute to virulence by regulating hyphal formation and the factors that enable C. albicans to invade and injure endothelial cells. With the exception of the Δcph1 Δefg1 mutant, all other mutants stimulated endothelial cells to express at least one of the leukocyte adhesion molecules. Therefore, the combined activities of Cph1p and Efg1p are required for C. albicans to stimulate a proinflammatory response in endothelial cells.
PMCID: PMC97632  PMID: 10816502
6.  A genome-wide transcriptional analysis of morphology determination in Candida albicans 
Molecular Biology of the Cell  2013;24(3):246-260.
Morphology determination is critical for virulence of the human fungal pathogen Candida albicans. A genome-wide transcriptional analysis shows that genes associated with specifying the C. albicans pseudohyphal morphology represent a subset of hyphal genes and reveals fundamental differences between forward and reverse morphological transitions.
Candida albicans, the most common cause of human fungal infections, undergoes a reversible morphological transition from yeast to pseudohyphal and hyphal filaments, which is required for virulence. For many years, the relationship among global gene expression patterns associated with determination of specific C. albicans morphologies has remained obscure. Using a strain that can be genetically manipulated to sequentially transition from yeast to pseudohyphae to hyphae in the absence of complex environmental cues and upstream signaling pathways, we demonstrate by whole-genome transcriptional profiling that genes associated with pseudohyphae represent a subset of those associated with hyphae and are generally expressed at lower levels. Our results also strongly suggest that in addition to dosage, extended duration of filament-specific gene expression is sufficient to drive the C. albicans yeast-pseudohyphal-hyphal transition. Finally, we describe the first transcriptional profile of the C. albicans reverse hyphal-pseudohyphal-yeast transition and demonstrate that this transition involves not only down-regulation of known hyphal-specific, genes but also differential expression of additional genes that have not previously been associated with the forward transition, including many involved in protein synthesis. These findings provide new insight into genome-wide expression patterns important for determining fungal morphology and suggest that in addition to similarities, there are also fundamental differences in global gene expression as pathogenic filamentous fungi undergo forward and reverse morphological transitions.
PMCID: PMC3564527  PMID: 23242994
7.  Regulation of the Cdc42/Cdc24 GTPase Module during Candida albicans Hyphal Growth 
Eukaryotic Cell  2005;4(3):588-603.
The Rho G protein Cdc42 and its exchange factor Cdc24 are required for hyphal growth of the human fungal pathogen Candida albicans. Previously, we reported that strains ectopically expressing Cdc24 or Cdc42 are unable to form hyphae in response to serum. Here we investigated the role of these two proteins in hyphal growth, using quantitative real-time PCR to measure induction of hypha-specific genes together with time lapse microscopy. Expression of the hypha-specific genes examined depends on the cyclic AMP-dependent protein kinase A pathway culminating in the Efg1 and Tec1 transcription factors. We show that strains with reduced levels of CDC24 or CDC42 transcripts induce hypha-specific genes yet cannot maintain their expression in response to serum. Furthermore, in serum these mutants form elongated buds compared to the wild type and mutant budding cells, as observed by time lapse microscopy. Using Cdc24 fused to green fluorescent protein, we also show that Cdc24 is recruited to and persists at the germ tube tip during hyphal growth. Altogether these data demonstrate that the Cdc24/Cdc42 GTPase module is required for maintenance of hyphal growth. In addition, overexpression studies indicate that specific levels of Cdc24 and Cdc42 are important for invasive hyphal growth. In response to serum, CDC24 transcript levels increase transiently in a Tec1-dependent fashion, as do the G-protein RHO3 and the Rho1 GTPase activating protein BEM2 transcript levels. These results suggest that a positive feedback loop between Cdc24 and Tec1 contributes to an increase in active Cdc42 at the tip of the germ tube which is important for hypha formation.
PMCID: PMC1087799  PMID: 15755921
8.  Telomeric ORFs (TLOs) in Candida spp. Encode Mediator Subunits That Regulate Distinct Virulence Traits 
PLoS Genetics  2014;10(10):e1004658.
