PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (248038)

Clipboard (0)
None

Related Articles

1.  Targeted vertical cross-sectional imaging with handheld near-infrared dual axes confocal fluorescence endomicroscope 
Biomedical Optics Express  2013;4(2):322-330.
We demonstrate vertical cross-sectional (XZ-plane) images of near-infrared (NIR) fluorescence with a handheld dual axes confocal endomicroscope that reveals specific binding of a Cy5.5-labeled peptide to pre-malignant colonic mucosa. This view is perpendicular to the tissue surface, and is similar to that used by pathologists. The scan head is 10 mm in outer diameter (OD), and integrates a one dimensional (1-D) microelectromechanical systems (MEMS) X-axis scanner and a bulky lead zirconate titanate (PZT) based Z-axis actuator. The microscope images in a raster-scanning pattern with a ±6 degrees (mechanical) scan angle at ~3 kHz in the X-axis (fast) and up to 10 Hz (0–400 μm) in the Z-axis (slow). Vertical cross-sectional fluorescence images are collected with a transverse and axial resolution of 4 and 5 μm, respectively, over a field-of-view of 800 μm (width) × 400 μm (depth). NIR vertical cross-sectional fluorescence images of fresh mouse colonic mucosa demonstrate histology-like imaging performance with this miniature instrument.
doi:10.1364/BOE.4.000322
PMCID: PMC3567718  PMID: 23412564
(170.1790) Confocal microscopy; (170.3880) Medical and biological imaging; (170.4580) Optical diagnostics for medicine; (170.5810) Scanning microscopy
2.  Ferroelectric translational antiphase boundaries in nonpolar materials 
Nature Communications  2014;5:3031.
Ferroelectric materials are heavily used in electro-mechanics and electronics. Inside the ferroelectric, domain walls separate regions in which the spontaneous polarization is differently oriented. Properties of ferroelectric domain walls can differ from those of the domains themselves, leading to new exploitable phenomena. Even more exciting is that a non-ferroelectric material may have domain boundaries that are ferroelectric. Many materials possess translational antiphase boundaries. Such boundaries could be interesting entities to carry information if they were ferroelectric. Here we show first that antiphase boundaries in antiferroelectrics may possess ferroelectricity. We then identify these boundaries in the classical antiferroelectric lead zirconate and evidence their polarity by electron microscopy using negative spherical-aberration imaging technique. Ab initio modelling confirms the polar bi-stable nature of the walls. Ferroelectric antiphase boundaries could make high-density non-volatile memory; in comparison with the magnetic domain wall memory, they do not require current for operation and are an order of magnitude thinner.
In ferroelectrics, the domain walls can have different properties than the domains themselves. Here, Wei et al. show that certain domain walls in antiferroelectric materials are ferroelectric, which makes them interesting candidates for new non-volatile memory concepts.
doi:10.1038/ncomms4031
PMCID: PMC3941019  PMID: 24398704
3.  Enhanced diffusion of Uranium and Thorium linked to crystal plasticity in zircon 
The effects of crystal-plasticity on the U-Th-Pb system in zircon is studied by quantitative microstructural and microchemical analysis of a large zircon grain collected from pyroxenite of the Lewisian Complex, Scotland. Electron backscatter diffraction (EBSD) mapping reveals a c.18° variation in crystallographic orientation that comprises both a gradual change in orientation and a series of discrete low-angle (<4°) boundaries. These microstructural data are consistent with crystal-plastic deformation of zircon associated with the formation and migration of dislocations. A heterogeneous pattern of dark cathodoluminescence, with the darkest domains coinciding with low-angle boundaries, mimics the deformation microstructure identified by EBSD. Geochemical data collected using the Sensitive High Resolution Ion MicroProbe (SHRIMP) shows a positive correlation between concentrations of the elements U, Th and Pb (ranging from 20–60 ppm, 30–110 ppm, and 14–36 ppm, respectively) and Th/U ratio (1.13 – 1.8) with the deformation microstructure. The highest measured concentrations and Th/U coincide with low-angle boundaries. This enrichment is interpreted to reflect enhanced bulk diffusion of U and Th due to the formation and migration of high-diffusivity dislocations. 207Pb/206Pb ages for individual analyses show no significant variation across the grain, and define a concordant, combined mean age of 2451 ± 14 Ma. This indicates that the grain was deformed shortly after initial crystallization, most probably during retrograde Inverian metamorphism at amphibolite facies conditions. The elevated Th over U and consistent 207Pb/206Pb ages indicates that deformation most likely occurred in the presence of a late-stage magmatic fluid that drove an increase in the Th/U during deformation. The relative enrichment of Th over U implies that Th/U ratio may not always be a robust indicator of crystallization environment. This study provides the first evidence of deformation-related modification of the U-Th system in zircon and has fundamental implications for the application and interpretation of zircon trace element data.
