PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1283468)

Clipboard (0)
None

Related Articles

1.  Performance of the Celera Diagnostics ViroSeq HIV-1 Genotyping System for Sequence-Based Analysis of Diverse Human Immunodeficiency Virus Type 1 Strains 
Journal of Clinical Microbiology  2004;42(6):2711-2717.
The Celera Diagnostics ViroSeq HIV-1 Genotyping System is a Food and Drug Administration-cleared, integrated system for sequence-based analysis of drug resistance mutations in subtype B human immunodeficiency virus type 1 (HIV-1) protease and reverse transcriptase (RT). We evaluated the performance of this system for the analysis of diverse HIV-1 strains. Plasma samples were obtained from 126 individuals from Uganda, Cameroon, South Africa, Argentina, Brazil, and Thailand with viral loads ranging from 2.92 to >6.0 log10 copies/ml. HIV-1 genotyping was performed with the ViroSeq system. HIV-1 subtyping was performed by using phylogenetic methods. PCR products suitable for sequencing were obtained for 125 (99%) of the 126 samples. Genotypes including protease (amino acids 1 to 99) and RT (amino acids 1 to 321) were obtained for 124 (98%) of the samples. Full bidirectional sequence data were obtained for 95 of those samples. The sequences were categorized into the following subtypes: A1/A2 (16 samples), B (12 samples), C (13 samples), D (11 samples), CRF01_AE (9 samples), F/F2 (9 samples), G (7 samples), CRF02_AG (32 samples), H (1 sample), and intersubtype recombinant (14 samples). The performances of the individual sequencing primers were examined. Genotyping of duplicate samples in a second laboratory was successful for 124 of the 126 samples. The identity level for the sequence data from two laboratories ranged from 98 to 100% (median, 99.8%). The ViroSeq system performs well for the analysis of plasma samples with diverse non-B subtypes. The availability of this genotyping system should facilitate studies of HIV-1 drug resistance in non-subtype B strains of HIV-1.
doi:10.1128/JCM.42.6.2711-2717.2004
PMCID: PMC427844  PMID: 15184457
2.  Analysis of Drug Resistance in Children Receiving Antiretroviral Therapy for Treatment of HIV-1 Infection in Uganda 
Abstract
We analyzed drug resistance in HIV-infected Ugandan children who received antiretroviral therapy in a prospective, observational study (2004–2006); some children had prior single-dose nevirapine (sdNVP) exposure. Children received stavudine (d4T), lamivudine (3TC), and nevirapine (NVP); treatment was continued if they were clinically and immunologically stable. Samples with >1,000 copies/ml HIV RNA were analyzed by using the ViroSeq HIV Genotyping System (ViroSeq). Subtype A and D pretreatment samples also were analyzed with the LigAmp assay (for K103N, Y181C, and G190A). ViroSeq results were obtained for 74 pretreatment samples (35 from sdNVP-exposed children (median age, 19 months) and 39 from sdNVP-unexposed children (median age, 84 months). This included 39 subtype A, 22 subtype D, 1 subtype C, and 12 inter-subtype recombinant samples. One sample had nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance, one had nucleoside reverse transcriptase inhibitor (NRTI) resistance, and three had protease inhibitor (PI) resistance. Y181C was detected by using LigAmp in five pretreatment samples [four (14.8%) of 37 samples from sdNVP-exposed children, one (4.2%) of 24 samples from children without prior sdNVP exposure; p = 0.35]. Among children who were not virally suppressed at 48 weeks of treatment, all 12 tested had NNRTI resistance, as well as resistance to 3TC and emtricitibine (FTC); three had resistance to other NRTIs. Seven of those children had a ViroSeq result at 96 weeks of treatment; four of the seven acquired resistance to additional NRTIs by 96 weeks. In Uganda, clinically and immunologically stable children receiving nonsuppressive antiretroviral treatment regimens are at risk for development of drug resistance.
doi:10.1089/aid.2009.0164
PMCID: PMC2875950  PMID: 20455758
3.  Comparison of Laboratory Methods for Analysis of Non-nucleoside Reverse Transcriptase Inhibitor Resistance in Ugandan Infants 
Detailed comparisons of HIV drug resistance assays are needed to identify the most useful assays for research studies, and to facilitate comparison of results from studies that use different methods. We analyzed nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance in 40 HIV-infected Ugandan infants who had received nevirapine (NVP)-based prophylaxis using the following assays: an FDA-cleared HIV genotyping assay (the ViroSeq HIV-1 Genotyping System v2.0), a commercially available HIV genotyping assay (GeneSeq HIV), a commercially available HIV phenotyping assay (PhenoSense HIV), and a sensitive point mutation assay (LigAmp). ViroSeq and GeneSeq HIV results (NVP resistance yes/no) were similar for 38 (95%) of 40 samples. In 6 (15%) of 40 samples, GeneSeq HIV detected mutations in minor subpopulations that were not detected by ViroSeq, which identified two additional infants with NVP resistance. LigAmp detected low-level mutations in 12 samples that were not detected by ViroSeq; however, LigAmp testing identified only one additional infant with NVP resistance. GeneSeq HIV and PhenoSense HIV determinations of susceptibility differed for specific NNRTIs in 12 (31%) of the 39 samples containing mixtures at relevant mutation positions. PhenoSense HIV did not detect any infants with NVP resistance who were not identified with GeneSeq HIV testing. In this setting, population sequencing-based methods (ViroSeq and GeneSeq HIV) were the most informative and had concordant results for 95% of the samples. LigAmp was useful for the detection and quantification of minority variants. PhenoSense HIV provided a direct and quantitative measure of NNRTI susceptibility.