The TLO genes are a family of telomere-associated ORFs in the fungal pathogens Candida albicans and C. dubliniensis that encode a subunit of the Mediator complex with homology to Med2. The more virulent pathogen C. albicans has 15 copies of the gene whereas the less pathogenic species C. dubliniensis has only two (CdTLO1 and CdTLO2). In this study we used C. dubliniensis as a model to investigate the role of TLO genes in regulating virulence and also to determine whether TLO paralogs have evolved to regulate distinct functions. A C. dubliniensis tlo1Δ/tlo2Δ mutant is unable to form true hyphae, has longer doubling times in galactose broth, is more susceptible to oxidative stress and forms increased levels of biofilm. Transcript profiling of the tlo1Δ/tlo2Δ mutant revealed increased expression of starvation responses in rich medium and retarded expression of hypha-induced transcripts in serum. ChIP studies indicated that Tlo1 binds to many ORFs including genes that exhibit high and low expression levels under the conditions analyzed. The altered expression of these genes in the tlo1Δ/tlo2Δ null mutant indicates roles for Tlo proteins in transcriptional activation and repression. Complementation of the tlo1Δ/tlo2Δ mutant with TLO1, but not TLO2, restored wild-type filamentous growth, whereas only TLO2 fully suppressed biofilm growth. Complementation with TLO1 also had a greater effect on doubling times in galactose broth. The different abilities of TLO1 and TLO2 to restore wild-type functions was supported by transcript profiling studies that showed that only TLO1 restored expression of hypha-specific genes (UME6, SOD5) and galactose utilisation genes (GAL1 and GAL10), whereas TLO2 restored repression of starvation-induced gene transcription. Thus, Tlo/Med2 paralogs encoding Mediator subunits regulate different virulence properties in Candida spp. and their expansion may account for the increased adaptability of C. albicans relative to other Candida species.
Author Summary
Candida albicans and C. dubliniensis are fungal pathogens of humans. Both species possess TLO genes encoding proteins with homology to the Med2 subunit of Mediator. The more virulent pathogen C. albicans has 15 copies of the TLO gene whereas the less pathogenic species C. dubliniensis has only two (TLO1 and TLO2). In this study we show that a C. dubliniensis mutant missing both TLO1 and TLO2 is defective in virulence functions, including hyphal growth and stress responses but forms increased levels of biofilm. Analysis of gene expression in the tlo1Δ/tlo2Δ mutant revealed extensive differences relative to wild-type cells, including aberrant expression of starvation responses in nutrient-rich medium and retarded expression of hypha-induced transcripts in serum. Tlo1 protein was found to interact with genes and this was associated with both gene activation and repression. TLO1 was found to be better at restoring hyphal growth compared to TLO2 and but was less effective than TLO2 in supressing biofilm formation in the tlo1Δ/tlo2Δ strain. Thus, Tlo proteins regulate many virulence properties in Candida spp. and the expansion of the TLO family in C. albicans may account for the increased adaptability of this species relative to other Candida species.
PMCID: PMC4214616  PMID: 25356803
9.  Candida albicans Int1p Interacts with the Septin Ring in Yeast and Hyphal Cells 
Molecular Biology of the Cell  2001;12(11):3538-3549.
The ability to switch between yeast and hyphal morphologies is an important virulence factor for the opportunistic pathogen Candida albicans. Although the kinetics of appearance of the filamentous ring that forms at the incipient septum differ in yeast and cells forming hyphae (germ tubes) (Soll and Mitchell, 1983), the molecular mechanisms that regulate this difference are not known. Int1p, a C. albicans gene product with similarity in its C terminus to Saccharomyces cerevisiae Bud4p, has a role in hyphal morphogenesis. Here we report that in S. cerevisiae, Int1p expression results in the growth of highly polarized cells with delocalized chitin and defects in cytokinesis and bud-site selection patterns, phenotypes that are also seen in S. cerevisiae septin mutant strains. Expression of high levels of Int1p in S. cerevisiae generated elaborate spiral-like structures at the periphery of the polarized cells that contained septins and Int1p. In addition, Int1p coimmunoprecipitated with the Cdc11p and Cdc12p septins, and Cdc12p is required for the establishment and maintenance of these Int1p/septin spirals. Although Swe1p kinase contributes to INT1-induced filamentous growth in S. cerevisiae, it is not required for the formation of ectopic Int1p/septin structures. In C. albicans, Int1p was important for the axial budding pattern and colocalized with Cdc3p septin in a ring at the mother-bud neck of yeast and pseudohyphal cells. Under conditions that induce hyphae, both Cdc3p and Int1p localized to a ring distal to the junction of the mother cell and germ tube. Thus, placement of the Int1p/septin ring with respect to the mother–daughter cell junction distinguishes yeast/pseudohyphal growth from hyphal growth in C. albicans.
PMCID: PMC60274  PMID: 11694587
10.  Modulation of Phagosomal pH by Candida albicans Promotes Hyphal Morphogenesis and Requires Stp2p, a Regulator of Amino Acid Transport 
PLoS Pathogens  2014;10(3):e1003995.
