PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (346688)

Clipboard (0)
None

Related Articles

1.  Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. 
Journal of Bacteriology  1997;179(19):6122-6126.
Escherichia coli K-12 strains are normally tolerant to n-hexane and susceptible to cyclohexane. Constitutive expression of marA of the multiple antibiotic resistance (mar) locus or of the soxS or robA gene product produced tolerance to cyclohexane. Inactivation of the mar locus or the robA locus, but not the soxRS locus, increased organic solvent susceptibility in the wild type and Mar mutants (to both n-hexane and cyclohexane). The organic solvent hypersusceptibility is a newly described phenotype for a robA-inactivated strain. Multicopy expression of mar, soxS, or robA induced cyclohexane tolerance in strains with a deleted or inactivated chromosomal mar, soxRS, or robA locus; thus, each transcriptional activator acts independently of the others. However, in a strain with 39 kb of chromosomal DNA, including the mar locus, deleted, only the multicopy complete mar locus, consisting of its two operons, produced cyclohexane tolerance. Deletion of acrAB from either wild-type E. coli K-12 or a Mar mutant resulted in loss of tolerance to both n-hexane and cyclohexane. Organic solvent tolerance mediated by mar, soxS, or robA was not restored in strains with acrAB deleted. These findings strongly suggest that active efflux specified by the acrAB locus is linked to intrinsic organic solvent tolerance and to tolerance mediated by the marA, soxS, or robA gene product in E. coli.
PMCID: PMC179517  PMID: 9324261
2.  Non-Target Gene Mutations in the Development of Fluoroquinolone Resistance in Escherichia coli 
Mutations in loci other than genes for the target topoisomerases of fluoroquinolones, gyrA and parC, may play a role in the development of fluoroquinolone resistance in Escherichia coli. A series of mutants with increasing resistance to ofloxacin was obtained from an E. coli K-12 strain and five clinical isolates. First-step mutants acquired a gyrA mutation. Second-step mutants reproducibly acquired a phenotype of multiple antibiotic resistance (Mar) and organic solvent tolerance and showed enhanced fluoroquinolone efflux. None of the second-step mutants showed additional topoisomerase mutations. All second-step mutants showed constitutive expression of marA and/or overexpressed soxS. In some third-step mutants, fluoroquinolone efflux was further enhanced compared to that for second-step mutants, even when the mutant had acquired additional topoisomerase mutations. Attempts to circumvent the second-step Mar mutation by induction of the mar locus with sodium salicylate and thus to select for pure topoisomerase mutants at the second step were not successful. At least in vitro, non-target gene mutations accumulate in second- and third-step mutants upon exposure to a fluoroquinolone and typically include, but do not appear to be limited to, mutations in the mar or sox regulons with consequent increased drug efflux.
PMCID: PMC89776  PMID: 10722475
3.  Genetic Characterization of Highly Fluoroquinolone-Resistant Clinical Escherichia coli Strains from China: Role of acrR Mutations 
The genetic basis for fluoroquinolone resistance was examined in 30 high-level fluoroquinolone-resistant Escherichia coli clinical isolates from Beijing, China. Each strain also demonstrated resistance to a variety of other antibiotics. PCR sequence analysis of the quinolone resistance-determining region of the topoisomerase genes (gyrA/B, parC) revealed three to five mutations known to be associated with fluoroquinolone resistance. Western blot analysis failed to demonstrate overexpression of MarA, and Northern blot analysis did not detect overexpression of soxS RNA in any of the clinical strains. The AcrA protein of the AcrAB multidrug efflux pump was overexpressed in 19 of 30 strains of E. coli tested, and all 19 strains were tolerant to organic solvents. PCR amplification of the complete acrR (regulator/repressor) gene of eight isolates revealed amino acid changes in four isolates, a 9-bp deletion in another, and a 22-bp duplication in a sixth strain. Complementation with a plasmid-borne wild-type acrR gene reduced the level of AcrA in the mutants and partially restored antibiotic susceptibility 1.5- to 6-fold. This study shows that mutations in acrR are an additional genetic basis for fluoroquinolone resistance.
doi:10.1128/AAC.45.5.1515-1521.2001
PMCID: PMC90498  PMID: 11302820
4.  Involvement of Outer Membrane Protein TolC, a Possible Member of the mar-sox Regulon, in Maintenance and Improvement of Organic Solvent Tolerance of Escherichia coli K-12 
Journal of Bacteriology  1998;180(4):938-944.
Escherichia coli mutants with improved organic solvent tolerance levels showed high levels of outer membrane protein TolC and inner membrane protein AcrA. The TolC level was regulated positively by MarA, Rob, or SoxS. A possible mar-rob-sox box sequence was found upstream of the tolC gene. These findings suggest that tolC is a member of the mar-sox regulon responsive to stress conditions. When a defective tolC gene was transferred to n-hexane- or cyclohexane-tolerant strains by P1 transduction, the organic solvent tolerance level was lowered dramatically to the decane-tolerant and nonane-sensitive level. The tolerance level was restored by transformation of the transductants with a wild-type tolC gene. Therefore, it is evident that TolC is essential for E. coli to maintain organic solvent tolerance.
