Search tips
Search criteria

Results 1-25 (311332)

Clipboard (0)

Related Articles

1.  RamA Confers Multidrug Resistance in Salmonella enterica via Increased Expression of acrB, Which Is Inhibited by Chlorpromazine ▿  
Antimicrobial Agents and Chemotherapy  2008;52(10):3604-3611.
Salmonella enterica serovar Typhimurium SL1344, in which efflux pump genes (acrB, acrD, acrF, tolC) or regulatory genes thereof (marA, soxS, ramA) were inactivated, was grown in the presence of 240 antimicrobial and nonantimicrobial agents in the Biolog Phenotype MicroArray. Mutants lacking tolC, acrB, and ramA grew significantly worse than other mutants in the presence of 48 agents (some of which have not previously been identified as substrates of AcrAB-TolC) and particularly poorly in the presence of phenothiazines, which are human antipsychotics. MIC testing revealed that the phenothiazine chlorpromazine had antimicrobial activity and synergized with common antibiotics against different Salmonella serovars and SL1344. Chlorpromazine increased the intracellular accumulation of ethidium bromide, which was ablated in mutants lacking acrB, suggesting an interaction with AcrB. High-level but not low-level overexpression of ramA increased the expression of acrB; conferred resistance to chloramphenicol, tetracycline, nalidixic acid, and triclosan and organic solvent tolerance; and increased the amount of ethidium bromide accumulated. Chlorpromazine induced the modest overproduction of ramA but repressed acrB. These data suggest that phenothiazines are not efflux pump inhibitors but influence gene expression, including that of acrB, which confers the synergy with antimicrobials observed.
PMCID: PMC2565896  PMID: 18694955
2.  Expression of acrB, acrF, acrD, marA, and soxS in Salmonella enterica Serovar Typhimurium: Role in Multiple Antibiotic Resistance 
Comparative reverse transcription-PCR in combination with denaturing high-pressure liquid chromatography analysis was used to determine the levels of expression of soxS, marA, acrF, acrB, and acrD in multiple-antibiotic-resistant (MAR) Salmonella enterica serovar Typhimurium isolates and mutants of S. enterica serovar Typhimurium SL1344 with defined deletions. Posttherapy MAR clinical isolates had increased levels of expression of all genes except soxS. S. enterica serovar Typhimurium SL1344 ΔacrB expressed 7.9-fold more acrF than the parent strain. A strain with an acrF deletion expressed 4.6-fold more acrB. Deletion of acrB and/or acrF resulted in 2.7- to 4.3-fold more marA mRNA and 3.6- to 4.9-fold increases in the levels of expression of acrD but had a variable effect on the expression of soxS. All mutants were hypersusceptible to antibiotics, dyes, and detergents; but the MIC changes were more noticeable for SL1344 with the acrB deletion than for the mutant with the acrF disruption. These mutants had different but overlapping phenotypes, and the concentrations of ciprofloxacin accumulated by the mutants were different. These data suggest that acrB, acrF, and acrD are coordinately regulated and that their expression influences the expression of the transcriptional activators marA and soxS.
PMCID: PMC375282  PMID: 15047514
3.  The Global Consequence of Disruption of the AcrAB-TolC Efflux Pump in Salmonella enterica Includes Reduced Expression of SPI-1 and Other Attributes Required To Infect the Host▿ †  
Journal of Bacteriology  2009;191(13):4276-4285.
The mechanisms by which RND pumps contribute to pathogenicity are currently not understood. Using the AcrAB-TolC system as a paradigm multidrug-resistant efflux pump and Salmonella enterica serovar Typhimurium as a model pathogen, we have demonstrated that AcrA, AcrB, and TolC are each required for efficient adhesion to and invasion of epithelial cells and macrophages by Salmonella in vitro. In addition, AcrB and TolC are necessary for Salmonella to colonize poultry. Mutants lacking acrA, acrB, or tolC showed differential expression of major operons and proteins involved in pathogenesis. These included chemotaxis and motility genes, including cheWY and flgLMK and 14 Salmonella pathogenicity island (SPI)-1-encoded type III secretion system genes, including sopE, and associated effector proteins. Reverse transcription-PCR confirmed these data for identical mutants in two other S. Typhimurium backgrounds. Western blotting showed reduced production of SipA, SipB, and SipC. The absence of AcrB or TolC also caused widespread repression of chemotaxis and motility genes in these mutants, and for acrB::aph, this was associated with decreased motility. For mutants lacking a functional acrA or acrB gene, the nap and nir operons were repressed, and both mutants grew poorly in anaerobic conditions. All phenotypes were restored to that of the wild type by trans-complementation with the wild-type allele of the respective inactivated gene. These data explain how mutants lacking a component of AcrAB-TolC are attenuated and that this phenotype is a result of decreased expression of numerous genes encoding proteins involved in pathogenicity. The link between antibiotic resistance and pathogenicity establishes the AcrAB-TolC system as fundamental to the biology of Salmonella.
