PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1234271)

Clipboard (0)
None

Related Articles

1.  Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks 
PLoS ONE  2007;2(9):e955.
Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to resistance; and strengthen the case for a role in survival of systems involved in manganese and iron homeostasis.
doi:10.1371/journal.pone.0000955
PMCID: PMC1978522  PMID: 17895995
2.  The single-stranded DNA-binding protein of Deinococcus radiodurans 
BMC Microbiology  2004;4:2.
Background
Deinococcus radiodurans R1 is one of the most radiation-resistant organisms known and is able to repair an unusually large amount of DNA damage without induced mutation. Single-stranded DNA-binding (SSB) protein is an essential protein in all organisms and is involved in DNA replication, recombination and repair. The published genomic sequence from Deinococcus radiodurans includes a putative single-stranded DNA-binding protein gene (ssb; DR0100) requiring a translational frameshift for synthesis of a complete SSB protein. The apparently tripartite gene has inspired considerable speculation in the literature about potentially novel frameshifting or RNA editing mechanisms. Immediately upstream of the ssb gene is another gene (DR0099) given an ssb-like annotation, but left unexplored.
Results
A segment of the Deinococcus radiodurans strain R1 genome encompassing the ssb gene has been re-sequenced, and two errors involving omitted guanine nucleotides have been documented. The corrected sequence incorporates both of the open reading frames designated DR0099 and DR0100 into one contiguous ssb open reading frame (ORF). The corrected gene requires no translational frameshifts and contains two predicted oligonucleotide/oligosaccharide-binding (OB) folds. The protein has been purified and its sequence is closely related to the Thermus thermophilus and Thermus aquaticus SSB proteins. Like the Thermus SSB proteins, the SSBDr functions as a homodimer. The Deinococcus radiodurans SSB homodimer stimulates Deinococcus radiodurans RecA protein and Escherichia coli RecA protein-promoted DNA three-strand exchange reactions with at least the same efficiency as the Escherichia coli SSB homotetramer.
Conclusions
The correct Deinococcus radiodurans ssb gene is a contiguous open reading frame that codes for the largest bacterial SSB monomer identified to date. The Deinococcus radiodurans SSB protein includes two OB folds per monomer and functions as a homodimer. The Deinococcus radiodurans SSB protein efficiently stimulates Deinococcus radiodurans RecA and also Escherichia coli RecA protein-promoted DNA strand exchange reactions. The identification and purification of Deinococcus radiodurans SSB protein not only allows for greater understanding of the SSB protein family but provides an essential yet previously missing player in the current efforts to understand the extraordinary DNA repair capacity of Deinococcus radiodurans.
doi:10.1186/1471-2180-4-2
PMCID: PMC331404  PMID: 14718065
3.  Enzymes involved in DNA ligation and end-healing in the radioresistant bacterium Deinococcus radiodurans 
Background
Enzymes involved in DNA metabolic events of the highly radioresistant bacterium Deinococcus radiodurans are currently examined to understand the mechanisms that protect and repair the Deinococcus radiodurans genome after extremely high doses of γ-irradiation. Although several Deinococcus radiodurans DNA repair enzymes have been characterised, no biochemical data is available for DNA ligation and DNA endhealing enzymes of Deinococcus radiodurans so far. DNA ligases are necessary to seal broken DNA backbones during replication, repair and recombination. In addition, ionizing radiation frequently leaves DNA strand-breaks that are not feasible for ligation and thus require end-healing by a 5'-polynucleotide kinase or a 3'-phosphatase. We expect that DNA ligases and end-processing enzymes play an important role in Deinococcus radiodurans DNA strand-break repair.
Results
In this report, we describe the cloning and expression of a Deinococcus radiodurans DNA ligase in Escherichia coli. This enzyme efficiently catalyses DNA ligation in the presence of Mn(II) and NAD+ as cofactors and lysine 128 was found to be essential for its activity. We have also analysed a predicted second DNA ligase from Deinococcus radiodurans that is part of a putative DNA repair operon and shows sequence similarity to known ATP-dependent DNA ligases. We show that this enzyme possesses an adenylyltransferase activity using ATP, but is not functional as a DNA ligase by itself. Furthermore, we identified a 5'-polynucleotide kinase similar to human polynucleotide kinase that probably prepares DNA termini for subsequent ligation.
Conclusion
Deinococcus radiodurans contains a standard bacterial DNA ligase that uses NAD+ as a cofactor. Its enzymatic properties are similar to E. coli DNA ligase except for its preference for Mn(II) as a metal cofactor. The function of a putative second DNA ligase remains unclear, but its adenylyltransferase activity classifies it as a member of the nucleotidyltransferase family. Characterization of another protein from the same operon revealed a 5'-polynucleotide kinase with a possible role in DNA strand-break repair.
doi:10.1186/1471-2199-8-69
PMCID: PMC1997131  PMID: 17705817
4.  A Major Role of the RecFOR Pathway in DNA Double-Strand-Break Repair through ESDSA in Deinococcus radiodurans 
PLoS Genetics  2010;6(1):e1000774.