Candida albicans, the most important fungal pathogen of humans, has a unique interaction with macrophages in which phagocytosis induces a switch from the yeast to hyphal form, allowing it to escape by rupturing the immune cell. While a variety of factors induce this switch in vitro, including neutral pH, it is not clear what triggers morphogenesis within the macrophage where the acidic environment should inhibit this transition. In vitro, C. albicans grown in similar conditions in which amino acids are the primary carbon source generate large quantities of ammonia to raise the extracellular pH and induce the hyphal switch. We show here that C. albicans cells neutralize the macrophage phagosome and that neutral pH is a key inducer of germination in phagocytosed cells by using a mutant lacking STP2, a transcription factor that regulates the expression of multiple amino acid permeases, that is completely deficient in alkalinization in vitro. Phagocytosed stp2Δ mutant cells showed significant reduction in hypha formation and escaped from macrophages less readily compared to wild type cells; as a result stp2Δ mutant cells were killed at a higher rate and caused less damage to RAW264.7 macrophages. Stp2p-regulated import leads to alkalinization of the phagosome, since the majority of the wild type cells fail to co-localize with acidophilic dyes, whereas the stp2Δ mutant cells were located in acidic phagosomes. Furthermore, stp2Δ mutant cells were able to form hyphae and escape from neutral phagosomes, indicating that the survival defect in these cells was pH dependent. Finally, these defects are reflected in an attenuation of virulence in a mouse model of disseminated candidiasis. Altogether our results suggest that C. albicans utilizes amino acids to promote neutralization of the phagosomal pH, hyphal morphogenesis, and escape from macrophages.
Author Summary
The innate immune system represents a key barrier that fungal pathogens such as Candida albicans must overcome in order to disseminate through the host. C. albicans cells phagocytosed by macrophages initiate a complex program that involves a large-scale reprogramming of metabolism and transcription and results in the switch to a hyphal form that can penetrate and kill the macrophage. Though a number of signals are known to induce this morphological transition in vitro, what does so following phagocytosis has been unclear. We previously showed that C. albicans rapidly neutralizes acidic, nutrient-poor media that resembles the phagolysosome and that this is deficient in mutants impaired in amino acid import due to a mutation in STP2. In this paper, we investigate whether this happens within the macrophage as well. We show here that, in contrast to wild-type cells, stp2Δ mutants occupy an acidic phagosome and are unable to initiate hyphal differentiation. Because of this, they are more sensitive to killing and do less damage to the macrophages than cells that can neutralize the phagolysosome. We conclude that alteration of phagosomal pH is an important virulence adaptation in this species.
PMCID: PMC3953444  PMID: 24626429
11.  The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins. 
Journal of Bacteriology  1996;178(18):5353-5360.
A hyphally regulated gene (HYR1) from the dimorphic human pathogenic fungus Candida albicans was isolated and characterized. Northern (RNA) analyses showed that the HYR1 mRNA was induced specifically in response to hyphal development when morphogenesis was stimulated by serum addition and temperature elevation, increases in both culture pH and temperature, or N-acetylglucosamine addition. The HYR1 gene sequence revealed a 937-codon open reading frame capable of encoding a protein with an N-terminal signal sequence, a C-terminal glycosylphosphatidylinositol-anchoring domain, 17 potential N glycosylation sites, and a large domain rich in serine and threonine (51% of 230 residues). These features are observed in many yeast cell wall proteins, but no homologs are present in the databases. In addition, Hyr1p contained a second domain rich in glycine, serine, and asparagine (79% of 239 residues). The HYR1 locus in C. albicans CAI4 was disrupted by "Ura-blasting," but the resulting homozygous delta hyr1/delta hyr1 null mutant displayed no obvious morphological phenotype. The growth rates for yeast cells and hyphae and the kinetics of germ tube formation in the null mutant were unaffected. Aberrant expression of HYR1 in yeast cells, when an ADH1-HYR1 fusion was used, did not stimulate hyphal formation in C. albicans or pseudohyphal growth in Saccharomyces cerevisiae. HYR1 appears to encode a nonessential component of the hyphal cell wall.
PMCID: PMC178351  PMID: 8808922
12.  The Pathogen Candida albicans Hijacks Pyroptosis for Escape from Macrophages 
mBio  2014;5(2):e00003-14.
The fungal pathogen Candida albicans causes macrophage death and escapes, but the molecular mechanisms remained unknown. Here we used live-cell imaging to monitor the interaction of C. albicans with macrophages and show that C. albicans kills macrophages in two temporally and mechanistically distinct phases. Early upon phagocytosis, C. albicans triggers pyroptosis, a proinflammatory macrophage death. Pyroptosis is controlled by the developmental yeast-to-hypha transition of Candida. When pyroptosis is inactivated, wild-type C. albicans hyphae cause significantly less macrophage killing for up to 8 h postphagocytosis. After the first 8 h, a second macrophage-killing phase is initiated. This second phase depends on robust hyphal formation but is mechanistically distinct from pyroptosis. The transcriptional regulator Mediator is necessary for morphogenesis of C. albicans in macrophages and the establishment of the wild-type surface architecture of hyphae that together mediate activation of macrophage cell death. Our data suggest that the defects of the Mediator mutants in causing macrophage death are caused, at least in part, by reduced activation of pyroptosis. A Mediator mutant that forms hyphae of apparently wild-type morphology but is defective in triggering early macrophage death shows a breakdown of cell surface architecture and reduced exposed 1,3 β-glucan in hyphae. Our report shows how Candida uses host and pathogen pathways for macrophage killing. The current model of mechanical piercing of macrophages by C. albicans hyphae should be revised to include activation of pyroptosis by hyphae as an important mechanism mediating macrophage cell death upon C. albicans infection.