PMCID: PMC2698494  PMID: 19411325
4.  AcrAB Multidrug Efflux Pump Regulation in Salmonella enterica serovar Typhimurium by RamA in Response to Environmental Signals* 
The Journal of Biological Chemistry  2008;283(35):24245-24253.
Salmonella enterica serovar Typhimurium has at least nine multidrug efflux pumps. Among these pumps, AcrAB is effective in generating drug resistance and has wide substrate specificity. Here we report that indole, bile, and an Escherichia coli conditioned medium induced the AcrAB pump in Salmonella through a specific regulator, RamA. The RamA-binding sites were located in the upstream regions of acrAB and tolC. RamA was required for indole induction of acrAB. Other regulators of acrAB such as MarA, SoxS, Rob, SdiA, and AcrR did not contribute to acrAB induction by indole in Salmonella. Indole activated ramA transcription, and overproduction of RamA caused increased acrAB expression. In contrast, induction of ramA was not required for induction of acrAB by bile. Cholic acid binds to RamA, and we suggest that bile acts by altering pre-existing RamA. This points to two different AcrAB regulatory modes through RamA. Our results suggest that RamA controls the Salmonella AcrAB-TolC multidrug efflux system through dual regulatory modes in response to environmental signals.
PMCID: PMC2527123  PMID: 18577510
5.  Overexpression of the Multidrug Efflux Operon acrEF by Insertional Activation with IS1 or IS10 Elements in Salmonella enterica Serovar Typhimurium DT204 acrB Mutants Selected with Fluoroquinolones 
High-level fluoroquinolone (FQ) resistance in Salmonella enterica serovar Typhimurium phage type DT204 has been previously shown to be essentially due to both multiple target gene mutations and active efflux by the AcrAB-TolC efflux system. In this study we show that in intermediatly resistant acrB-inactivated serovar Typhimurium DT204 mutants, high-level resistance to FQs can be restored on in vitro selection with FQs. In each FQ- resistant mutant selected from serovar Typhimurium DT204 acrB mutant strains, an insertion sequence (IS1 or IS10) was found integrated upstream of the acrEF operon, coding for AcrEF, an efflux pump highly homologous to AcrAB. In one of the strains, transposition of IS1 caused partial deletion of acrS, the putative local repressor gene of the acrEF operon. Sequence analysis showed that both IS1 and IS10 elements contain putative promoter sequences that might alter the expression of adjacent acrEF genes. Indeed, reverse transcription-PCR experiments showed an 8- to 10-fold increase in expression of acrF in these insertional mutants, relative to their respective parental strain, which correlated well with the resistance levels observed to FQs and other unrelated drugs. It is noteworthy that AcrEF did not contribute to the intrinsic drug resistance of serovar Typhimurium, since acrF deletion in wild-type strains did not result in any increase in drug susceptibility. Moreover, deletion of acrS did not cause any acrF overexpression or any decrease in drug susceptibility, suggesting that acrEF overexpression is mediated solely by the IS1 and IS10 promoter sequences and not by inactivity of AcrS. Southern blot experiments showed that the number of chromosomal IS1 and IS10 elements in the serovar Typhimurium DT204 genome was about 5 and 15 respectively. None were detected in epidemic serovar Typhimurium DT104 strains or in the serovar Typhimurium reference strain LT2. Carrying IS1 and/or IS10 elements in their chromosome may thus be a selective advantage for serovar Typhimurium DT204 strains as opposed to DT104 strains for which no high-level FQ resistance nor insertional mutations were found. Taken together, the results of the present study indicate that the IS1- or IS10- activated AcrEF efflux pump may relay AcrAB in serovar Typhimurium, and underline the importance of transposable elements in the acquisition of FQ and multidrug resistance.
PMCID: PMC538886  PMID: 15616308
6.  Contribution of Target Gene Mutations and Efflux to Decreased Susceptibility of Salmonella enterica Serovar Typhimurium to Fluoroquinolones and Other Antimicrobials▿  
The mechanisms involved in fluoroquinolone resistance in Salmonella enterica include target alterations and overexpression of efflux pumps. The present study evaluated the role of known and putative multidrug resistance efflux pumps and mutations in topoisomerase genes among laboratory-selected and naturally occurring fluoroquinolone-resistant Salmonella enterica serovar Typhimurium strains. Strains with ciprofloxacin MICs of 0.25, 4, 32, and 256 μg/ml were derived in vitro using serovar Typhimurium S21. These mutants also showed decreased susceptibility or resistance to many nonfluoroquinolone antimicrobials, including tetracycline, chloramphenicol, and several β-lactams. The expression of efflux pump genes acrA, acrB, acrE, acrF, emrB, emrD, and mdlB were substantially increased (≥2-fold) among the fluoroquinolone-resistant mutants. Increased expression was also observed, but to a lesser extent, with three other putative efflux pumps: mdtB (yegN), mdtC (yegO), and emrA among mutants with ciprofloxacin MICs of ≥32 μg/ml. Deletion of acrAB or tolC in S21 and its fluoroquinolone-resistant mutants resulted in increased susceptibility to fluoroquinolones and other tested antimicrobials. In naturally occurring fluoroquinolone-resistant serovar Typhimurium strains, deletion of acrAB or tolC increased fluoroquinolone susceptibility 4-fold, whereas replacement of gyrA double mutations (S83F D87N) with wild-type gyrA increased susceptibility >500-fold. These results indicate that a combination of topoisomerase gene mutations, as well as enhanced antimicrobial efflux, plays a critical role in the development of fluoroquinolone resistance in both laboratory-derived and naturally occurring quinolone-resistant serovar Typhimurium strains.
