Search tips
Search criteria

Results 1-25 (829948)

Clipboard (0)

Related Articles

1.  BrpA Is Involved in Regulation of Cell Envelope Stress Responses in Streptococcus mutans 
Previous studies have shown that BrpA plays a major role in acid and oxidative stress tolerance and biofilm formation by Streptococcus mutans. Mutant strains lacking BrpA also display increased autolysis and decreased viability, suggesting a role for BrpA in cell envelope integrity. In this study, we examined the impact of BrpA deficiency on cell envelope stresses induced by envelope-active antimicrobials. Compared to the wild-type strain UA159, the BrpA-deficient mutant (TW14D) was significantly more susceptible to antimicrobial agents, especially lipid II inhibitors. Several genes involved in peptidoglycan synthesis were identified by DNA microarray analysis as downregulated in TW14D. Luciferase reporter gene fusion assays also revealed that expression of brpA is regulated in response to environmental conditions and stresses induced by exposure to subinhibitory concentrations of cell envelope antimicrobials. In a Galleria mellonella (wax worm) model, BrpA deficiency was shown to diminish the virulence of S. mutans OMZ175, which, unlike S. mutans UA159, efficiently kills the worms. Collectively, these results suggest that BrpA plays a role in the regulation of cell envelope integrity and that deficiency of BrpA adversely affects the fitness and diminishes the virulence of OMZ175, a highly invasive strain of S. mutans.
PMCID: PMC3318800  PMID: 22327589
2.  Influence of BrpA on Critical Virulence Attributes of Streptococcus mutans 
Journal of Bacteriology  2006;188(8):2983-2992.
Streptococcus mutans, the primary etiological agent of human dental caries, has developed multiple mechanisms to colonize and form biofilms on the tooth surface. The brpA gene codes for a predicted surface-associated protein with apparent roles in biofilm formation, autolysis, and cell division. In this study, we used two models to further characterize the biofilm-forming characteristics of a BrpA-deficient mutant, strain TW14. Compared to those of the parent strain, UA159, TW14 formed long chains and sparse microcolonies on hydroxylapatite disks but failed to accumulate and form three-dimensional biofilms when grown on glucose as the carbohydrate source. The biofilm formation defect was also readily apparent by confocal laser scanning microscopy when flow cells were used to grow biofilms. When subjected to acid killing at pH 2.8 for 45 min, the survival rate of strain TW14 was more than 1 log lower than that of the wild-type strain. TW14 was at least 3 logs more susceptible to killing by 0.2% hydrogen peroxide than was UA159. The expression of more than 200 genes was found by microarray analysis to be altered in cells lacking BrpA (P < 0.01). These results suggest that the loss of BrpA can dramatically influence the transcriptome and significantly affects the regulation of acid and oxidative stress tolerance and biofilm formation in S. mutans, which are key virulence attributes of the organism.
PMCID: PMC1447002  PMID: 16585759
3.  Psr is involved in regulation of glucan production, and double deficiency of BrpA and Psr is lethal in Streptococcus mutans 
Microbiology  2013;159(Pt 3):493-506.
Streptococcus mutans, the primary causative agent of dental caries, contains two paralogues of the LytR-CpsA-Psr family proteins encoded by brpA and psr, respectively. Previous studies have shown that BrpA plays an important role in cell envelope biogenesis/homeostasis and affects stress responses and biofilm formation by Strep. mutans, traits critical to cariogenicity of this bacterium. In this study, a Psr-deficient mutant, TW251, was constructed. Characterization of TW251 showed that deficiency of Psr did not have any major impact on growth rate. However, when subjected to acid killing at pH 2.8, the survival rate of TW251 was decreased dramatically compared with the parent strain UA159. In addition, TW251 also displayed major defects in biofilm formation, especially during growth with sucrose. When compared to UA159, the biofilms of TW251 were mainly planar and devoid of extracellular glucans. Real-time-PCR and Western blot analyses revealed that deficiency of Psr significantly decreased the expression of glucosyltransferase C, a protein known to play a major role in biofilm formation by Strep. mutans. Transmission electron microscopy analysis showed that deficiency of BrpA caused alterations in cell envelope and cell division, and the most significant defects were observed in TW314, a Psr-deficient and BrpA-down mutant. No such effects were observed with Psr mutant TW251 under similar conditions. These results suggest that while there are similarities in functions between BrpA and Psr, distinctive differences also exist between these two paralogues. Like Bacillus subtilis but different from Staphylococcus aureus, a functional BrpA or Psr is required for viability in Strep. mutans.
PMCID: PMC3709821  PMID: 23288544
4.  LuxS-Mediated Signaling in Streptococcus mutans Is Involved in Regulation of Acid and Oxidative Stress Tolerance and Biofilm Formation 
Journal of Bacteriology  2004;186(9):2682-2691.