Upon phagocytosis by macrophages, Candida albicans can transition to the hyphal form, which causes macrophage death and enables fungal escape. The current model is that the highly polarized growth of hyphae results in macrophage piercing. This model is challenged by recent reports of C. albicans mutants that form hyphae of wild-type morphology but are defective in killing macrophages. We show that C. albicans causes macrophage cell death by at least two mechanisms. Phase 1 killing (first 6 to 8 h) depends on the activation of the pyroptotic programmed host cell death by fungal hyphae. Phase 2 (up to 24 h) is rapid and depends on robust hyphal formation but is independent of pyroptosis. Our data provide a new model for how the interplay between fungal morphogenesis and activation of a host cell death pathway mediates macrophage killing by C. albicans hyphae.
PMCID: PMC3977349  PMID: 24667705
13.  A Functional Portrait of Med7 and the Mediator Complex in Candida albicans 
PLoS Genetics  2014;10(11):e1004770.
Mediator is a multi-subunit protein complex that regulates gene expression in eukaryotes by integrating physiological and developmental signals and transmitting them to the general RNA polymerase II machinery. We examined, in the fungal pathogen Candida albicans, a set of conditional alleles of genes encoding Mediator subunits of the head, middle, and tail modules that were found to be essential in the related ascomycete Saccharomyces cerevisiae. Intriguingly, while the Med4, 8, 10, 11, 14, 17, 21 and 22 subunits were essential in both fungi, the structurally highly conserved Med7 subunit was apparently non-essential in C. albicans. While loss of CaMed7 did not lead to loss of viability under normal growth conditions, it dramatically influenced the pathogen's ability to grow in different carbon sources, to form hyphae and biofilms, and to colonize the gastrointestinal tracts of mice. We used epitope tagging and location profiling of the Med7 subunit to examine the distribution of the DNA sites bound by Mediator during growth in either the yeast or the hyphal form, two distinct morphologies characterized by different transcription profiles. We observed a core set of 200 genes bound by Med7 under both conditions; this core set is expanded moderately during yeast growth, but is expanded considerably during hyphal growth, supporting the idea that Mediator binding correlates with changes in transcriptional activity and that this binding is condition specific. Med7 bound not only in the promoter regions of active genes but also within coding regions and at the 3′ ends of genes. By combining genome-wide location profiling, expression analyses and phenotyping, we have identified different Med7p-influenced regulons including genes related to glycolysis and the Filamentous Growth Regulator family. In the absence of Med7, the ribosomal regulon is de-repressed, suggesting Med7 is involved in central aspects of growth control.
Author Summary
In this study, we have investigated Mediator function in the human fungal pathogen C. albicans. An initial screening of conditionally regulated Mediator subunits showed that the Med7 of C. albicans was not essential, in contrast to the situation noted for S. cerevisiae. While loss of CaMed7 did not lead to loss of viability under normal growth conditions, it dramatically influenced the pathogen's ability to grow in different carbon sources, to form hyphae and biofilms, and to colonize the gastrointestinal tracts of mice. We used location profiling to determine Mediator binding under yeast and hyphal morphologies characterized by different transcription profiles. We observed a core set of specific and common genes bound by Med7 under both conditions; this specific core set is expanded considerably during hyphal growth, supporting the idea that Mediator binding correlates with changes in transcriptional activity and that this binding is condition specific. Med7 bound not only in the promoter regions of active genes but also of inactive genes and within coding regions and at the 3′ ends of genes. By combining genome-wide location profiling, expression analyses and phenotyping, we have identified different Med7 regulons including genes related to glycolysis and the Filamentous Growth Regulator family.
PMCID: PMC4222720  PMID: 25375174
14.  A Forkhead Transcription Factor Is Important for True Hyphal as well as Yeast Morphogenesis in Candida albicans 
Eukaryotic Cell  2002;1(5):787-798.