PMCID: PMC1797773  PMID: 17043131
7.  Effect of Antimicrobial Exposure on AcrAB Expression in Salmonella enterica Subspecies enterica Serovar Choleraesuis 
Understanding the impact of antimicrobial use on the emergence of resistant bacteria is imperative to prevent its emergence. For instance, activation of the AcrAB efflux pumps is responsible for the emergence of antimicrobial-resistant Salmonella strains. Here, we examined the expression levels of acrB and its multiple regulator genes (RamA, SoxS, MarA, and Rob) in 17 field isolates of S. Choleraesuis by using quantitative PCR methods. The expression of acrB increased in eight of the field isolates (P < 0.05). The expression of acrB was associated with that of ramA in one isolate, soxS in one isolate, and both these genes in six isolates. Thereafter, to examine the effect of selected antimicrobials (enrofloxacin, ampicillin, oxytetracycline, kanamycin, and spectinomycin) on the expression of acrB and its regulator genes, mutants derived from five isolates of S. Choleraesuis were selected by culture on antimicrobial-containing plates. The expression of acrB and ramA was higher in the mutants selected using enrofloxacin (3.3–6.3- and 24.5–37.7-fold, respectively), ampicillin (1.8–7.7- and 16.1–55.9-fold, respectively), oxytetracycline (1.7–3.3- and 3.2–31.1-fold, respectively), and kanamycin (1.6–2.2- and 5.6–26.4-fold, respectively), which are AcrAB substrates, than in each of the parental strains (P < 0.05). In contrast, in AcrAB substrate-selected mutants, the expression of soxS, marA, and rob remained similar to that in parental strains. Of the four antimicrobials, the level of ramA expression was significantly higher in the enrofloxacin- and ampicillin-selected mutants than in the oxytetracycline- and kanamycin-selected mutants (P < 0.05), whereas the expression levels of acrB and multiple regulator genes in spectinomycin-selected mutants were similar to those in each parental strain. These data suggest that exposure to antimicrobials that are AcrAB substrates enhance the activation of the AcrAB efflux pump via RamA, but not via SoxS, MarA, or Rob in S. Choleraesuis.
PMCID: PMC3596762  PMID: 23503095
AcrAB efflux pump; antimicrobial resistance; RamA; Salmonella Choleraesuis; SoxS
8.  AcrAB-TolC Directs Efflux-Mediated Multidrug Resistance in Salmonella enterica Serovar Typhimurium DT104 
Antimicrobial Agents and Chemotherapy  2004;48(10):3729-3735.
Multidrug-resistant Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) strains harbor a genomic island, called Salmonella genomic island 1 (SGI1), which contains an antibiotic resistance gene cluster conferring resistance to ampicillin, chloramphenicol, florfenicol, streptomycin, sulfonamides, and tetracyclines. They may be additionally resistant to quinolones. Among the antibiotic resistance genes there are two, i.e., floR and tet(G), which code for efflux pumps of the major facilitator superfamily with 12 transmembrane segments that confer resistance to chloramphenicol-florfenicol and the tetracyclines, respectively. In the present study we determined, by constructing acrB and tolC mutants, the role of the AcrAB-TolC multidrug efflux system in the multidrug resistance of several DT104 strains displaying additional quinolone resistance or not displaying quinolone resistance. This study shows that the quinolone resistance and the decreased fluoroquinolone susceptibilities of the strains are highly dependent on the AcrAB-TolC efflux system and that single mutations in the quinolone resistance-determining region of gyrA are of little relevance in mediating this resistance. Overproduction of the AcrAB efflux pump, as determined by Western blotting with an anti-AcrA polyclonal antibody, appeared to be the major mechanism of resistance to quinolones. Moreover, chloramphenicol-florfenicol and tetracycline resistance also appeared to be highly dependent on the presence of AcrAB-TolC, since the introduction of mutations in the respective acrB and tolC genes resulted in a susceptible or intermediate resistance phenotype, according to clinical MIC breakpoints, despite the presence of the FloR and Tet(G) efflux pumps. Resistance to other antibiotics, ampicillin, streptomycin, and sulfonamides, was not affected in the acrB and tolC mutants of DT104 strains harboring SGI1. Therefore, AcrAB-TolC appears to direct efflux-mediated resistance to quinolones, chloramphenicol-florfenicol, and tetracyclines in multidrug-resistant S. enterica serovar Typhimurium DT104 strains.
