Search tips
Search criteria

Results 1-25 (1013050)

Clipboard (0)

Related Articles

1.  Functional Specialization and Evolution of Leader Proteinases in the Family Closteroviridae 
Journal of Virology  2001;75(24):12153-12160.
Members of the Closteroviridae and Potyviridae families of the plant positive-strand RNA viruses encode one or two papain-like leader proteinases. In addition to a C-terminal proteolytic domain, each of these proteinases possesses a nonproteolytic N-terminal domain. We compared functions of the several leader proteinases using a gene swapping approach. The leader proteinase (L-Pro) of Beet yellows virus (BYV; a closterovirus) was replaced with L1 or L2 proteinases of Citrus tristeza virus (CTV; another closterovirus), P-Pro proteinase of Lettuce infectious yellows virus (LIYV; a crinivirus), and HC-Pro proteinase of Tobacco etch virus (a potyvirus). Each foreign proteinase efficiently processed the chimeric BYV polyprotein in vitro. However, only L1 and P-Pro, not L2 and HC-Pro, were able to rescue the amplification of the chimeric BYV variants. The combined expression of L1 and L2 resulted in an increased RNA accumulation compared to that of the parental BYV. Remarkably, this L1-L2 chimera exhibited reduced invasiveness and inability to move from cell to cell. Similar analyses of the BYV hybrids, in which only the papain-like domain of L-Pro was replaced with those derived from L1, L2, P-Pro, and HC-Pro, also revealed functional specialization of these domains. In subcellular-localization experiments, distinct patterns were observed for the leader proteinases of BYV, CTV, and LIYV. Taken together, these results demonstrated that, in addition to a common proteolytic activity, the leader proteinases of closteroviruses possess specialized functions in virus RNA amplification, virus invasion, and cell-to-cell movement. The phylogenetic analysis suggested that functionally distinct L1 and L2 of CTV originated by a gene duplication event.
PMCID: PMC116111  PMID: 11711606
2.  Genes Required for Replication of the 15.5-Kilobase RNA Genome of a Plant Closterovirus 
Journal of Virology  1998;72(7):5870-5876.
A full-length cDNA clone of beet yellows closterovirus (BYV) was engineered and used to map functions involved in the replication of the viral RNA genome and subgenomic RNA formation. Among 10 open reading frames (ORFs) present in BYV, ORFs 1a and 1b suffice for RNA replication and transcription. The proteins encoded in these ORFs harbor putative methyltransferase, RNA helicase, and RNA polymerase domains common to Sindbis virus-like viruses and a large interdomain region that is unique to closteroviruses. The papain-like leader proteinase (L-Pro) encoded in the 5′-proximal region of ORF 1a was found to have a dual function in genome amplification. First, the autocatalytic cleavage between L-Pro and the remainder of the ORF 1a product was essential for replication of RNA. Second, an additional L-Pro function that was separable from proteolytic activity was required for efficient RNA accumulation. The deletion of a large, ∼5.6-kb, 3′-terminal region coding for a 6-kDa hydrophobic protein, an HSP70 homolog, a 64-kDa protein, minor and major capsid proteins, a 20-kDa protein, and a 21-kDa protein (p21) resulted in replication-competent RNA. However, examination of mutants with replacements of start codons in each of these seven 3′-terminal ORFs revealed that p21 functions as an enhancer of genome amplification. The intriguing analogies between the genome organization and replicational requirements of plant closteroviruses and animal coronavirus-like viruses are discussed.
PMCID: PMC110390  PMID: 9621048
3.  The 64-Kilodalton Capsid Protein Homolog of Beet Yellows Virus Is Required for Assembly of Virion Tails 
Journal of Virology  2003;77(4):2377-2384.
The filamentous virion of the closterovirus Beet yellows virus (BYV) consists of a long body formed by the major capsid protein (CP) and a short tail composed of the minor capsid protein (CPm) and the virus-encoded Hsp70 homolog. By using nano-liquid chromatography-tandem mass spectrometry and biochemical analyses, we show here that the BYV 64-kDa protein (p64) is the fourth integral component of BYV virions. The N-terminal domain of p64 is exposed at the virion surface and is accessible to antibodies and mild trypsin digestion. In contrast, the C-terminal domain is embedded in the virion and is inaccessible to antibodies or trypsin. The C-terminal domain of p64 is shown to be homologous to CP and CPm. Mutation of the signature motifs of capsid proteins of filamentous RNA viruses in p64 results in the formation of tailless virions, which are unable to move from cell to cell. These results reveal the dual function of p64 in tail assembly and BYV motility and support the concept of the virion tail as a specialized device for BYV cell-to-cell movement.
PMCID: PMC141117  PMID: 12551975
4.  Regulation of Closterovirus Gene Expression Examined by Insertion of a Self-Processing Reporter and by Northern Hybridization 
Journal of Virology  1999;73(10):7988-7993.