PMCID: PMC106975  PMID: 9473050
5.  Organic solvent tolerance and antibiotic resistance increased by overexpression of marA in Escherichia coli. 
We previously reported that overexpression of the soxS or robA gene causes in several Escherichia coli strains the acquisition of higher organic solvent tolerance and also increased resistance to a number of antibiotics (H. Nakajima, K. Kobayashi, M. Kobayashi, H. Asako, and R. Aono, Appl. Environ. Microbiol. 61:2302-2307, 1995). Most E. coli strains cannot grow in the presence of cyclohexane. We isolated the marRAB genes from a Kohara lambda phage clone and cyclohexane-tolerant mutant strain OST3408. We found a substitution of serine for arginine at position 73 in the coding region of marR of OST3408 and designated the gene marR08. Our genetic analysis revealed that marR08 is responsible for the cyclohexane-tolerant phenotype. We observed that the marA gene on high-copy-number plasmids increased the organic solvent tolerance of E. coli strains. Furthermore, exposure of E. coli cells to salicylate, which activates the mar regulon genes, also raised organic solvent tolerance. Overexpression of the marA, soxS, or robA gene increased resistance to numerous antibiotics but not to hydrophilic aminoglycosides.
PMCID: PMC168437  PMID: 9097440
6.  Promoter Discrimination at Class I MarA Regulon Promoters Mediated by Glutamic Acid 89 of the MarA Transcriptional Activator of Escherichia coli▿ †  
Journal of Bacteriology  2010;193(2):506-515.
Three paralogous transcriptional activators MarA, SoxS, and Rob, activate >40 Escherichia coli promoters. To understand why MarA does not activate certain promoters as strongly as SoxS, we compared MarA, MarA mutants, and SoxS for their abilities to activate 16 promoters and to bind their cognate marbox binding sites. Replacement of the MarA glutamic acid residue 89 with alanine greatly increased the marbox binding and activation of many class I promoters. Like cells constitutive for SoxS, cells expressing the MarA with the E89A mutation were more resistant to superoxides than those harboring WT MarA. The activities of several other E89 substitutions ranked as follows: E89A > E89G > E89V > WT > E89D. Increased binding and activation occurred only at class I promoters when the 12th base of the promoter's marbox (a position at which there is no known interaction between the marbox and MarA) was not a T residue. Furthermore, WT MarA binding to a synthetic marbox in vitro was enhanced when the phosphate group between positions 12 and 13 was eliminated on one strand. The results demonstrate that relatively minor changes in a single amino acid side chain (e.g., alanine to valine or glutamic acid to aspartic acid) can strongly influence activity despite any evidence that the side chain is involved in positive interactions with either DNA or RNA polymerase. We present a model which attributes the differences in binding and activation to the interference between the β- and γ-carbons of the amino acid at position 89 and the phosphate group between positions 12 and 13.
doi:10.1128/JB.00360-10
PMCID: PMC3019838  PMID: 21097628
7.  Activation of multiple antibiotic resistance and binding of stress-inducible promoters by Escherichia coli Rob protein. 
Journal of Bacteriology  1995;177(7):1655-1661.
Multiple antibiotic resistance in Escherichia coli can be mediated by induction of the SoxS or MarA protein, triggered by oxygen radicals (in the soxRS regulon) or certain antibiotics (in the marRAB regulon), respectively. These small proteins (SoxS, 107 residues; MarA, 127 residues) are homologous to the C terminus of the XylS-AraC family of proteins and are more closely related to a approximately 100-residue segment in the N terminus of Rob protein, which binds the right arm of the replication origin, oriC. We investigated whether the SoxS-MarA homology in Rob might extend to the regulation of some of the same inducible genes. Overexpression of Rob indeed conferred multiple antibiotic resistance similar to that known for SoxS and MarA (against chloramphenicol, tetracycline, nalidixic acid, and puromycin), as well as resistance to the superoxide-generating compound phenazine methosulfate. The Rob-induced antibiotic resistance depended only partially on the micF antisense RNA that down-regulates the OmpF outer membrane porin to limit antibiotic uptake. Similar antibiotic resistance was conferred by expression of a Rob fragment containing only the N-terminal 123 residues that constitute the SoxS-MarA homology. Both intact Rob and the N-terminal fragment activated expression of stress genes (inaA, fumC, sodA) but with a pattern distinct from that found for SoxS and MarA. Purified Rob protein bound a DNA fragment containing the micF promoter (50% bound at approximately 10(-9) M Rob) as strongly as it did oriC, and it bound more weakly to DNA containing the sodA, nfo, or zwf promoter (50% bound at 10(-8) to 10(-7) M). Rob formed multiple DNA-protein complexes with these fragments, as seen previously for SoxS. These data point to a DNA-binding gene activator module used in different protein contexts.