LuxS-mediated quorum sensing has recently been shown to regulate important physiologic functions and virulence in a variety of bacteria. In this study, the role of luxS of Streptococcus mutans in the regulation of traits crucial to pathogenesis was investigated. Reporter gene fusions showed that inactivation of luxS resulted in a down-regulation of fructanase, a demonstrated virulence determinant, by more than 50%. The LuxS-deficient strain (TW26) showed increased sensitivity to acid killing but could still undergo acid adaptation. Northern hybridization revealed that the expression of RecA, SmnA (AP endonuclease), and Nth (endonuclease) were down-regulated in TW26, especially in early-exponential-phase cells. Other down-regulated genes included ffh (a signal recognition particle subunit) and brpA (biofilm regulatory protein A). Interestingly, the luxS mutant showed an increase in survival rate in the presence of hydrogen peroxide (58.8 mM). The luxS mutant formed less biofilm on hydroxylapatite disks, especially when grown in biofilm medium with sucrose, and the mutant biofilms appeared loose and hive-like, whereas the biofilms of the wild type were smooth and confluent. The mutant phenotypes were complemented by exposure to supernatants from wild-type cultures. Two loci, smu486 and smu487, were identified and predicted to encode a histidine kinase and a response regulator. The phenotypes of the smu486 smu487 mutant were, in almost all cases, similar to those of the luxS mutant, although our results suggest that this is not due to AI-2 signal transduction via Smu486 and Smu487. This study demonstrates that luxS-dependent signaling plays critical roles in modulating key virulence properties of S. mutans.
PMCID: PMC387784  PMID: 15090509
5.  Mutation of luxS Affects Biofilm Formation in Streptococcus mutans  
Infection and Immunity  2003;71(4):1972-1979.
Quorum sensing is a bacterial mechanism for regulating gene expression in response to changes in population density. Many bacteria are capable of acyl-homoserine lactone-based or peptide-based intraspecies quorum sensing and luxS-dependent interspecies quorum sensing. While there is good evidence about the involvement of intraspecies quorum sensing in bacterial biofilm, little is known about the role of luxS in biofilm formation. In this study, we report for the first time that luxS-dependent quorum sensing is involved in biofilm formation of Streptococcus mutans. S. mutans is a major cariogenic bacterium in the multispecies bacterial biofilm commonly known as dental plaque. An ortholog of luxS for S. mutans was identified using the data available in the S. mutans genome project ( Using an assay developed for the detection of the LuxS-associated quorum sensing signal autoinducer 2 (AI-2), it was demonstrated that this ortholog was able to complement the luxS negative phenotype of Escherichia coli DH5α. It was also shown that AI-2 is indeed produced by S. mutans. AI-2 production is maximal during mid- to late-log growth in batch culture. Mutant strains devoid of the luxS gene were constructed and found to be defective in producing the AI-2 signal. There are also marked phenotypic differences between the wild type and the luxS mutants. Microscopic analysis of in vitro-grown biofilm structure revealed that the luxS mutant biofilms adopted a much more granular appearance, rather than the relatively smooth, confluent layer normally seen in the wild type. These results suggest that LuxS-dependent signal may play an important role in biofilm formation of S. mutans.
PMCID: PMC152054  PMID: 12654815
6.  Multiple Streptococcus mutans Genes Are Involved in Biofilm Formation†  
Applied and Environmental Microbiology  2002;68(12):6283-6291.
Streptococcus mutans has been strongly implicated as the principal etiological agent in dental caries. One of the important virulence properties of these organisms is their ability to form biofilms known as dental plaque on tooth surfaces. Since the roles of sucrose and glucosyltransferases in S. mutans biofilm formation have been well documented, we focused our attention on sucrose-independent factors. We have initially identified several mutants that appear to be defective in biofilm formation on abiotic surfaces by an insertional inactivation mutagenesis strategy applied to S. mutans. A total of 27 biofilm-defective mutants were isolated and analyzed in this study. From these mutants, three genes were identified. One of the mutants was defective in the Bacillus subtilis lytR homologue. Another of the biofilm-defective mutants isolated was a yulF homologue, which encodes a hypothetical protein of B. subtilis whose function in biofilm formation is unknown. The vast majority of the mutants were defective in the comB gene required for competence. We therefore have constructed and examined comACDE null mutants. These mutants were also found to be attenuated in biofilm formation. Biofilm formation by several other regulatory gene mutants were also characterized using an in vitro biofilm-forming assay. These results suggest that competence genes as well as the sgp and dgk genes may play important roles in S. mutans biofilm formation.
PMCID: PMC134449  PMID: 12450853
7.  CcpA coordinates central metabolism and biofilm formation in Staphylococcus epidermidis 
Microbiology  2011;157(Pt 12):3458-3468.