doi:10.1186/1467-4866-7-10
PMCID: PMC1769485  PMID: 17181855
4.  Isotopic evidence for continental ice sheet in mid-latitude region in the supergreenhouse Early Cretaceous 
Scientific Reports  2013;3:2732.
Cretaceous represents one of the hottest greenhouse periods in the Earth's history, but some recent studies suggest that small ice caps might be present in non-polar regions during certain periods in the Early Cretaceous. Here we report extremely negative δ18O values of −18.12‰ to −13.19‰ for early Aptian hydrothermal zircon from an A-type granite at Baerzhe in northeastern China. Given that A-type granite is anhydrous and that magmatic zircon of the Baerzhe granite has δ18O value close to mantle values, the extremely negative δ18O values for hydrothermal zircon are attributed to addition of meteoric water with extremely low δ18O, mostly likely transported by glaciers. Considering the paleoaltitude of the region, continental glaciation is suggested to occur in the early Aptian, indicating much larger temperature fluctuations than previously thought during the supergreenhouse Cretaceous. This may have impact on the evolution of major organism in the Jehol Group during this period.
doi:10.1038/srep02732
PMCID: PMC3781392  PMID: 24061068
5.  In-Situ U–Pb Dating of Apatite by Hiroshima-SHRIMP: Contributions to Earth and Planetary Science 
Mass Spectrometry  2012;1(2):A0011.
The Sensitive High Resolution Ion MicroProbe (SHRIMP) is the first ion microprobe dedicated to geological isotopic analyses, especially in-situ analyses related to the geochronology of zircon. Such a sophisticated ion probe, which can attain a high sensitivity at a high mass resolution, based on a double focusing high mass-resolution spectrometer, designed by Matsuda (1974), was constructed at the Australian National University. In 1996, such an instrument was installed at Hiroshima University and was the first SHRIMP to be installed in Japan. Since its installation, our focus has been on the in-situ U–Pb dating of the mineral apatite, as well as zircon, which is a more common U-bearing mineral. This provides the possibility for extending the use of in-situ U–Pb dating from determining the age of formation of volcanic, granitic, sedimentary and metamorphic minerals to the direct determination of the diagenetic age of fossils and/or the crystallization age of various meteorites, which can provide new insights into the thermal history on the Earth and/or the Solar System. In this paper, we review the methodology associated with in-situ apatite dating and our contribution to Earth and Planetary Science over the past 16 years.
doi:10.5702/massspectrometry.A0011
PMCID: PMC3775829  PMID: 24349912
in-situ analyses; U–Pb dating; SIMS; ion microprobe; chronology
6.  Identifying the Volcanic Eruption Depicted in a Neolithic Painting at Çatalhöyük, Central Anatolia, Turkey 
PLoS ONE  2014;9(1):e84711.