Candida albicans is an important pathogen of immunocompromised patients which grows with true hyphal, pseudohyphal, and yeast morphologies. The dynamics of cell cycle progression are markedly different in true hyphal relative to pseudohyphal and yeast cells, including nuclear movement and septin ring positioning. In Saccharomyces cerevisiae, two forkhead transcription factors (ScFKH1 and ScFKH2) regulate the expression of B-cyclin genes. In both S. cerevisiae and Schizosaccharomyces pombe, forkhead transcription factors also influence morphogenesis. To explore the molecular mechanisms that connect C. albicans morphogenesis with cell cycle progression, we analyzed CaFKH2, the single homolog of S. cerevisiae FKH1/FKH2. C. albicans cells lacking CaFkh2p formed constitutive pseudohyphae under all yeast and hyphal growth conditions tested. Under hyphal growth conditions levels of hyphae-specific mRNAs were reduced, and under yeast growth conditions levels of several genes encoding proteins likely to be important for cell wall separation were reduced. Together these results imply that Fkh2p is required for the morphogenesis of true hyphal as well as yeast cells. Efg1p and Cph1p, two transcription factors that contribute to C. albicans hyphal growth, were not required for the pseudohyphal morphology of fkh2 mutants, implying that Fkh2p acts in pathways downstream of and/or parallel to Efg1p and Cph1p. In addition, cells lacking Fkh2p were unable to damage human epithelial or endothelial cells in vitro, suggesting that Fkh2p contributes to C. albicans virulence.
PMCID: PMC126749  PMID: 12455696
15.  Depletion of a Polo-like Kinase in Candida albicans Activates Cyclase-dependent Hyphal-like Growth 
Molecular Biology of the Cell  2003;14(5):2163-2180.
Morphogenesis in the fungal pathogen Candida albicans is an important virulence-determining factor, as a dimorphic switch between yeast and hyphal growth forms can increase pathogenesis. We identified CaCDC5, a cell cycle regulatory polo-like kinase (PLK) in C. albicans and demonstrate that shutting off its expression induced cell cycle defects and dramatic changes in morphology. Cells lacking CaCdc5p were blocked early in nuclear division with very short spindles and unseparated chromatin. GFP-tagged CaCdc5p localized to unseparated spindle pole bodies, the spindle, and chromatin, consistent with a role in spindle elongation at an earlier point in the cell cycle than that described for the homologue Cdc5p in yeast. Strikingly, the cell cycle defects were accompanied by the formation of hyphal-like filaments under yeast growth conditions. Filament growth was determinate, as the filaments started to die after 24 h. The filaments resembled serum-induced hyphae with respect to morphology, organization of cytoplasmic microtubules, localization of nuclei, and expression of hyphal-specific components. Filament formation required CaCDC35, but not EFG1 or CPH1. Similar defects in spindle elongation and a corresponding induction of filaments occurred when yeast cells were exposed to hydroxyurea. Because CaCdc5p does not appear to act as a direct repressor of hyphal growth, the data suggest that a target of CaCdc5p function is associated with hyphal-like development. Thus, an internal, cell cycle–related cue can activate hyphal regulatory networks in Candida.
PMCID: PMC165105  PMID: 12802083
16.  Candida albicans VAC8 Is Required for Vacuolar Inheritance and Normal Hyphal Branching 
Eukaryotic Cell  2006;5(2):359-367.
Hyphal growth is prevalent during most Candida albicans infections. Current cell division models, which are based on cytological analyses of C. albicans, predict that hyphal branching is intimately linked with vacuolar inheritance in this fungus. Here we report the molecular validation of this model, showing that a specific mutation that disrupts vacuolar inheritance also affects hyphal division. The armadillo repeat-containing protein Vac8p plays an important role in vacuolar inheritance in Saccharomyces cerevisiae. The VAC8 gene was identified in the C. albicans genome sequence and was resequenced. Homozygous C. albicans vac8Δ deletion mutants were generated, and their phenotypes were examined. Mutant vac8Δ cells contained fragmented vacuoles, and minimal vacuolar material was inherited by daughter cells in hyphal or budding forms. Normal rates of growth and hyphal extension were observed for the mutant hyphae on solid serum-containing medium. However, branching frequencies were significantly increased in the mutant hyphae. These observations are consistent with a causal relationship between vacuolar inheritance and the cell division cycle in the subapical compartments of C. albicans hyphae. The data support the hypothesis that cytoplasmic volume, rather than cell size, is critical for progression through G1.
PMCID: PMC1405888  PMID: 16467476
17.  Candida albicans Morphogenesis Is Not Required for Macrophage Interleukin 1β Production 
mBio  2012;4(1):e00433-12.