PMCID: PMC176790  PMID: 7896685
8.  Different effects of transcriptional regulators MarA, SoxS and Rob on susceptibility of Escherichia coli to cationic antimicrobial peptides (CAMPs): Rob-dependent CAMP induction of the marRAB operon 
Microbiology  2010;156(Pt 2):570-578.
Cationic antimicrobial peptides (CAMPs), a component of the mammalian immune system, protect the host from bacterial infections. The roles of the Escherichia coli transcriptional regulators MarA, SoxS and Rob in susceptibility to these peptides were examined. Overexpression of marA, either in an antibiotic-resistant marR mutant or from a plasmid, decreased bacterial susceptibility to CAMPs. Overexpression of the soxS gene from a plasmid, which decreased susceptibility to antibiotics, unexpectedly caused no decrease in CAMP susceptibility; instead it produced increased susceptibility to different CAMPs. Deletion or overexpression of rob had little effect on CAMP susceptibility. The marRAB operon was upregulated when E. coli was incubated in sublethal amounts of CAMPs polymyxin B, LL-37 or human β-defensin-1; however, this upregulation required Rob. Deletion of acrAB increased bacterial susceptibility to polymyxin B, LL-37 and human β-defensin-1 peptides. Deletion of tolC yielded an even greater increase in susceptibility to these peptides and also led to increased susceptibility to human α-defensin-2. Inhibition of cellular proton-motive force increased peptide susceptibility for wild-type and acrAB deletion strains; however, it decreased susceptibility of tolC mutants. These findings demonstrate that CAMPs are both inducers of marA-mediated drug resistance through interaction with Rob and also substrates for efflux in E. coli. The three related transcriptional regulators show different effects on bacterial cell susceptibility to CAMPs.
doi:10.1099/mic.0.033415-0
PMCID: PMC2890090  PMID: 19926649
9.  Absence of Mutations in marRAB or soxRS in acrB-Overexpressing Fluoroquinolone-Resistant Clinical and Veterinary Isolates of Escherichia coli 
The amount of acrB, marA, and soxS mRNA was determined in 36 fluoroquinolone-resistant E. coli from humans and animals, 27 of which displayed a multiple-resistance phenotype. acrB mRNA was elevated in 11 of 36 strains. A mutation at codon 45 (Arg→Cys) in acrR was found in 6 of these 11 strains. Ten of the 36 isolates appeared to overexpress soxS, and five appeared to overexpress marA. A number of mutations were found in the marR and soxR repressor genes, correlating with greater amounts of marA and soxS mRNA, respectively.
doi:10.1128/AAC.45.5.1550-1552.2001
PMCID: PMC90504  PMID: 11302826
10.  Purification and regulatory properties of MarA protein, a transcriptional activator of Escherichia coli multiple antibiotic and superoxide resistance promoters. 
Journal of Bacteriology  1995;177(24):7100-7104.
Expression of the marA or soxS genes is induced by exposure of Escherichia coli to salicylate or superoxides, respectively. This, in turn, enhances the expression of a common set of promoters (the mar/soxRS regulons), resulting in both multiple antibiotic and superoxide resistance. Since MarA protein is highly homologous to SoxS, and since a MalE-SoxS fusion protein has recently been shown to activate soxRS regulon transcription, the ability of MarA to activate transcription of these genes was tested. MarA was overexpressed as a histidine-tagged fusion protein, purified, cleaved with thrombin (leaving one N-terminal histidine residue), and renatured. Like MalE-SoxS, MarA (i) activated the transcription of zwf, fpr, fumC, micF, nfo, and sodA; (ii) required a 21-bp "soxbox" sequence to activate zwf transcription; and (iii) was "ambidextrous," i.e., required the C-terminal domain of the alpha subunit of RNA polymerase for activation of zwf but not fumC or micF. Thus, the mar and soxRS systems use activators with very similar specificities and mechanisms of action to respond to different environmental signals.
PMCID: PMC177587  PMID: 8522515
11.  SoxS Increases the Expression of the Zinc Uptake System ZnuACB in an Escherichia coli Murine Pyelonephritis Model 
Journal of Bacteriology  2012;194(5):1177-1185.