In Deinococcus radiodurans, the extreme resistance to DNA–shattering treatments such as ionizing radiation or desiccation is correlated with its ability to reconstruct a functional genome from hundreds of chromosomal fragments. The rapid reconstitution of an intact genome is thought to occur through an extended synthesis-dependent strand annealing process (ESDSA) followed by DNA recombination. Here, we investigated the role of key components of the RecF pathway in ESDSA in this organism naturally devoid of RecB and RecC proteins. We demonstrate that inactivation of RecJ exonuclease results in cell lethality, indicating that this protein plays a key role in genome maintenance. Cells devoid of RecF, RecO, or RecR proteins also display greatly impaired growth and an important lethal sectoring as bacteria devoid of RecA protein. Other aspects of the phenotype of recFOR knock-out mutants paralleled that of a ΔrecA mutant: ΔrecFOR mutants are extremely radiosensitive and show a slow assembly of radiation-induced chromosomal fragments, not accompanied by DNA synthesis, and reduced DNA degradation. Cells devoid of RecQ, the major helicase implicated in repair through the RecF pathway in E. coli, are resistant to γ-irradiation and have a wild-type DNA repair capacity as also shown for cells devoid of the RecD helicase; in contrast, ΔuvrD mutants show a markedly decreased radioresistance, an increased latent period in the kinetics of DNA double-strand-break repair, and a slow rate of fragment assembly correlated with a slow rate of DNA synthesis. Combining RecQ or RecD deficiency with UvrD deficiency did not significantly accentuate the phenotype of ΔuvrD mutants. In conclusion, RecFOR proteins are essential for DNA double-strand-break repair through ESDSA whereas RecJ protein is essential for cell viability and UvrD helicase might be involved in the processing of double stranded DNA ends and/or in the DNA synthesis step of ESDSA.
Author Summary
Deinococcus radiodurans bacterium is among the best-known organisms found to resist extremely high exposures to desiccation and ionizing radiation, both causing extensive DNA double-strand breaks. Because a single unrepaired DNA double-strand break is usually lethal, DNA double-strand breaks are considered as the most severe form of genomic damage. The extreme radioresistance of D. radiodurans is linked to its ability to reconstruct a functional genome from hundreds of chromosomal fragments. Genome reconstitution occurs through a two step process: (i) an extended synthesis-dependent strand-annealing process (ESDSA) that assembles genomic fragments in long linear intermediates that are then (ii) processed through recombination to generate circular chromosomes. Here, we demonstrate the essential role of key components of the D. radiodurans RecF pathway in ESDSA. We show that (i) inactivation of only one exonuclease (RecJ) results in cell lethality; (ii) cells devoid of RecF, RecO, or RecR display greatly impaired growth; (iii) RecF, RecO, or RecR proteins are essential for radioresistance through ESDSA; and (iv) UvrD helicase has an unexpected crucial function in DNA double-strand-break repair through ESDSA.
doi:10.1371/journal.pgen.1000774
PMCID: PMC2806897  PMID: 20090937
5.  Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance 
Background
Thermus thermophilus and Deinococcus radiodurans belong to a distinct bacterial clade but have remarkably different phenotypes. T. thermophilus is a thermophile, which is relatively sensitive to ionizing radiation and desiccation, whereas D. radiodurans is a mesophile, which is highly radiation- and desiccation-resistant. Here we present an in-depth comparison of the genomes of these two related but differently adapted bacteria.
Results
By reconstructing the evolution of Thermus and Deinococcus after the divergence from their common ancestor, we demonstrate a high level of post-divergence gene flux in both lineages. Various aspects of the adaptation to high temperature in Thermus can be attributed to horizontal gene transfer from archaea and thermophilic bacteria; many of the horizontally transferred genes are located on the single megaplasmid of Thermus. In addition, the Thermus lineage has lost a set of genes that are still present in Deinococcus and many other mesophilic bacteria but are not common among thermophiles. By contrast, Deinococcus seems to have acquired numerous genes related to stress response systems from various bacteria. A comparison of the distribution of orthologous genes among the four partitions of the Deinococcus genome and the two partitions of the Thermus genome reveals homology between the Thermus megaplasmid (pTT27) and Deinococcus megaplasmid (DR177).
Conclusion
After the radiation from their common ancestor, the Thermus and Deinococcus lineages have taken divergent paths toward their distinct lifestyles. In addition to extensive gene loss, Thermus seems to have acquired numerous genes from thermophiles, which likely was the decisive contribution to its thermophilic adaptation. By contrast, Deinococcus lost few genes but seems to have acquired many bacterial genes that apparently enhanced its ability to survive different kinds of environmental stresses. Notwithstanding the accumulation of horizontally transferred genes, we also show that the single megaplasmid of Thermus and the DR177 megaplasmid of Deinococcus are homologous and probably were inherited from the common ancestor of these bacteria.
doi:10.1186/1471-2148-5-57
PMCID: PMC1274311  PMID: 16242020
6.  Intrinsically Disordered Regions May Lower the Hydration Free Energy in Proteins: A Case Study of Nudix Hydrolase in the Bacterium Deinococcus radiodurans 
PLoS Computational Biology  2010;6(7):e1000854.
The proteome of the radiation- and desiccation-resistant bacterium D. radiodurans features a group of proteins that contain significant intrinsically disordered regions that are not present in non-extremophile homologues. Interestingly, this group includes a number of housekeeping and repair proteins such as DNA polymerase III, nudix hydrolase and rotamase. Here, we focus on a member of the nudix hydrolase family from D. radiodurans possessing low-complexity N- and C-terminal tails, which exhibit sequence signatures of intrinsic disorder and have unknown function. The enzyme catalyzes the hydrolysis of oxidatively damaged and mutagenic nucleotides, and it is thought to play an important role in D. radiodurans during the recovery phase after exposure to ionizing radiation or desiccation. We use molecular dynamics simulations to study the dynamics of the protein, and study its hydration free energy using the GB/SA formalism. We show that the presence of disordered tails significantly decreases the hydration free energy of the whole protein. We hypothesize that the tails increase the chances of the protein to be located in the remaining water patches in the desiccated cell, where it is protected from the desiccation effects and can function normally. We extrapolate this to other intrinsically disordered regions in proteins, and propose a novel function for them: intrinsically disordered regions increase the “surface-properties” of the folded domains they are attached to, making them on the whole more hydrophilic and potentially influencing, in this way, their localization and cellular activity.