Staphylococcus epidermidis is an opportunistic bacterium whose infections often involve the formation of a biofilm on implanted biomaterials. In S. epidermidis, the exopolysaccharide facilitating bacterial adherence in a biofilm is polysaccharide intercellular adhesin (PIA), whose synthesis requires the enzymes encoded within the intercellular adhesin operon (icaADBC). In vitro, the formation of S. epidermidis biofilms is enhanced by conditions that repress tricarboxylic acid (TCA) cycle activity, such as growth in a medium containing glucose. In many Gram-positive bacteria, repression of TCA cycle genes in response to glucose is accomplished by catabolite control protein A (CcpA). CcpA is a member of the GalR–LacI repressor family that mediates carbon catabolite repression, leading us to hypothesize that catabolite control of S. epidermidis biofilm formation is indirectly regulated by CcpA-dependent repression of the TCA cycle. To test this hypothesis, ccpA deletion mutants were constructed in strain 1457 and 1457-acnA and the effects on TCA cycle activity, biofilm formation and virulence were assessed. As anticipated, deletion of ccpA derepressed TCA cycle activity and inhibited biofilm formation; however, ccpA deletion had only a modest effect on icaADBC transcription. Surprisingly, deletion of ccpA in strain 1457-acnA, a strain whose TCA cycle is inactive and where icaADBC transcription is derepressed, strongly inhibited icaADBC transcription. These observations demonstrate that CcpA is a positive effector of biofilm formation and icaADBC transcription and a repressor of TCA cycle activity.
PMCID: PMC3352278  PMID: 21964732
8.  A Quorum-Sensing Signaling System Essential for Genetic Competence in Streptococcus mutans Is Involved in Biofilm Formation 
Journal of Bacteriology  2002;184(10):2699-2708.
In a previous study, a quorum-sensing signaling system essential for genetic competence in Streptococcus mutans was identified, characterized, and found to function optimally in biofilms (Li et al., J. Bacteriol. 183:897-908, 2001). Here, we demonstrate that this system also plays a role in the ability of S. mutans to initiate biofilm formation. To test this hypothesis, S. mutans wild-type strain NG8 and its knockout mutants defective in comC, comD, comE, and comX, as well as a comCDE deletion mutant, were assayed for their ability to initiate biofilm formation. The spatial distribution and architecture of the biofilms were examined by scanning electron microscopy and confocal scanning laser microscopy. The results showed that inactivation of any of the individual genes under study resulted in the formation of an abnormal biofilm. The comC mutant, unable to produce or secrete a competence-stimulating peptide (CSP), formed biofilms with altered architecture, whereas the comD and comE mutants, which were defective in sensing and responding to the CSP, formed biofilms with reduced biomass. Exogenous addition of the CSP and complementation with a plasmid containing the wild-type comC gene into the cultures restored the wild-type biofilm architecture of comC mutants but showed no effect on the comD, comE, or comX mutant biofilms. The fact that biofilms formed by comC mutants differed from the comD, comE, and comX mutant biofilms suggested that multiple signal transduction pathways were affected by CSP. Addition of synthetic CSP into the culture medium or introduction of the wild-type comC gene on a shuttle vector into the comCDE deletion mutant partially restored the wild-type biofilm architecture and further supported this idea. We conclude that the quorum-sensing signaling system essential for genetic competence in S. mutans is important for the formation of biofilms by this gram-positive organism.
PMCID: PMC135014  PMID: 11976299
9.  LuxS-Based Signaling Affects Streptococcus mutans Biofilm Formation 
Streptococcus mutans is implicated as a major etiological agent in human dental caries, and one of the important virulence properties of this organism is its ability to form biofilms (dental plaque) on tooth surfaces. We examined the role of autoinducer-2 (AI-2) on S. mutans biofilm formation by constructing a GS-5 luxS-null mutant. Biofilm formation by the luxS mutant in 0.5% sucrose defined medium was found to be markedly attenuated compared to the wild type. Scanning electron microscopy also revealed that biofilms of the luxS mutant formed larger clumps in sucrose medium compared to the parental strain. Therefore, the expression of glucosyltransferase genes was examined and the gtfB and gtfC genes, but not the gtfD gene, in the luxS mutant were upregulated in the mid-log growth phase. Furthermore, we developed a novel two-compartment system to monitor AI-2 production by oral streptococci and periodontopathic bacteria. The biofilm defect of the luxS mutant was complemented by strains of S. gordonii, S. sobrinus, and S. anginosus; however, it was not complemented by S. oralis, S. salivarius, or S. sanguinis. Biofilm formation by the luxS mutant was also complemented by Porphyromonas gingivalis 381 and Actinobacillus actinomycetemcomitans Y4 but not by a P. gingivalis luxS mutant. These results suggest that the regulation of the glucosyltransferase genes required for sucrose-dependent biofilm formation is regulated by AI-2. Furthermore, these results provide further confirmation of previous proposals that quorum sensing via AI-2 may play a significant role in oral biofilm formation.