Paralogous transcriptional regulators MarA, Rob, and SoxS act individually and together to control expression of more than 80 Escherichia coli genes. Deletion of marA, rob, and soxS from an E. coli clinical isolate prevents persistence beyond 2 days postinfection in a mouse model of pyelonephritis. We used microarray analysis to identify 242 genes differentially expressed between the triple deletion mutant and its parent strain at 2 days postinfection in the kidney. One of these, znuC of the zinc transport system ZnuACB, displayed decreased expression in the triple mutant compared to that in the parental strain, and deletion of znuC from the parental strain reduced persistence. The marA rob soxS triple deletion mutant was less viable in vitro under limited-Zn and Zn-depleted conditions, while disruption of znuC caused a reduction in the growth rates for the parental and triple mutant strains to equally low levels under limited-Zn or Zn-depleted conditions. Complementation of the triple mutant with soxS, but not marA or rob, restored the parental growth rate in Zn-depleted medium, while deletion of only soxS from the parental strain led to low growth in Zn-depleted medium. Both results suggested that SoxS is a major regulator responsible for growth under Zn-depleted conditions. Gel shift experiments failed to show direct binding of SoxS to the znuCB promoter, thus suggesting indirect control of znuCB expression by SoxS. While SoxS expression in the triple mutant fully restored persistence, increased expression of znuACB via a plasmid in this mutant only partially restored wild-type levels of persistence in the kidney. This work implicates SoxS control of znuCB expression as a key factor in persistence of E. coli in murine pyelonephritis.
doi:10.1128/JB.05451-11
PMCID: PMC3294818  PMID: 22210763
12.  An Excretory Function for the Escherichia coli Outer Membrane Pore TolC: Upregulation of marA and soxS Transcription and Rob Activity Due to Metabolites Accumulated in tolC Mutants ▿  
Journal of Bacteriology  2009;191(16):5283-5292.
Efflux pumps function to rid bacteria of xenobiotics, including antibiotics, bile salts, and organic solvents. TolC, which forms an outer membrane channel, is an essential component of several efflux pumps in Escherichia coli. We asked whether TolC has a role during growth in the absence of xenobiotics. Because tolC transcription is activated by three paralogous activators, MarA, SoxS, and Rob, we examined the regulation of these activators in tolC mutants. Using transcriptional fusions, we detected significant upregulation of marRAB and soxS transcription and Rob protein activity in tolC mutants. Three mechanisms could be distinguished: (i) activation of marRAB transcription was independent of marRAB, soxR, and rob functions; (ii) activation of soxS transcription required SoxR, a sensor of oxidants; and (iii) Rob protein was activated posttranscriptionally. This mechanism is similar to the mechanisms of upregulation of marRAB, soxS, and Rob by treatment with certain phenolics, superoxides, and bile salts, respectively. The transcription of other marA/soxS/rob regulon promoters, including tolC itself, was also elevated in tolC mutants. We propose that TolC is involved in the efflux of certain cellular metabolites, not only xenobiotics. As these metabolites accumulate during growth, they trigger the upregulation of MarA, SoxS, and Rob, which in turn upregulate tolC and help rid the bacteria of these metabolites, thereby restoring homeostasis.
doi:10.1128/JB.00507-09
PMCID: PMC2725600  PMID: 19502391
13.  Contributions of mutations in acrR and marR genes to organic solvent tolerance in Escherichia coli 
AMB Express  2012;2:58.
The AcrAB-TolC efflux pump is involved in maintaining intrinsic organic solvent tolerance in Escherichia coli. Mutations in regulatory genes such as marR, soxR, and acrR are known to increase the expression level of the AcrAB-TolC pump. To identify these mutations in organic solvent tolerant E. coli, eight cyclohexane-tolerant E. coli JA300 mutants were isolated and examined by DNA sequencing for mutations in marR, soxR, and acrR. Every mutant carried a mutation in either marR or acrR. Among all mutants, strain CH7 carrying a nonsense mutation in marR (named marR109) and an insertion of IS5 in acrR, exhibited the highest organic solvent-tolerance levels. To clarify the involvement of these mutations in improving organic solvent tolerance, they were introduced into the E. coli JA300 chromosome by site-directed mutagenesis using λ red-mediated homologous recombination. Consequently, JA300 mutants carrying acrR::IS5, marR109, or both were constructed and named JA300 acrRIS, JA300 marR, or JA300 acrRIS marR, respectively. The organic solvent tolerance levels of these mutants were increased in the following order: JA300 < JA300 acrRIS < JA300 marR < JA300 acrRIS marR. JA300 acrRIS marR formed colonies on an agar plate overlaid with cyclohexane and p-xylene (6:4 vol/vol mixture). The organic solvent-tolerance level and AcrAB-TolC efflux pump-expression level in JA300 acrRIS marR were similar to those in CH7. Thus, it was shown that the synergistic effects of mutations in only two regulatory genes, acrR and marR, can significantly increase organic solvent tolerance in E. coli.
doi:10.1186/2191-0855-2-58
PMCID: PMC3514110  PMID: 23148659
Escherichia coli; Organic solvent tolerance; MarR; AcrR; AcrAB-TolC; Efflux pump
14.  Model of Transcriptional Activation by MarA in Escherichia coli 
PLoS Computational Biology  2009;5(12):e1000614.