Author Summary
Intrinsically disordered proteins and protein segments carry out a wide range of important biological functions despite their lack of permanent tertiary structure. Using advanced computational methods we study the biophysical properties of the intrinsically disordered regions in the enzyme nudix hydrolase from the desiccation- and radiation-resistant bacterium D. radiodurans. Interestingly, these regions are absent in homologue proteins in non-extremophile bacteria, suggesting that they might be involved in helping the key rescue-and-repair proteins in D. radiodurans, such as nudix hydrolase, adapt to the extreme absence of water. We show that the disordered regions in nudix hydrolase enlarge the overall surface of the enzyme, and most importantly, increase its overall affinity for water (i.e. its hydrophilicity). We suggest a novel hypothesis that this, indeed, may be the principal function of disordered regions in some cases: they increase the chances of the protein to be located in the remaining water patches in the desiccated cell, where it is protected from the desiccation effects and can function normally.
doi:10.1371/journal.pcbi.1000854
PMCID: PMC2904767  PMID: 20657662
7.  Oxidative Stress Resistance in Deinococcus radiodurans†  
Summary: Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health.
doi:10.1128/MMBR.00015-10
PMCID: PMC3063356  PMID: 21372322
8.  Protein Oxidation Implicated as the Primary Determinant of Bacterial Radioresistance  
PLoS Biology  2007;5(4):e92.
In the hierarchy of cellular targets damaged by ionizing radiation (IR), classical models of radiation toxicity place DNA at the top. Yet, many prokaryotes are killed by doses of IR that cause little DNA damage. Here we have probed the nature of Mn-facilitated IR resistance in Deinococcus radiodurans, which together with other extremely IR-resistant bacteria have high intracellular Mn/Fe concentration ratios compared to IR-sensitive bacteria. For in vitro and in vivo irradiation, we demonstrate a mechanistic link between Mn(II) ions and protection of proteins from oxidative modifications that introduce carbonyl groups. Conditions that inhibited Mn accumulation or Mn redox cycling rendered D. radiodurans radiation sensitive and highly susceptible to protein oxidation. X-ray fluorescence microprobe analysis showed that Mn is globally distributed in D. radiodurans, but Fe is sequestered in a region between dividing cells. For a group of phylogenetically diverse IR-resistant and IR-sensitive wild-type bacteria, our findings support the idea that the degree of resistance is determined by the level of oxidative protein damage caused during irradiation. We present the case that protein, rather than DNA, is the principal target of the biological action of IR in sensitive bacteria, and extreme resistance in Mn-accumulating bacteria is based on protein protection.
Author Summary
One original goal of radiobiology was to explain why cells are so sensitive to ionizing radiation (IR). Early studies in bacteria incriminated DNA as the principal radiosensitive target, an assertion that remains central to modern radiation toxicity models. More recently, the emphasis has shifted to understanding why bacteria such as Deinococcus radiodurans are extremely resistant to IR, by focusing on DNA repair systems expressed during recovery from high doses of IR. Unfortunately, as key features of DNA-centric hypotheses of extreme resistance have grown weaker, the study of alternative cellular targets has lagged far behind, mostly because of their relative biological complexity. Recent studies have shown that extreme levels of bacterial IR resistance correlate with high intracellular Mn(II) concentrations, and resistant and sensitive bacteria are equally susceptible to IR-induced DNA damage. The current work establishes a mechanistic link between Mn(II) and protection of proteins from radiation damage. In contrast to resistant bacteria, naturally sensitive bacteria are highly susceptible to IR-induced protein oxidation. We propose that sensitive bacteria sustain lethal levels of protein damage at radiation doses that elicit relatively little DNA damage, and that extreme resistance in bacteria is dependent on protein protection.
A high intracellular concentration of manganese inDeinococcus radiodurans protects proteins, but not DNA, from ionizing radiation-induced oxidative damage. Protein protection may be critical to the known radiation resistance of these bacteria.
doi:10.1371/journal.pbio.0050092
PMCID: PMC1828145  PMID: 17373858
9.  Alliance of Proteomics and Genomics to Unravel the Specificities of Sahara Bacterium Deinococcus deserti 
PLoS Genetics  2009;5(3):e1000434.
To better understand adaptation to harsh conditions encountered in hot arid deserts, we report the first complete genome sequence and proteome analysis of a bacterium, Deinococcus deserti VCD115, isolated from Sahara surface sand. Its genome consists of a 2.8-Mb chromosome and three large plasmids of 324 kb, 314 kb, and 396 kb. Accurate primary genome annotation of its 3,455 genes was guided by extensive proteome shotgun analysis. From the large corpus of MS/MS spectra recorded, 1,348 proteins were uncovered and semiquantified by spectral counting. Among the highly detected proteins are several orphans and Deinococcus-specific proteins of unknown function. The alliance of proteomics and genomics high-throughput techniques allowed identification of 15 unpredicted genes and, surprisingly, reversal of incorrectly predicted orientation of 11 genes. Reversal of orientation of two Deinococcus-specific radiation-induced genes, ddrC and ddrH, and identification in D. deserti of supplementary genes involved in manganese import extend our knowledge of the radiotolerance toolbox of Deinococcaceae. Additional genes involved in nutrient import and in DNA repair (i.e., two extra recA, three translesion DNA polymerases, a photolyase) were also identified and found to be expressed under standard growth conditions, and, for these DNA repair genes, after exposure of the cells to UV. The supplementary nutrient import and DNA repair genes are likely important for survival and adaptation of D. deserti to its nutrient-poor, dry, and UV-exposed extreme environment.