A mural excavated at the Neolithic Çatalhöyük site (Central Anatolia, Turkey) has been interpreted as the oldest known map. Dating to ∼6600 BCE, it putatively depicts an explosive summit eruption of the Hasan Dağı twin-peaks volcano located ∼130 km northeast of Çatalhöyük, and a birds-eye view of a town plan in the foreground. This interpretation, however, has remained controversial not least because independent evidence for a contemporaneous explosive volcanic eruption of Hasan Dağı has been lacking. Here, we document the presence of andesitic pumice veneer on the summit of Hasan Dağı, which we dated using (U-Th)/He zircon geochronology. The (U-Th)/He zircon eruption age of 8.97±0.64 ka (or 6960±640 BCE; uncertainties 2σ) overlaps closely with 14C ages for cultural strata at Çatalhöyük, including level VII containing the “map” mural. A second pumice sample from a surficial deposit near the base of Hasan Dağı records an older explosive eruption at 28.9±1.5 ka. U-Th zircon crystallization ages in both samples range from near-eruption to secular equilibrium (>380 ka). Collectively, our results reveal protracted intrusive activity at Hasan Dağı punctuated by explosive venting, and provide the first radiometric ages for a Holocene explosive eruption which was most likely witnessed by humans in the area. Geologic and geochronologic lines of evidence thus support previous interpretations that residents of Çatalhöyük artistically represented an explosive eruption of Hasan Dağı volcano. The magmatic longevity recorded by quasi-continuous zircon crystallization coupled with new evidence for late-Pleistocene and Holocene explosive eruptions implicates Hasan Dağı as a potential volcanic hazard.
doi:10.1371/journal.pone.0084711
PMCID: PMC3885600  PMID: 24416270
7.  Approaches to developing alternative and predictive toxicology based on PBPK/PD and QSAR modeling. 
Environmental Health Perspectives  1998;106(Suppl 6):1385-1393.
Systematic toxicity testing, using conventional toxicology methodologies, of single chemicals and chemical mixtures is highly impractical because of the immense numbers of chemicals and chemical mixtures involved and the limited scientific resources. Therefore, the development of unconventional, efficient, and predictive toxicology methods is imperative. Using carcinogenicity as an end point, we present approaches for developing predictive tools for toxicologic evaluation of chemicals and chemical mixtures relevant to environmental contamination. Central to the approaches presented is the integration of physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) and quantitative structure--activity relationship (QSAR) modeling with focused mechanistically based experimental toxicology. In this development, molecular and cellular biomarkers critical to the carcinogenesis process are evaluated quantitatively between different chemicals and/or chemical mixtures. Examples presented include the integration of PBPK/PD and QSAR modeling with a time-course medium-term liver foci assay, molecular biology and cell proliferation studies. Fourier transform infrared spectroscopic analyses of DNA changes, and cancer modeling to assess and attempt to predict the carcinogenicity of the series of 12 chlorobenzene isomers. Also presented is an ongoing effort to develop and apply a similar approach to chemical mixtures using in vitro cell culture (Syrian hamster embryo cell transformation assay and human keratinocytes) methodologies and in vivo studies. The promise and pitfalls of these developments are elaborated. When successfully applied, these approaches may greatly reduce animal usage, personnel, resources, and time required to evaluate the carcinogenicity of chemicals and chemical mixtures.
Images
PMCID: PMC1533423  PMID: 9860897
8.  Proceedings of the 2010 National Toxicology Program Satellite Symposium 
Toxicologic pathology  2010;39(1):240-266.
The 2010 annual National Toxicology Program (NTP) Satellite Symposium, entitled “Pathology Potpourri,” was held in Chicago, Illinois, in advance of the scientific symposium sponsored jointly by the Society of Toxicologic Pathology (STP) and the International Federation of Societies of Toxicologic Pathologists (IFSTP). The goal of the annual NTP Symposium is to present current diagnostic pathology or nomenclature issues to the toxicologic pathology community. This article presents summaries of the speakers' presentations, including diagnostic or nomenclature issues that were presented, along with select images that were used for voting or discussion. Some topics covered during the symposium included a comparison of rat and mouse hepatocholangiocarcinoma, a comparison of cholangiofibrosis and cholangiocarcinoma in rats, a mixed pancreatic neoplasm with acinar and islet cell components, an unusual preputial gland tumor, renal hyaline glomerulopathy in rats and mice, eosinophilic substance in the nasal septum of mice, INHAND nomenclature for proliferative and nonproliferative lesions of the CNS/PNS, retinal gliosis in a rat, fibroadnexal hamartoma in rats, intramural plaque in a mouse, a treatment-related chloracne-like lesion in mice, and an overview of mouse ovarian tumors.
doi:10.1177/0192623310391680
PMCID: PMC3096448  PMID: 21177527
NTP Satellite Symposium; INHAND nomenclature; hepatocholangiocarcinoma; acinar-islet cell; preputial gland; hyaline glomerulopathy; eosinophilic substance; ependymoma; axonal degeneration; retinal gliosis; fibroadnexal hamartoma; intramural plaque; chloracne; ovary; cholangiocarcinoma
9.  Continuing Education Course #1: Non-Invasive Imaging as a Problem-Solving Tool and Translational Biomarker Strategy in Toxicologic Pathology 
Toxicologic pathology  2010;39(1):267-272.
