PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (792153)

Clipboard (0)
None

Related Articles

1.  The feasibility of oligogenic combined segregation and linkage analysis in CEPH pedigrees 
BMC Proceedings  2007;1(Suppl 1):S108.
The CEPH samples are an invaluable resource for mapping genes that contribute to traits that can be measured in cell lines. With the many markers that have already been genotyped for the Centre d'Etude du Polymorphisme Humain (CEPH) pedigrees and are readily available, one need only obtain phenotypes to conduct a linkage analysis. For Genetic Analysis Workshop 15 (GAW15), over 3000 expression levels of genes in lymphoblastoid cells in 14 of the CEPH pedigrees were provided. For this study, eight of these expression levels were selected to obtain a spectrum of heritabilities, three were selected based on linkage results with traditional LOD scores >3, and one trait was selected at random. A Bayesian Monte Carlo Markov chain oligogenic segregation and linkage analysis was conducted on each of these 12 traits using the genome-wide single-nucleotide polymorphism linkage markers provided for GAW15. Our goal was to assess the ability of these methods to map genes in the CEPH pedigrees. Surprisingly, positive linkage signals were found for all 12 traits, even those with a very small traditionally calculated heritability. However, the portion of the variance attributed to genetic sources by the oligogenic segregation analysis differed substantially in some cases from the traditional heritability. It appears that genetic variance estimated from oligogenic segregation analysis may be a better indicator of whether genes can be mapped for complex traits than traditional heritability.
PMCID: PMC2367495  PMID: 18466448
2.  The role of heritability in mapping expression quantitative trait loci 
BMC Proceedings  2007;1(Suppl 1):S86.
Gene expression, as a heritable complex trait, has recently been used in many genome-wide linkage studies. The estimated overall heritability of each trait may be considered as evidence of a genetic contribution to the total phenotypic variation, which implies the possibility of mapping genome regions responsible for the gene expression variation via linkage analysis. However, heritability has been found to be an inconsistent predictor of significant linkage signals. To investigate this issue in human studies, we performed genome-wide linkage analysis on the 3554 gene expression traits of 194 Centre d'Etude du Polymorphisme Humain individuals provided by Genetic Analysis Workshop 15. Out of the 422 expression traits with significant linkage signals identified (LOD > 5.3), 89 traits have low estimated heritability (h2 < 10%), among which 23 traits have an estimated heritability equal to 0. The linkage analysis on individual pedigree shows that the overall LOD scores may result from a few pedigrees with strong linkage signals. Screening gene expressions before linkage analysis using a relatively low heritability (h2 < 20%) may result in a loss of significant linkage signals, especially for trans-acting expression quantitative trait loci (49%).
PMCID: PMC2367577  PMID: 18466589
3.  Normalization of microarray expression data using within-pedigree pool and its effect on linkage analysis 
BMC Proceedings  2007;1(Suppl 1):S152.
"Genetical genomics", the study of natural genetic variation combining data from genetic marker-based studies with gene expression analyses, has exploded with the recent development of advanced microarray technologies. To account for systematic variation known to exist in microarray data, it is critical to properly normalize gene expression traits before performing genetic linkage analyses. However, imposing equal means and variances across pedigrees can over-correct for the true biological variation by ignoring familial correlations in expression values. We applied the robust multiarray average (RMA) method to gene expression trait data from 14 Centre d'Etude du Polymorphisme Humain (CEPH) Utah pedigrees provided by GAW15 (Genetic Analysis Workshop 15). We compared the RMA normalization method using within-pedigree pools to RMA normalization using all individuals in a single pool, which ignores pedigree membership, and investigated the effects of these different methods on 18 gene expression traits previously found to be linked to regions containing the corresponding structural locus. Familial correlation coefficients of the expressed traits were stronger when traits were normalized within pedigrees. Surprisingly, the linkage plots for these traits were similar, suggesting that although heritability increases when traits are normalized within pedigrees, the strength of linkage evidence does not necessarily change substantially.
PMCID: PMC2367611  PMID: 18466497
4.  Artificial neural networks for linkage analysis of quantitative gene expression phenotypes and evaluation of gene × gene interactions 
BMC Proceedings  2007;1(Suppl 1):S47.