Author Summary
D. deserti belongs to the Deinococcaceae, a family of bacteria characterized by an exceptional ability to withstand the lethal effects of DNA-damaging agents, including ionizing radiation, UV light, and desiccation. It was isolated from Sahara surface sands, an extreme and nutrient-poor environment, regularly exposed to intense UV radiation, cycles of extreme temperatures, and desiccation. The evolution of organisms that are able to survive acute irradiation doses of 15,000 Gy is difficult to explain given the apparent absence of highly radioactive habitats on Earth over geologic time. Thus, it seems more likely that the natural selection pressure for the evolution of radiation-resistant bacteria was chronic exposure to nonradioactive forms of DNA damage, in particular those promoted by desiccation. Here, we report the first complete genome sequence of a bacterium, D. deserti VCD115, isolated from hot, arid desert surface sand. Accurate genome annotation of its 3,455 genes was guided by extensive proteome analysis in which 1,348 proteins were uncovered after growth in standard conditions. Supplementary genes involved in manganese import, in nutrient import, and in DNA repair were identified and are likely important for survival and adaptation of D. deserti to its hostile environment.
doi:10.1371/journal.pgen.1000434
PMCID: PMC2669436  PMID: 19370165
10.  Basal DNA repair machinery is subject to positive selection in ionizing-radiation-resistant bacteria 
BMC Genomics  2008;9:297.
Background
Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in resistance to ionizing-radiation and tolerance of desiccation. We analyzed the four known genome sequences of IRRB (Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus radiotolerans, and Rubrobacter xylanophilus) to determine the role of positive Darwinian selection in the evolution of resistance to ionizing radiation and tolerance of desiccation.
Results
We used the programs MultiParanoid and DnaSP to deduce the sets of orthologs that potentially evolved due to positive Darwinian selection in IRRB. We find that positive selection targets 689 ortholog sets of IRRB. Among these, 58 ortholog sets are absent in ionizing-radiation-sensitive bacteria (IRSB: Escherichia coli and Thermus thermophilus). The most striking finding is that all basal DNA repair genes in IRRB, unlike many of their orthologs in IRSB, are subject to positive selection.
Conclusion
Our results provide the first in silico prediction of positively selected genes with potential roles in the molecular basis of resistance to γ-radiation and tolerance of desiccation in IRRB. Identification of these genes provides a basis for future experimental work aimed at understanding the metabolic networks in which they participate.
doi:10.1186/1471-2164-9-297
PMCID: PMC2441631  PMID: 18570673
11.  Protease Activity of PprI Facilitates DNA Damage Response: Mn(2+)-Dependence and Substrate Sequence-Specificity of the Proteolytic Reaction 
PLoS ONE  2015;10(3):e0122071.
The extremophilic bacterium Deinococcus radiodurans exhibits an extraordinary resistance to ionizing radiation. Previous studies established that a protein named PprI, which exists only in the Deinococcus-Thermus family, acts as a general switch to orchestrate the expression of a number of DNA damage response (DDR) proteins involved in cellular radio-resistance. Here we show that the regulatory mechanism of PprI depends on its Mn(2+)-dependent protease activity toward DdrO, a transcription factor that suppresses DDR genes’ expression. Recognition sequence-specificity around the PprI cleavage site is essential for DNA damage repair in vivo. PprI and DdrO mediate a novel DNA damage response pathway differing from the classic LexA-mediated SOS response system found in radiation-sensitive bacterium Escherichia coli. This PprI-mediated pathway in D. radiodurans is indispensable for its extreme radio-resistance and therefore its elucidation significantly advances our understanding of the DNA damage repair mechanism in this amazing organism.
doi:10.1371/journal.pone.0122071
PMCID: PMC4374696  PMID: 25811789
12.  A ring-like nucleoid is not necessary for radioresistance in the Deinococcaceae 
BMC Microbiology  2005;5:17.
Background
Transmission electron microscopy images of Deinococcus radiodurans R1 suggest that the nucleoid of this species exists as a "ring-like" body, and have led to speculation that this structure contributes to the radioresistance of the species. Since extreme radioresistance is characteristic of six other species of Deinococcus, we have attempted to correlate nucleoid morphology and radioresistance by determining whether the genomic DNA of each of these species exhibit similar structures.
Results
The nucleoid morphologies of seven recognized species of Deinococcus, the radioresistant bacterium Rubrobacter radiotolerans, and the more radiosensitive deinococcal relative Thermus aquaticus were evaluated using epifluorescence and deconvolution techniques. Although the nucleoids of Deinococcus murrayi, Deinococcus proteolyticus, Deinococcus radiophilus, and Deinococcus grandis have structures similar to D. radiodurans, the majority of nucleoids found in Deinococcus radiopugnans and Deinococcus geothermalis lack any specific organization. The nucleoid of R. radiotolerans consists of multiple highly condensed spheres of DNA scattered throughout the cell. The genomic DNA of Thermus aquaticus is uniformly distributed throughout the cell.
Conclusion
There is no obvious relationship between the shape of a species' nucleoid and extreme radioresistance. However, the genomes of all extremely radioresistance species examined are highly condensed relative to more radiosensitive species. Whether DNA in this tightly packed configuration contributes to the radioresistance of these bacteria remains unknown, but this common structural feature appears to limit diffusion of fragments generated post-irradiation even in cells incapable of repairing strand breaks.
doi:10.1186/1471-2180-5-17
PMCID: PMC1079854  PMID: 15799787
13.  Irradiation-Induced Deinococcus radiodurans Genome Fragmentation Triggers Transposition of a Single Resident Insertion Sequence 
PLoS Genetics  2010;6(1):e1000799.