PMCID: PMC521921  PMID: 15388427
9.  Chimeric Analysis of AcrA Function Reveals the Importance of Its C-Terminal Domain in Its Interaction with the AcrB Multidrug Efflux Pump 
Journal of Bacteriology  2003;185(18):5349-5356.
AcrAB-TolC is the major, constitutively expressed efflux protein complex that provides resistance to a variety of antimicrobial agents in Escherichia coli. Previous studies showed that AcrA, a periplasmic protein of the membrane fusion protein family, could function with at least two other resistance-nodulation-division family pumps, AcrD and AcrF, in addition to its cognate partner, AcrB. We found that, among other E. coli resistance-nodulation-division pumps, YhiV, but not MdtB or MdtC, could also function with AcrA. When AcrB was assessed for the capacity to function with AcrA homologs, only AcrE, but not YhiU or MdtA, could complement an AcrA deficiency. Since AcrA could, but YhiU could not, function with AcrB, we engineered a series of chimeric mutants of these proteins in order to determine the domain(s) of AcrA that is required for its support of AcrB function. The 290-residue N-terminal segment of the 398-residue protein AcrA could be replaced with a sequence coding for the corresponding region of YhiU, but replacement of the region between residues 290 and 357 produced a protein incapable of functioning with AcrB. In contrast, the replacement of residues 357 through 397 of AcrA still produced a functional protein. We conclude that a small region of AcrA close to, but not at, its C terminus is involved in the interaction with its cognate pump protein, AcrB.
PMCID: PMC193755  PMID: 12949086
10.  Cooperation of the multidrug efflux pump and lipopolysaccharides in the intrinsic antibiotic resistance of Salmonella enterica serovar Typhimurium 
In Gram-negative bacteria, drug susceptibility is associated with multidrug efflux systems and an outer membrane (OM) barrier. Previous studies revealed that Salmonella enterica serovar Typhimurium has 10 functional drug efflux pumps. Among them, AcrB is a major factor to maintain the intrinsic drug resistance in this organism. The lipopolysaccharide (LPS) content of OM is also important for resistance to lipophilic drugs; however, the interplay between the multidrug efflux pump and LPS in the intrinsic antibiotic resistance of Salmonella remains to be studied in detail. The aim of this study was to investigate the relationship between AcrB and LPS in the intrinsic drug resistance of this organism.
The genes encoding LPS core biosynthetic proteins and AcrB were disrupted from the wild-type S. enterica strain ATCC 14028s. The plasmid carrying acrB was transformed into these mutants and then the drug susceptibilities of the mutants and transformants were determined.
Our results showed that the levels of Salmonella intrinsic antibiotic resistance were decreased when the length and branches of core oligosaccharide were lost. Furthermore, the deletion of acrB reduced multidrug resistance of all LPS mutants and AcrB production from the plasmid complemented this phenotype. However, AcrB production could not completely compensate for LPS function in intrinsic resistance.
Both pump inactivation and shortened LPS enhanced drug susceptibility, although the maximum susceptibility was achieved when the two were combined. Hence, these results indicated that the multidrug efflux system and OM barrier are both essential for maintaining intrinsic antibiotic resistance in Salmonella.
PMCID: PMC3625434  PMID: 23378414
AcrB; LPS; multidrug resistance
11.  Effect of Transcriptional Activators SoxS, RobA, and RamA on Expression of Multidrug Efflux Pump AcrAB-TolC in Enterobacter cloacae 
Antimicrobial Agents and Chemotherapy  2012;56(12):6256-6266.
Control of membrane permeability is a key step in regulating the intracellular concentration of antibiotics. Efflux pumps confer innate resistance to a wide range of toxic compounds such as antibiotics, dyes, detergents, and disinfectants in members of the Enterobacteriaceae. The AcrAB-TolC efflux pump is involved in multidrug resistance in Enterobacter cloacae. However, the underlying mechanism that regulates the system in this microorganism remains unknown. In Escherichia coli, the transcription of acrAB is upregulated under global stress conditions by proteins such as MarA, SoxS, and Rob. In the present study, two clinical isolates of E. cloacae, EcDC64 (a multidrug-resistant strain overexpressing the AcrAB-TolC efflux pump) and Jc194 (a strain with a basal AcrAB-TolC expression level), were used to determine whether similar global stress responses operate in E. cloacae and also to establish the molecular mechanisms underlying this response. A decrease in susceptibility to erythromycin, tetracycline, telithromycin, ciprofloxacin, and chloramphenicol was observed in clinical isolate Jc194 and, to a lesser extent in EcDC64, in the presence of salicylate, decanoate, tetracycline, and paraquat. Increased expression of the acrAB promoter in the presence of the above-described conditions was observed by flow cytometry and reverse transcription-PCR, by using a reporter fusion protein (green fluorescent protein). The expression level of the AcrAB promoter decreased in E. cloacae EcDC64 derivates deficient in SoxS, RobA, and RamA. Accordingly, the expression level of the AcrAB promoter was higher in E. cloacae Jc194 strains overproducing SoxS, RobA, and RamA. Overall, the data showed that SoxS, RobA, and RamA regulators were associated with the upregulation of acrAB, thus conferring antimicrobial resistance as well as a stress response in E. cloacae. In summary, the regulatory proteins SoxS, RobA, and RamA were cloned and sequenced for the first time in this species. The involvement of these proteins in conferring antimicrobial resistance through upregulation of acrAB was demonstrated in E. cloacae.