A reporter open reading frame (ORF) coding for a fusion of bacterial β-glucuronidase (GUS) with a proteinase domain (Pro) derived from tobacco etch potyvirus was utilized for tagging individual genes of beet yellows closterovirus (BYV). Insertion of this reporter ORF between the first and second codons of the BYV ORFs encoding the HSP70 homolog (HSP70h), a major capsid protein (CP), and a 20-kDa protein (p20) resulted in the expression of the processed GUS-Pro reporter from corresponding subgenomic RNAs. The high sensitivity of GUS assays permitted temporal analysis of reporter accumulation, revealing early expression from the HSP70h promoter, followed by the CP promoter and later the p20 promoter. The kinetics of transcription of the remaining BYV genes encoding a 64-kDa protein (p64), a minor capsid protein (CPm), and a 21-kDa protein (p21) were examined via Northern blot analysis. Taken together, the data indicated that the temporal regulation of BYV gene expression includes early (HSP70h, CPm, CP, and p21 promoters) and late (p64 and p20 promoters) phases. It was also demonstrated that the deletion of six viral genes that are nonessential for RNA amplification resulted in a dramatic increase in the level of transcription from one of the two remaining subgenomic promoters. Comparison with other positive-strand RNA viruses producing multiple subgenomic RNAs showed the uniqueness of the pattern of closterovirus transcriptional regulation.
PMCID: PMC112813  PMID: 10482546
5.  Interaction between Long-Distance Transport Factor and Hsp70-Related Movement Protein of Beet Yellows Virus 
Journal of Virology  2002;76(21):11003-11011.
Systemic spread of viruses in plants involves local movement from cell to cell and long-distance transport through the vascular system. The cell-to-cell movement of the Beet yellows virus (BYV) is mediated by a movement protein that is an Hsp70 homolog (Hsp70h). This protein is required for the assembly of movement-competent virions that incorporate Hsp70h. By using the yeast two-hybrid system, in vitro coimmunoprecipitation, and in planta coexpression approaches, we show here that the Hsp70h interacts with a 20-kDa BYV protein (p20). We further demonstrate that p20 is associated with the virions presumably via binding to Hsp70h. Genetic and immunochemical analyses indicate that p20 is dispensable for assembly and cell-to-cell movement of BYV but is required for the long-distance transport of virus through the phloem. These results reveal a novel activity for the Hsp70h that provides a molecular link between the local and systemic spread of a plant virus by docking a long-distance transport factor to virions.
PMCID: PMC136651  PMID: 12368343
6.  Class VIII Myosins Are Required for Plasmodesmatal Localization of a Closterovirus Hsp70 Homolog▿  
Journal of Virology  2008;82(6):2836-2843.
The Hsp70 homolog (Hsp70h) of Beet yellows virus (BYV) functions in virion assembly and cell-to-cell movement and is autonomously targeted to plasmodesmata in association with the actomyosin motility system (A. I. Prokhnevsky, V. V. Peremyslov, and V. V. Dolja, J. Virol. 79:14421-14428, 2005). Myosins are a diverse category of molecular motors that possess a motor domain and a tail domain involved in cargo binding. Plants have two classes of myosins, VIII and XI, whose specific functions are poorly understood. We used dominant negative inhibition to identify myosins required for Hsp70h localization to plasmodesmata. Six full-length myosin cDNAs from the BYV host plant Nicotiana benthamiana were sequenced and shown to encode apparent orthologs of the Arabidopsis thaliana myosins VIII-1, VIII-2, VIII-B, XI-2, XI-F, and XI-K. We found that the ectopic expression of the tail domains of each of the class VIII, but not the class XI, myosins inhibited the plasmodesmatal localization of Hsp70h. In contrast, the overexpression of the motor domains or the entire molecules of the class VIII myosins did not affect Hsp70h targeting. Further mapping revealed that the minimal cargo-binding part of the myosin VIII tails was both essential and sufficient for the inhibition of the proper Hsp70h localization. Interestingly, plasmodesmatal localization of the Tobacco mosaic virus movement protein and Arabidopsis protein RGP2 was not affected by myosin VIII tail overexpression. Collectively, our data implicate class VIII myosins in protein delivery to plasmodesmata and suggest that more than one mechanism of such delivery exist in plants.
PMCID: PMC2258991  PMID: 18199648
7.  Beet yellows virus replicase and replicative compartments: parallels with other RNA viruses 
In eukaryotic virus systems, infection leads to induction of membranous compartments in which replication occurs. Virus-encoded subunits of the replication complex mediate its interaction with membranes. As replication platforms, RNA viruses use the cytoplasmic surfaces of different membrane compartments, e.g., endoplasmic reticulum (ER), Golgi, endo/lysosomes, mitochondria, chloroplasts, and peroxisomes. Closterovirus infections are accompanied by formation of multivesicular complexes from cell membranes of ER or mitochondrial origin. So far the mechanisms for vesicles formation have been obscure. In the replication-associated 1a polyprotein of Beet yellows virus (BYV) and other closteroviruses, the region between the methyltransferase and helicase domains (1a central region (CR), 1a CR) is marginally conserved. Computer-assisted analysis predicts several putative membrane-binding domains in the BYV 1a CR. Transient expression of a hydrophobic segment (referred to here as CR-2) of the BYV 1a in Nicotiana benthamiana led to reorganization of the ER and formation of ~1-μm mobile globules. We propose that the CR-2 may be involved in the formation of multivesicular complexes in BYV-infected cells. This provides analogy with membrane-associated proteins mediating the build-up of “virus factories” in cells infected with diverse positive-strand RNA viruses (alpha-like viruses, picorna-like viruses, flaviviruses, and nidoviruses) and negative-strand RNA viruses (bunyaviruses).
PMCID: PMC3589766  PMID: 23508802
RNA virus replication; membrane vesicles; virus replication factory; endoplasmic reticulum modification; intracellular traffic
8.  Leader Proteinase of the Beet Yellows Closterovirus: Mutation Analysis of the Function in Genome Amplification 
Journal of Virology  2000;74(20):9766-9770.