The AraC family transcription factor MarA activates ∼40 genes (the marA/soxS/rob regulon) of the Escherichia coli chromosome resulting in different levels of resistance to a wide array of antibiotics and to superoxides. Activation of marA/soxS/rob regulon promoters occurs in a well-defined order with respect to the level of MarA; however, the order of activation does not parallel the strength of MarA binding to promoter sequences. To understand this lack of correspondence, we developed a computational model of transcriptional activation in which a transcription factor either increases or decreases RNA polymerase binding, and either accelerates or retards post-binding events associated with transcription initiation. We used the model to analyze data characterizing MarA regulation of promoter activity. The model clearly explains the lack of correspondence between the order of activation and the MarA-DNA affinity and indicates that the order of activation can only be predicted using information about the strength of the full MarA-polymerase-DNA interaction. The analysis further suggests that MarA can activate without increasing polymerase binding and that activation can even involve a decrease in polymerase binding, which is opposite to the textbook model of activation by recruitment. These findings are consistent with published chromatin immunoprecipitation assays of interactions between polymerase and the E. coli chromosome. We find that activation involving decreased polymerase binding yields lower latency in gene regulation and therefore might confer a competitive advantage to cells. Our model yields insights into requirements for predicting the order of activation of a regulon and enables us to suggest that activation might involve a decrease in polymerase binding which we expect to be an important theme of gene regulation in E. coli and beyond.
Author Summary
When environmental conditions change, cell survival can depend on sudden production of proteins that are normally in low demand. Protein production is controlled by transcription factors which bind to DNA near genes and either increase or decrease RNA production. Many puzzles remain concerning the ways transcription factors do this. Recently we collected data relating the intracellular level of a single transcription factor, MarA, to the increase in expression of several genes related to antibiotic and superoxide resistance in Escherichia coli. These data indicated that target genes are turned on in a well-defined order with respect to the level of MarA, enabling cells to mount a response that is commensurate to the level of threat detected in the environment. Here we develop a computational model to yield insight into how MarA turns on its target genes. The modeling suggests that MarA can increase the frequency with which a transcript is made while decreasing the overall presence of the transcription machinery at the start of a gene. This mechanism is opposite to the textbook model of transcriptional activation; nevertheless it enables cells to respond quickly to environmental challenges and is likely of general importance for gene regulation in E. coli and beyond.
doi:10.1371/journal.pcbi.1000614
PMCID: PMC2787020  PMID: 20019803
15.  Study the Expression of marA Gene in Ciprofloxacin and Tetracycline Resistant Mutants of Esherichia coli  
MarA activates two membrane dependent mechanisms of resistance to different antibiotics, such as ciprofloxacin and tetracycline, including promotion of outflux and inhibition of influx of antibiotics. Thus, MarA causes multiple antibiotic resistance phenotype. The activation of these mechanisms needs overexpression of marA. This could happen through mutation in marR. Thus, the aim of this study was to measure marA expression in ciprofloxacin resistant E. coli gyrA mutants and clones with or without marR mutation. For this purpose, real time PCR was used to measure relative expression of marA in above mutants and clones. Results showed that two clones, C14 and C17 overexpressed marA. It is concluded that the level of marA expression is important for activation of above mechanisms.
PMCID: PMC3920692  PMID: 24523773
acrAB operon; gyrA mutants; marA gene; marR mutation
16.  Activation of the E. coli marA/soxS/rob regulon in response to transcriptional activator concentration 
Journal of molecular biology  2008;380(2):278-284.
Summary
The paralogous transcriptional activators, MarA, SoxS and Rob, activate a common set of promoters, the marA/soxS/rob regulon of Escherichia coli, by binding a cognate site (marbox) upstream of each promoter. The extent of activation varies from one promoter to another and is only poorly correlated with the in vitro affinity of the activator for the specific marbox. Here, we examine the dependence of promoter activation on the level of activator in vivo by manipulating the steady-state concentrations of MarA and SoxS in Lon protease mutants and measuring promoter activation using lacZ transcriptional fusions. We found that: (i) the MarA concentrations needed for half-maximal stimulation varied by at least 19-fold among the 10 promoters tested; (ii) most marboxes were not saturated when there were 24,000 molecules of MarA per cell; (iii) the correlation between MarA concentration needed for half-maximal promoter activity in vivo with marbox binding affinity in vitro was poor and (iv) the two activators differed in their promoter activation profiles. The marRAB and sodA promoters could both be saturated by MarA and SoxS in vivo. However, saturation by MarA resulted in greater marRAB and lesser sodA transcription than did saturation by SoxS implying that the two activators interact with RNAP in different ways at the different promoters. Thus, the concentration and nature of activator determines which regulon promoters are activated and the extent of their activation.
doi:10.1016/j.jmb.2008.05.015
PMCID: PMC2614912  PMID: 18514222
gene regulation; AraC protein family; stress response
17.  Transcriptional activation of promoters of the superoxide and multiple antibiotic resistance regulons by Rob, a binding protein of the Escherichia coli origin of chromosomal replication. 