Background
Using single-nucleotide polymorphism (SNP) genotypes and selected gene expression phenotypes from 14 CEPH (Centre d'Etude du Polymorphisme Humain) pedigrees provided for Genetic Analysis Workshop 15 (GAW15), we analyzed quantitative traits with artificial neural networks (ANNs). Our goals were to identify individual linkage signals and examine gene × gene interactions. First, we used classical multipoint methods to identify phenotypes having nominal linkage evidence at two or more loci. ANNs were then applied to sib-pair identity-by-descent (IBD) allele sharing across the genome as input variables and squared trait sums and differences for the sib pairs as output variables. The weights of the trained networks were analyzed to assess the linkage evidence at each locus as well as potential interactions between them.
Results
Loci identified by classical linkage analysis could also be identified by our ANN analysis. However some ANN results were noisy, and our attempts to use cross-validated training to avoid overtraining and thereby improve results were only partially successful. Potential interactions between loci with high-ranked weight measures were also evaluated, with the resulting patterns suggesting existence of both synergistic and antagonistic effects between loci.
Conclusion
Our results suggest that ANNs can serve as a useful method to analyze quantitative traits and are a potential tool for detecting gene × gene interactions. However, for the approach implemented here, optimizing the ANNs and obtaining stable results remains challenging.
PMCID: PMC2367483  PMID: 18466546
5.  Mining gene networks with application to GAW15 Problem 1 
BMC Proceedings  2007;1(Suppl 1):S52.
The Genetic Analysis Workshop 15 (GAW15) Problem 1 contained baseline expression levels of 8793 genes in immortalized B cells from 194 individuals in 14 Centre d'Etude du Polymorphisme Humain (CEPH) Utah pedigrees. Previous analysis of the data showed linkage and association and evidence of substantial individual variations. In particular, correlation was examined on expression levels of 31 genes and 25 target genes corresponding to two master regulatory regions. In this analysis, we apply Bayesian network analysis to gain further insight into these findings. We identify strong dependences and therefore provide additional insight into the underlying relationships between the genes involved. More generally, the approach is expected to be applicable for integrated analysis of genes on biological pathways.
PMCID: PMC2367510  PMID: 18466552
6.  Linkage and association analyses of principal components in expression data 
BMC Proceedings  2007;1(Suppl 1):S46.
Performing linkage and association analyses on a large set of correlated data presents an interesting set of problems. In the current setting, we have 3554 expression levels from lymphoblastoid cell lines in 194 individuals from 14 three-generation Utah CEPH (Centre d'Etude du Polymorphisme Humain) pedigrees. We formed multivariate expression phenotypes from six sets of genes. These consisted of a set of genes identified by the data providers as showing common linkage to a region of chromosome 14, as well as five other sets suggested by ontological evidence. Using principal-component analyses, we generated seven quantitative phenotypes for expression levels from these six sets of genes. We performed quantitative genome linkage screens on these traits using the expression traits from the third generation of each pedigree. As expected, the strongest linkage signal was achieved when the trait under analysis was the composite of the expressions of genes previously showing linkage to chromosome 14. In particular, this trait produced a LOD score of 5.2 on chromosome 14. The trait also produced LOD scores over 3.5 on chromosomes 1, 7, 9, and 11; this suggests that these genes may be controlled by additional genetic factors on the genome. Subsequent association analyses on the first two generations of these pedigrees identified two polymorphisms on chromosome 11 as significant after correcting for multiple tests. These results suggest that principal-component analyses are useful for the analysis of pleiotropic loci. Furthermore, we have identified two single-nucleotide polymorphisms that may influence the expression of multiple genes linked to chromosome 14.
PMCID: PMC2367470  PMID: 18466545
7.  Detecting epistatic interactions contributing to human gene expression using the CEPH family data 
BMC Proceedings  2007;1(Suppl 1):S67.
It is believed that epistatic interactions among loci contribute to variations in quantitative traits. Several methods are available to detect epistasis using population-based data. However, methods to characterize epistasis for quantitative traits in family-based association analysis are not well developed, especially for studying thousands of gene expression traits. Here, we proposed a linear mixed-model approach to detect epistasis for quantitative traits using family data. The proposed method was implemented in a widely used software program SOLAR. We evaluated the power of the method by simulation studies and applied this method to the analysis of the Centre d'Etude du Polymorphisme Humain family gene expression data provided by Genetics Analysis Workshop 15 (GAW15).