The beet yellows closterovirus leader proteinase (L-Pro) possesses a C-terminal proteinase domain and a nonproteolytic N-terminal domain. It was found that although L-Pro is not essential for basal-level replication, deletion of its N-terminal domain resulted in a 1,000-fold reduction in RNA accumulation. Mutagenic analysis of the N-terminal domain revealed its structural flexibility except for the 54-codon-long, 5′-terminal element in the corresponding open reading frame that is critical for efficient RNA amplification at both RNA and protein levels.
PMCID: PMC112412  PMID: 11000252
9.  Crinivirus replication and host interactions 
Criniviruses comprise one of the genera within the family Closteroviridae. Members in this family are restricted to the phloem and rely on whitefly vectors of the genera Bemisia and/or Trialeurodes for plant-to-plant transmission. All criniviruses have bipartite, positive-sense single-stranded RNA genomes, although there is an unconfirmed report of one having a tripartite genome. Lettuce infectious yellows virus (LIYV) is the type species of the genus, the best studied so far of the criniviruses and the first for which a reverse genetics system was developed. LIYV RNA 1 encodes for proteins predicted to be involved in replication, and alone is competent for replication in protoplasts. Replication results in accumulation of cytoplasmic vesiculated membranous structures which are characteristic of most studied members of the Closteroviridae. These membranous structures, often referred to as Beet yellows virus (BYV)-type vesicles, are likely sites of RNA replication. LIYV RNA 2 is replicated in trans when co-infecting cells with RNA 1, but is temporally delayed relative to RNA 1. Efficient RNA 2 replication also is dependent on the RNA 1-encoded RNA-binding protein, P34. No LIYV RNA 2-encoded proteins have been shown to affect RNA replication, but at least four, CP (major coat protein), CPm (minor coat protein), Hsp70h, and P59 are virion structural components and CPm is a determinant of whitefly transmissibility. Roles of other LIYV RNA 2-encoded proteins are largely as yet unknown, but P26 is a non-virion protein that accumulates in cells as characteristic plasmalemma deposits which in plants are localized within phloem parenchyma and companion cells over plasmodesmata connections to sieve elements. The two remaining crinivirus-conserved RNA 2-encoded proteins are P5 and P9. P5 is 39 amino acid protein and is encoded at the 5′ end of RNA 2 as ORF 1 and is part of the hallmark closterovirus gene array. The orthologous gene in BYV has been shown to play a role in cell-to-cell movement and indicated to be localized to the endoplasmic reticulum as a Type III integral membrane protein. The other small protein, P9, is encoded by ORF 4 overlaps with ORF 3 that encodes the structural protein, P59. P9 seems to be unique to viruses in the genus Crinivirus, as no similar protein has been detected in viruses of the other two genera of the Closteroviridae.
PMCID: PMC3657685  PMID: 23730299
phloem-limited; plasmalemma deposit; whitefly vector; Crinivirus; quintuple gene block
10.  Mapping of a Hypovirus p29 Protease Symptom Determinant Domain with Sequence Similarity to Potyvirus HC-Pro Protease 
Journal of Virology  1999;73(11):9478-9484.
Hypovirus infection of the chestnut blight fungus Cryphonectria parasitica results in a spectrum of phenotypic changes that can include alterations in colony morphology and significant reductions in pigmentation, asexual sporulation, and virulence (hypovirulence). Deletion of 88% [Phe(25) to Pro(243)] of the virus-encoded papain-like protease, p29, in the context of an infectious cDNA clone of the prototypic hypovirus CHV1-EP713 (recombinant virus Δp29) partially relieved virus-mediated suppression of pigmentation and sporulation without altering the level of hypovirulence. We now report mapping of the p29 symptom determinant domain to a region extending from Phe(25) through Gln(73) by a gain-of-function analysis following progressive repair of the Δp29 deletion mutant. This domain was previously shown to share sequence similarity [including conserved cysteine residues Cys(38), Cys(48), Cys(70), and Cys(72)] with the N-terminal portion of the potyvirus-encoded helper component-proteinase (HC-Pro), a multifunctional protein implicated in aphid-mediated transmission, genome amplification, polyprotein processing, long-distance movement, and suppression of posttranscriptional silencing. Substitution of a glycine residue for either Cys(38) or Cys(48) resulted in no qualitative or quantitative changes in virus-mediated symptoms. Unexpectedly, mutation of Cys(70) resulted in a very severe phenotype that included significantly reduced mycelial growth and profoundly altered colony morphology. In contrast, substitution for Cys(72) resulted in a less severe symptom phenotype approaching that observed for Δp29. The finding that p29-mediated symptom expression is influenced by two cysteine residues that are conserved in the potyvirus-encoded HC-Pro raises the possibility that these related viral-papain-like proteases function in their respective fungal and plant hosts by impacting ancestrally related regulatory pathways.
PMCID: PMC112982  PMID: 10516056
11.  A Compact Viral Processing Proteinase/Ubiquitin Hydrolase from the OTU Family 
PLoS Pathogens  2013;9(8):e1003560.