PMCID: PMC1087550  PMID: 15870324
10.  Molecular Characterization of CcpA and Involvement of This Protein in Transcriptional Regulation of Lactate Dehydrogenase and Pyruvate Formate-Lyase in the Ruminal Bacterium Streptococcus bovis 
A ccpA gene that encodes global catabolite control protein A (CcpA) in Streptococcus bovis was identified and characterized, and the involvement of CcpA in transcriptional control of a gene (ldh) encoding lactate dehydrogenase (LDH) and a gene (pfl) encoding pyruvate formate-lyase (PFL) was examined. The ccpA gene was shown to be transcribed as a monocistronic operon. A catabolite-responsive element (cre) was found in the promoter region of ccpA, suggesting that ccpA transcription in S. bovis is autogenously regulated. CcpA required HPr that was phosphorylated at the serine residue at position 46 (HPr-[Ser-P]) for binding to the cre site, but glucose 6-phosphate, fructose 1,6-bisphosphate, and NADP had no effect on binding. Diauxic growth was observed when S. bovis was grown in a medium containing glucose and lactose, but it disappeared when ccpA was disrupted, which indicates that CcpA is involved in catabolite repression in S. bovis. The level of ccpA mRNA was higher when cells were grown on glucose than when they were grown on lactose, which was in line with the level of ldh mRNA. When cells were grown on glucose, the ldh mRNA level was lower but the pfl mRNA level was higher in a ccpA-disrupted mutant than in the parent strain, which suggests that ldh transcription is enhanced and pfl transcription is suppressed by CcpA. The ccpA-disrupted mutant produced less lactate and more formate than the parent, probably because the mutant had reduced LDH activity and elevated PFL activity. In the upper region of both ldh and pfl, a cre-like sequence was found, suggesting that the complex consisting of CcpA and HPr-[Ser-P] binds to the possible cre sites. Thus, CcpA appears to be involved in the global regulation of sugar utilization in S. bovis.
PMCID: PMC520867  PMID: 15345406
11.  Staphylococcus aureus CcpA Affects Biofilm Formation▿  
Infection and Immunity  2008;76(5):2044-2050.
Biofilm formation in Staphylococcus aureus under in vitro growth conditions is generally promoted by high concentrations of sugar and/or salts. The addition of glucose to routinely used complex growth media triggered biofilm formation in S. aureus strain SA113. Deletion of ccpA, coding for the catabolite control protein A (CcpA), which regulates gene expression in response to the carbon source, abolished the capacity of SA113 to form a biofilm under static and flow conditions, while still allowing primary attachment to polystyrene surfaces. This suggested that CcpA mainly affects biofilm accumulation and intercellular aggregation. trans-Complementation of the mutant with the wild-type ccpA allele fully restored the biofilm formation. The biofilm produced by SA113 was susceptible to sodium metaperiodate, DNase I, and proteinase K treatment, indicating the presence of polysaccharide intercellular adhesin (PIA), protein factors, and extracellular DNA (eDNA). The investigation of several factors which were reported to influence biofilm formation in S. aureus (arlRS, mgrA, rbf, sarA, atl, ica, citZ, citB, and cidABC) showed that CcpA up-regulated the transcription of cidA, which was recently shown to contribute to eDNA production. Moreover, we showed that CcpA increased icaA expression and PIA production, presumably over the down-regulation of the tricarboxylic acid cycle genes citB and citZ.
PMCID: PMC2346702  PMID: 18347047
12.  CcpA Regulates Central Metabolism and Virulence Gene Expression in Streptococcus mutans▿ †  
Journal of Bacteriology  2008;190(7):2340-2349.
CcpA globally regulates transcription in response to carbohydrate availability in many gram-positive bacteria, but its role in Streptococcus mutans remains enigmatic. Using the fructan hydrolase (fruA) gene of S. mutans as a model, we demonstrated that CcpA plays a direct role in carbon catabolite repression (CCR). Subsequently, the expression of 170 genes was shown to be differently expressed (≥2-fold) in glucose-grown wild-type (UA159) and CcpA-deficient (TW1) strains (P ≤ 0.001). However, there were differences in expression of only 96 genes between UA159 and TW1 when cells were cultivated with the poorly repressing substrate galactose. Interestingly, 90 genes were expressed differently in wild-type S. mutans when glucose- and galactose-grown cells were compared, but the expression of 515 genes was altered in the CcpA-deficient strain in a similar comparison. Overall, our results supported the hypothesis that CcpA has a major role in CCR and regulation of gene expression but revealed that in S. mutans there is a substantial CcpA-independent network that regulates gene expression in response to the carbohydrate source. Based on the genetic studies, biochemical and physiological experiments demonstrated that loss of CcpA impacts the ability of S. mutans to transport and grow on selected sugars. Also, the CcpA-deficient strain displayed an enhanced capacity to produce acid from intracellular stores of polysaccharides, could grow faster at pH 5.5, and could acidify the environment more rapidly and to a greater extent than the parental strain. Thus, CcpA directly modulates the pathogenic potential of S. mutans through global control of gene expression.
PMCID: PMC2293215  PMID: 18223086
13.  Genetic adaptation of Streptococcus mutans during biofilm formation on different types of surfaces 
BMC Microbiology  2010;10:51.
Adhesion and successful colonization of bacteria onto solid surfaces play a key role in biofilm formation. The initial adhesion and the colonization of bacteria may differ between the various types of surfaces found in oral cavity. Therefore, it is conceivable that diverse biofilms are developed on those various surfaces. The aim of the study was to investigate the molecular modifications occurring during in vitro biofilm development of Streptococcus mutans UA159 on several different dental surfaces.