PMCID: PMC2367573  PMID: 18466568
8.  Data for Genetic Analysis Workshop (GAW) 15, Problem 1: genetics of gene expression variation in humans 
BMC Proceedings  2007;1(Suppl 1):S2.
Here we describe the data provided for Problem 1 of Genetic Analysis Workshop 15. The data provided for Problem 1 were unusual in two ways. First, the phenotype was the level of gene expression for each gene, not a conventional phenotype like height or disease, and second, there were more than 3500 such phenotypes. Natural variation in gene expression was a new idea in 2004 when these data were collected and published. Because the phenotypes were measured in members of 14 Centre d'Etude du Polymorphisme Humain (CEPH) families, there was an opportunity for linkage mapping on a very large scale. For this purpose, 2882 single-nucleotide polymorphism genotypes were also provided for each family member.
PMCID: PMC2367458  PMID: 18466516
9.  Mapping Genes that Contribute to Daunorubicin-Induced Cytotoxicity 
Cancer research  2007;67(11):5425-5433.
Daunorubicin is an anthracycline antibiotic agent used in the treatment of hematopoietic malignancies. Toxicities associated with this agent include myelosuppression and cardiotoxicity; however, the genes or genetic determinants that contribute to these toxicities are unknown. We present an unbiased genome-wide approach that incorporates heritability, whole-genome linkage analysis, and linkage-directed association to uncover genetic variants contributing to the sensitivity to daunorubicin-induced cytotoxicity. Cell growth inhibition in 324 Centre d’ Etude du Polymorphisme Humain lymphoblastoid cell lines (24 pedigrees) was evaluated following treatment with daunorubicin for 72 h. Heritability analysis showed a significant genetic component contributing to the cytotoxic phenotypes (h2 = 0.18–0.63at 0.0125, 0.025, 0.05, 0.1, 0.2, and 1.0 µmol/L daunorubicin and at the IC50, the dose required to inhibit 50% cell growth). Whole-genome linkage scans at all drug concentrations and IC50 uncovered 11 regions with moderate peak LOD scores (>1.5), including 4q28.2 to 4q32.3 with a maximum LOD score of 3.18. The quantitative transmission disequilibrium tests were done using 31,312 high-frequency single-nucleotide polymorphisms (SNP) located in the 1 LOD confidence interval of these 11 regions. Thirty genes were identified as significantly associated with daunorubicin-induced cytotoxicity (P ≤ 2.0 × 10−4, false discovery rate ≤ 0.1). Pathway and functional gene ontology analysis showed that these genes were overrepresented in the phosphatidylinositol signaling system, axon guidance pathway, and GPI-anchored proteins family. Our findings suggest that a proportion of susceptibility to daunorubicin-induced cytotoxicity may be controlled by genetic determinants and that analysis using linkage-directed association studies with dense SNP markers can be used to identify the genetic variants contributing to cytotoxicity.
doi:10.1158/0008-5472.CAN-06-4431
PMCID: PMC2735868  PMID: 17545624
10.  Comparison of strategies for identification of regulatory quantitative trait loci of transcript expression traits 
BMC Proceedings  2007;1(Suppl 1):S85.
In order to identify regulatory genes, we determined the heritability of gene transcripts, performed linkage analysis to identify quantitative trait loci (QTLs), and evaluated the evidence for shared genetic effects among transcripts with co-localized QTLs in non-diseased participants from 14 CEPH (Centre d'Etude du Polymorphisme Humain) Utah families. Seventy-six percent of transcripts had a significant heritability and 54% of them had LOD score ≥ 1.8. Bivariate genetic analysis of 15 transcripts that had co-localized QTLs on 4q28.2-q31.1 identified significant genetic correlation among some transcripts although no improvement in the magnitude of LOD scores in this region was noted. Similar results were found in analysis of 12 transcripts, that had co-localized QTLs in the 13q34 region. Principal-component analyses did not improve the ability to identify chromosomal regions of co-localized gene expressions.
PMCID: PMC2367462  PMID: 18466588
11.  Statistical corrections of linkage data suggest predominantly cis regulations of gene expression 
BMC Proceedings  2007;1(Suppl 1):S145.