The continuing education course “Non-Invasive Imaging as a Problem-Solving Tool and Translational Biomarker Strategy in Toxicologic Pathology” provided a thorough overview of commonly used imaging modalities and the logistics required for integration of small animal imaging into toxicologic pathology. Non-invasive imaging (NIN) is gaining acceptance as an important modality in toxicologic pathology. This technology allows non-terminal, time-course evaluation of functional and morphologic endpoints and can be used to translate biomarkers between preclinical animal models and human patients. Non-invasive imaging can support drug development as well as basic research in academic or industrial environments. An initial overview of theoretical principles was followed by focused presentations on magnetic resonance imaging (MRI)/magnetic resonance microscopy (MRM), positron emission tomography (PET)/single proton emission computed tomography (SPECT), ultrasonography (US, primarily focused on echocardiography), optical (bioluminescent) imaging, and computed tomography (CT). The choice of imaging modality will depend on the research question and the needed resolution.
doi:10.1177/0192623310390392
PMCID: PMC3519422  PMID: 21147931
Non-invasive imaging; magnetic resonance imaging; computed tomography; ultrasound; positron emission tomography; single proton emission computed tomography; optical imaging
10.  Infectious diseases of the upper respiratory tract: implications for toxicology studies. 
The consequences of adventitious infectious agents upon the interpretation of toxicology studies performed in rats and mice are incompletely understood. Several prevalent murine pathogens cause alterations of the respiratory system that can confuse the assessment of chemically induced airway injury. In some instances the pathogenesis of infection with these agents has been relatively well studied in the lower respiratory tract. However, there are few well-controlled studies that have examined the upper respiratory region, which result in interpretive problems for toxicologic pathologists. The conduct and interpretation of both short-term and chronic rodent bioassays can be compromised by both the clinical and subclinical manifestations of infectious diseases. This paper reviews several important infectious diseases of the upper airway of rats and mice and discusses the potential influence of these conditions on the results of toxicology studies.
Images
PMCID: PMC1568352  PMID: 2200664
11.  Application of DNA arrays to toxicology. 
Environmental Health Perspectives  1999;107(8):681-685.
DNA array technology makes it possible to rapidly genotype individuals or quantify the expression of thousands of genes on a single filter or glass slide, and holds enormous potential in toxicologic applications. This potential led to a U.S. Environmental Protection Agency-sponsored workshop titled "Application of Microarrays to Toxicology" on 7-8 January 1999 in Research Triangle Park, North Carolina. In addition to providing state-of-the-art information on the application of DNA or gene microarrays, the workshop catalyzed the formation of several collaborations, committees, and user's groups throughout the Research Triangle Park area and beyond. Potential application of microarrays to toxicologic research and risk assessment include genome-wide expression analyses to identify gene-expression networks and toxicant-specific signatures that can be used to define mode of action, for exposure assessment, and for environmental monitoring. Arrays may also prove useful for monitoring genetic variability and its relationship to toxicant susceptibility in human populations.
Images
PMCID: PMC1566480  PMID: 10417368
12.  Nonneoplastic nasal lesions in rats and mice. 
Rodents are commonly used for inhalation toxicology studies, but until recently the nasal passages have often been overlooked or only superficially examined. The rodent nose is a complex organ in which toxicant-induced lesions may vary, depending on the test compound. A working knowledge of rodent nasal anatomy and histology is essential for the proper evaluation of these responses. Lack of a systematic approach for examining rodent nasal tissue has led to a paucity of information regarding nonneoplastic lesions in the rodent nose. Therefore, slides from the National Toxicology Program (NTP) and the Chemical Industry Institute of Toxicology (CIIT) were examined, and the literature was reviewed to assemble the spectrum of nonneoplastic rodent nasal pathology. Presented are lesions associated with the various types of epithelia lining the rodent nasal cavity plus lesions involving accessory nasal structures. Even though there are anatomic and physiologic differences between the rodent and human nose, both rats and mice provide valuable animal models for the study of nasal epithelial toxicity, following administration of chemical compounds.