Journal of Bacteriology  1996;178(9):2507-2513.
The Rob protein, isolated on the basis of its ability to bind to the right arm of the Escherichia coli origin of chromosomal replication, is about 50% identical in amino acid sequence to SoxS and MarA, the direct regulators of the superoxide (soxRS) and multiple antibiotic resistance (mar) regulons, respectively. Having previously demonstrated that SoxS (as a MalE-SoxS fusion protein) and MarA are essentially identical in their abilities to activate in vitro transcription of genes of the sox-mar regulons, we investigated the properties of Rob as a transcriptional activator. We found that Rob (i) activates the transcription of zwf,fpr,fumC, micF, nfo, and sodA, (ii) requires a 21-bp soxbox-marbox-robbox sequence to activate zwf transcription, (iii) protects the soxbox/marbox/robbox from attack by DNase 1, (iv) is ambidextrous, i.e., requires the C-terminal domain of the alpha subunit of RNA polymerase for activation of zwf but not fumC or micF, (v) bends zwf and fumC DNA, and (vi) binds zwf and fumC DNA as a monomer. Since these transcription activation properties of Rob are virtually identical to those of MalE-SoxS and MarA, it appears as if the E. coli genome encodes three genes with the same functional capacity. However, in contrast to SoxS and MarA, whose syntheses are induced by specific environmental stimuli and elicit a clear defense response, Rob is expressed constitutively and its normal function is unknown.
PMCID: PMC177972  PMID: 8626315
18.  MarA-Like Regulator of Multidrug Resistance in Yersinia pestis 
MarA47Yp from Yersinia pestis, showing 47% identity to Escherichia coli MarA in its N terminus, caused resistance to antibiotics and to organic solvents when expressed in both E. coli and Y. pestis. Resistance was linked to increased expression of the AcrAB multidrug efflux pump. In four of five spontaneous multidrug-resistant mutants of Y. pestis independently selected by growth on tetracycline, the marA47Yp gene was overexpressed. The findings suggest that marA47Yp is a marA ortholog in Y. pestis.
doi:10.1128/AAC.00015-06
PMCID: PMC1563561  PMID: 16940090
19.  mgtA Expression Is Induced by Rob Overexpression and Mediates a Salmonella enterica Resistance Phenotype▿  
Journal of Bacteriology  2008;190(14):4951-4958.
Rob is a member of the Sox/Mar subfamily of AraC/XylS-type transcriptional regulators implicated in bacterial multidrug, heavy metal, superoxide, and organic solvent resistance phenotypes. We demonstrate that, in Salmonella enterica, Rob overexpression upregulates the transcription of mgtA, which codes for the MgtA Mg2+ transporter. mgtA was previously characterized as a member of the Mg2+-modulated PhoPQ regulon. Here we demonstrate that Rob (but not its paralog protein SoxS or MarA) is able to induce mgtA transcription in a PhoP-independent fashion by binding to a conserved Mar/Sox/Rob motif localized downstream of the PhoP-box and overlapping the PhoP-dependent transcriptional start site. We found that Rob-induced mgtA expression confers low-level cyclohexane resistance on Salmonella. Because mgtA intactness is required for Rob-induced cyclohexane resistance, provided the AcrAB multidrug efflux pump can be expressed, we postulate that MgtA is involved in the AcrAB-mediated cyclohexane detoxification mechanism promoted by Rob in Salmonella.
doi:10.1128/JB.00195-08
PMCID: PMC2447000  PMID: 18487336
20.  Multidrug Resistance following Expression of the Escherichia coli marA Gene in Mycobacterium smegmatis 
Journal of Bacteriology  1998;180(11):2995-2998.
Expression of the Escherichia coli multiple antibiotic resistance marA gene cloned in Mycobacterium smegmatis produced increased resistance to multiple antimicrobial agents, including rifampin, isoniazid, ethambutol, tetracycline, and chloramphenicol. Cloned marR or marA cloned in the antisense direction had no effect. Resistance changes were lost with spontaneous loss of the plasmid bearing marA. A MarA mutant protein, having an insertional mutation within either of its two alpha-helices of the first putative helix-turn-helix domain, failed to produce the multiresistance phenotype in E. coli and M. smegmatis, indicating that this region is critical for MarA function. These results strongly suggest that E. coli marA functions in M. smegmatis and that a mar-like regulatory system exists in this organism.