doi:10.1089/aid.2008.0235
PMCID: PMC2799186  PMID: 19621988
4.  Comparison of Laboratory Methods for Analysis of Non-nucleoside Reverse Transcriptase Inhibitor Resistance in Ugandan Infants 
Abstract
Detailed comparisons of HIV drug resistance assays are needed to identify the most useful assays for research studies, and to facilitate comparison of results from studies that use different methods. We analyzed nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance in 40 HIV-infected Ugandan infants who had received nevirapine (NVP)-based prophylaxis using the following assays: an FDA-cleared HIV genotyping assay (the ViroSeq HIV-1 Genotyping System v2.0), a commercially available HIV genotyping assay (GeneSeq HIV), a commercially available HIV phenotyping assay (PhenoSense HIV), and a sensitive point mutation assay (LigAmp). ViroSeq and GeneSeq HIV results (NVP resistance yes/no) were similar for 38 (95%) of 40 samples. In 6 (15%) of 40 samples, GeneSeq HIV detected mutations in minor subpopulations that were not detected by ViroSeq, which identified two additional infants with NVP resistance. LigAmp detected low-level mutations in 12 samples that were not detected by ViroSeq; however, LigAmp testing identified only one additional infant with NVP resistance. GeneSeq HIV and PhenoSense HIV determinations of susceptibility differed for specific NNRTIs in 12 (31%) of the 39 samples containing mixtures at relevant mutation positions. PhenoSense HIV did not detect any infants with NVP resistance who were not identified with GeneSeq HIV testing. In this setting, population sequencing-based methods (ViroSeq and GeneSeq HIV) were the most informative and had concordant results for 95% of the samples. LigAmp was useful for the detection and quantification of minority variants. PhenoSense HIV provided a direct and quantitative measure of NNRTI susceptibility.
doi:10.1089/aid.2008.0235
PMCID: PMC2799186  PMID: 19621988
5.  Sensitivity and Specificity of the ViroSeq Human Immunodeficiency Virus Type 1 (HIV-1) Genotyping System for Detection of HIV-1 Drug Resistance Mutations by Use of an ABI PRISM 3100 Genetic Analyzer 
Journal of Clinical Microbiology  2005;43(2):813-817.
The ViroSeq human immunodeficiency virus type 1 (HIV-1) genotyping system is an integrated system for identification of drug resistance mutations in HIV-1 protease and reverse transcriptase (RT). Reagents are included for sample preparation, reverse transcription, PCR amplification, and sequencing. Software is provided to assemble and edit sequence data and to generate a drug resistance report. We determined the sensitivity and specificity of the ViroSeq system for mutation detection using an ABI PRISM 3100 genetic analyzer with a set of clinical samples and recombinant viruses. Twenty clinical plasma samples (viral loads, 1,800 to 10,500 copies/ml) were characterized by cloning and sequencing individual viral variants. Twelve recombinant-virus samples (viral loads, approximately 2,000 to 5,000 copies/ml) were also prepared. Eleven recombinant-virus samples contained drug resistance mutations as 40% mixtures. One recombinant-virus sample contained an insertion at codon 69 in RT (100% mutant). Plasma and recombinant-virus samples were analyzed using the ViroSeq system. Each sample was analyzed on three consecutive days at each of three testing laboratories. The sensitivity of mutation detection was 99.65% for the clinical plasma samples and 99.7% for the recombinant-virus preparations. The specificity of mutation detection was 99.95% for the clinical samples and 100% for the recombinant-virus mixtures. The base calling accuracy of the 3100 instrument was 99.91%. Mutations in clinical plasma samples and recombinant-virus samples were detected with high sensitivity and specificity, including mutations present as mixtures. This report supports the use of the ViroSeq system for identification of drug resistance mutations in HIV-1 protease and RT genes.
doi:10.1128/JCM.43.2.813-817.2005
PMCID: PMC548107  PMID: 15695685
6.  Optimization of a Low Cost and Broadly Sensitive Genotyping Assay for HIV-1 Drug Resistance Surveillance and Monitoring in Resource-Limited Settings 
PLoS ONE  2011;6(11):e28184.
Commercially available HIV-1 drug resistance (HIVDR) genotyping assays are expensive and have limitations in detecting non-B subtypes and circulating recombinant forms that are co-circulating in resource-limited settings (RLS). This study aimed to optimize a low cost and broadly sensitive in-house assay in detecting HIVDR mutations in the protease (PR) and reverse transcriptase (RT) regions of pol gene. The overall plasma genotyping sensitivity was 95.8% (N = 96). Compared to the original in-house assay and two commercially available genotyping systems, TRUGENE® and ViroSeq®, the optimized in-house assay showed a nucleotide sequence concordance of 99.3%, 99.6% and 99.1%, respectively. The optimized in-house assay was more sensitive in detecting mixture bases than the original in-house (N = 87, P<0.001) and TRUGENE® and ViroSeq® assays. When the optimized in-house assay was applied to genotype samples collected for HIVDR surveys (N = 230), all 72 (100%) plasma and 69 (95.8%) of the matched dried blood spots (DBS) in the Vietnam transmitted HIVDR survey were genotyped and nucleotide sequence concordance was 98.8%; Testing of treatment-experienced patient plasmas with viral load (VL) ≥ and <3 log10 copies/ml from the Nigeria and Malawi surveys yielded 100% (N = 46) and 78.6% (N = 14) genotyping rates, respectively. Furthermore, all 18 matched DBS stored at room temperature from the Nigeria survey were genotyped. Phylogenetic analysis of the 236 sequences revealed that 43.6% were CRF01_AE, 25.9% subtype C, 13.1% CRF02_AG, 5.1% subtype G, 4.2% subtype B, 2.5% subtype A, 2.1% each subtype F and unclassifiable, 0.4% each CRF06_CPX, CRF07_BC and CRF09_CPX.