Growth analysis of the immobilized bacterial populations generated on the different surfaces shows that the bacteria constructed a more confluent and thick biofilms on a hydroxyapatite surface compared to the other tested surfaces. Using DNA-microarray technology we identified the differentially expressed genes of S. mutans, reflecting the physiological state of biofilms formed on the different biomaterials tested. Eight selected genes were further analyzed by real time RT-PCR. To further determine the impact of the tested material surfaces on the physiology of the bacteria, we tested the secretion of AI-2 signal by S. mutans embedded on those biofilms. Comparative transcriptome analyses indicated on changes in the S. mutans genome in biofilms formed onto different types of surfaces and enabled us to identify genes most differentially expressed on those surfaces. In addition, the levels of autoinducer-2 in biofilms from the various tested surfaces were different.
Our results demonstrate that gene expression of S. mutans differs in biofilms formed on tested surfaces, which manifest the physiological state of bacteria influenced by the type of surface material they accumulate onto. Moreover, the stressful circumstances of adjustment to the surface may persist in the bacteria enhancing intercellular signaling and surface dependent biofilm formation.
PMCID: PMC2838874  PMID: 20167085
14.  Novel Two-Component Regulatory System Involved in Biofilm Formation and Acid Resistance in Streptococcus mutans 
Journal of Bacteriology  2002;184(22):6333-6342.
The abilities of Streptococcus mutans to form biofilms and to survive acidic pH are regarded as two important virulence determinants in the pathogenesis of dental caries. Environmental stimuli are thought to regulate the expression of several genes associated with virulence factors through the activity of two-component signal transduction systems. Yet, little is known of the involvement of these systems in the physiology and pathogenicity of S. mutans. In this study, we describe a two-component regulatory system and its involvement in biofilm formation and acid resistance in S. mutans. By searching the S. mutans genome database with tblastn with the HK03 and RR03 protein sequences from S. pneumoniae as queries, we identified two genes, designated hk11 and rr11, that encode a putative histidine kinase and its cognate response regulator. To gain insight into their function, a PCR-mediated allelic-exchange mutagenesis strategy was used to create the hk11 (Emr) and rr11 (Emr) deletion mutants from S. mutans wild-type NG8 named SMHK11 and SMRR11, respectively. The mutants were examined for their growth rates, genetic competence, ability to form biofilms, and resistance to low-pH challenge. The results showed that deletion of hk11 or rr11 resulted in defects in biofilm formation and resistance to acidic pH. Both mutants formed biofilms with reduced biomass (50 to 70% of the density of the parent strain). Scanning electron microscopy revealed that the biofilms formed by the mutants had sponge-like architecture with what appeared to be large gaps that resembled water channel-like structures. The mutant biofilms were composed of longer chains of cells than those of the parent biofilm. Deletion of hk11 also resulted in greatly diminished resistance to low pH, although we did not observe the same effect when rr11 was deleted. Genetic competence was not affected in either mutant. The results suggested that the gene product of hk11 in S. mutans might act as a pH sensor that could cross talk with one or more response regulators. We conclude that the two-component signal transduction system encoded by hk11 and rr11 represents a new regulatory system involved in biofilm formation and acid resistance in S. mutans.
PMCID: PMC151940  PMID: 12399503
15.  Effects of RelA on Key Virulence Properties of Planktonic and Biofilm Populations of Streptococcus mutans  
Infection and Immunity  2004;72(3):1431-1440.
Streptococcus mutans is a biofilm-forming bacterium that is adapted to tolerate rapid and dramatic fluctuations in nutrient availability, carbohydrate source, and pH in its natural environment, the human oral cavity. Dissecting the pathways used to form stable biofilms and to tolerate environmental stress is central to understanding the virulence of this organism. Here, we investigated the role of the S. mutans relA gene, which codes for a guanosine tetraphosphate and guanosine pentaphosphate [(p)ppGpp] synthetase/hydrolase, in biofilm formation and acid tolerance. Two mutants in which relA was insertionally inactivated or replaced by an antibiotic resistance determinant were constructed. Under normal growth and stress conditions, the mutants grew slower than the wild-type strain, although the final yields were similar. The mutants, which were still able to accumulate (p)ppGpp after the induction of a stringent response, showed significant reductions in biofilm formation on microtiter plates or hydroxylapatite disks. There was no difference in the sensitivities to acid killing of the parent and relA strains grown in planktonic cultures. However, when cells were grown in biofilms, the mutants became more acid resistant and could lower the pH through glycolysis faster and to a greater extent than the wild-type strain. Differences in acid resistance were not correlated with increases in F-ATPase activity, although bacterial sugar:phosphotransferase activity was elevated in the mutants. Expression of the luxS gene was increased as much as fivefold in the relA mutants, suggesting a link between AI-2 quorum sensing and the stringent response.
PMCID: PMC356000  PMID: 14977948
16.  Effects of Oxygen on Biofilm Formation and the AtlA Autolysin of Streptococcus mutans▿  
Journal of Bacteriology  2007;189(17):6293-6302.