PMCID: PMC107271  PMID: 9603894
21.  Autoactivation of the marRAB multiple antibiotic resistance operon by the MarA transcriptional activator in Escherichia coli. 
Journal of Bacteriology  1996;178(8):2216-2223.
Transcriptional activation of the promoters of the mar/soxRS regulons by the sequence-related but independently inducible MarA and SoxS proteins renders Escherichia coli resistant to a broad spectrum of antibiotics and superoxide generators. Here, the effects of MarA and SoxS on transcription of the marRAB promoter itself were assayed in vitro by using a minimal transcription system and in vivo by assaying beta-galactosidase synthesized from marR::lacZ fusions. Purified MarA and MalE-SoxS proteins stimulated mar transcription about 6- and 15-fold, respectively, when the RNA polymerase/DNA ratio was 1. Purified MarA bound as a monomer to a 16-bp "marbox" located 69 to 54 nucleotides upstream of a putative RNA initiation site. Deletion of the marbox reduced MarA-mar binding 100-fold, abolished the stimulatory effects of MarA and SoxS on transcription in vitro, and reduced marR::lacZ synthesis about 4-fold in vivo. Deletion of upstream DNA adjoining the marbox reduced MarA binding efficiency 30-fold and transcriptional activation 2- to 3-fold, providing evidence for an accessory marbox. Although MarA and the mar operon repressor, MarR, bound to independent sites, they competed for promoter DNA in band shift experiments. Assays of marR::lacZ transcriptional fusions in marRAB deletion or soxRS deletion strains showed that the superoxide generator paraquat stimulates mar transcription via soxRS and that salicylate stimulates mar transcription both by antagonizing MarR and by a MarR-independent mechanism. Thus, transcription of the marRAB operon is autorepressed by MarR and autoactivated by MarA at a site that also can be activated by SoxS.
PMCID: PMC177928  PMID: 8636021
22.  In Vitro Selection of ramR and soxR Mutants Overexpressing Efflux Systems by Fluoroquinolones as Well as Cefoxitin in Klebsiella pneumoniae▿ 
The relationship between efflux system overexpression and cross-resistance to cefoxitin, quinolones, and chloramphenicol has recently been reported in Klebsiella pneumoniae. In 3 previously published clinical isolates and 17 in vitro mutants selected with cefoxitin or fluoroquinolones, mutations in the potential regulator genes of the AcrAB efflux pump (acrR, ramR, ramA, marR, marA, soxR, soxS, and rob) were searched, and their impacts on efflux-related antibiotic cross-resistance were assessed. All mutants but 1, and 2 clinical isolates, overexpressed acrB. No mutation was detected in the regulator genes studied among the clinical isolates and 8 of the mutants. For the 9 remaining mutants, a mutation was found in the ramR gene in 8 of them and in the soxR gene in the last one, resulting in overexpression of ramA and soxS, respectively. Transformation of the ramR mutants and the soxR mutant with the wild-type ramR and soxR genes, respectively, abolished overexpression of acrB and ramA in the ramR mutants and of soxS in the soxR mutant, as well as antibiotic cross-resistance. Resistance due to efflux system overexpression was demonstrated for 4 new antibiotics: cefuroxime, cefotaxime, ceftazidime, and ertapenem. This study shows that the ramR and soxR genes control the expression of efflux systems in K. pneumoniae and suggests the existence of efflux pumps other than AcrAB and of other loci involved in the regulation of AcrAB expression.
doi:10.1128/AAC.00156-11
PMCID: PMC3101381  PMID: 21464248
23.  marA locus causes decreased expression of OmpF porin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli. 
Journal of Bacteriology  1988;170(12):5416-5422.
Mar (multiple antibiotic resistant) mutants of Escherichia coli express chromosomally mediated resistance to a variety of structurally unrelated hydrophilic and hydrophobic antibiotics. Insertion of transposon Tn5 into the marA locus at min 34.05 on the chromosome completely reverses the Mar phenotype (A. M. George and S. B. Levy, J. Bacteriol. 155:531-540, 1983). We found that among changes in the outer membrane of Mar mutants, porin OmpF was greatly reduced, although Mar mutants were more resistant than cells lacking only OmpF. Transduction of the marA region from a Mar strain, but not a wild-type strain, led to loss of OmpF. P1 transduction of marA::Tn5 into a Mar mutant partially restored OmpF levels. Therefore, OmpF reduction required a mutation in the marA region. Mar mutants of an ompF-lacZ operon fusion strain expressed 50 to 75% of the beta-galactosidase activity of the isogenic non-Mar parental strain, while Mar mutants of a protein fusion strain expressed less than 10% of the enzyme activity in the non-Mar strain. These changes were completely reversed by insertion of marA::Tn5. The responsiveness of OmpF-LacZ to osmolarity and temperature changes was similar in Mar and wild-type strains. Although some transcriptional control may have been present, OmpF reduction appeared to occur primarily by a posttranscriptional mechanism. The steady-state levels of ompF mRNA were twofold lower and the mRNA was five times less stable in the Mar mutant than in the wild-type strain. Expression of micF, which lowers ompF mRNA levels, was elevated in Mar strains, as revealed by a micF-lacZ fusion. Studies with strains deleted for the micF locus showed that the marA-dependent reduction of OmpF required an intact micF locus. Our findings suggest that the marA locus directly or indirectly increases micF expression, causing a posttranscriptional decrease in ompF mRNA and reduced amounts of OmpF.