Images
PMCID: PMC1568333  PMID: 2200665
13.  An industrial approach to evaluation of pyrolysis and combustion hazards. 
In addition to the usual toxicology studies necessary for the safe manufacture and use of polymers at room temperature, special studies are needed for polymers which will be used at elevated temperatures. This paper discusses various areas to be investigated and principles for deciding on test materials, tests, and test conditions, polytetrafluoroethylene (PTFE) and fluorinated polyethylene-propylene (PFEP) pyrolysis studies being used as an illustrative case history. Some limitations of animal testing also are mentioned. A toxicological spectrum relating toxicological determinants to PTFE temperature is developed.
Images
PMCID: PMC1475183  PMID: 1175553
14.  Exposure, metabolism, and toxicity of rare earths and related compounds. 
Environmental Health Perspectives  1996;104(Suppl 1):85-95.
For the past three decades, most attention in heavy metal toxicology has been paid to cadmium, mercury, lead, chromium, nickel, vanadium, and tin because these metals widely polluted the environment. However, with the development of new materials in the last decade, the need for toxicological studies on those new materials has been increasing. A group of rare earths (RE) is a good example. Although some RE have been used for superconductors, plastic magnets, and ceramics, few toxicological data are available compared to other heavy metals described above. Because chemical properties of RE are very similar, it is plausible that their binding affinities to biomolecules, metabolism, and toxicity in the living system are also very similar. In this report, we present an overview of the metabolism and health hazards of RE and related compounds, including our recent studies.
Images
PMCID: PMC1469566  PMID: 8722113
15.  Proceedings of the 2011 National Toxicology Program Satellite Symposium 
Toxicologic pathology  2011;40(2):321-344.
The 2011 annual National Toxicology Program (NTP) Satellite Symposium, entitled “Pathology Potpourri,” was held in Denver, Colorado in advance of the Society of Toxicologic Pathology’s 30th Annual Meeting. The goal of the NTP Symposium is to present current diagnostic pathology or nomenclature issues to the toxicologic pathology community. This article presents summaries of the speakers’ presentations, including diagnostic or nomenclature issues that were presented, along with select images that were used for audience voting or discussion. Some lesions and topics covered during the symposium include: proliferative lesions from various fish species including ameloblastoma, gas gland hyperplasia, nodular regenerative hepatocellular hyperplasia, and malignant granulosa cell tumor; spontaneous cystic hyperplasia in the stomach of CD1 mice and histiocytic aggregates in the duodenal villous tips of treated mice; an olfactory neuroblastoma in a cynomolgus monkey; various rodent skin lesions, including follicular parakeratotic hyperkeratosis, adnexal degeneration, and epithelial intracytoplasmic accumulations; oligodendroglioma and microgliomas in rats; a diagnostically challenging microcytic, hypochromic, responsive anemia in rats; a review of microcytes and microcytosis; nasal lesions associated with green tea extract and Ginkgo biloba in rats; corneal dystrophy in Dutch belted rabbits; valvulopathy in rats; and lymphoproliferative disease in a cynomolgus monkey.
doi:10.1177/0192623311427713
PMCID: PMC3490626  PMID: 22089839
NTP Satellite Symposium; ameloblastoma; gas gland hyperplasia; stomach cystic hyperplasia; sodium dichromate dihydrate; olfactory neuroblastoma; cynomolgus monkey; adnexal degeneration; parakeratotic hyperkeratosis; oligodendroglioma; microglioma; microcytic hypochromic anemia; microcytosis; spherocytosis; poikilocytosis; green tea; Ginkgo biloba; corneal dystrophy; Dutch belted rabbit valvulitis; valvulopathy; post-transplant lymphoproliferative disease
16.  Proceedings of the 2013 Joint JSTP/NTP Satellite Symposium 
Journal of Toxicologic Pathology  2013;26(2):231-257.