Morley et al. (Nature 2004, 430:743–747) detected significant linkages to the expression levels of 142 genes (of 3554) at a reported threshold of genome-wide p = 0.001 (LOD ≈ 5.3), using 14 three-generation Centre d'Etude du Polymorphisme Humain pedigrees. Most of the linkages (77%) were trans, i.e., more than 5 Mb from the expressed gene. However, the analysis did not account for the expected anti-conservative effect of the skewed distribution of score- or regression-based statistics in large sibships, or for the possible variance distortion due to correlations among tests. Therefore, we re-analyzed their data, using a robust score statistic for the entire pedigrees and correcting the p-values for skewness. We found that a LOD of 5.3 had a skewness-corrected genome-wide p-value of 0.016 instead of 0.001 (a result that we confirmed using simulation), with around 50 expected false positives. We then further corrected for correlation among the (skew-corrected) p-values by using Efron's method for obtaining the empirical null distribution. Setting a threshold of FDR = 10% (Z = 6.4, LOD = 8.9), we detected linkage for the expression levels of 22 genes, 19 of which are cis. Limiting the analysis to cis regions, linkage was detected to the expression levels of 46 genes with 4.6 expected false positives (FDR = 10%).
PMCID: PMC2367613  PMID: 18466489
12.  Gene expression profiles associated with aging and mortality in humans 
Aging Cell  2009;8(3):239-250.
We investigated the hypothesis that gene expression profiles in cultured cell lines from adults, aged 57–97 years, contain information about the biological age and potential longevity of the donors. We studied 104 unrelated grandparents from 31 Utah CEU (Centre d’Etude du Polymorphisme Humain – Utah) families, for whom lymphoblastoid cell lines were established in the 1980s. Combining publicly available gene expression data from these cell lines, and survival data from the Utah Population Database, we tested the relationship between expression of 2151 always-expressed genes, age, and survival of the donors. Approximately 16% of 2151 expression levels were associated with donor age: 10% decreased in expression with age, and 6% increased with age. Cell division cycle 42 (CDC42) and CORO1A exhibited strong associations both with age at draw and survival after draw (multiple comparisons-adjusted Monte Carlo P-value < 0.05). In general, gene expressions that increased with age were associated with increased mortality. Gene expressions that decreased with age were generally associated with reduced mortality. A multivariate estimate of biological age modeled from expression data was dominated by CDC42 expression, and was a significant predictor of survival after blood draw. A multivariate model of survival as a function of gene expression was dominated by CORO1A expression. This model accounted for approximately 23% of the variation in survival among the CEU grandparents. Some expression levels were negligibly associated with age in this cross-sectional dataset, but strongly associated with inter-individual differences in survival. These observations may lead to new insights regarding the genetic contribution to exceptional longevity.
doi:10.1111/j.1474-9726.2009.00467.x
PMCID: PMC2759984  PMID: 19245677
aging; cell cycle; cell lines; CEU; gene expression; longevity
13.  Impact of gene expression data pre-processing on expression quantitative trait locus mapping 
BMC Proceedings  2007;1(Suppl 1):S153.
We evaluate the impact of three pre-processing methods for Affymetrix microarray data on expression quantitative trait locus (eQTL) mapping, using 14 CEPH Utah families (GAW Problem 1 data). Different sets of expression traits were chosen according to different selection criteria: expression level, variance, and heritability. For each gene, three expression phenotypes were obtained by different pre-processing methods. Each quantitative phenotype was then submitted to a whole-genome scan, using multipoint variance component LODs. Pre-processing methods were compared with respect to their linkage outcomes (number of linkage signals with LODs greater than 3, consistencies in the location of the trait-specific linkage signals, and type of cis/trans-regulating loci). Overall, we found little agreement between linkage results from the different pre-processing methods: most of the linkage signals were specific to one pre-processing method. However, agreement rates varied according to the criteria used to select the traits. For instance, these rates were higher in the set of the most heritable traits. On the other hand, the pre-processing method had little impact on the relative proportion of detected cis and trans-regulating loci. Interestingly, although the number of detected cis-regulating loci was relatively small, pre-processing methods agreed much better in this set of linkage signals than in the trans-regulating loci. Several potential factors explaining the discordance observed between the methods are discussed.
PMCID: PMC2367602  PMID: 18466498
14.  Susceptibility loci involved in cisplatin-induced cytotoxicity and apoptosis 
Pharmacogenetics and genomics  2008;18(3):253-262.