Images
PMCID: PMC211632  PMID: 2848006
24.  The Salmonella typhimurium mar locus: molecular and genetic analyses and assessment of its role in virulence. 
Journal of Bacteriology  1997;179(6):1857-1866.
The marRAB operon is a regulatory locus that controls multiple drug resistance in Escherichia coli. marA encodes a positive regulator of the antibiotic resistance response, acting by altering the expression of unlinked genes. marR encodes a repressor of marRAB transcription and controls the production of MarA in response to environmental signals. A molecular and genetic study of the homologous operon in Salmonella typhimurium was undertaken, and the role of marA in virulence in a murine model was assessed. Expression of E. coli marA (marAEC) present on a multicopy plasmid in S. typhimurium resulted in a multiple antibiotic resistance (Mar) phenotype, suggesting that a similar regulon exists in this organism. A genomic plasmid library containing S. typhimurium chromosomal sequences was introduced into an E. coli strain that was deleted for the mar locus and contained a single-copy marR'-'lacZ translational fusion. Plasmid clones that contained both S. typhimurium marR (marRSt) and marA (marASt) genes were identified as those that were capable of repressing expression of the fusion and which resulted in a Mar phenotype. The predicted amino acid sequences of MarRSt, MarASt, and MarBSt were 91, 86, and 42% identical, respectively, to the same genes from E. coli, while the operator/promoter region of the operon was 86% identical to the same 98-nucleotide-upstream region in E. coli. The marRAB transcriptional start sites for both organisms were determined by primer extension, and a marRABSt transcript of approximately 1.1 kb was identified by Northern blot analysis. Its accumulation was shown to be inducible by sodium salicylate. Open reading frames flanking the marRAB operon were also conserved. An S. typhimurium marA disruption strain was constructed by an allelic exchange method and compared to the wild-type strain for virulence in a murine BALB/c infection model. No effect on virulence was noted. The endogenous S. typhimurium plasmid that is associated with virulence played no role in marA-mediated multiple antibiotic resistance. Taken together, the data show that the S. typhimurium mar locus is structurally and functionally similar to marRABEc and that a lesion in marASt has no effect on S. typhimurium virulence for BALB/c mice.
PMCID: PMC178907  PMID: 9068629
25.  Characterization of RarA, a Novel AraC Family Multidrug Resistance Regulator in Klebsiella pneumoniae 
Transcriptional regulators, such as SoxS, RamA, MarA, and Rob, which upregulate the AcrAB efflux pump, have been shown to be associated with multidrug resistance in clinically relevant Gram-negative bacteria. In addition to the multidrug resistance phenotype, these regulators have also been shown to play a role in the cellular metabolism and possibly the virulence potential of microbial cells. As such, the increased expression of these proteins is likely to cause pleiotropic phenotypes. Klebsiella pneumoniae is a major nosocomial pathogen which can express the SoxS, MarA, Rob, and RamA proteins, and the accompanying paper shows that the increased transcription of ramA is associated with tigecycline resistance (M. Veleba and T. Schneiders, Antimicrob. Agents Chemother. 56:4466–4467, 2012). Bioinformatic analyses of the available Klebsiella genome sequences show that an additional AraC-type regulator is encoded chromosomally. In this work, we characterize this novel AraC-type regulator, hereby called RarA (Regulator of antibiotic resistance A), which is encoded in K. pneumoniae, Enterobacter sp. 638, Serratia proteamaculans 568, and Enterobacter cloacae. We show that the overexpression of rarA results in a multidrug resistance phenotype which requires a functional AcrAB efflux pump but is independent of the other AraC regulators. Quantitative real-time PCR experiments show that rarA (MGH 78578 KPN_02968) and its neighboring efflux pump operon oqxAB (KPN_02969_02970) are consistently upregulated in clinical isolates collected from various geographical locations (Chile, Turkey, and Germany). Our results suggest that rarA overexpression upregulates the oqxAB efflux pump. Additionally, it appears that oqxR, encoding a GntR-type regulator adjacent to the oqxAB operon, is able to downregulate the expression of the oqxAB efflux pump, where OqxR complementation resulted in reductions to olaquindox MICs.
doi:10.1128/AAC.00456-12
PMCID: PMC3421627  PMID: 22644028

Results 1-25 (346688)