Stress-induced transposition is an attractive notion since it is potentially important in creating diversity to facilitate adaptation of the host to severe environmental conditions. One common major stress is radiation-induced DNA damage. Deinococcus radiodurans has an exceptional ability to withstand the lethal effects of DNA–damaging agents (ionizing radiation, UV light, and desiccation). High radiation levels result in genome fragmentation and reassembly in a process which generates significant amounts of single-stranded DNA. This capacity of D. radiodurans to withstand irradiation raises important questions concerning its response to radiation-induced mutagenic lesions. A recent study analyzed the mutational profile in the thyA gene following irradiation. The majority of thyA mutants resulted from transposition of one particular Insertion Sequence (IS), ISDra2, of the many different ISs in the D. radiodurans genome. ISDra2 is a member of a newly recognised class of ISs, the IS200/IS605 family of insertion sequences.
Author Summary
Induction of transposition in prokaryotes under cell stress conditions is potentially important in creating diversity facilitating adaptation to severe environments. In Deinococcus radiodurans, the most radiation-resistant organism known, despite abundance of resident insertion sequences (IS), transposition of a single IS, ISDra2, was found to be strongly induced by irradiation. We show that both steps involved in transposition, IS excision, and insertion, increase significantly following host cell irradiation and, using PCR analysis of genomic DNA, that exposure to γ-irradiation stimulates massive excision of the single genomic ISDra2 copy as a DNA circle and reclosure of the empty site. These events are closely correlated with the initiation of the process leading to genome reassembly from chromosomal fragments, which occurs mainly through a mechanism generating long stretches of single-stranded DNA. Consistent with this, we also demonstrate a requirement for single strand DNA substrates in TnpA-catalysed cleavage and strand transfer in vitro. Since we find no evidence for irradiation-induced expression of the ISDra2 transposase, we infer that transposition is triggered by the increase in its single-strand DNA substrate. The potential impact on genome reassembly and in creating genome host diversity by triggering transposition in this way is discussed.
doi:10.1371/journal.pgen.1000799
PMCID: PMC2806898  PMID: 20090938
14.  Effect of a recD Mutation on DNA Damage Resistance and Transformation in Deinococcus radiodurans▿ †  
Journal of Bacteriology  2007;189(14):5101-5107.
The bacterium Deinococcus radiodurans is resistant to extremely high levels of DNA-damaging agents such as UV light, ionizing radiation, and chemicals such as hydrogen peroxide and mitomycin C. The organism is able to repair large numbers of double-strand breaks caused by ionizing radiation, in spite of the lack of the RecBCD enzyme, which is essential for double-strand DNA break repair in Escherichia coli and many other bacteria. The D. radiodurans genome sequence indicates that the organism lacks recB and recC genes, but there is a gene encoding a protein with significant similarity to the RecD protein of E. coli and other bacteria. We have generated D. radiodurans strains with a disruption or deletion of the recD gene. The recD mutants are more sensitive than wild-type cells to irradiation with gamma rays and UV light and to treatment with hydrogen peroxide, but they are not sensitive to treatment with mitomycin C and methyl methanesulfonate. The recD mutants also show greater efficiency of transformation by exogenous homologous DNA. These results are the first indication that the D. radiodurans RecD protein has a role in DNA damage repair and/or homologous recombination in the organism.
doi:10.1128/JB.00409-07
PMCID: PMC1951845  PMID: 17496087
15.  Complete genome sequence of Deinococcus maricopensis type strain (LB-34T) 
Standards in Genomic Sciences  2011;4(2):163-172.
Deinococcus maricopensis (Rainey and da Costa 2005) is a member of the genus Deinococcus, which is comprised of 44 validly named species and is located within the deeply branching bacterial phylum Deinococcus–Thermus. Strain LB-34T was isolated from a soil sample from the Sonoran Desert in Arizona. Various species of the genus Deinococcus are characterized by extreme radiation resistance, with D. maricopensis being resistant in excess of 10 kGy. Even though the genomes of three Deinococcus species, D. radiodurans, D. geothermalis and D. deserti, have already been published, no special physiological characteristic is currently known that is unique to this group. It is therefore of special interest to analyze the genomes of additional species of the genus Deinococcus to better understand how these species adapted to gamma- or UV ionizing-radiation. The 3,498,530 bp long genome of D. maricopensis with its 3,301 protein-coding and 66 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
doi:10.4056/sigs.1633949
PMCID: PMC3111983  PMID: 21677853
aerobic; non-motile; Gram-positive; radiation-resistant; mesophilic; chemoorganotrophic; Deinococcaceae; GEBA
16.  Crystal structure of the DNA polymerase III β subunit (β-clamp) from the extremophile Deinococcus radiodurans 
Background
Deinococcus radiodurans is an extremely radiation and desiccation resistant bacterium which can tolerate radiation doses up to 5,000 Grays without losing viability. We are studying the role of DNA repair and replication proteins for this unusual phenotype by a structural biology approach. The DNA polymerase III β subunit (β-clamp) acts as a sliding clamp on DNA, promoting the binding and processivity of many DNA-acting proteins, and here we report the crystal structure of D. radiodurans β-clamp (Drβ-clamp) at 2.0 Å resolution.
Results
The sequence verification process revealed that at the time of the study the gene encoding Drβ-clamp was wrongly annotated in the genome database, encoding a protein of 393 instead of 362 amino acids. The short protein was successfully expressed, purified and used for crystallisation purposes in complex with Cy5-labeled DNA. The structure, which was obtained from blue crystals, shows a typical ring-shaped bacterial β-clamp formed of two monomers, each with three domains of identical topology, but with no visible DNA in electron density. A visualisation of the electrostatic surface potential reveals a highly negatively charged outer surface while the inner surface and the dimer forming interface have a more even charge distribution.