Conclusions
The optimized in-house assay is broadly sensitive in genotyping HIV-1 group M viral strains and more sensitive than the original in-house, TRUGENE® and ViroSeq® in detecting mixed viral populations. The broad sensitivity and substantial reagent cost saving make this assay more accessible for RLS where HIVDR surveillance is recommended to minimize the development and transmission of HIVDR.
doi:10.1371/journal.pone.0028184
PMCID: PMC3223235  PMID: 22132237
7.  Performance Characteristics of Human Immunodeficiency Virus Type 1 (HIV-1) Genotyping Systems in Sequence-Based Analysis of Subtypes Other than HIV-1 Subtype B 
Journal of Clinical Microbiology  2003;41(3):998-1003.
Given the diversity of human immunodeficiency virus type 1 (HIV-1) subtypes and the emergence of subtypes other than HIV-1 subtype B in the United States, genotypic assays must be capable of delivering sequence data on diverse HIV-1 subtypes. We evaluated the performance of Visible Genetics TRUGENE HIV-1 genotyping kit and Applied Biosystems ViroSeq HIV-1 genotyping system on a panel of 34 well-characterized HIV-1 viral stocks (subtypes A through H). Both assays perform well on diverse HIV-1 subtypes despite being designed for HIV-1 subtype B. The TRUGENE assay produced sequence data for 31 isolates but not for one C and two G isolates. The TRUGENE assay using prototype 1.5 RT-PCR primers and the ViroSeq assay were both successful for all variants tested, although five isolates lacked double-strand sequence coverage in the ViroSeq assay. The availability of standardized HIV-1 genotyping kits that perform reliably with all HIV subtypes will facilitate broad implementation of HIV-1 resistance testing.
doi:10.1128/JCM.41.3.998-1003.2003
PMCID: PMC150292  PMID: 12624021
8.  Evaluation of a Cost Effective In-House Method for HIV-1 Drug Resistance Genotyping Using Plasma Samples 
PLoS ONE  2014;9(2):e87441.
Objectives
Validation of a cost effective in-house method for HIV-1 drug resistance genotyping using plasma samples.
Design
The validation includes the establishment of analytical performance characteristics such as accuracy, reproducibility, precision and sensitivity.
Methods
The accuracy was assessed by comparing 26 paired Virological Quality Assessment (VQA) proficiency testing panel sequences generated by in-house and ViroSeq Genotyping System 2.0 (Celera Diagnostics, US) as a gold standard. The reproducibility and precision were carried out on five samples with five replicates representing multiple HIV-1 subtypes (A, B, C) and resistance patterns. The amplification sensitivity was evaluated on HIV-1 positive plasma samples (n = 88) with known viral loads ranges from 1000–1.8 million RNA copies/ml.
Results
Comparison of the nucleotide sequences generated by ViroSeq and in-house method showed 99.41±0.46 and 99.68±0.35% mean nucleotide and amino acid identity respectively. Out of 135 Stanford HIVdb listed HIV-1 drug resistance mutations, partial discordance was observed at 15 positions and complete discordance was absent. The reproducibility and precision study showed high nucleotide sequence identities i.e. 99.88±0.10 and 99.82±0.20 respectively. The in-house method showed 100% analytical sensitivity on the samples with HIV-1 viral load >1000 RNA copies/ml. The cost of running the in-house method is only 50% of that for ViroSeq method (112$ vs 300$), thus making it cost effective.
Conclusions
The validated cost effective in-house method may be used to collect surveillance data on the emergence and transmission of HIV-1 drug resistance in resource limited countries. Moreover, the wide applications of a cost effective and validated in-house method for HIV-1 drug resistance testing will facilitate the decision making for the appropriate management of HIV infected patients.
doi:10.1371/journal.pone.0087441
PMCID: PMC3922725  PMID: 24533056
9.  Short Communication: In Utero HIV Infection Is Associated with an Increased Risk of Nevirapine Resistance in Ugandan Infants Who Were Exposed to Perinatal Single Dose Nevirapine 
Use of single dose nevirapine (sdNVP) to prevent HIV mother-to-child transmission is associated with the emergence of NVP resistance in many infants who are HIV infected despite prophylaxis. We combined results from four clinical trials to analyze predictors of NVP resistance in sdNVP-exposed Ugandan infants. Samples were tested with the ViroSeq HIV Genotyping System and a sensitive point mutation assay (LigAmp, for detection of K103N, Y181C, and G190A). NVP resistance was detected at 6–8 weeks in 36 (45.0%) of 80 infants using ViroSeq and 33 (45.8%) of 72 infants using LigAmp. NVP resistance was more frequent among infants who were infected in utero than among infants who were diagnosed with HIV infection after birth by 6–8 weeks of age. Detection of NVP resistance at 6–8 weeks was not associated with HIV subtype (A vs. D), pre-NVP maternal viral load or CD4 cell count, infant viral load at 6–8 weeks, or infant sex. NVP resistance was still detected in some infants 6–12 months after sdNVP exposure. In this study, in utero HIV infection was the only factor associated with detection of NVP resistance in infants 6–8 weeks after sdNVP exposure.