The Streptococcus mutans atlA gene encodes an autolysin required for biofilm maturation and biogenesis of a normal cell surface. We found that the capacity to form biofilms by S. mutans, one of the principal causative agents of dental caries, was dramatically impaired by growth of the organism in an aerated environment and that cells exposed to oxygen displayed marked changes in surface protein profiles. Inactivation of the atlA gene alleviated repression of biofilm formation in the presence of oxygen. Also, the formation of long chains, a characteristic of AtlA-deficient strains, was less evident in cells grown with aeration. The SMu0629 gene is immediately upstream of atlA and encodes a product that contains a C-X-X-C motif, a characteristic of thiol-disulfide oxidoreductases. Inactivation of SMu0629 significantly reduced the levels of AtlA protein and led to resistance to autolysis. The SMu0629 mutant also displayed an enhanced capacity to form biofilms in the presence of oxygen compared to that of the parental strain. The expression of SMu0629 was shown to be under the control of the VicRK two-component system, which influences oxidative stress tolerance in S. mutans. Disruption of vicK also led to inhibition of processing of AtlA, and the mutant was hyperresistant to autolysis. When grown under aerobic conditions, the vicK mutant also showed significantly increased biofilm formation compared to strain UA159. This study illustrates the central role of AtlA and VicK in orchestrating growth on surfaces and envelope biogenesis in response to redox conditions.
PMCID: PMC1951938  PMID: 17616606
17.  Transcriptome analysis of LuxS-deficient Streptococcus mutans grown in biofilms 
Molecular oral microbiology  2010;26(1):2-18.
We previously reported that LuxS in Streptococcus mutans is involved in stress tolerance and biofilm formation. In this study, flowcells and confocal laser scanning microscopy were used to further examine the effects of LuxS-deficiency on biofilm formation. Similar to the wild-type strain (UA159), a strain deficient in LuxS (TW26D) bound efficiently to the flowcells and formed microcolonies 4 h after inoculation. Unlike UA159, which accumulated and formed compact, evenly distributed biofilms after 28 h, TW26D showed only loose, sporadic, thin biofilms. DNA microarray analysis revealed alterations in transcription of more than 60 genes in TW26D biofilms by at least 1.5-fold (P < 0.001). Among the upregulated genes were those for sugar-specific enzymes II of the phosphotransferase (PTS) system and the atp operon, which codes for the proton-pumping F-ATPase. Of the downregulated genes, several encode proteins with putative functions in DNA repair. Mutation of selected genes caused severe defects in the ability of the mutants to tolerate low pH and oxidative stress. These results provide additional proof that LuxS-deficiency causes global alterations in the expression of genes central to biofilm formation and virulence of S. mutans, including those involved in energy metabolism, DNA repair and stress tolerance.
PMCID: PMC3105442  PMID: 21214869
biofilms; dental caries; DNA array analysis; quorum sensing; Streptococcus mutans
18.  Identification of Catabolite Repression as a Physiological Regulator of Biofilm Formation by Bacillus subtilis by Use of DNA Microarrays 
Journal of Bacteriology  2003;185(6):1951-1957.
Biofilms are structured communities of cells that are encased in a self-produced polymeric matrix and are adherent to a surface. Many biofilms have a significant impact in medical and industrial settings. The model gram-positive bacterium Bacillus subtilis has recently been shown to form biofilms. To gain insight into the genes involved in biofilm formation by this bacterium, we used DNA microarrays representing >99% of the annotated B. subtilis open reading frames to follow the temporal changes in gene expression that occurred as cells transitioned from a planktonic to a biofilm state. We identified 519 genes that were differentially expressed at one or more time points as cells transitioned to a biofilm. Approximately 6% of the genes of B. subtilis were differentially expressed at a time when 98% of the cells in the population were in a biofilm. These genes were involved in motility, phage-related functions, and metabolism. By comparing the genes differentially expressed during biofilm formation with those identified in other genomewide transcriptional-profiling studies, we were able to identify several transcription factors whose activities appeared to be altered during the transition from a planktonic state to a biofilm. Two of these transcription factors were Spo0A and sigma-H, which had previously been shown to affect biofilm formation by B. subtilis. A third signal that appeared to be affecting gene expression during biofilm formation was glucose depletion. Through quantitative biofilm assays and confocal scanning laser microscopy, we observed that glucose inhibited biofilm formation through the catabolite control protein CcpA.
PMCID: PMC150146  PMID: 12618459
19.  Assessment of Genes Associated with Streptococcus mutans Biofilm Morphology 
Streptococcus mutans, the major pathogen responsible for dental caries in humans, is a biofilm-forming bacterium. In the present study, 17 different pulsed-field gel electrophoresis patterns of genomic DNA were identified in S. mutans organisms isolated clinically from whole saliva. The S. mutans isolates showed different abilities to form biofilms on polystyrene surfaces in semidefined minimal medium cultures. Following cultivation in a flow cell system in tryptic soy broth with 0.25% sucrose and staining using a BacLight LIVE/DEAD system, two strains, designated FSC-3 and FSC-4, showed the greatest and least, respectively, levels of biofilm formation when examined with confocal laser scanning microscopy. Further, image analyses of spatial distribution and architecture were performed to quantify the merged green (live cells) and red (dead cells) light. The light intensity of the FSC-3 biofilm was greater than that of the FSC-4 biofilm in the bottom area but not in the top area. S. mutans whole-genome array results showed that approximately 3.8% of the genes were differentially expressed in the two strains, of which approximately 2.2%, including bacitracin transport ATP-binding protein gene glrA and a BLpL-like putative immunity protein gene, were activated in FSC-3. In addition, about 1.6% of the genes, including those associated with phosphotransferase system genes, were repressed. Analyses of the glrA-deficient strains and reverse transcription-PCR confirmed the role of the gene in biofilm formation. Differential assessment of biofilm-associated genes in clinical strains may provide useful information for understanding the morphological development of streptococcal biofilm, as well as for colonization of S. mutans.