The interaction of Candida albicans with macrophages induces the production of interleukin 1β (IL-1β) through inflammasome activation in a process that is required for host survival. C. albicans hypha formation has been linked to IL-1β production, but the question of whether hyphae are sufficient to trigger IL-1β production has not been examined directly. To address this question, a C. albicans library of 165 transcription factor deletion mutants was screened for strains with altered IL-1β production by lipopolysaccharide (LPS)-primed J774 cells, a murine macrophage-like cell line. Eight mutants with decreased and two mutants with increased IL-1β secretion were identified. In addition, 12 mutants with previously identified morphology deficits were found to induce IL-1β secretion to levels similar to those of the wild type. Examination of the morphology of both low and normal IL-1β-inducing mutants in macrophages revealed that two mutants (upc2Δ/upc2Δ and ahr1Δ/Δ mutants) were indistinguishable from the wild type with respect to morphology yet induced low levels of IL-1β; conversely, the ndt80Δ/Δ mutant was deficient for hypha formation but induced levels of IL-1β similar to those of the wild type. Transcription factor mutants deficient for IL-1β secretion also caused markedly lower levels of macrophage lysis. Similarly, the ability of a mutant to cause macrophage lysis was independent of its ability to form hyphae. Taken together, our observations indicate that the physical formation of hyphae is not sufficient to trigger IL-1β secretion or macrophage lysis and suggest that other mechanisms, such as pyroptosis, a caspase-1-dependent response to intracellular pathogens, may play a role in the interaction of macrophages with C. albicans.
The ability of Candida albicans to transition from yeast to filamentous cells plays an important and complex role in pathogenesis. Recent results from a number of investigators indicate that the host responds to yeast and hyphal C. albicans differently. For example, a C. albicans mutant unable to form hyphae also fails to induce interleukin 1β (IL-1β) secretion from macrophages. We have identified C. albicans transcription factor mutants that have decreased IL-1β secretion but retain the ability to form hyphae in response to macrophages. In addition, these mutants cause significantly less macrophage lysis. These observations indicate that the physical presence of the hyphal structure in the macrophage is not sufficient to trigger IL-1β secretion nor does it cause physical lysis of the cell. Our data indicate that characteristics of hyphae separate from its physical morphology are responsible for triggering the release of IL-1β release and causing macrophage lysis. Since these observations are inconsistent with some current models, alternative mechanisms for the interaction of C. albicans with macrophages must be considered.
PMCID: PMC3531805  PMID: 23269828
18.  Candida albicans Hyphal Formation and Virulence Assessed Using a Caenorhabditis elegans Infection Model ▿  
Eukaryotic Cell  2009;8(11):1750-1758.
Candida albicans colonizes the human gastrointestinal tract and can cause life-threatening systemic infection in susceptible hosts. We study here C. albicans virulence determinants using the nematode Caenorhabditis elegans in a pathogenesis system that models candidiasis. The yeast form of C. albicans is ingested into the C. elegans digestive tract. In liquid media, the yeast cells then undergo morphological change to form hyphae, which results in aggressive tissue destruction and death of the nematode. Several lines of evidence demonstrate that hyphal formation is critical for C. albicans pathogenesis in C. elegans. First, two yeast species unable to form hyphae (Debaryomyces hansenii and Candida lusitaniae) were less virulent than C. albicans in the C. elegans assay. Second, three C. albicans mutant strains compromised in their ability to form hyphae (efg1Δ/efg1Δ, flo8Δ/flo8Δ, and cph1Δ/cph1Δ efg1Δ/efg1Δ) were dramatically attenuated for virulence. Third, the conditional tet-NRG1 strain, which enables the external manipulation of morphogenesis in vivo, was more virulent toward C. elegans when the assay was conducted under conditions that permit hyphal growth. Finally, we demonstrate the utility of the C. elegans assay in a screen for C. albicans virulence determinants, which identified several genes important for both hyphal formation in vivo and the killing of C. elegans, including the recently described CAS5 and ADA2 genes. These studies in a C. elegans-C. albicans infection model provide insights into the virulence mechanisms of an important human pathogen.
PMCID: PMC2772404  PMID: 19666778
19.  Candida albicans Hyphal Formation and the Expression of the Efg1-Regulated Proteinases Sap4 to Sap6 Are Required for the Invasion of Parenchymal Organs  
Infection and Immunity  2002;70(7):3689-3700.
The ability to change between yeast and hyphal cells (dimorphism) is known to be a virulence property of the human pathogen Candida albicans. The pathogenesis of disseminated candidosis involves adhesion and penetration of hyphal cells from a colonized mucosal site to internal organs. Parenchymal organs, such as the liver and pancreas, are invaded by C. albicans wild-type hyphal cells between 4 and 24 h after intraperitoneal (i.p.) infection of mice. In contrast, a hypha-deficient mutant lacking the transcription factor Efg1 was not able to invade or damage these organs. To investigate whether this was due to the inability to undergo the dimorphic transition or due to the lack of hypha-associated factors, we investigated the role of secreted aspartic proteinases during tissue invasion and their association with the different morphologies of C. albicans. Wild-type cells expressed a distinct pattern of SAP genes during i.p. infections. Within the first 72 h after infection, SAP1, SAP2, SAP4, SAP5, SAP6, and SAP9 were the most commonly expressed proteinase genes. Sap1 to Sap3 antigens were found on yeast and hyphal cells, while Sap4 to Sap6 antigens were predominantly found on hyphal cells in close contact with host cells, in particular, eosinophilic leukocytes. Mutants lacking EFG1 had either noticeably reduced or higher expressed levels of SAP4 to SAP6 transcripts in vitro depending on the culture conditions. During infection, efg1 mutants had a strongly reduced ability to produce hyphae, which was associated with reduced levels of SAP4 to SAP6 transcripts. Mutants lacking SAP1 to SAP3 had invasive properties indistinguishable from those of wild-type cells. In contrast, a triple mutant lacking SAP4 to SAP6 showed strongly reduced invasiveness but still produced hyphal cells. When the tissue damage of liver and pancreas caused by single sap4, sap5, and sap6 and double sap4 and -6, sap5 and -6, and sap4 and -5 double mutants was compared to the damage caused by wild-type cells, all mutants which lacked functional SAP6 showed significantly reduced tissue damage. These data demonstrate that strains which produce hyphal cells but lack hypha-associated proteinases, particularly that encoded by SAP6, are less invasive. In addition, it can be concluded that the reduced virulence of hypha-deficient mutants is not only due to the inability to form hyphae but also due to modified expression of the SAP genes normally associated with the hyphal morphology.