doi:10.1089/aid.2009.0003
PMCID: PMC2752753  PMID: 19552593
10.  Short Communication: In Utero HIV Infection Is Associated with an Increased Risk of Nevirapine Resistance in Ugandan Infants Who Were Exposed to Perinatal Single Dose Nevirapine 
Abstract
Use of single dose nevirapine (sdNVP) to prevent HIV mother-to-child transmission is associated with the emergence of NVP resistance in many infants who are HIV infected despite prophylaxis. We combined results from four clinical trials to analyze predictors of NVP resistance in sdNVP-exposed Ugandan infants. Samples were tested with the ViroSeq HIV Genotyping System and a sensitive point mutation assay (LigAmp, for detection of K103N, Y181C, and G190A). NVP resistance was detected at 6–8 weeks in 36 (45.0%) of 80 infants using ViroSeq and 33 (45.8%) of 72 infants using LigAmp. NVP resistance was more frequent among infants who were infected in utero than among infants who were diagnosed with HIV infection after birth by 6–8 weeks of age. Detection of NVP resistance at 6–8 weeks was not associated with HIV subtype (A vs. D), pre-NVP maternal viral load or CD4 cell count, infant viral load at 6–8 weeks, or infant sex. NVP resistance was still detected in some infants 6–12 months after sdNVP exposure. In this study, in utero HIV infection was the only factor associated with detection of NVP resistance in infants 6–8 weeks after sdNVP exposure.
doi:10.1089/aid.2009.0003
PMCID: PMC2752753  PMID: 19552593
11.  HIV-1 drug resistance testing from dried blood spots collected in rural Tanzania using the ViroSeq HIV-1 Genotyping System 
Objectives
To assess whether the commercial ViroSeq HIV-1 Genotyping System (Abbott Molecular, Des Plains, IL, USA) can be used in conjunction with dried blood spots (DBS) for clinical monitoring of drug resistance in patients who fail antiretroviral treatment (ART) in rural Tanzania.
Patients and methods
Patients at Haydom Lutheran Hospital with confirmed treatment failure (viral load >1000 copies/mL) of a first-line ART regimen were selected for resistance testing. DBS were stored with desiccant at −20°C for a median of 126 days (range 0–203) and shipped at ambient temperature for 20 days. After manual extraction of nucleic acids, the ViroSeq kit was used for amplification and sequencing. DBS-derived genotypes were compared with those of a plasma-based assay.
Results
Seventeen of 36 (47%) DBS specimens were successfully genotyped. Only 2 of 16 (13%) DBS with a viral load <10 000 copies/mL could be amplified, compared with 15 of 20 (75%) DBS with a viral load >10 000 copies/mL (P = 0.001). In samples that yielded a sequence, all 23 clinically significant reverse transcriptase (RT) mutations in plasma were also detected in DBS. One RT mutation was found in DBS only. In the protease region, 77 polymorphisms were found in plasma, of which 70 (91%) were also detected in DBS. Sixteen of 17 (94%) patients had identical resistance profiles to antiretroviral drugs in plasma and DBS.
Conclusions
The ViroSeq kit performed well in patients with a high viral load, but failed to genotype most DBS with a viral load <10 000 copies/mL. In DBS that yielded a genotype, there was high concordance with a plasma-based assay.
doi:10.1093/jac/dkq433
PMCID: PMC3019084  PMID: 21115444
HIV infections; antiretroviral therapy; molecular diagnostic techniques; sub-Saharan Africa
12.  Emergence and persistence of nevirapine (NVP) resistance in breast milk after single-dose NVP administration 
AIDS (London, England)  2010;24(4):557-561.
OBJECTIVE
Single-dose nevirapine (sdNVP) can reduce the risk of HIV vertical transmission. We assessed risk factors for NVP resistance in plasma and breast milk from sdNVP-exposed Ugandan women.
METHODS
Samples were analyzed using the Roche AMPLICOR HIV-1 Monitor Test Kit, v1.5, and the ViroSeq HIV-1 Genotyping System. NVP concentrations were determined by liquid chromatography with tandem mass spectroscopy.
RESULTS
HIV genotypes (plasma and breast milk) were obtained for 30 women 4 weeks after sdNVP (HIV subtypes: 15A, 1C, 12D, 2 recombinant). NVP resistance was detected in 12 (40%) of 30 breast milk samples. There was a non-significant trend between detection of NVP resistance in breast milk and plasma (p=0.06). There was no association of HIV resistance in breast milk with median maternal pre-NVP viral load or CD4 cell count, median breast milk viral load at 4 weeks, breast milk sodium >10 mmol/L, HIV subtype, or concentration of NVP in breast milk or plasma.
CONCLUSIONS
NVP resistance was frequently detected in breast milk 4 weeks after sdNVP exposure. In this study, we were unable to identify specific factors associated with breast milk NVP resistance.
doi:10.1097/QAD.0b013e3283346e60
PMCID: PMC3065236  PMID: 20057308
nevirapine; HIV-1; breast milk; Uganda; vertical transmission; nevirapine resistance
13.  Analysis of nevirapine (NVP) resistance in Ugandan infants who were HIV-infected despite receiving single dose (SD) nevirapine (NVP) vs. SD NVP plus daily NVP up to 6-weeks of age to prevent HIV vertical transmission 
The Journal of infectious diseases  2008;198(7):1075-1082.
Background
Single dose (SD) nevirapine (NVP) at birth plus NVP to the infant up to 6 weeks of age is superior to SD NVP alone for prevention of HIV vertical transmission through breastfeeding. We analyzed NVP resistance in HIV-infected Ugandan infants who received either SD NVP or extended NVP prophylaxis.