Objectives
Cisplatin is a widely used chemotherapeutic agent; however, nephrotoxicity and neuropathy are obstacles for drug efficacy. Little is known about the genes or genetic variants contributing to the risk of developing these toxicities or chemotherapeutic response. Thus, we have applied a cell-based model to identify and characterize previously unknown genes that may be involved in cellular susceptibility to cisplatin.
Methods
Lymphoblastoid cell lines from 27 large Centre d'Etude du Polymorphisme Humain pedigrees were used to elucidate the genetic contribution to cisplatin-induced cytotoxicity. Phenotype was defined as cell growth inhibition following exposure of cell lines to increasing concentrations of cisplatin for 48 h.
Results
Significant heritability, ranging from 0.32 to 0.43 (P < 10−7), was found for the cytotoxic effects of each concentration (1, 2.5, 5, 10, and 20 μmol/l) and IC50, the concentration required for 50% cell growth inhibition. Linkage analysis revealed 11 genomic regions on six chromosomes with logarithm of odds (LOD) scores above 1.5 for cytotoxic phenotypes. The highest LOD score was found on chromosome 4q21.3−q35.2 (LOD = 2.65, P = 2.4 × 10−4) for 5 μmol/l cisplatin. Quantitative transmission disequilibrium tests were performed using 191 973 nonredundant single nucleotide polymorphisms (SNPs) located in the 1 LOD confidence interval of these 11 regions. Twenty SNPs, with 10 SNPs located in five genes, were significantly associated with cisplatin-induced cytotoxicity (P ≤ 1 × 10−4). Four of these 20 SNPs were found to explain over 10% of the variation in cisplatin-induced apoptosis.
Conclusions
Our results suggest that genetic factors involved in cytotoxicity also contribute to cisplatin-induced apoptosis. These cell lines provide a paradigm to identify previously unknown pharmacogenetic variants associated with drug cytotoxicity.
doi:10.1097/FPC.0b013e3282f5e605
PMCID: PMC2567113  PMID: 18300947
apoptosis; association; Centre d'Etude du Polymorphisme Humain; cisplatin; cytotoxicity; heritability; linkage
15.  In Vitro Screening for Population Variability in Chemical Toxicity 
Toxicological Sciences  2010;119(2):398-407.
Immortalized human lymphoblastoid cell lines have been used to demonstrate that it is possible to use an in vitro model system to identify genetic factors that affect responses to xenobiotics. To extend the application of such studies to investigative toxicology by assessing interindividual and population-wide variability and heritability of chemical-induced toxicity phenotypes, we have used cell lines from the Centre d'Etude du Polymorphisme Humain (CEPH) trios assembled by the HapMap Consortium. Our goal is to aid in the development of predictive in vitro genetics-anchored models of chemical-induced toxicity. Cell lines from the CEPH trios were exposed to three concentrations of 14 environmental chemicals. We assessed ATP production and caspase-3/7 activity 24 h after treatment. Replicate analyses were used to evaluate experimental variability and classify responses. We show that variability of response across the cell lines exists for some, but not all, chemicals, with perfluorooctanoic acid (PFOA) and phenobarbital eliciting the greatest degree of interindividual variability. Although the data for the chemicals used here do not show evidence for broad-sense heritability of toxicity response phenotypes, substantial cell line variation was found, and candidate genetic factors contributing to the variability in response to PFOA were investigated using genome-wide association analysis. The approach of screening chemicals for toxicity in a genetically defined yet diverse in vitro human cell-based system is potentially useful for identification of chemicals that may pose a highest risk, the extent of within-species variability in the population, and genetic loci of interest that potentially contribute to chemical susceptibility.
doi:10.1093/toxsci/kfq322
PMCID: PMC3023564  PMID: 20952501
chemical toxicity; human; lymphoblasts; population variability
16.  Expression and alternative splicing of folate pathway genes in HapMap lymphoblastoid cell lines 
Pharmacogenomics  2009;10(4):549-563.
Aim
Folate is vital for cell growth and development through its important role in one-carbon metabolism - an essential process in the synthesis of amino acids and nucleic acids. Folate pathway genes have been considered as therapeutic targets of drugs for the treatment of cancer and other diseases. Racial and ethnic disparities of folate metabolism and outcome of antifolate therapies have been reported. In this study, we evaluate the genetic regulation for expression and alternative splicing of folate related genes in HapMap lymphoblastoid cell lines (LCLs) of individuals of European and African descent.