PMCID: PMC3497196  PMID: 23006750
12.  Substrate Specificity of the RND-Type Multidrug Efflux Pumps AcrB and AcrD of Escherichia coli Is Determined Predominately by Two Large Periplasmic Loops 
Journal of Bacteriology  2002;184(23):6490-6498.
AcrAB-TolC is a constitutively expressed, tripartite efflux transporter complex that functions as the primary resistance mechanism to lipophilic drugs, dyes, detergents, and bile acids in Escherichia coli. TolC is an outer membrane channel, and AcrA is an elongated lipoprotein that is hypothesized to span the periplasm and coordinate efflux of such substrates by AcrB and TolC. AcrD is an efflux transporter of E. coli that provides resistance to aminoglycosides as well as to a limited range of amphiphilic agents, such as bile acids, novobiocin, and fusidic acid. AcrB and AcrD belong to the resistance nodulation division superfamily and share a similar topology, which includes a pair of large periplasmic loops containing more than 300 amino acid residues each. We used this knowledge to test several plasmid-encoded chimeric constructs of acrD and acrB for substrate specificity in a marR1 ΔacrB ΔacrD host. AcrD chimeras were constructed in which the large, periplasmic loops between transmembrane domains 1 and 2 and 7 and 8 were replaced with the corresponding loops of AcrB. Such constructs provided resistance to AcrB substrates at levels similar to native AcrB. Conversely, AcrB chimeras containing both loops of AcrD conferred resistance only to the typical substrates of AcrD. These results cannot be explained by simply assuming that AcrD, not hitherto known to interact with AcrA, acquired this ability by the introduction of the loop regions of AcrB, because (i) both AcrD and AcrA were found, in this study, to be required for the efflux of amphiphilic substrates, and (ii) chemical cross-linking in intact cells efficiently produced complexes between AcrD and AcrA. Since AcrD can already interact with AcrA, the alterations in substrate range accompanying the exchange of loop regions can only mean that substrate recognition (and presumably binding) is determined largely by the two periplasmic loops.
PMCID: PMC135441  PMID: 12426336
13.  Suppression of Hypersensitivity of Escherichia coli acrB Mutant to Organic Solvents by Integrational Activation of the acrEF Operon with the IS1 or IS2 Element 
Journal of Bacteriology  2001;183(8):2646-2653.
The AcrAB-TolC efflux pump plays an intrinsic role in resistance to hydrophobic solvents in Escherichia coli. E. coli OST5500 is hypersensitive to solvents due to inactivation of the acrB gene by insertion of IS30. Suppressor mutants showing high solvent resistance were isolated from OST5500. These mutants produced high levels of AcrE and AcrF proteins, which were not produced in OST5500, and in each mutant an insertion sequence (IS1 or IS2) was found integrated upstream of the acrEF operon, coding for the two proteins. The suppressor mutants lost solvent resistance on inactivation of the acrEF operon. The solvent hypersensitivity of OST5500 was suppressed by introduction of the acrEF operon with IS1 or IS2 integrated upstream but not by introduction of the operon lacking the integrated IS. It was concluded that IS integration activated acrEF, resulting in functional complementation of the acrB mutation. The acrB mutation was also complemented by a plasmid containing acrF or acrEF under the control of Plac. The wild-type tolC gene was found to be essential for complementation of the acrB mutation by acrEF. Thus, it is concluded that in these cells a combination of the proteins AcrA, AcrF, and TolC or the proteins AcrE, AcrF, and TolC is functional in solvent efflux instead of the AcrAB-TolC efflux pump.
PMCID: PMC95182  PMID: 11274125
14.  RamA, a Member of the AraC/XylS Family, Influences Both Virulence and Efflux in Salmonella enterica Serovar Typhimurium ▿ †  
Journal of Bacteriology  2010;192(6):1607-1616.