Turnip yellow mosaic virus (TYMV) - a member of the alphavirus-like supergroup of viruses - serves as a model system for positive-stranded RNA virus membrane-bound replication. TYMV encodes a precursor replication polyprotein that is processed by the endoproteolytic activity of its internal cysteine proteinase domain (PRO). We recently reported that PRO is actually a multifunctional enzyme with a specific ubiquitin hydrolase (DUB) activity that contributes to viral infectivity. Here, we report the crystal structure of the 150-residue PRO. Strikingly, PRO displays no homology to other processing proteinases from positive-stranded RNA viruses, including that of alphaviruses. Instead, the closest structural homologs of PRO are DUBs from the Ovarian tumor (OTU) family. In the crystal, one molecule's C-terminus inserts into the catalytic cleft of the next, providing a view of the N-terminal product complex in replication polyprotein processing. This allows us to locate the specificity determinants of PRO for its proteinase substrates. In addition to the catalytic cleft, at the exit of which the active site is unusually pared down and solvent-exposed, a key element in molecular recognition by PRO is a lobe N-terminal to the catalytic domain. Docking models and the activities of PRO and PRO mutants in a deubiquitylating assay suggest that this N-terminal lobe is also likely involved in PRO's DUB function. Our data thus establish that DUBs can evolve to specifically hydrolyze both iso- and endopeptide bonds with different sequences. This is achieved by the use of multiple specificity determinants, as recognition of substrate patches distant from the cleavage sites allows a relaxed specificity of PRO at the sites themselves. Our results thus shed light on how such a compact protein achieves a diversity of key functions in viral genome replication and host-pathogen interaction.
Author Summary
Positive-stranded RNA viruses are ultimate parasites. In order to replicate their genome, they first need to invade a host cell and, with usually very limited viral genetic material, subvert the host's molecular machinery. Turnip yellow mosaic virus (TYMV) is an excellent model system for studying positive-stranded RNA virus replication. As for many such viruses, TYMV genome replication is dependent on the activity of a viral proteinase (PRO) to properly process the virus' replication molecules. We have recently established that PRO is a multifunctional enzyme and is also used by TYMV to subvert a key host defense against pathogens. We report here the atomic structure of PRO as well as new functional data on PRO's interaction with the host. Our data shed light on how PRO can perform such multiple activities despite its small size, providing TYMV with a Swiss army knife in its ongoing fight with a vastly more complex host.
PMCID: PMC3744425  PMID: 23966860
12.  Debilitation of plant potyvirus infectivity by P1 proteinase-inactivating mutations and restoration by second-site modifications. 
Journal of Virology  1995;69(3):1582-1590.
Tobacco etch virus (TEV) encodes three proteinases that catalyze processing of the genome-encoded polyprotein. The P1 proteinase originates from the N terminus of the polyprotein and catalyzes proteolysis between itself and the helper component proteinase (HC-Pro). Mutations resulting in substitution of a single amino acid, small insertions, or deletions were introduced into the P1 coding sequence of the TEV genome. Deletion of the N-terminal, nonproteolytic domain of P1 had only minor effects on virus infection in protoplasts and whole plants. Insertion mutations that did not impair proteolytic activity had no measurable effects regardless of whether the modification affected the N-terminal nonproteolytic or C-terminal proteolytic domain. In contrast, three mutations (termed S256A, F, and delta 304) that debilitated P1 proteolytic activity rendered the virus nonviable, whereas a fourth proteinase-debilitating mutation (termed C) resulted in a slow-infection phenotype. A strategy was devised to determine whether the defect in the P1 mutants was due to an inactive proteinase domain or due simply to a lack of proteolytic maturation between P1 and HC-Pro. Sequences coding for a surrogate cleavage site recognized by the TEV NIa proteinase were inserted into the genome of each processing-debilitated mutant at positions that resulted in NIa-mediated proteolysis between P1 and HC-Pro. The infectivity of each mutant was restored by these second-site modifications. These data indicate that P1 proteinase activity is not essential for viral infectivity but that separation of P1 and HC-Pro is required. The data also provide evidence that the proteinase domain is involved in additional, nonproteolytic functions.
PMCID: PMC188753  PMID: 7853492
13.  Spontaneous mutagenesis of a plant potyvirus genome after insertion of a foreign gene. 
Journal of Virology  1993;67(10):5968-5975.
The RNA genome of tobacco etch potyvirus (TEV) was engineered to express bacterial beta-glucuronidase (GUS) fused to the virus helper component proteinase (HC-Pro). It was shown previously that prolonged periods (approximately 1 month) of TEV-GUS propagation in plants resulted in the appearance of spontaneous deletion variants. Nine deletion mutants were identified by nucleotide sequence analysis of 40 cDNA clones obtained after polymerase chain reaction amplification. The mutants were missing between 1,741 and 2,074 nucleotides from TEV-GUS, including the sequences coding for most of GUS and the N-terminal region of HC-Pro. This region of HC-Pro contains determinants involved in helper component activity during aphid transmission, as well as a highly conserved series of cysteine residues. The deletion variants were shown to replicate and move systemically without the aid of a helper virus. Infectious viruses harboring the two largest HC-Pro deletions (termed TEV-2del and TEV-7del) were reconstructed by subcloning the corresponding mutated regions into full-length DNA copies of the TEV genome. Characterization of these and additional variants derived by site-directed mutagenesis demonstrated that deletion of sequences coding for the HC-Pro N-terminal domain had a negative effect on accumulation of viral RNA and coat protein. The TEV-2del variant possessed an aphid-nontransmissible phenotype that could be rescued partially by prefeeding of aphids on active HC-Pro from another potyvirus. These data suggest that the N-terminal domain of HC-Pro or its coding sequence enhances virus replication or genome expression but does not provide an activity essential for these processes. The function of this domain, as well as a proposed deletion mechanism involving nonhomologous recombination, is discussed.