The first joint Japanese Society of Toxicologic Pathology (JSTP) and National Toxicology Program (NTP) Satellite Symposium, entitled “Pathology Potpourri,” was held on January 29th at Okura Frontier Hotel in Tsukuba, Ibaraki, Japan, in advance of the JSTP’s 29th Annual Meeting. The goal of this Symposium was to present current diagnostic pathology or nomenclature issues to the toxicologic pathology community. This article presents summaries of the speakers’ presentations, including diagnostic or nomenclature issues that were presented, select images that were used for audience voting or discussion, and the voting results. Some lesions and topics covered during the symposium include: treatment-related atypical hepatocellular foci of cellular alteration in B6C3F1 mice; purulent ventriculoencephalitis in a young BALB/c mouse; a subcutaneous malignant schwannoma in a RccHan:WIST rat; spontaneous nasal septum hyalinosis/eosinophilic substance in B6C3F1 mice; a rare pancreatic ductal cell adenoma in a young Lewis rat; eosinophilic crystalline pneumonia in a transgenic mouse model; hyaline glomerulopathy in two female ddY mice; treatment-related intrahepatic erythrocytes in B6C3F1 mice; treatment-related subendothelial hepatocytes in B6C3F1 mice; spontaneous thyroid follicular cell vacuolar degeneration in a cynomolgus monkey; congenital hepatic fibrosis in a 1-year-old cat; a spontaneous adenocarcinoma of the middle ear in a young Crl:CD(SD) rat; and finally a series of cases illustrating some differences between cholangiofibrosis and cholangiocarcinoma in Sprague Dawley and F344 rats.
doi:10.1293/tox.26.231
PMCID: PMC3695348  PMID: 23914068
JSTP/NTP Satellite Symposium; atypical foci of cellular alteration; cholangiocarcinoma; cholangiofibrosis; congenital hepatic fibrosis; eosinophilic crystalline pneumonia; eosinophilic substance; epithelioid type of malignant schwannoma; hyaline glomerulopathy; intrahepatocytic erythrocytes; middle ear adenocarcinoma; nasal septum hyalinosis; pancreatic ductal cell adenoma; subendothelial hepatocytes; thyroid follicular cell vacuolar degeneration; ventriculoencephalitis
17.  Current Status and Future Perspectives of Mass Spectrometry Imaging 
Mass spectrometry imaging is employed for mapping proteins, lipids and metabolites in biological tissues in a morphological context. Although initially developed as a tool for biomarker discovery by imaging the distribution of protein/peptide in tissue sections, the high sensitivity and molecular specificity of this technique have enabled its application to biomolecules, other than proteins, even in cells, latent finger prints and whole organisms. Relatively simple, with no requirement for labelling, homogenization, extraction or reconstitution, the technique has found a variety of applications in molecular biology, pathology, pharmacology and toxicology. By discriminating the spatial distribution of biomolecules in serial sections of tissues, biomarkers of lesions and the biological responses to stressors or diseases can be better understood in the context of structure and function. In this review, we have discussed the advances in the different aspects of mass spectrometry imaging processes, application towards different disciplines and relevance to the field of toxicology.
doi:10.3390/ijms140611277
PMCID: PMC3709732  PMID: 23759983
MALDI imaging; proteins; lipids; metabolites; mass spectrometry; tissues; matrix; toxicology
18.  Survey of antimony workers: mortality 1961-1992. 
The mortality of a census population and a prospective cohort of men employed on an antimony smelter in the north east of England was followed up from 1961-1992. The workers studied were exposed to a variety of agents including antimony and its oxides, arsenic and arsenic oxides, sulphur dioxide, and polycyclic aromatic hydrocarbons. The regional mortality rates were used to calculate expected deaths and a group of zircon sand workers employed on the site were used as a comparison group. For the census population of men working on the smelter before 1961 a significant increase in deaths from lung cancer was found (32 observed v 14.7 expected, P < 0.001). A similar excess was seen among maintenance men (12 observed v 5.3 expected P = 0.016). No such excess was found in the cohort recruited after 1960 (5 observed v 9.2 expected, maintenance workers 3 observed v 2.8 expected). There was evidence of a minimum latency period of around 20 years between first exposure and death from lung cancer. No evidence was found for a correlation between length of time worked and mortality from lung cancer. The results show that an increased risk of lung cancer existed in the workers employed before 1961, but it was not possible to attribute this excess to any particular agent. Mortality analysed by five year calendar periods of first exposure show a lessening of effect after 1955. Although the power of the study is clearly less for more recent periods of exposure the absence of any excess in the population after 1960 is encouraging.