The transcriptomes of Salmonella enterica serovar Typhimurium SL1344 lacking a functional ramA or ramR or with plasmid-mediated high-level overexpression of ramA were compared to those of the wild-type parental strain. Inactivation of ramA led to increased expression of 14 SPI-1 genes and decreased expression of three SPI-2 genes, and it altered expression of ribosomal biosynthetic genes and several amino acid biosynthetic pathways. Furthermore, disruption of ramA led to decreased survival within RAW 264.7 mouse macrophages and attenuation within the BALB/c ByJ mouse model. Highly overexpressed ramA led to increased expression of genes encoding multidrug resistance (MDR) efflux pumps, including acrAB, acrEF, and tolC. Decreased expression of 34 Salmonella pathogenicity island (SPI) 1 and 2 genes, decreased SipC production, decreased adhesion to and survival within macrophages, and decreased colonization of Caenorhabditis elegans were also seen. Disruption of ramR led to the increased expression of ramA, acrAB, and tolC, but not to the same level as when ramA was overexpressed on a plasmid. Inactivation of ramR had a more limited effect on pathogenicity gene expression. In silico analysis of a suggested RamA-binding consensus sequence identified target genes, including ramR, acrA, tolC, sipABC, and ssrA. This study demonstrates that the regulation of a mechanism of MDR and expression of virulence genes show considerable overlap, and we postulate that such a mechanism is dependent on transcriptional activator concentration and promoter sensitivity. However, we have no evidence to support the hypothesis that increased MDR via RamA regulation of AcrAB-TolC gives rise to a hypervirulent strain.
PMCID: PMC2832520  PMID: 20081028
15.  Impact of Hfq on the Intrinsic Drug Resistance of Salmonella Enterica Serovar Typhimurium 
Salmonella enterica is an important enteric pathogen, and its various serovars cause both systemic and intestinal diseases in humans and domestic animals. The emergence of multidrug-resistant strains of Salmonella, leading to increased morbidity and mortality, has further complicated its management. Hfq is an RNA chaperon that mediates the binding of small RNAs to mRNA and assists in post-transcriptional gene regulation in bacteria. Although Hfq is related to important phenotypes including virulence in Salmonella, its role in the drug resistance of this organism is unknown. The aim of this study was to investigate the role of Hfq in intrinsic drug resistance of S. enterica serovar Typhimurium. hfq Mutant was susceptible to acriflavine. Although there is a relationship between the production of the AcrB multidrug efflux pump and Hfq in Escherichia coli, the deletion of the drug efflux acrB did not impair the effect of hfq deletion on Salmonella susceptibility. In contrast, the deletion of another drug efflux gene, smvA, impaired the effect of hfq deletion on acriflavine susceptibility. These results indicate that Hfq regulates the intrinsic drug resistance, and it may influence drug susceptibility by regulating SmvA in Salmonella.
PMCID: PMC3366549  PMID: 22675323
drug efflux system; drug resistance; Hfq, Salmonella; small RNA
16.  Conformational Flexibility in the Multidrug Efflux System Protein AcrA 
Intrinsic resistance to multiple drugs in many gramnegative bacterial pathogens is conferred by resistance nodulation cell division efflux pumps, which are composed of three essential components as typified by the extensively characterized Escherichia coli AcrA-AcrB-TolC system. The inner membrane drug: proton antiporter AcrB and the outer membrane channel TolC export chemically diverse compounds out of the bacterial cell, and require the activity of the third component, the periplasmic protein AcrA. The crystal structures of AcrB and TolC have previously been determined, and we complete the molecular picture of the efflux system by presenting the structure of a stable fragment of AcrA. The AcrA fragment resembles the elongated sickle shape of its homolog Pseudomonas aeruginosa MexA, being composed of three domains: β-barrel, lipoyl, and α-helical hairpin. Notably, unsuspected conformational flexibility in the α-helical hairpin domain of AcrA is observed, which has potential mechanistic significance in coupling between AcrA conformations and TolC channel opening.
PMCID: PMC1997295  PMID: 16531241
17.  Expression of Multidrug Efflux Pump Genes acrAB-tolC, mdfA, and norE in Escherichia coli Clinical Isolates as a Function of Fluoroquinolone and Multidrug Resistance▿ ‡  
In a single quantitative study, we measured acrA, acrB, tolC, mdfA, and norE expression in Escherichia coli clinical isolates by using real-time PCR. acrA and acrB overexpression strongly correlated with fluoroquinolone and multidrug resistance; tolC, mdfA, and norE expression did not. The order of abundance of efflux pump transcripts in all fluoroquinolone-susceptible isolates was tolC (highest), then acrA and acrB, and then mdfA and norE. Our findings suggest acrAB overexpression is an indicator of multidrug resistance.