PMCID: PMC238018  PMID: 8371351
14.  Functions of the tobacco etch virus RNA polymerase (NIb): subcellular transport and protein-protein interaction with VPg/proteinase (NIa). 
Journal of Virology  1997;71(2):1598-1607.
The NIb protein of tobacco etch potyvirus (TEV) possesses several functions, including RNA-dependent RNA polymerase and nuclear translocation activities. Using a reporter protein fusion strategy, NIb was shown to contain two independent nuclear localization signals (NLS I and NLS II). NLS I was mapped to a sequence within amino acid residues 1 to 17, and NLS II was identified between residues 292 and 316. Clustered point mutations resulting in substitutions of basic residues within the NLSs were shown previously to disrupt nuclear translocation activity. These mutations also abolished TEV RNA amplification when introduced into the viral genome. The amplification defects caused by each NLS mutation were complemented in trans within transgenic cells expressing functional NIb, although the level of complementation detected for each mutant differed significantly. Combined with previous results (X. H. Li and J. C. Carrington, Proc. Natl. Acad. Sci. USA 92:457-461, 1995), these data suggest that the NLSs overlap with essential regions necessary for NIb trans-active function(s). The fact that NIb functions in trans implies that it must interact with one or more other components of the genome replication apparatus. A yeast two-hybrid system was used to investigate physical interactions between NIb and several other TEV replication proteins, including the multifunctional VPg/proteinase NIa and the RNA helicase CI. A specific interaction was detected between NIa and NIb. Deletion of any of five regions spanning the NIb sequence resulted in NIb variants that were unable to interact with NIa. Clustered point mutations affecting the conserved GDD motif or NLS II within the central region of NIb, but not mutations affecting NLS I near the N terminus, reduced or eliminated the interaction. The C-terminal proteinase (Pro) domain of NIa, but not the N-terminal VPg domain, interacted with NIb. The effects of NIb mutations within NLS I, NLS II, and the GDD motif on the interaction between the Pro domain and NIb were identical to the effects of these mutations on the interaction between full-length NIa and NIb. These data are compatible with a model in which NIb is directed to replication complexes through an interaction with the Pro domain of NIa.
PMCID: PMC191218  PMID: 8995687
15.  The Conserved FRNK Box in HC-Pro, a Plant Viral Suppressor of Gene Silencing, Is Required for Small RNA Binding and Mediates Symptom Development▿ † 
Journal of Virology  2007;81(23):13135-13148.
The helper component-proteinase (HC-Pro) protein of potyviruses is a suppressor of gene silencing and has been shown to elicit plant developmental-defect-like symptoms. In Zucchini yellow mosaic virus (ZYMV), a mutation in the highly conserved FR180NK box of HC-Pro to FI180NK causes attenuation of these symptoms. At 5 days postinoculation and before symptoms appear, virus accumulation, HC-Pro protein levels, and viral short interfering RNA (siRNA) levels are similar for the severe (FRNK) and attenuated (FINK) strains. At this stage, ZYMVFRNK caused greater accumulation of most microRNAs (miRNAs), and especially of their complementary miRNA “passenger” strands (miRNA*s), in systemically infected leaves than the attenuated ZYMVFINK did. HC-ProFRNK specifically bound artificial siRNA and miRNA/miRNA* duplexes with a much higher affinity than the mutated HC-ProFINK. Further analysis of the mutant and wild-type HC-Pro proteins revealed that suppressor activity of the ZYMV HCFINK mutant was not diminished. However, the FINK mutation caused a loss of HC-Pro suppressor function in other potyviruses. Replacement of the second positively charged amino acid in the ZYMV FRNK box to result in FRNA also caused symptom attenuation and reduced small RNA duplex-binding affinity without loss of suppressor activity. Our data suggest that the highly conserved FRNK box in the HC-Pro of potyviruses is a probable point of contact with siRNA and miRNA duplexes. The interaction of the FRNK box with populations of miRNAs directly influences their accumulation levels and regulatory functions, resulting in symptom development.
PMCID: PMC2169133  PMID: 17898058
16.  Site-directed mutagenesis of the proposed catalytic amino acids of the Sindbis virus capsid protein autoprotease. 
Journal of Virology  1990;64(6):3069-3073.
The structural proteins of Sindbis virus are translated as a polyprotein precursor that is cleaved upon translation. The capsid protein is postulated to be a serine protease that releases itself from the N terminus of the nascent polyprotein by autoproteolysis. We have tested the importance in autoproteolysis of His-141, Asp-147, and Ser-215, previously postulated to form the catalytic triad of the protease, and of Asp-163. Several site-specific mutations were constructed at each of these positions, and the release of the capsid protein during translation in a cell-free system was examined. Because proteolysis occurs in cis during translation, the kinetics of release cannot be determined in this system, but the extent of proteolysis can be ascertained. Ser-215 appears to be the catalytic serine of the proteinase. Cys or Thr could substitute inefficiently for Ser-215, but substitution with Ala or Ile led to complete loss of activity. His-141 was also important for proteolysis. Substitution with Ala or Pro led to total loss of activity. Surprisingly, substitution with Arg resulted in complete proteolysis in vitro. Changes at the two Asp residues resulted in complete proteolysis of the substrate in vitro. All mutations that resulted in at least partial cleavage in vitro were incorporated into a full-length clone of Sindbis virus and an attempt was made to recover mutant virus. All changes tested were lethal for the virus except Asp-163 to Asn. Thus, production of infectious virus is either a more sensitive measure of the catalytic rate than the extent of in vitro cleavage, or these residues have necessary functions in addition to their possible role in proteolysis.