PMCID: PMC1128103  PMID: 7849856
19.  Montmorillonite-catalysed formation of RNA oligomers: the possible role of catalysis in the origins of life 
Large deposits of montmorillonite are present on the Earth today and it is believed to have been present at the time of the origin of life and has recently been detected on Mars. It is formed by aqueous weathering of volcanic ash. It catalyses the formation of oligomers of RNA that contain monomer units from 2 to 30–50. Oligomers of this length are formed because this catalyst controls the structure of the oligomers formed and does not generate all possible isomers. Evidence of sequence-, regio- and homochiral selectivity in these oligomers has been obtained. Postulates on the role of selective versus specific catalysts on the origins of life are discussed. An introduction to the origin of life is given with an emphasis on reaction conditions based on the recent data obtained from zircons 4.0–4.5 Ga.
doi:10.1098/rstb.2006.1903
PMCID: PMC1664692  PMID: 17008218
prebiotic; montmorillonite catalysis; ribonucleic acid; origin of life; sequence
20.  Nanocolumnar Preferentially Oriented PSZT Thin Films Deposited on Thermally Grown Silicon Dioxide 
Nanoscale Research Letters  2008;4(1):29-33.
We report the first instance of deposition of preferentially oriented, nanocrystalline, and nanocolumnar strontium-doped lead zirconate titanate (PSZT) ferroelectric thin films directly on thermal silicon dioxide. No intermediate seed or activation layers were used between PSZT and silicon dioxide. The deposited thin films have been characterised using a combination of diffraction and microscopy techniques.
doi:10.1007/s11671-008-9197-2
PMCID: PMC2894225  PMID: 20596364
PSZT thin films; Silicon dioxide; Nanocrystal; XRD; Microscopy
21.  Single crystal U–Pb zircon age and Sr–Nd isotopic composition of impactites from the Bosumtwi impact structure, Ghana: Comparison with country rocks and Ivory Coast tektites 
Chemical Geology  2010;275(3-4):254-261.
The 1.07 Myr old Bosumtwi impact structure (Ghana), excavated in 2.1–2.2 Gyr old supracrustal rocks of the Birimian Supergroup, was drilled in 2004. Here, we present single crystal U–Pb zircon ages from a suevite and two meta-graywacke samples recovered from the central uplift (drill core LB-08A), which yield an upper Concordia intercept age of ca. 2145 ± 82 Ma, in very good agreement with previous geochronological data for the West African Craton rocks in Ghana. Whole rock Rb–Sr and Sm–Nd isotope data of six suevites (five from inside the crater and one from outside the northern crater rim), three meta-graywacke, and two phyllite samples from core LB-08A are also presented, providing further insights into the timing of the metamorphism and a possibly related isotopic redistribution of the Bosumtwi crater rocks. Our Rb–Sr and Sm–Nd data show also that the suevites are mixtures of meta-greywacke and phyllite (and possibly a very low amount of granite). A comparison of our new isotopic data with literature data for the Ivory Coast tektites allows to better constrain the parent material of the Ivory Coast tektites (i.e., distal impactites), which is thought to consist of a mixture of metasedimentary rocks (and possibly granite), but with a higher proportion of phyllite (and shale) than the suevites (i.e., proximal impactites). When plotted in a Rb/Sr isochron diagram, the sample data points (n = 29, including literature data) scatter along a regression line, whose slope corresponds to an age of 1846 ± 160 Ma, with an initial Sr isotope ratio of 0.703 ± 0.002. However, due to the extensive alteration of some of the investigated samples and the lithological diversity of the source material, this age, which is in close agreement with a possible “metamorphic age” of ∼ 1.8–1.9 Ga tentatively derived from our U–Pb dating of zircons, is difficult to consider as a reliable metamorphic age. It may perhaps reflect a common ancient source whose Rb–Sr isotope systematics has not basically been reset on the whole rock scale during the Bosumtwi impact event, or even reflect another unknown geologic event.