PMCID: PMC128044  PMID: 12065511
20.  The G1 Cyclin Cln3 Regulates Morphogenesis in Candida albicans 
Eukaryotic Cell  2005;4(1):90-94.
In Saccharomyces cerevisiae, the G1 cyclin Cln3 initiates the Start of a mitotic cell cycle in response to size and nutrient inputs. Loss of Cln3 delays but does not prevent Start, due to the eventual Cln3-independent transcription of CLN1 and CLN2. When unbudded cells of the human pathogen Candida albicans were depleted of the G1 cyclin Cln3 they increased in size but did not bud. Thus, unlike S. cerevisiae, Cln3 is essential for budding in C. albicans. However, eventually the large unbudded cells spontaneously produced filamentous forms. The morphology was growth medium dependent; on nutritionally poor medium the polarized outgrowths fulfilled the formal criteria for true hyphae. This state is stable, and continued growth leads to a hyphal mycelium, which invades the agar substratum. Interestingly, it is also required for normal hyphal development, as Cln3-depleted cells develop morphological abnormalities if challenged with hyphal inducing signals such as serum or neutral pH. Taken together, these results show that, in C. albicans, Cln3 has assumed a critical role in coordinating mitotic cell division with differentiation.
PMCID: PMC544163  PMID: 15643064
21.  Release from Quorum-Sensing Molecules Triggers Hyphal Formation during Candida albicans Resumption of Growth†  
Eukaryotic Cell  2005;4(7):1203-1210.
Candida albicans is a pathogenic fungus able to change morphology in response to variations in its growth environment. Simple inoculation of stationary cells into fresh medium at 37°C, without any other manipulations, appears to be a powerful but transient inducer of hyphal formation; this process also plays a significant role in classical serum induction of hyphal formation. The mechanism appears to involve the release of hyphal repression caused by quorum-sensing molecules in the growth medium of stationary-phase cells, and farnesol has a strong but incomplete role in this process. We used DNA microarray technology to study both the resumption of growth of Candida albicans cells and molecular regulation involving farnesol. Maintaining farnesol in the culture medium during the resumption of growth both delays and reduces the induction of hypha-related genes yet triggers expression of genes encoding drug efflux components. The persistence of farnesol also prevents the repression of histone genes during hyphal growth and affects the expression of putative or demonstrated morphogenesis-regulating cyclin genes, such as HGC1, CLN3, and PCL2. The results suggest a model explaining the triggering of hyphae in the host based on quorum-sensing molecules.
PMCID: PMC1168956  PMID: 16002646
22.  CAP1, an Adenylate Cyclase-Associated Protein Gene, Regulates Bud-Hypha Transitions, Filamentous Growth, and Cyclic AMP Levels and Is Required for Virulence of Candida albicans 
Journal of Bacteriology  2001;183(10):3211-3223.
In response to a wide variety of environmental stimuli, the opportunistic fungal pathogen Candida albicans exits the budding cycle, producing germ tubes and hyphae concomitant with expression of virulence genes, such as that encoding hyphal wall protein 1 (HWP1). Biochemical studies implicate cyclic AMP (cAMP) increases in promoting bud-hypha transitions, but genetic evidence relating genes that control cAMP levels to bud-hypha transitions has not been reported. Adenylate cyclase-associated proteins (CAPs) of nonpathogenic fungi interact with Ras and adenylate cyclase to increase cAMP levels under specific environmental conditions. To initiate studies on the relationship between cAMP signaling and bud-hypha transitions in C. albicans, we identified, cloned, characterized, and disrupted the C. albicans CAP1 gene. C. albicans strains with inactivated CAP1 budded in conditions that led to germ tube formation in isogenic strains with CAP1. The addition of 10 mM cAMP and dibutyryl cAMP promoted bud-hypha transitions and filamentous growth in the cap1/cap1 mutant in liquid and solid media, respectively, showing clearly that cAMP promotes hypha formation in C. albicans. Increases in cytoplasmic cAMP preceding germ tube emergence in strains having CAP1 were markedly diminished in the budding cap1/cap1 mutant. C. albicans strains with deletions of both alleles of CAP1 were avirulent in a mouse model of systemic candidiasis. The avirulence of a germ tube-deficient cap1/cap1 mutant coupled with the role of Cap1 in regulating cAMP levels shows that the Cap1-mediated cAMP signaling pathway is required for bud-hypha transitions, filamentous growth, and the pathogenesis of candidiasis.