PMCID: PMC249494  PMID: 2335827
17.  Host-Specific Involvement of the HC Protein in the Long-Distance Movement of Potyviruses 
Journal of Virology  2002;76(4):1922-1931.
Plum pox virus (PPV) is a member of the Potyvirus genus that, in nature, infects trees of the Prunus genus. Although PPV infects systemically several species of the Nicotiana genus, such as N. clevelandii and N. benthamiana, and replicates in the inoculated leaves of N. tabacum, it is unable to infect systemically the last host. The long-distance movement defect of PPV was corrected in transgenic tobacco plants expressing the 5"-terminal region of the genome of tobacco etch virus (TEV), a potyvirus that infects systemically tobacco. The fact that PPV was unable to move to upper noninoculated leaves in tobacco plants transformed with the same TEV transgene, but with a mutation in the HC protein (HC-Pro)-coding sequences, identifies the multifunctional HC-Pro as the complementing factor, and strongly suggests that a defect in an HC-Pro activity is responsible for the long-distance movement defect of PPV in tobacco. Whereas PPV HC-Pro strongly intensifies the symptoms caused by potato virus X (PVX) in the PPV systemic hosts N. clevelandii and N. benthamiana, it has no apparent effect on PVX pathogenicity in tobacco, supporting the hypothesis that long-distance movement and pathogenicity enhancement are related activities of the potyviral HC proteins. The movement defect of PPV in tobacco could also be complemented by cucumber mosaic virus in a mixed infection, demonstrating that at least some components of the long-distance machinery of the potyviruses are not strictly virus specific. A general conclusion of this work is that the HC-Pro might be a relevant factor for controlling the host range of the potyviruses.
PMCID: PMC135908  PMID: 11799187
18.  Analysis of the VPg-proteinase (NIa) encoded by tobacco etch potyvirus: effects of mutations on subcellular transport, proteolytic processing, and genome amplification. 
Journal of Virology  1996;70(10):7039-7048.
A mutational analysis was conducted to investigate the functions of the tobacco etch potyvirus VPg-proteinase (NIa) protein in vivo. The NIa N-terminal domain contains the VPg attachment site, whereas the C-terminal domain contains a picornavirus 3C-like proteinase. Cleavage at an internal site separating the two domains occurs in a subset of NIa molecules. The majority of NIa molecules in TEV-infected cells accumulate within the nucleus. By using a reporter fusion strategy, the NIa nuclear localization signal was mapped to a sequence within amino acid residues 40 to 49 in the VPg domain. Mutations resulting in debilitation of NIa nuclear translocation also debilitated genome amplification, suggesting that the NLS overlaps a region critical for RNA replication. The internal cleavage site was shown to be a poor substrate for NIa proteolysis because of a suboptimal sequence context around the scissile bond. Mutants that encoded NIa variants with accelerated internal proteolysis exhibited genome amplification defects, supporting the hypothesis that slow internal processing provides a regulatory function. Mutations affecting the VPg attachment site and proteinase active-site residues resulted in amplification-defective viruses. A transgenic complementation assay was used to test whether NIa supplied in trans could rescue amplification-defective viral genomes encoding altered NIa proteins. Neither cells expressing NIa alone nor cells expressing a series of NIa-containing polyproteins supported increased levels of amplification of the mutants. The lack of complementation of NIa-defective mutants is in contrast to previous results obtained with RNA polymerase (NIb)-defective mutants, which were relatively efficiently rescued in the transgenic complementation assay. It is suggested that, unlike NIb polymerase, NIa provides replicative functions that are cis preferential.
PMCID: PMC190754  PMID: 8794348
19.  Human Coronavirus 229E Papain-Like Proteases Have Overlapping Specificities but Distinct Functions in Viral Replication▿  
Journal of Virology  2007;81(8):3922-3932.
Expression of the exceptionally large RNA genomes of CoVs involves multiple regulatory mechanisms, including extensive proteolytic processing of the large replicase polyproteins, pp1a and pp1ab, by two types of cysteine proteases: the chymotrypsin-like main protease and papain-like accessory proteases (PLpros). Here, we characterized the proteolytic processing of the human coronavirus 229E (HCoV-229E) amino-proximal pp1a/pp1ab region by two paralogous PLpro activities. Reverse-genetics data revealed that replacement of the PL2pro active-site cysteine was lethal. By contrast, the PL1pro activity proved to be dispensable for HCoV-229E virus replication, although reversion of the PL1pro active-site substitution to the wild-type sequence after several passages in cell culture indicated that there was selection pressure to restore the PL1pro activity. Further experiments showed that both PL1pro and PL2pro were able to cleave the nsp1-nsp2 cleavage site, with PL2pro cleaving the site less efficiently. The PL1pro-negative mutant genotype could be stably maintained in cell culture when the nsp1-nsp2 site was replaced by a short autoproteolytic sequence, suggesting that the major driving force for the observed reversion of the PL1pro mutation was the requirement for efficient nsp1-nsp2 cleavage. The data suggest that the two HCoV-229E PLpro paralogs have overlapping substrate specificities but different functions in viral replication. Within the tightly controlled interplay of the two protease activities, PL2pro plays a universal and essential proteolytic role that appears to be assisted by the PL1pro paralog at specific sites. Functional and evolutionary implications of the differential amino-terminal polyprotein-processing pathways among the main CoV lineages are discussed.