doi:10.1016/j.chemgeo.2010.05.016
PMCID: PMC2949568  PMID: 21037794
Impactite; U–Pb zircon; Sr–Nd isotopes; Bosumtwi crater; Ghana
22.  Fabrication and Performance of Endoscopic Ultrasound Radial Arrays Based on PMN-PT Single Crystal/Epoxy 1-3 Composite 
In this paper, 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) single crystal/epoxy 1–3 composite was used as the active material of the endoscopic ultrasonic radial array transducer, because this composite exhibited ultrahigh electromechanical coupling coefficient (kt = 0.81%), very low mechanical quality factor (Qm = 11) and relatively low acoustic impedance (Zt = 12 MRayls). A 6.91 MHz PMN-PT/epoxy 1–3 composite radial array transducer with 64 elements was tested in a pulse-echo response measurement. The −6-dB bandwidth of the composite array transducer was 102%, which was ~30% larger than that of traditional lead zirconate titanate array transducer. The two-way insertion loss was found to be −32.3 dB. The obtained results show that this broadband array transducer is promising for acquiring high-resolution endoscopic ultrasonic images in many clinical applications.
doi:10.1109/TUFFC.2011.1825
PMCID: PMC3056406  PMID: 21342833
23.  High-overtone Self-Focusing Acoustic Transducers for High Frequency Ultrasonic Doppler 
Ultrasonics  2010;50(6):544-547.
This work reports the potential use of high-overtone self-focusing acoustic transducers for high frequency ultrasonic Doppler. By using harmonic frequencies of a thick bulk Lead Zirconate Titanate (PZT) transducer with a novel air-reflector Fresnel lens, we obtained strong ultrasound signals at 60 MHz (3rd harmonic) and 100 MHz (5th harmonic). Both experimental and theoretical analysis has demonstrated that the transducers can be applied to Doppler systems with high frequencies up to 100 MHz.
doi:10.1016/j.ultras.2010.02.002
PMCID: PMC2856643  PMID: 20206371
Acoustic transducer; Self-focusing; Air-reflector; Doppler
24.  Nano-embossing technology on ferroelectric thin film Pb(Zr0.3,Ti0.7)O3 for multi-bit storage application 
Nanoscale Research Letters  2011;6(1):474.
In this work, we apply nano-embossing technique to form a stagger structure in ferroelectric lead zirconate titanate [Pb(Zr0.3, Ti0.7)O3 (PZT)] films and investigate the ferroelectric and electrical characterizations of the embossed and un-embossed regions, respectively, of the same films by using piezoresponse force microscopy (PFM) and Radiant Technologies Precision Material Analyzer. Attributed to the different layer thickness of the patterned ferroelectric thin film, two distinctive coercive voltages have been obtained, thereby, allowing for a single ferroelectric memory cell to contain more than one bit of data.
doi:10.1186/1556-276X-6-474
PMCID: PMC3211987  PMID: 21794156
25.  Particle manipulation in a microfluidic channel using acoustic trap 
Biomedical microdevices  2011;13(4):779-788.
A high frequency sound beam was employed to explore an experimental method that could control particle motions in a microfluidic device. A 24 MHz single element lead zirconate titanate (PZT) transducer was built to transmit a focused ultrasound of variable duty factors (pulse duration/pulse repetition time), and its 1–3 piezo-composite structure established a tight focusing with f-number (focal depth/aperture size) of one. The transducer was excited by the Chebyshev windowed chirp signal sweeping from 18 MHz to 30 MHz with a 50% of duty factor, in order to ensure that enough sound beams were penetrated into the microfluidic device. The device was fabricated from a polydimethylsiloxane (PDMS) mold, and had a main channel composed of three subchannels among which particles flowed in the middle. A 60~70 μm diameter single droplet in the flow could be trapped near the channel bifurcation, and subsequently diverted into the sheath flow by releasing or shifting the acoustic trap. Hence, the results showed the potential use of a focused sound beam in microfluidic devices, and further suggested that this method could be exploited in the development of ultrasound-based flow cytometry and cell sorting devices.
doi:10.1007/s10544-011-9548-0
PMCID: PMC3217264  PMID: 21603963
Particle manipulation; Acoustic trap; High frequency transducer; Microfluidic device

Results 1-25 (248038)