Conclusions
The structure of Drβ-clamp was determined to 2.0 Å resolution and shows an evenly distributed electrostatic surface charge on the DNA interacting side. We hypothesise that this charge distribution may facilitate efficient movement on encircled DNA and help ensure efficient DNA metabolism in D. radiodurans upon exposure to high doses of ionizing irradiation or desiccation.
doi:10.1186/s12900-015-0032-6
PMCID: PMC4350885  PMID: 25886944
DNA polymerase III β subunit; Deinococcus radiodurans; Radiation resistance
17.  Evolution of extreme resistance to ionizing radiation via genetic adaptation of DNA repair 
eLife  2014;3:e01322.
By directed evolution in the laboratory, we previously generated populations of Escherichia coli that exhibit a complex new phenotype, extreme resistance to ionizing radiation (IR). The molecular basis of this extremophile phenotype, involving strain isolates with a 3-4 order of magnitude increase in IR resistance at 3000 Gy, is now addressed. Of 69 mutations identified in one of our most highly adapted isolates, functional experiments demonstrate that the IR resistance phenotype is almost entirely accounted for by only three of these nucleotide changes, in the DNA metabolism genes recA, dnaB, and yfjK. Four additional genetic changes make small but measurable contributions. Whereas multiple contributions to IR resistance are evident in this study, our results highlight a particular adaptation mechanism not adequately considered in studies to date: Genetic innovations involving pre-existing DNA repair functions can play a predominant role in the acquisition of an IR resistance phenotype.
DOI: http://dx.doi.org/10.7554/eLife.01322.001
eLife digest
X-rays and other forms of ionizing radiation can damage DNA and proteins inside cells. The radiation interacts with aqueous solutions to produce reactive forms of oxygen, which then cause the damage. A range of mechanisms exist to moderate and/or repair this damage, with certain species being able to tolerate extraordinary levels of radiation. The bacterium D. radiodurans, for example, can survive radiation levels that are over 1000 times higher than the levels that can kill human cells.
The molecular basis of high-level resistance to ionizing radiation is not well understood, and several mechanisms have been proposed. Recent work has focused on passive mechanisms that are based on changes in cellular levels of certain small molecules that prevent damage by reactive forms of oxygen molecules.
Now, based on experiments on E. coli, Byrne et al. demonstrate that active mechanisms, involving adaptations in the cellular DNA repair systems, can bring about dramatic increases in radiation resistance. The experiments were performed on populations of E. coli cells that had been subjected to an evolutionary selection for extremely high resistance to ionizing radiation. This involved exposing the E. coli cells to ionizing radiation that killed most of the population, and then growing up the survivors. Many repetitions of this process led to a population of cells with a resistance that was comparable to that of the bacterium D. radiodurans. The same evolution experiment was carried out four times, generating four separate populations of bacteria that were resistant to ionizing radiation.
Byrne et al. sequenced the genomes of the E. coli after 20, 40 or 50 rounds of the selection process, and compared mutations found in the four separate evolved populations. This showed that nine genes were particularly prone to mutations. Together, these genes had roles in repairing and copying DNA sequences, in decreasing damage caused by reactive forms of oxygen, and in manufacturing the molecular wall that shields cells.
To assess the importance of the mutations in the nine genes, Byrne et al. took Founder cells from the initial population of E. coli cells–which were not resistant to ionizing radiation–and introduced the very same mutations, one at a time. Then the mutations that had the largest positive effects on resistance to ionizing radiation were combined. Introducing particular mutations into three DNA repair genes resulted in the highest aggregate levels of resistance. Finally, evolved E. coli cells that were already resistant were made more sensitive to radiation by repairing the same individual mutations. Again, the biggest change was observed with the DNA repair genes. Indeed, repairing the mutations in just the three DNA repair genes completely removed the radiation resistance.
The next step is to determine how the properties of the mutated proteins change, and how those changes lead to radiation resistance. Also, there are clues in the work that suggest the presence of additional ways for cells to become radiation resistant, and these remain to be explored.
DOI: http://dx.doi.org/10.7554/eLife.01322.002
doi:10.7554/eLife.01322
PMCID: PMC3939492  PMID: 24596148
DNA repair; ionizing radiation; evolution; extremophile; mutation; E. coli
18.  Small-Molecule Antioxidant Proteome-Shields in Deinococcus radiodurans 
PLoS ONE  2010;5(9):e12570.
For Deinococcus radiodurans and other bacteria which are extremely resistant to ionizing radiation, ultraviolet radiation, and desiccation, a mechanistic link exists between resistance, manganese accumulation, and protein protection. We show that ultrafiltered, protein-free preparations of D. radiodurans cell extracts prevent protein oxidation at massive doses of ionizing radiation. In contrast, ultrafiltrates from ionizing radiation-sensitive bacteria were not protective. The D. radiodurans ultrafiltrate was enriched in Mn, phosphate, nucleosides and bases, and peptides. When reconstituted in vitro at concentrations approximating those in the D. radiodurans cytosol, peptides interacted synergistically with Mn2+ and orthophosphate, and preserved the activity of large, multimeric enzymes exposed to 50,000 Gy, conditions which obliterated DNA. When applied ex vivo, the D. radiodurans ultrafiltrate protected Escherichia coli cells and human Jurkat T cells from extreme cellular insults caused by ionizing radiation. By establishing that Mn2+-metabolite complexes of D. radiodurans specifically protect proteins against indirect damage caused by gamma-rays delivered in vast doses, our findings provide the basis for a new approach to radioprotection and insight into how surplus Mn budgets in cells combat reactive oxygen species.
doi:10.1371/journal.pone.0012570
PMCID: PMC2933237  PMID: 20838443
19.  RecA Proteins from Deinococcus geothermalis and Deinococcus murrayi - Cloning, Purification and Biochemical Characterisation 
BMC Molecular Biology  2011;12:17.