PMCID: PMC1866161  PMID: 17251282
20.  Rubella Virus Nonstructural Protein Protease Domains Involved in trans- and cis-Cleavage Activities 
Journal of Virology  2000;74(12):5412-5423.
Rubella virus (RV) genomic RNA contains two large open reading frames (ORFs): a 5′-proximal ORF encoding nonstructural proteins (NSPs) that function primarily in viral RNA replication and a 3′-proximal ORF encoding the viral structural proteins. Proteolytic processing of the RV NSP ORF translation product p200 is essential for viral replication. Processing of p200 to two mature products (p150 and p90) in the order NH2-p150-p90-COOH is carried out by an RV-encoded protease residing in the C-terminal region of p150. The RV nonstructural protease (NS-pro) belongs to a viral papain-like protease family that cleaves the polyprotein both in trans and in cis. A conserved X domain of unknown function was found from previous sequence analysis to be associated with NS-pro. To define the domains responsible for cis- and trans-cleavage activities and the function of the X domain in terms of protease activity, an in vitro translation system was employed. We demonstrated that the NSP region from residue 920 to 1296 is necessary for trans-cleavage activity. The domain from residue 920 to 1020 is not required for cis-cleavage activity. The X domain located between residues 834 and 940, outside the regions responsible for both cis- and trans-cleavage activities of NS-pro, was found to be important for NS-pro trans-cleavage activity but not for cis-cleavage activity. Analysis of sequence homology and secondary structure of the RV NS-pro catalytic region reveals a folding structure similar to that of papain.
PMCID: PMC112025  PMID: 10823845
21.  Identification of the catalytic sites of a papain-like cysteine proteinase of murine coronavirus. 
Journal of Virology  1993;67(10):6056-6063.
The murine coronavirus mouse hepatitis virus gene 1 is expressed as a polyprotein, which is cleaved into multiple proteins posttranslationally. One of the proteins is p28, which represents the amino-terminal portion of the polyprotein and is presumably generated by the activity of an autoproteinase domain of the polyprotein (S. C. Baker, C. K. Shieh, L. H. Soe, M.-F. Chang, D. M. Vannier, and M. M. C. Lai, J. Virol. 63:3693-3699, 1989). In this study, the boundaries and the critical amino acid residues of this putative proteinase domain were characterized by deletion analysis and site-directed mutagenesis. Proteinase activity was monitored by examining the generation of p28 during in vitro translation in rabbit reticulocyte lysates. Deletion analysis defined the proteinase domain to be within the sequences encoded from the 3.6- to 4.4-kb region from the 5' end of the genome. A 0.7-kb region between the substrate (p28) and proteinase domain could be deleted without affecting the proteolytic cleavage. However, a larger deletion (1.6 kb) resulted in the loss of proteinase activity, suggesting the importance of spacing sequences between proteinase and substrate. Computer-assisted analysis of the amino acid sequence of the proteinase domain identified potential catalytic cysteine and histidine residues in a stretch of sequence distantly related to papain-like cysteine proteinases. The role of these putative catalytic residues in the proteinase activity was studied by site-specific mutagenesis. Mutations of Cys-1137 or His-1288 led to a complete loss of proteinase activity, implicating these residues as essential for the catalytic activity. In contrast, most mutations of His-1317 or Cys-1172 had no or only minor effects on proteinase activity. This study establishes that mouse hepatitis virus gene 1 encodes a proteinase domain, in the region from 3.6 to 4.4 kb from the 5' end of the genome, which resembles members of the papain family of cysteine proteinases and that this proteinase domain is responsible for the cleavage of the N-terminal peptide.
PMCID: PMC238026  PMID: 8396668
22.  Reconstitution of a branch of the Manduca sexta prophenoloxidase activation cascade in vitro: Snake-like hemolymph proteinase 21 (HP21) cleaved by HP14 activates prophenoloxidase-activating proteinase-2 precursor 
Upon wounding or infection, a serine proteinase cascade in insect hemolymph leads to prophenoloxidase (proPO) activation and melanization, a defense response against invading microbes. In the tobacco hornworm Manduca sexta, this response is initiated via hemolymph proteinase 14 (HP14), a mosaic protein that interacts with bacterial peptidoglycan or fungal β-1,3-glucan to autoactivate. In this paper, we report the expression, purification, and functional analysis of M. sexta HP21 precursor, an HP14 substrate similar to Drosophila Snake. The recombinant proHP21 is a 51.1 kDa glycoprotein with an amino-terminal clip domain, a linker region, and a carboxyl-terminal serine proteinase domain. HP14, generated by incubating proHP14 with β-1,3-glucan and β-1,3-glucan recognition protein-2, activated proHP21 by limited proteolysis between Leu152 and Ile153. Active HP21 formed an SDS-stable complex with M. sexta serpin-4, a physiological regulator of the proPO activation system. We determined the P1 site of serpin-4 to be Arg355 and, thus, confirmed our prediction that HP21 has trypsin-like specificity. After active HP21 was added to the plasma, there was a major increase in PO activity. HP21 cleaved proPO activating proteinase-2 precursor (proPAP-2) after Lys153 and generated an amidase activity which activated proPO in the presence of serine proteinase homolog-1 and 2. In summary, we have discovered and reconstituted a branch of the proPO activation cascade in vitro: β-1,3-glucan recognition – proHP14 autoactivation – proHP21 cleavage – PAP-2 generation – proPO activation – melanin formation.