Methods
We tested plasma HIV using a genotyping assay (ViroSeq), a phenotypic resistance assay (PhenoSense), and sensitive point mutation assay (LigAmp, for K103N, Y181C, G190A).
Results
At 6 weeks, NVP resistance was detected by ViroSeq in a higher proportion of infants in the extended NVP arm than in the SD NVP arm (21/25=84% vs. 12/24=50%, p=0.01). Similar results were obtained with LigAmp and PhenoSense. Infants who were HIV-infected at birth had high rates of resistance in both study arms. In contrast, infants who were HIV-infected after birth were more likely to have resistance detected at 6 weeks in the extended NVP arm. Use of extended NVP prophylaxis was also associated with detection of NVP resistance by ViroSeq at 6 months (7/7=100% extended NVP arm vs. 1/6=16.7% SD NVP arm, p=0.005).
Conclusions
Use of extended NVP prophylaxis was associated with increased selection and persistence of NVP resistance in HIV-infected Ugandan infants.
doi:10.1086/591503
PMCID: PMC2587235  PMID: 18684096
HIV-1; infant; mother-to-child transmission; nevirapine; resistance
14.  Performance of the Applied Biosystems ViroSeq Human Immunodeficiency Virus Type 1 (HIV-1) Genotyping System for Sequence-Based Analysis of HIV-1 in Pediatric Plasma Samples 
Journal of Clinical Microbiology  2001;39(4):1254-1257.
The ViroSeq HIV-1 Genotyping System is a commercially available, integrated sequence-based system for analysis of human immunodeficiency virus type 1 (HIV-1) drug resistance. We evaluated the performance of this system by analyzing HIV-1 in pediatric plasma samples. Plasma samples from children 4 months to 17 years of age were obtained from a clinical trial protocol (PACTG 377). Children in PACTG 377 were randomized to four treatment arms, including different combinations of antiretroviral drugs. HIV-1 genotyping was performed using samples collected prior to antiretroviral therapy (baseline) and at the time of virologic failure. Performance of the genotyping system was compared in three university laboratories. A total of 196 samples were analyzed, including 135 baseline and 61 failure samples. Plasma volumes ranged from 0.05 to 0.5 ml, and viral loads ranged from 1,084 to 3,484,991 copies/ml. PCR products suitable for sequencing were obtained for 192 of the 196 samples. Complete sequences for protease and reverse transcriptase were obtained for all of these 192 samples. For 180 samples, data were obtained from both DNA strands for the entire region analyzed. There was no evidence of sample cross-contamination based on phylogenetic analysis of HIV-1 sequences. Performance of the genotyping system was similar in three laboratories. This genotyping system performs well for analysis of HIV-1 in pediatric plasma samples, including those with low volume and low viral load. The availability of this system should facilitate studies of HIV-1 drug resistance.
doi:10.1128/JCM.39.4.1254-1257.2001
PMCID: PMC87920  PMID: 11283037
15.  Viremia and HIV-1 Drug Resistance Mutations Among Patients Receiving Second-Line Highly Active Antiretroviral Therapy in Chennai, Southern India 
Analysis of human immunodeficiency virus type 1 pol gene sequences from 107 patients receiving second-line antiretroviral therapy (ART) revealed that a high prevalence of resistance mutations among second-line ART-experienced patients limits the ART-sequencing options, suggesting darunavir as the third-line drug in India.
Background. A cross-sectional study among individuals receiving second-line antiretroviral treatment was conducted to report on the level of detectable viremia and the types of drug resistance mutations among those with detectable human immunodeficiency virus (HIV) type 1 plasma viral loads (PVLs).
Methods. PVLs were measured using Abbott m2000rt real-time polymerase chain reaction, and genotyping was performed with the ViroSeq genotyping system, version 2.0, and ViroSeq analysis software, version 2.8.
Results. Of 107 patient plasma specimens consecutively analyzed, 30 (28%) had undetectable PVLs (<150 copies/mL), and 77 (72%) were viremic with a median PVL of 5450 copies/mL (interquartile range, 169–1 997 967). Sequencing was done for 107 samples with PVLs >2000 copies/mL: 33 patients (73%) had 1 of the protease (PR) inhibitor mutations; 41 (91%) had nucleoside reverse-transcriptase inhibitor (NRTI) mutations; 33 (73%) had non-NRTI (NNRTI) mutations; and 30 (66.7%) had both NRTI and NNRTI mutations. Triple-class resistance to NRTIs, NNRTIs, and PR inhibitors was observed in 24 (53%) patients. Based on the mutational profiles observed, all 45 sequences were susceptible to darunavir and tipranavir, whereas 47% showed resistance to lopinavir, 58% showed resistance to atazanavir, and >60% showed resistance to saquinavir, indinavir, nelfinavir, and fosamprenavir.
Conclusions. The results of the study showed that the majority of patients receiving second-line antiretroviral therapy started to accumulate PR resistance mutations, and the mutation profiles suggest that darunavir might be the drug of choice for third-line regimens in India.
doi:10.1093/cid/cir967
PMCID: PMC3571716  PMID: 22323567
16.  Analysis of nevirapine resistance mutations in cloned HIV-1 variants from HIV-infected Ugandan infants using a single step amplification-sequencing method (AmpliSeq) 
AIDS research and human retroviruses  2008;24(9):1209-1213.