Background
Escherichia coli RecA plays a crucial role in recombinational processes, the induction of SOS responses and mutagenic lesion bypasses. It has also been demonstrated that RecA protein is indispensable when it comes to the reassembly of shattered chromosomes in γ-irradiated Deinococcus radiodurans, one of the most radiation-resistant organisms known. Moreover, some functional differences between E. coli and D. radiodurans RecA proteins have also been shown.
Results
In this study, recA genes from Deinococcus geothermalis and Deinococcus murrayi, bacteria that are slightly thermophilic and extremely γ-radiation resistant, were isolated, cloned and expressed in E. coli. After production and purification, the biochemical properties of DgeRecA and DmuRecA proteins were determined. Both proteins continued to exist in the solutions as heterogenous populations of oligomeric forms. The DNA binding by DgeRecA and DmuRecA proteins is stimulated by Mg2+ ions. Furthermore, both proteins bind more readily to ssDNA when ssDNA and dsDNA are in the same reaction mixture. Both proteins are slightly thermostable and were completely inactivated in 10 s at 80°C. Both proteins hydrolyze ATP and dATP in the presence of ssDNA or complementary ssDNA and dsDNA, but not in the absence of DNA or in the presence of dsDNA only, and dATP was hydrolyzed more rapidly than ATP. They were also able to promote DNA strand exchange reactions by a pathway common for other RecA proteins. However, we did not obtain DNA strand exchange products when reactions were performed on an inverse pathway, characteristic for RecA of D. radiodurans.
Conclusions
The characterization of DgeRecA and DmuRecA proteins made in this study indicates that the unique properties of D. radiodurans RecA are probably not common among RecA proteins from Deinococcus sp.
doi:10.1186/1471-2199-12-17
PMCID: PMC3103430  PMID: 21513512
20.  Physiologic Determinants of Radiation Resistance in Deinococcus radiodurans 
Immense volumes of radioactive wastes, which were generated during nuclear weapons production, were disposed of directly in the ground during the Cold War, a period when national security priorities often surmounted concerns over the environment. The bacterium Deinococcus radiodurans is the most radiation-resistant organism known and is currently being engineered for remediation of the toxic metal and organic components of these environmental wastes. Understanding the biotic potential of D. radiodurans and its global physiological integrity in nutritionally restricted radioactive environments is important in development of this organism for in situ bioremediation. We have previously shown that D. radiodurans can grow on rich medium in the presence of continuous radiation (6,000 rads/h) without lethality. In this study we developed a chemically defined minimal medium that can be used to analyze growth of this organism in the presence and in the absence of continuous radiation; whereas cell growth was not affected in the absence of radiation, cells did not grow and were killed in the presence of continuous radiation. Under nutrient-limiting conditions, DNA repair was found to be limited by the metabolic capabilities of D. radiodurans and not by any nutritionally induced defect in genetic repair. The results of our growth studies and analysis of the complete D. radiodurans genomic sequence support the hypothesis that there are several defects in D. radiodurans global metabolic regulation that limit carbon, nitrogen, and DNA metabolism. We identified key nutritional constituents that restore growth of D. radiodurans in nutritionally limiting radioactive environments.
PMCID: PMC110589  PMID: 10831446
21.  Biology of Extreme Radiation Resistance: The Way of Deinococcus radiodurans 
The bacterium Deinococcus radiodurans is a champion of extreme radiation resistance that is accounted for by a highly efficient protection against proteome, but not genome, damage. A well-protected functional proteome ensures cell recovery from extensive radiation damage to other cellular constituents by molecular repair and turnover processes, including an efficient repair of disintegrated DNA. Therefore, cell death correlates with radiation-induced protein damage, rather than DNA damage, in both robust and standard species. From the reviewed biology of resistance to radiation and other sources of oxidative damage, we conclude that the impact of protein damage on the maintenance of life has been largely underestimated in biology and medicine.
The proteome, rather than the genome, may be the prime target in radiation-induced cell death. Deinococcus radiodurans is a robust bacterium that can protect its proteins from oxidative damage, thereby preserving their activity.
doi:10.1101/cshperspect.a012765
PMCID: PMC3685888  PMID: 23818498
22.  Expression of recA in Deinococcus radiodurans. 
Journal of Bacteriology  1996;178(1):130-135.
Deinococcus (formerly Micrococcus) radiodurans is remarkable for its extraordinary resistance to ionizing and UV irradiation and many other agents that damage DNA. This organism can repair > 100 double-strand breaks per chromosome induced by ionizing radiation without lethality or mutagenesis. We have previously observed that expression of D. radiodurans recA in Escherichia coli appears lethal. We now find that the RecA protein of D. radiodurans is ot detectable in D. radiodurans except in the setting of DNA damage and that termination of its synthesis is associated with the onset of deinococcal growth. The synthesis of Shigella flexneri RecA (protein sequence identical to that of E. coli RecA) in recA-defective D. radiodurans is described. Despite a large accumulation of the S. flexneri RecA in D. radiodurans, there is no complementation of any D. radiodurans recA phenotype, including DNA damage sensitivity, inhibition of natural transformation, or inability to support a plasmid that requires RecA for replication. To ensure that the cloned S. flexneri recA gene was not inactivated, it was rescued from D. radiodurans and was shown to function normally in E. coli. We conclude that neither D. radiodurans nor S. flexneri RecA is functional in the other species, nor are the kinetics of induction and suppression similar to each other, indicating a difference between these two proteins in their modes of action.