PMCID: PMC2077082  PMID: 17785189
Clip domain; Insect immunity; Melanization; Phenoloxidase; Proteinase cascade
23.  Proteolytic Processing of Turnip Yellow Mosaic Virus Replication Proteins and Functional Impact on Infectivity▿  
Journal of Virology  2007;81(20):11402-11412.
Turnip yellow mosaic virus (TYMV), a positive-strand RNA virus belonging to the alphavirus-like supergroup, encodes its nonstructural replication proteins as a 206K precursor with domains indicative of methyltransferase (MT), proteinase (PRO), NTPase/helicase (HEL), and polymerase (POL) activities. Subsequent processing of 206K generates a 66K protein encompassing the POL domain and uncharacterized 115K and 85K proteins. Here, we demonstrate that TYMV proteinase mediates an additional cleavage between the PRO and HEL domains of the polyprotein, generating the 115K protein and a 42K protein encompassing the HEL domain that can be detected in plant cells using a specific antiserum. Deletion and substitution mutagenesis experiments and sequence comparisons indicate that the scissile bond is located between residues Ser879 and Gln880. The 85K protein is generated by a host proteinase and is likely to result from nonspecific proteolytic degradation occurring during protein sample extraction or analysis. We also report that TYMV proteinase has the ability to process substrates in trans in vivo. Finally, we examined the processing of the 206K protein containing native, mutated, or shuffled cleavage sites and analyzed the effects of cleavage mutations on viral infectivity and RNA synthesis by performing reverse-genetics experiments. We present evidence that PRO/HEL cleavage is critical for productive virus infection and that the impaired infectivity of PRO/HEL cleavage mutants is due mainly to defective synthesis of positive-strand RNA.
PMCID: PMC2045563  PMID: 17686855
24.  Complete Genome Sequence and Analyses of the Subgenomic RNAs of Sweet Potato Chlorotic Stunt Virus Reveal Several New Features for the Genus Crinivirus 
Journal of Virology  2002;76(18):9260-9270.
The complete nucleotide sequences of genomic RNA1 (9,407 nucleotides [nt]) and RNA2 (8,223 nt) of Sweet potato chlorotic stunt virus (SPCSV; genus Crinivirus, family Closteroviridae) were determined, revealing that SPCSV possesses the second largest identified positive-strand single-stranded RNA genome among plant viruses after Citrus tristeza virus. RNA1 contains two overlapping open reading frames (ORFs) that encode the replication module, consisting of the putative papain-like cysteine proteinase, methyltransferase, helicase, and polymerase domains. RNA2 contains the Closteroviridae hallmark gene array represented by a heat shock protein homologue (Hsp70h), a protein of 50 to 60 kDa depending on the virus, the major coat protein, and a divergent copy of the coat protein. This grouping resembles the genome organization of Lettuce infectious yellows virus (LIYV), the only other crinivirus for which the whole genomic sequence is available. However, in striking contrast to LIYV, the two genomic RNAs of SPCSV contained nearly identical 208-nt-long 3′ terminal sequences, and the ORF for a putative small hydrophobic protein present in LIYV RNA2 was found at a novel position in SPCSV RNA1. Furthermore, unlike any other plant or animal virus, SPCSV carried an ORF for a putative RNase III-like protein (ORF2 on RNA1). Several subgenomic RNAs (sgRNAs) were detected in SPCSV-infected plants, indicating that the sgRNAs formed from RNA1 accumulated earlier in infection than those of RNA2. The 5′ ends of seven sgRNAs were cloned and sequenced by an approach that provided compelling evidence that the sgRNAs are capped in infected plants, a novel finding for members of the Closteroviridae.
PMCID: PMC136465  PMID: 12186910
25.  Analysis and Expansion of the Role of the Escherichia coli Protein ProQ 
PLoS ONE  2013;8(10):e79656.
The decrease in proline transport by the proline porter ProP in a ΔproQ strain has been well documented; however, the reason for this phenotype remains undefined. Previous studies have speculated that ProQ facilitates translation of proP mRNA. Here, we demonstrate that ProQ is enriched in the polysome fractions of sucrose gradient separations of E. coli lysates and the 30S fractions of lysates separated under conditions causing ribosomal subunit dissociation. Thus, ProQ is a bona fide ribosome associated protein. Analysis of proQ constructs lacking predicted structural domains implicates the N-terminal domain in ribosome association. Association with the ribosome appears to be mediated by an interaction with the mRNA being translated, as limited treatment of lysates with Micrococcal Nuclease maintains ribosome integrity but disrupts ProQ localization with polysomes. ProQ also fails to robustly bind to mRNA-free 70S ribosomes in vitro. Interestingly, deletion of proP does not disrupt the localization of ProQ with translating ribosomes, and deletion of proP in combination with the proU operon has no effect on ProQ localization. We also demonstrate that ProQ is necessary for robust biofilm formation, and this phenotype is independent of ProP. Binding studies were carried out using tryptophan fluorescence and in vitro transcribed proP mRNAs. proP is transcribed from two differentially regulated promoters, and ProQ interacts with proP mRNA transcribed from both promoters, as well as a control mRNA with similar affinities. In total, these data suggest that ProQ is positioned to function as a novel translational regulator, and its cellular role extends beyond its effects on proline uptake by ProP.
PMCID: PMC3808355  PMID: 24205389

Results 1-25 (1013050)