PMCID: PMC3028778  PMID: 21098250
18.  Many Chromosomal Genes Modulate MarA-Mediated Multidrug Resistance in Escherichia coli▿  
Multidrug resistance (MDR) in clinical isolates of Escherichia coli can be associated with overexpression of marA, a transcription factor that upregulates multidrug efflux and downregulates membrane permeability. Using random transposome mutagenesis, we found that many chromosomal genes and environmental stimuli affected MarA-mediated antibiotic resistance. Seven genes affected resistance mediated by MarA in an antibiotic-specific way; these were mostly genes encoding unrelated enzymes, transporters, and unknown proteins. Other genes affected MarA-mediated resistance to all antibiotics tested. These genes were acrA, acrB, and tolC (which encode the major MarA-regulated multidrug efflux pump AcrAB-TolC), crp, cyaA, hns, and pcnB (four genes involved in global regulation of gene expression), and the unknown gene damX. The last five genes affected MarA-mediated MDR by altering marA expression or MarA function specifically on acrA. These findings demonstrate that MarA-mediated MDR is regulated at multiple levels by different genes and stimuli, which makes it both complex and fine-tuned and interconnects it with global cell regulation and metabolism. Such a regulation could contribute to the adaptation and spread of MDR strains and may be targeted to treat antibiotic-resistant E. coli and related pathogens.
PMCID: PMC2863627  PMID: 20211899
19.  Substrate path in the AcrB multidrug efflux pump of Escherichia coli 
Molecular microbiology  2010;78(2):320-330.
A major tripartite multidrug efflux pump of Escherichia coli, AcrAB-TolC, confers resistance to a wide variety of compounds. The drug molecule is captured by AcrB probably from the periplasm or the periplasm/inner membrane interface, and is passed through AcrB and then TolC to the medium. Currently there exist numerous crystallographic and mutation data concerning the regions of AcrB and its homologs that may interact with substrates. Starting with these data, we devised fluorescence assays in whole cells to determine the entire substrate path through AcrB. We tested 48 residues in AcrB along the predicted substrate path and 25 gave positive results, based on the covalent labeling of cysteine residues by a lipophilic dye-maleimide and the blocking of Nile Red efflux by covalent labeling with bulky maleimide reagents. These residues are all located in the periplasmic domain, in regions we designate as the lower part of the large external cleft, the cleft itself, the crystallographically defined binding pocket, and the gate between the pocket and the funnel. Our observations suggest that the substrate is captured in the lower cleft region of AcrB, then transported through the binding pocket, the gate, and finally to the AcrB funnel that connects AcrB to TolC.
PMCID: PMC3008161  PMID: 20804453
RND transporter; cysteine modification; maleimides; path blockage; Nile Red
20.  ramR Mutations Involved in Efflux-Mediated Multidrug Resistance in Salmonella enterica Serovar Typhimurium▿  
In the sequenced genome of Salmonella enterica serovar Typhimurium strain LT2, an open reading frame (STM0580) coding for a putative regulatory protein of the TetR family is found upstream of the ramA gene. Overexpression of ramA results in increased expression of the AcrAB efflux pump and, consequently, multidrug resistance (MDR) in several bacterial species. The inactivation of the putative regulatory protein gene upstream of ramA in a susceptible serovar Typhimurium strain resulted in an MDR phenotype with fourfold increases in the MICs of unrelated antibiotics, such as quinolones/fluoroquinolones, phenicols, and tetracycline. The inactivation of this gene also resulted in a fourfold increase in the expression of ramA and a fourfold increase in the expression of the AcrAB efflux pump. These results indicated that the gene encodes a local repressor of ramA and was thus named ramR. In contrast, the inactivation of marR, marA, soxR, and soxS did not affect the susceptibilities of the strain. In quinolone- or fluoroquinolone-resistant strains of serovar Typhimurium overexpressing AcrAB, several point mutations which resulted in amino acid changes or an in-frame shift were identified in ramR; in addition, mutations interrupting ramR with an IS1 element were identified in high-level fluoroquinolone-resistant serovar Typhimurium DT204 strains. One serovar Typhimurium DT104 isolate had a 2-nucleotide deletion in the putative RamR binding site found upstream of ramA. These mutations were confirmed to play a role in the MDR phenotype by complementing the isolates with an intact ramR gene or by inactivating their respective ramA gene. No mutations in the mar or sox region were found in the strains studied. In conclusion, mutations in ramR appear to play a major role in the upregulation of RamA and AcrAB and, consequently, in the efflux-mediated MDR phenotype of serovar Typhimurium.
PMCID: PMC2443889  PMID: 18443112
21.  Exploiting the Role of TolC in Pathogenicity: Identification of a Bacteriophage for Eradication of Salmonella Serovars from Poultry ▿  
Using a screening procedure, three bacteriophages, ST27, ST29, and ST35, were identified with selective activity for Salmonella enterica serovar Typhimurium (SL1344) but not SL1344 tolC::aph. Overproduction of TolC led to a lower efficiency of plating (EOP), further suggesting that TolC was the target receptor. Activity against other serovars of Salmonella was observed but not against other species of Enterobacteriaceae. This study provides proof of principle that bacteriophages can be active against the outer membrane protein of tripartite resistance-nodulation-division (RND) efflux pumps and so could be used to reduce the numbers of Salmonella cells in animals reared for food production.
PMCID: PMC2832399  PMID: 20080996
22.  Differential Gene Expression by RamA in Ciprofloxacin-Resistant Salmonella Typhimurium 
PLoS ONE  2011;6(7):e22161.