We analyzed genetic linkage of nevirapine (NVP) resistance mutations and the genetic complexity of HIV-1 variants in Ugandan infants who were HIV-infected despite single dose (SD) prophylaxis. Plasma samples were obtained from six HIV-infected infants who had two or more NVP resistance mutations detected by population sequencing (ViroSeq). ViroSeq PCR products were cloned and transformed, and a single step amplification-sequencing reaction (AmpliSeq) was used to analyze NVP resistance mutations in cloned HIV-1 variants directly from bacterial colonies. Fifty clones were analyzed for each infant sample. This analysis revealed numerous NVP resistance mutations not detected by population sequencing, genetically-linked NVP resistance mutations, and a high degree of genetic complexity at codons that influence NVP susceptibility.
doi:10.1089/aid.2008.0109
PMCID: PMC2562759  PMID: 18788912
17.  Analysis of Nevirapine Resistance Mutations in Cloned HIV Type 1 Variants from HIV-Infected Ugandan Infants Using a Single-Step Amplification-Sequencing Method (AmpliSeq) 
AIDS Research and Human Retroviruses  2008;24(9):1209-1213.
Abstract
We analyzed the genetic linkage of nevirapine (NVP) resistance mutations and the genetic complexity of HIV-1 variants in Ugandan infants who were HIV infected despite single dose (SD) prophylaxis. Plasma samples were obtained from six HIV-infected infants who had two or more NVP resistance mutations detected by population sequencing (ViroSeq). ViroSeq PCR products were cloned and transformed, and a single-step amplification-sequencing reaction (AmpliSeq) was used to analyze NVP resistance mutations in cloned HIV-1 variants directly from bacterial colonies. Fifty clones were analyzed for each infant sample. This analysis revealed numerous NVP resistance mutations not detected by population sequencing, genetically linked NVP resistance mutations, and a high degree of genetic complexity at codons that influence NVP susceptibility.
doi:10.1089/aid.2008.0109
PMCID: PMC2562759  PMID: 18788912
18.  Field Evaluation of a Broadly Sensitive HIV-1 In-House Genotyping Assay for Use with both Plasma and Dried Blood Spot Specimens in a Resource-Limited Country 
Journal of Clinical Microbiology  2013;51(2):529-539.
HIV-1 drug resistance (HIVDR) assays are important tools in clinical management of HIV-infected patients on antiretroviral therapy (ART) and surveillance of drug-resistant variants at population levels. The high cost associated with commercial assays hinders their use in resource-limited settings. We adopted and validated a low-cost in-house assay using 68 matched plasma and dried blood spot (DBS) samples with a median viral load (VL) of 58,187 copies/ml, ranging from 253 to 3,264,850 against the commercial assay ViroSeq. Results indicated that the in-house assay not only had a higher plasma genotyping rate than did ViroSeq (94% versus 78%) but also was able to genotype 89.5% (51/57) of the matched DBS samples with VLs of ≥1,000 copies/ml. The sensitivity in detecting DR mutations by the in-house assay was 98.29% (95% confidence interval [CI], 97.86 to 98.72) on plasma and 96.54 (95% CI, 95.93 to 97.15) on DBS, and the specificity was 99.97% (95% CI, 99.91 to 100.00) for both sample types compared to ViroSeq. The minor DR mutation differences detected by the in-house assay against ViroSeq did not result in clinical significance. In addition, cost analysis showed that the in-house assay could reduce the genotyping cost by about 60% for both plasma and DBS compared to ViroSeq. This field condition evaluation highlights the potential utility of a cost-effective, subtype-independent, in-house genotyping assay using both plasma and DBS specimens for HIVDR clinical monitoring and population-based surveillance in resource-limited settings.
doi:10.1128/JCM.02347-12
PMCID: PMC3553877  PMID: 23224100
19.  Analysis of nevirapine (NVP) resistance in HIV-infected infants who received extended NVP or NVP/zidovudine prophylaxis 
AIDS (London, England)  2011;25(7):911-917.
BACKGROUND
In the PEPI-Malawi trial, infants received up to 14 weeks of extended nevirapine (NVP) or extended NVP plus zidovudine (NVP+ZDV) to prevent postnatal HIV transmission. We examined emergence and persistence of NVP resistance in HIV-infected infants who received these regimens prior to HIV diagnosis.
METHODS
Infant plasma samples collected at 14 weeks of age were tested using the ViroSeq HIV Genotyping System and a sensitive point-mutation assay, LigAmp (for K103N and Y181C). Samples collected at 6 and 12 months of age were analyzed using LigAmp.
RESULTS
At 14 weeks of age, NVP resistance was detected in samples from 82 (75.9%) of 108 HIV-infected infants. While the frequency of NVP resistance detected by ViroSeq was lower in the extended NVP+ZDV arm than in the extended NVP arm, the difference was not statistically significant (38/55=69.1% vs. 44/53=83.0%, P=0.12). Similar results were obtained using LigAmp. Using LigAmp, the proportion of infants who still had detectable NVP resistance at 6 and 12 months was similar among infants in the two study arms (at 6 months: 17/20=85.0% for extended NVP vs. 21/26=80.8% for extended NVP+ZDV, P=1.00; at 12 months: 9/16=56.3% for extended NVP vs.10/13=76.9% for extended NVP+ZDV, P=0.43).