PMCID: PMC95223  PMID: 11325951
23.  Small-Molecule Inhibitors of the Budded-to-Hyphal-Form Transition in the Pathogenic Yeast Candida albicans 
The pathogenic yeast Candida albicans can exist in multiple morphological states, including budded, pseudohyphal, and true hyphal forms. The ability to convert between the budded and hyphal forms, termed the budded-to-hyphal-form transition, is important for virulence and is regulated by multiple environmental and cellular signals. To identify inhibitors of this morphological transition, a microplate-based morphological assay was developed. With this assay, the known actin-inhibiting drugs latrunculin-A and jasplakinolide were shown to inhibit the transition in a dose-dependent and reversible manner. Five novel small molecules that reversibly inhibited the transition and hyphal elongation without affecting budded growth were identified. These molecules inhibited hyphal growth induced by Spider, Lee's, M199 pH 8, and 10% serum-containing media, with two molecules having a synergistic effect. The molecules also differentially affected the hyphal form-specific gene expression of HWP1 and endocytosis without disrupting the actin cytoskeleton or septin organization. Structural derivatives of one of the molecules were more effective inhibiters than the original molecule, while other derivatives had decreased efficacies. Several of the small molecules were able to reduce C. albicans-dependent damage to endothelial cells by inhibiting the budded-to-hyphal-form transition. These studies substantiated the effectiveness of the morphological assay and identified several novel molecules that, by virtue of their ability to inhibit the budded-to-hyphal-form transition, may be exploited as starting points for effective antifungal therapeutics in the future.
PMCID: PMC549276  PMID: 15728890
24.  Transcription Profiling of Candida albicans Cells Undergoing the Yeast-to-Hyphal TransitionD⃞ 
Molecular Biology of the Cell  2002;13(10):3452-3465.
The ability of the pathogenic fungus Candida albicans to switch from a yeast to a hyphal morphology in response to external signals is implicated in its pathogenicity. We used glass DNA microarrays to investigate the transcription profiles of 6333 predicted ORFs in cells undergoing this transition and their responses to changes in temperature and culture medium. We have identified several genes whose transcriptional profiles are similar to those of known virulence factors that are modulated by the switch to hyphal growth caused by addition of serum and a 37°C growth temperature. Time course analysis of this transition identified transcripts that are induced before germ tube initiation and shut off later in the developmental process. A strain deleted for the Efg1p and Cph1p transcription factors is defective in hyphae formation, and its response to serum and increased temperature is almost identical to the response of a wild-type strain grown at 37°C in the absence of serum. Thus Efg1p and Cph1p are needed for the activation of the transcriptional program that is induced by the presence of serum.
PMCID: PMC129958  PMID: 12388749
25.  Microevolution of Candida albicans in Macrophages Restores Filamentation in a Nonfilamentous Mutant 
PLoS Genetics  2014;10(12):e1004824.
Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Δ/efg1Δ mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Δ/efg1Δ strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure.
Author Summary
Pathogenic microbes often evolve complex traits to adapt to their respective hosts, and this evolution is ongoing: for example, microorganisms are developing resistance to antimicrobial compounds in the clinical setting. The ability of the common human pathogenic fungus, Candida albicans, to switch from yeast to hyphal (filamentous) growth is considered a central virulence attribute. For example, hyphal formation allows C. albicans to escape from macrophages following phagocytosis. A well-investigated signaling network integrates different environmental cues to induce and maintain hyphal growth. In fact, deletion of two central transcription factors in this network results in a mutant that is both nonfilamentous and avirulent. We used experimental evolution to study the adaptation capability of this mutant by continuous co-incubation within macrophages. We found that this selection regime led to a relatively rapid re-connection of signaling between environmental cues and the hyphal growth program. Indeed, the evolved mutant regained the ability to filament and its virulence in vivo. This bypass of central transcription factors was based on a single nucleotide exchange in a gene encoding a component of the general transcription regulation machinery. Our results show that even a complex regulatory network, such as the transcriptional network which governs hyphal growth, can be remodeled via microevolution.
PMCID: PMC4256171  PMID: 25474009

Results 1-25 (1114677)