Overexpression of ramA has been implicated in resistance to multiple drugs in several enterobacterial pathogens. In the present study, Salmonella Typhimurium strain LTL with constitutive expression of ramA was compared to its ramA-deletion mutant by employing both DNA microarrays and phenotype microarrays (PM). The mutant strain with the disruption of ramA showed differential expression of at least 33 genes involved in 11 functional groups. The study confirmed at the transcriptional level that the constitutive expression of ramA was directly associated with increased expression of multidrug efflux pump AcrAB-TolC and decreased expression of porin protein OmpF, thereby conferring multiple drug resistance phenotype. Compared to the parent strain constitutively expressing ramA, the ramA mutant had increased susceptibility to over 70 antimicrobials and toxic compounds. The PM analysis also uncovered that the ramA mutant was better in utilization of 10 carbon sources and 5 phosphorus sources. This study suggested that the constitutive expression of ramA locus regulate not only multidrug efflux pump and accessory genes but also genes involved in carbon metabolic pathways.
PMCID: PMC3139621  PMID: 21811569
23.  In Vitro Selection of ramR and soxR Mutants Overexpressing Efflux Systems by Fluoroquinolones as Well as Cefoxitin in Klebsiella pneumoniae▿ 
The relationship between efflux system overexpression and cross-resistance to cefoxitin, quinolones, and chloramphenicol has recently been reported in Klebsiella pneumoniae. In 3 previously published clinical isolates and 17 in vitro mutants selected with cefoxitin or fluoroquinolones, mutations in the potential regulator genes of the AcrAB efflux pump (acrR, ramR, ramA, marR, marA, soxR, soxS, and rob) were searched, and their impacts on efflux-related antibiotic cross-resistance were assessed. All mutants but 1, and 2 clinical isolates, overexpressed acrB. No mutation was detected in the regulator genes studied among the clinical isolates and 8 of the mutants. For the 9 remaining mutants, a mutation was found in the ramR gene in 8 of them and in the soxR gene in the last one, resulting in overexpression of ramA and soxS, respectively. Transformation of the ramR mutants and the soxR mutant with the wild-type ramR and soxR genes, respectively, abolished overexpression of acrB and ramA in the ramR mutants and of soxS in the soxR mutant, as well as antibiotic cross-resistance. Resistance due to efflux system overexpression was demonstrated for 4 new antibiotics: cefuroxime, cefotaxime, ceftazidime, and ertapenem. This study shows that the ramR and soxR genes control the expression of efflux systems in K. pneumoniae and suggests the existence of efflux pumps other than AcrAB and of other loci involved in the regulation of AcrAB expression.
PMCID: PMC3101381  PMID: 21464248
24.  Interaction between the TolC and AcrA Proteins of a Multidrug Efflux System of Escherichia coli 
Journal of Bacteriology  2004;186(24):8533-8536.
This paper provides the biochemical evidence for physical interactions between the outer membrane component, TolC, and the membrane fusion protein component, AcrA, of the major antibiotic efflux pump of Escherichia coli. Cross-linking between TolC and AcrA was independent of the presence of any externally added substrate of the efflux pump or of the pump protein, AcrB. The biochemical demonstration of a TolC-AcrA interaction is consistent with genetic studies in which extragenic suppressors of a mutant TolC strain were found in the acrA gene.
PMCID: PMC532411  PMID: 15576805
25.  Cloning, Nucleotide Sequencing, and Analysis of the AcrAB-TolC Efflux Pump of Enterobacter cloacae and Determination of Its Involvement in Antibiotic Resistance in a Clinical Isolate▿  
Enterobacter cloacae is an emerging clinical pathogen that may be responsible for nosocomial infections. Management of these infections is often difficult, owing to the high frequency of strains that are resistant to disinfectants and antimicrobial agents in the clinical setting. Multidrug efflux pumps, especially those belonging to the resistance-nodulation-division family, play a major role as a mechanism of antimicrobial resistance in gram-negative pathogens. In the present study, we cloned and sequenced the genes encoding an AcrAcB-TolC-like efflux pump from an E. cloacae clinical isolate (isolate EcDC64) showing a broad antibiotic resistance profile. Sequence analysis showed that the acrR, acrA, acrB, and tolC genes encode proteins that display 79.8%, 84%, 88%, and 82% amino acid identities with the respective homologues of Enterobacter aerogenes and are arranged in a similar pattern. Deletion of the acrA gene to yield an AcrA-deficient EcDC64 mutant (EcΔacrA) showed the involvement of AcrAB-TolC in multidrug resistance in E. cloacae. However, experiments with an efflux pump inhibitor suggested that additional efflux systems also play a role in antibiotic resistance. Investigation of several unrelated isolates of E. cloacae by PCR analysis revealed that the AcrAB system is apparently ubiquitous in this species.
PMCID: PMC2043211  PMID: 17638702

Results 1-25 (311332)