CONCLUSIONS
Infants exposed to extended NVP or extended NVP+ZDV had high rates of NVP resistance at 14 weeks of age, and resistant variants frequently persisted for 6–12 months. Frequency and persistence of NVP resistance did not differ significantly among infants who received extended NVP only vs. extended NVP+ZDV prophylaxis.
doi:10.1097/QAD.0b013e328344fedc
PMCID: PMC3261770  PMID: 21487249
HIV; nevirapine; resistance; infants; Malawi
20.  Use of Dried-Blood-Spot Samples and In-House Assays To Identify Antiretroviral Drug Resistance in HIV-Infected Children in Resource-Constrained Settings ▿  
Journal of Clinical Microbiology  2011;49(12):4077-4082.
Monitoring HIV drug resistance is an important component of the World Health Organization's global HIV program. HIV drug resistance testing is optimal with commercially available clinically validated test kits using plasma; however, that type of testing may not be feasible or affordable in resource-constrained settings. HIV genotyping from dried blood spots (DBS) with noncommercial (in-house) assays may facilitate the capture of HIV drug resistance outcomes in resource-constrained settings but has had varying rates of success. With in-house assays for HIV reverse transcriptase, we evaluated the yield of genotyping DBS samples collected from HIV-infected children who were enrolled in two clinical trials conducted in sub-Saharan Africa (median HIV viral load, 5.88 log10 HIV RNA copies/ml; range, 4.04 to 6.99). Overall, HIV genotypes were obtained for 94 (89.5%) of 105 samples tested (95% and 84% from clinical trials #1 and #2, respectively); however, successful analysis of 15 (16.1%) of the 94 samples required repeat testing using a different set of primers on previously synthesized cDNA. The yield of genotyping was lower on the DBS that were stored suboptimally from clinical trial #2 (56% versus 88% for optimally stored). Concordance with plasma genotypes derived using a clinically validated, commercial kit-based assay (ViroSeq HIV-1 genotyping system) was also assessed in a subset of children with paired testing. For 34 samples with paired DBS and plasma genotypes, there was 100% concordance for major drug resistance mutations. DBS genotyping using in-house assays provides an alternative for antiretroviral drug resistance testing in children in resource-constrained regions but may require region-specific optimization before widespread use.
doi:10.1128/JCM.01004-11
PMCID: PMC3232965  PMID: 21956987
21.  HIV-1 drug resistance genotyping from dried blood spots stored for 1 year at 4°C 
Background
Dried blood spots (DBSs) are an attractive alternative to plasma for HIV-1 drug resistance testing in resource-limited settings. We recently showed that HIV-1 can be efficiently genotyped from DBSs stored at −20°C for prolonged periods (0.5–4 years). Here, we evaluated the efficiency of genotyping from DBSs stored at 4°C for 1 year.
Methods
A total of 40 DBSs were prepared from residual diagnostic specimens collected from HIV subtype B-infected persons and were stored with desiccant at 4°C. Total nucleic acids were extracted after 1 year using a modification of the Nuclisens assay. Resistance testing was performed using the ViroSeq HIV-1 assay and an in-house nested RT–PCR method validated for HIV-1 subtype B that amplifies a smaller (1 kb) pol fragment.
Results
Using the ViroSeq assay, only 23 of the 40 (57.5%) DBS specimens were successfully genotyped; 22 of these specimens had plasma viraemia >10 000 RNA copies/mL. When the specimens were tested using the in-house assay, 38 of the 40 DBSs (95%) were successfully genotyped. Overall, resistance genotypes generated from the DBSs and plasma were highly concordant.
Conclusions
We show that drug resistance genotyping from DBSs stored at 4°C with desiccant is highly efficient but requires the amplification of small pol fragments and the use of an in-house nested PCR protocol with quality-controlled reagents. These findings suggest that 4°C may represent a suitable temperature for long-term storage of DBSs.
doi:10.1093/jac/dkn100
PMCID: PMC2386080  PMID: 18344550
resistance testing; ViroSeq assay; 903 filter paper
22.  Affordable in-house antiretroviral drug resistance assay with good performance in non-subtype B HIV-1 
Journal of virological methods  2009;163(2):505-508.
The introduction of antiretroviral therapy in resource-poor settings is effective in suppressing HIV-1 replication and prolonging life of infected individuals. This has led to a demand for affordable HIV-1 drug resistance assays, since treatment failure due to development of drug resistance is common. This study developed and evaluated an affordable “in–house” genotyping assay to monitor HIV-1 drug resistance in Africa, particularly South Africa. An “in-house” assay using automated RNA extraction, and subtype C specific PCR and sequencing primers was developed and successfully evaluated 396 patient samples (viral load ranges 1,000->1.6million RNA copies/ml). The “in-house” assay was validated by comparing sequence data and drug resistance profiles from 90 patient and 10 external quality control samples to data from the ViroSeqTM HIV-1 Genotyping kit. The “in-house” assay was more efficient, amplifying all 100 samples, compared to 91 samples using Viroseq. The “in house” sequences were 99.2%) homologous to the ViroSeq sequences, and identical drug resistance mutation profiles were observed in 96 samples. Furthermore, the “in-house” assay genotyped 260 of 295 samples from seven African sites, where 47% were non-subtype C. Overall, the newly validated “in-house” drug resistance assay is suited for use in Africa as it overcomes the obstacle of subtype diversity.
doi:10.1016/j.jviromet.2009.11.011
PMCID: PMC2932961  PMID: 19917318
HIV-1 subtype C; antiretroviral drug resistance; mutation profile; affordable
23.  Impact of Maternal and Infant Antiretroviral Drug Regimens on Drug Resistance in HIV-Infected Breastfeeding Infants 
The Pediatric infectious disease journal  2013;32(4):10.1097/INF.0b013e31827f44ee.