PMCID: PMC1563623  PMID: 16957255
20.  Involvement of an Inducible Fructose Phosphotransferase Operon in Streptococcus gordonii Biofilm Formation 
Journal of Bacteriology  2003;185(21):6241-6254.
Oral streptococci, such as Streptococcus gordonii, are the predominant early colonizers that initiate biofilm formation on tooth surfaces. Investigation of an S. gordonii::Tn917-lac biofilm-defective mutant isolated by using an in vitro biofilm formation assay showed that the transposon insertion is near the 3′ end of an open reading frame (ORF) encoding a protein homologous to Streptococcus mutans FruK. Three genes, fruR, fruK, and fruI, were predicted to encode polypeptides that are part of the fructose phosphotransferase system (PTS) in S. gordonii. These proteins, FruR, FruK, and FruI, are homologous to proteins encoded by the inducible fruRKI operon of S. mutans. In S. mutans, FruR is a transcriptional repressor, FruK is a fructose-1-phosphate kinase, and FruI is the fructose-specific enzyme II (fructose permease) of the phosphoenolpyruvate-dependent sugar PTS. Reverse transcription-PCR confirmed that fruR, fruK, and fruI are cotranscribed as an operon in S. gordonii, and the transposon insertion in S. gordonii fruK::Tn917-lac resulted in a nonpolar mutation. Nonpolar inactivation of either fruK or fruI generated by allelic replacement resulted in a biofilm-defective phenotype, whereas a nonpolar mutant with an inactivated fruR gene retained the ability to form a biofilm. Expression of fruK, as measured by the β-galactosidase activity of the fruK::Tn917-lac mutant, was observed to be growth phase dependent and was enhanced when the mutant was grown in media with high levels of fructose, sucrose, xylitol, and human serum, indicating that the fructose PTS operon was fructose and xylitol inducible, similar to the S. mutans fructose PTS. The induction by fructose was inhibited by the presence of glucose, indicating that glucose is able to catabolite repress fruK expression. Nonpolar inactivation of the fruR gene in the fruK::Tn917-lac mutant resulted in a greater increase in β-galactosidase activity when the organism was grown in media supplemented with fructose, confirming that fruR is a transcriptional repressor of the fructose PTS operon. These results suggest that the regulation of fructose transport and metabolism in S. gordonii is intricately tied to carbon catabolite control and the ability to form biofilms. Carbon catabolite control, which modulates carbon flux in response to environmental nutritional levels, appears to be important in the regulation of bacterial biofilms.
PMCID: PMC219402  PMID: 14563858
21.  Exopolysaccharides Produced by Streptococcus mutans Glucosyltransferases Modulate the Establishment of Microcolonies within Multispecies Biofilms▿  
Journal of Bacteriology  2010;192(12):3024-3032.
Streptococcus mutans is a key contributor to the formation of the extracellular polysaccharide (EPS) matrix in dental biofilms. The exopolysaccharides, which are mostly glucans synthesized by streptococcal glucosyltransferases (Gtfs), provide binding sites that promote accumulation of microorganisms on the tooth surface and further establishment of pathogenic biofilms. This study explored (i) the role of S. mutans Gtfs in the development of the EPS matrix and microcolonies in biofilms, (ii) the influence of exopolysaccharides on formation of microcolonies, and (iii) establishment of S. mutans in a multispecies biofilm in vitro using a novel fluorescence labeling technique. Our data show that the ability of S. mutans strains defective in the gtfB gene or the gtfB and gtfC genes to form microcolonies on saliva-coated hydroxyapatite surfaces was markedly disrupted. However, deletion of both gtfB (associated with insoluble glucan synthesis) and gtfC (associated with insoluble and soluble glucan synthesis) is required for the maximum reduction in EPS matrix and biofilm formation. S. mutans grown with sucrose in the presence of Streptococcus oralis and Actinomyces naeslundii steadily formed exopolysaccharides, which allowed the initial clustering of bacterial cells and further development into highly structured microcolonies. Concomitantly, S. mutans became the major species in the mature biofilm. Neither the EPS matrix nor microcolonies were formed in the presence of glucose in the multispecies biofilm. Our data show that GtfB and GtfC are essential for establishment of the EPS matrix, but GtfB appears to be responsible for formation of microcolonies by S. mutans; these Gtf-mediated processes may enhance the competitiveness of S. mutans in the multispecies environment in biofilms on tooth surfaces.
PMCID: PMC2901689  PMID: 20233920
22.  Involvement of Streptococcus mutans regulator RR11 in oxidative stress response during biofilm growth and in the development of genetic competence 
Letters in applied microbiology  2008;47(5):439-444.