PMCID: PMC177629  PMID: 8550406
23.  DR1769, a Protein with N-Terminal Beta Propeller Repeats and a Low-Complexity Hydrophilic Tail, Plays a Role in Desiccation Tolerance of Deinococcus radiodurans 
Journal of Bacteriology  2013;195(17):3888-3896.
The Deinococcus radiodurans genome encodes five putative quinoproteins. Among these, the Δdr2518 and Δdr1769 mutants became sensitive to gamma radiation. DR2518 with beta propeller repeats in the C-terminal domain was characterized as a radiation-responsive serine/threonine protein kinase in this bacterium. DR1769 contains beta propeller repeats at the N terminus, while its C-terminal domain is a proline-rich disordered structure and constitutes a low-complexity hydrophilic region with aliphatic-proline dipeptide motifs. The Δdr1769 mutant showed nearly a 3-log cycle sensitivity to desiccation at 5% humidity compared to that of the wild type. Interestingly, the gamma radiation and mitomycin C (MMC) resistance in mutant cells also dropped by ∼1-log cycle at 10 kGy and ∼1.5-fold, respectively, compared to those in wild-type cells. But there was no effect of UV (254 nm) exposure up to 800 J · m−2. These cells showed defective DNA double-strand break repair, and the average size of the nucleoid in desiccated wild-type and Δdr1769 cells was reduced by approximately 2-fold compared to that of respective controls. However, the nucleoid in wild-type cells returned to a size almost similar to that of the untreated control, which did not happen in mutant cells, at least up to 24 h postdesiccation. These results suggest that DR1769 plays an important role in desiccation and radiation resistance of D. radiodurans, possibly by protecting genome integrity under extreme conditions.
doi:10.1128/JB.00418-13
PMCID: PMC3754602  PMID: 23794625
24.  Preserving Genome Integrity: The DdrA Protein of Deinococcus radiodurans R1 
PLoS Biology  2004;2(10):e304.
The bacterium Deinococcus radiodurans can withstand extraordinary levels of ionizing radiation, reflecting an equally extraordinary capacity for DNA repair. The hypothetical gene product DR0423 has been implicated in the recovery of this organism from DNA damage, indicating that this protein is a novel component of the D. radiodurans DNA repair system. DR0423 is a homologue of the eukaryotic Rad52 protein. Following exposure to ionizing radiation, DR0423 expression is induced relative to an untreated control, and strains carrying a deletion of the DR0423 gene exhibit increased sensitivity to ionizing radiation. When recovering from ionizing-radiation-induced DNA damage in the absence of nutrients, wild-type D. radiodurans reassembles its genome while the mutant lacking DR0423 function does not. In vitro, the purified DR0423 protein binds to single-stranded DNA with an apparent affinity for 3′ ends, and protects those ends from nuclease degradation. We propose that DR0423 is part of a DNA end-protection system that helps to preserve genome integrity following exposure to ionizing radiation. We designate the DR0423 protein as DNA damage response A protein.
Deinococcus radiodurans is able to repair radiation induced genome damage by virtue of a homologue of the eukaryotic Rad52 protein, which preserves genome integrity by protecting DNA ends
doi:10.1371/journal.pbio.0020304
PMCID: PMC515370  PMID: 15361932
25.  The deinococcal DdrB protein is involved in an early step of DNA double strand break repair and in plasmid transformation through its single-strand annealing activity 
DNA Repair  2011;10(12):1223-1231.
The Deinococcus radiodurans bacterium exhibits an extreme resistance to ionizing radiation. Here, we investigated the in vivo role of DdrB, a radiation-induced Deinococcus specific protein that was previously shown to exhibit some in vitro properties akin to those of SSB protein from E. coli but also to promote annealing of single stranded DNA. First we report that the deletion of the C-terminal motif of the DdrB protein, which is similar to the SSB C-terminal motif involved in recruitment to DNA of repair proteins, did neither affect cell radioresistance nor DNA binding properties of purified DdrB protein. We show that, in spite of their different quaternary structure, DdrB and SSB occlude the same amount of ssDNA in vitro. We also showed that DdrB is recruited early and transiently after irradiation into the nucleoid to form discrete foci. Absence of DdrB increased the lag phase of the extended synthesis-dependent strand annealing (ESDSA) process, affecting neither the rate of DNA synthesis nor the efficiency of fragment reassembly, as indicated by monitoring DNA synthesis and genome reconstitution in cells exposed to a sub-lethal ionizing radiation dose. Moreover, cells devoid of DdrB were affected in the establishment of plasmid DNA during natural transformation, a process that requires pairing of internalized plasmid single stranded DNA fragments, whereas they were proficient in transformation by a chromosomal DNA marker that integrates into the host chromosome through homologous recombination. Our data are consistent with a model in which DdrB participates in an early step of DNA double strand break repair in cells exposed to very high radiation doses. DdrB might facilitate the accurate assembly of the myriad of small fragments generated by extreme radiation exposure through a single strand annealing (SSA) process to generate suitable substrates for subsequent ESDSA-promoted genome reconstitution.
doi:10.1016/j.dnarep.2011.09.010
PMCID: PMC3268515  PMID: 21968057
Deinococcus radiodurans; DdrB; single-strand binding protein SSB; ESDSA; SSA; DNA transformation

Results 1-25 (1234271)