BACKGROUND
The HPTN 046 trial evaluated the efficacy of extended infant nevirapine (NVP) administration for prevention of HIV transmission through breastfeeding. Infants received daily NVP to 6 weeks of age. HIV-uninfected infants (the intent-to-treat group) received daily NVP or placebo up to 6 months of age. We analyzed emergence of NVP resistance in infants who acquired HIV-infection despite prophylaxis.
METHODS
HIV genotyping was performed using the ViroSeq HIV Genotyping System. Medians and proportions were used to summarize data. Two-sided Fisher’s exact tests were used to evaluate associations between categorical variables.
RESULTS
NVP resistance was detected in 12 (92.3%) of 13 infants who were HIV-infected by 6 weeks and in seven (28%) of 25 infants who were HIV-uninfected at 6 weeks and HIV-infected at 6 months of age (6/8=75% in the NVP arm, 1/17=5.9% in the placebo arm, P=0.001). Among those 25 infants, 4 had mothers who initiated an antiretroviral (ARV) treatment regimen by 6 months postpartum. In all 4 cases, the treatment regimen included a non-nucleoside reverse transcriptase inhibitor (NVP or efavirenz). NVP resistance was detected in all four of those infants by 6 months of age (4/4=100%). In contrast, only three (14.2%) of the remaining 21 HIV-infected infants whose mothers did not initiate ARV treatment developed NVP resistance (P=0.003).
CONCLUSIONS
Extended NVP prophylaxis significantly increased the risk of NVP resistance in infants who acquired HIV infection after 6 weeks of age. Treatment of maternal HIV infection was also associated with emergence of NVP resistance in HIV-infected, breastfed infants.
doi:10.1097/INF.0b013e31827f44ee
PMCID: PMC3826537  PMID: 23249916
Nevirapine resistance; prevention of mother-to-child transmission; extended nevirapine; HIV
24.  One-, Two-, and Three-Class Resistance among HIV-Infected Patients on Antiretroviral Therapy in Private Care Clinics: Mumbai, India 
Abstract
HIV-infected patients receiving antiretroviral (ARV) therapy (ART) in India are not all adequately virally suppressed. We analyzed ARV drug resistance in adults receiving ART in three private clinics in Mumbai, India. HIV viral load was measured in 200 patients with the Roche AMPLICOR HIV-1 Monitor Test, v1.5. HIV genotyping was performed with the ViroSeq HIV-1 Genotyping System for 61 participants who had HIV-1 RNA >1000 copies/ml. Genotyping results were obtained for 51 samples. The participants with resistance results were on ART for a median of 24 months and were on their current regimen for a median of 12 months (median CD4 cell count: 217 cells/mm3; median HIV viral load: 28,200 copies/ml). ARV regimens included nonnucleoside reverse transcriptase inhibitor (NNRTI)-based regimens (n = 27), dual nucleoside reverse transcriptase inhibitors (NRTIs, n = 19), protease inhibitor (PI)-based regimens (n = 3), and other regimens (n = 2). Twenty-six participants (51.0%) were on their first ARV regimen and 24 (47%) reported >95% adherence. Forty-nine participants (96.1%) had resistance to at least one ARV drug; 47 (92.2%) had NRTI resistance, 32 (62.7%) had NNRTI resistance, and four (7.8%) had PI resistance. Thirty (58.8%) had two-class resistance and three (5.9%) had three-class resistance. Four (8%) had three or more resistance mutations associated with etravirine resistance and two (4%) had two mutations associated with reduced darunavir susceptibility. Almost all patients with HIV-1 RNA >1000 copies/ml had NRTI resistance and nearly two-thirds had NNRTI resistance; PI resistance was uncommon. Nearly 60% and 6% had two- and three-class resistance, respectively. This emphasizes the need for greater viral load and resistance monitoring, use of optimal ART combinations, and increased availability of second- and third-line agents for patients with ARV resistance.
doi:10.1089/aid.2009.0102
PMCID: PMC2858895  PMID: 20063995
25.  Evaluation of two human immunodeficiency virus-1 genotyping systems: ViroSeq™ 2.0 and an in-house method 
Journal of virological methods  2009;159(2):211-216.
Commercial HIV-1 genotypic resistance assays are very expensive, particularly for use in resource-constrained settings like India. Hence a cost effective in-house assay for drug resistance was validated against the standard ViroSeq™ HIV-1 Genotyping System 2.0 (Celera Diagnostics, CA, USA). A total of 50 samples were used for this evaluation (21 proficiency panels and 29 clinical isolates). Known resistance positions within HIV-1 protease (PR) region (1–99 codons) and HIV-1 reverse-transcriptase (RT) region (1–240 codons) were included. The results were analysed for each codon as follows: (i) concordant; (ii) partially concordant; (iii) indeterminate and (iv) discordant. A total of 2750 codons (55 codons per patient sample × 50 samples) associated with drug resistance (1050 PR and 1700 RT) were analysed. For PR, 99% of the codon results were concordant and 1% were partially concordant. For RT, 99% of the codon results were concordant, 0.9% were partially concordant and 0.1% were discordant. No indeterminate results were observed and the results were reproducible. Overall, the in-house assay provided comparable results to those of US FDA approved ViroSeq™, which costs about a half of the commercial assay ($ 100 vs. $ 230), making it suitable for resource-limited settings.
doi:10.1016/j.jviromet.2009.03.021
PMCID: PMC2923210  PMID: 19490976
ViroSeq™ HIV-1 genotyping; In-house HIV-1 drug resistance assay; Concordance; Mixtures; Indeterminate rate; HIV-1 genotyping evaluation

Results 1-25 (1283468)