To identify the genes regulated by RR11, the regulator of the Streptococcus mutans HK/RR11 two-component system.
Methods and Results
The S. mutans RR11-encoding gene was inactivated, and the effects of gene disruption on the cell's ability to form biofilms under stresses and acquire extracellular DNA were tested. Biofilm was reduced in cells lacking RR11 following exposure to oxidative stress. RR11-defective cells showed approx. 20-fold reduction in transformation efficiency. Microarray used to decipher the RR11-regulated genes in biofilm showed that approx. 5% of the UA159 genome underwent a significant change in expression. RR11 was found to regulate 174 genes, including genes involved in competence, stress-response and cell division.
Target genes controlled by RR11during biofilm growth have been identified by a comparison of transcriptional profiles between an RR11 defective mutant and the parental strain. The results demonstrated that RR11 is involved in the control of diverse cellular processes, including the formation of biofilm under oxidative stress and development of genetic competence.
Significance and Impact of the Study
The regulator of HK/RR11 system controls a large regulon and is an important regulator involved in stress response during S. mutans biofilm growth enabling the survival and persistence of its progeny in the microbial community.
PMCID: PMC2771662  PMID: 19146535
biofilm; competence; DNA microarray; stress response; two-component system
23.  Streptococcus mutans Protein Synthesis during Mixed-Species Biofilm Development by High-Throughput Quantitative Proteomics 
PLoS ONE  2012;7(9):e45795.
Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (P<0.05). Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the presence of other organisms. Our data provide insights about how S. mutans optimizes its metabolism and adapts/survives within the mixed-species community in response to a dynamically changing environment. This reflects the intricate physiological processes linked to expression of virulence by this bacterium within complex biofilms.
PMCID: PMC3458072  PMID: 23049864
24.  CcpA Regulates Biofilm Formation and Competence in Streptococcus gordonii 
Molecular Oral Microbiology  2011;27(2):83-94.
Streptococcus gordonii is an important member of the oral biofilm community. As oral commensal streptococci, S. gordonii is considered beneficial in promoting biofilm homeostasis. CcpA is known as central regulator of carbon catabolite repression in Gram-positive bacteria and is also involved in the control of virulence gene expression. To further establish the role of CcpA as central regulator in S. gordonii, the effect of CcpA on biofilm formation and natural competence of S. gordonii was investigated. These phenotypic traits have been suggested to be important to oral streptococci in coping with environmental stress. Here we demonstrate that a CcpA mutant was severely impaired in its biofilm forming ability, showed a defect in extracellular polysaccharide production and reduced competence. The data suggest that CcpA is involved in the regulation of biofilm formation and competence development in S. gordonii.
PMCID: PMC3296961  PMID: 22394467
25.  The CcpA Protein Is Necessary for Efficient Sporulation and Enterotoxin Gene (cpe) Regulation in Clostridium perfringens 
Journal of Bacteriology  2004;186(16):5221-5229.
Clostridium perfringens is the cause of several human diseases, including gas gangrene (clostridial myonecrosis), enteritis necroticans, antibiotic-associated diarrhea, and acute food poisoning. The symptoms of antibiotic-associated diarrhea and acute food poisoning are due to sporulation-dependent production of C. perfringens enterotoxin encoded by the cpe gene. Glucose is a catabolite repressor of sporulation by C. perfringens. In order to identify the mechanism of catabolite repression by glucose, a mutation was introduced into the ccpA gene of C. perfringens by conjugational transfer of a nonreplicating plasmid into C. perfringens, which led to inactivation of the ccpA gene by homologous recombination. CcpA is a transcriptional regulator known to mediate catabolite repression in a number of low-G+C-content gram-positive bacteria, of which C. perfringens is a member. The ccpA mutant strain sporulated at a 60-fold lower efficiency than the wild-type strain in the absence of glucose. In the presence of 5 mM glucose, sporulation was repressed about 2,000-fold in the wild-type strain and 800-fold in the ccpA mutant strain compared to sporulation levels for the same strains grown in the absence of glucose. Therefore, while CcpA is necessary for efficient sporulation in C. perfringens, glucose-mediated catabolite repression of sporulation is not due to the activity of CcpA. Transcription of the cpe gene was measured in the wild-type and ccpA mutant strains grown in sporulation medium by using a cpe-gusA fusion (gusA is an Escherichia coli gene encoding the enzyme β-glucuronidase). In the exponential growth phase, cpe transcription was two times higher in the ccpA mutant strain than in the wild-type strain. Transcription of cpe was highly induced during the entry into stationary phase in wild-type cells but was not induced in the ccpA mutant strain. Glucose repressed cpe transcription in both the wild-type and ccpA mutant strain. Therefore, CcpA appears to act as a repressor of cpe transcription in exponential growth but is required for efficient sporulation and cpe transcription upon entry into stationary phase. CcpA was also required for maximum synthesis of collagenase (kappa toxin) and acted as a repressor of polysaccharide capsule synthesis in the presence of glucose, but it did not regulate synthesis of the phospholipase PLC (alpha toxin).
PMCID: PMC490932  PMID: 15292123

Results 1-25 (829948)