Materials & methods
Gene and exon level expression and alternative splicing of folate pathway genes were compared in LCLs derived from the Centre d'Etude du Polymorphisme Humain (CEPH) from Utah (CEU) and the Yoruba from Ibadan (YRI) using a permutation-based test. A genome-wide association study was performed to search for SNPs associated with folate pathway gene expressions and alternative splicing in the combined population samples.
Results
A total of 52 folate pathway genes were evaluated in the analysis of which 46 were expressed in the LCLs. There were 12 genes (26%) with differential gene-level expression and 23 genes (50%) with differential alternative splicing for exons or UTRs between the CEU and the YRI (permutation p ≤ 0.05). The expression level of FPGS and the splicing indices of eight genes (ATP13A2, ASCC3L1, IFIH1, SMARCA5, SMARCA2, SETX, DDX52 and RUVBL2) were found to be associated with SNP genotypes in the combined populations (p < 3.2 × 10-8, Bonferroni corrected p < 0.05).
Conclusion
Our study suggests that LCLs are an in vitro system suitable to evaluate the expression levels of folate pathway genes. The differential transcript-level expressions and the differentially alternative splicing events of exons or UTRs and associated SNP markers in 2 populations will enhance our understanding of the folate pathway and, thus, facilitate research in the areas of nutrition and folate metabolism.
doi:10.2217/PGS.09.8
PMCID: PMC2709842  PMID: 19374514
alternative splicing; folate; gene expression; HapMap
17.  Whole-genome approach implicates CD44 in cellular resistance to carboplatin 
Human genomics  2009;3(2):128-142.
Carboplatin is a chemotherapeutic agent used in the management of many cancers, yet treatment is limited by resistance and toxicities. To achieve a better understanding of the genetic contribution to carboplatin resistance or toxicities, lymphoblastoid cell lines from 34 large Centre d’Etude du Polymorphisme Humain pedigrees were utilised to evaluate interindividual variation in carboplatin cytotoxicity. Significant heritability, ranging from 0.17–0.36 (p = 1 × 10−7 to 9 × 10−4), was found for cell growth inhibition following 72-hour treatment at each carboplatin concentration (10, 20, 40 and 80 μM) and IC50 (concentration for 50 per cent cell growth inhibition). Linkage analysis revealed 11 regions with logarithm of odds (LOD) scores greater than 1.5. The highest LOD score on chromosome 11 (LOD = 3.36, p = 4.2 × 10−5) encompasses 65 genes within the 1 LOD confidence interval for the carboplatin IC50. We further analysed the IC50 phenotype with a linkage-directed association analysis using 71 unrelated HapMap and Perlegen cell lines and identified 18 single nucleotide polymorphisms within eight genes that were significantly associated with the carboplatin IC50 (p < 3.6 × 10−5; false discovery rate <5 per cent). Next, we performed linear regression on the baseline expression and carboplatin IC50 values of the eight associated genes, which identified the most significant correlation between CD44 expression and IC50 (R 2 = 0.20; p = 6 × 10−4). The quantitative real-time polymerase chain reaction further confirmed a statistically significant difference in CD44 expression levels between carboplatin-resistant and -sensitive cell lines (p = 5.9 × 10−3). Knockdown of CD44 expression through small interfering RNA resulted in increased cellular sensitivity to carboplatin (p < 0.01). Our whole-genome approach with molecular experiments identified CD44 as being important in conferring cellular resistance to carboplatin.
PMCID: PMC2683878  PMID: 19164090
CD44; carboplatin; CEPH; HapMap; expression; linkage
18.  Whole-genome approach implicates CD44 in cellular resistance to carboplatin 
Human Genomics  2009;3(2):128-142.
Carboplatin is a chemotherapeutic agent used in the management of many cancers, yet treatment is limited by resistance and toxicities. To achieve a better understanding of the genetic contribution to carboplatin resistance or toxicities, lymphoblastoid cell lines from 34 large Centre d'Etude du Polymorphisme Humain pedigrees were utilised to evaluate interindividual variation in carboplatin cytotoxicity. Significant heritability, ranging from 0.17-0.36 (p = 1 × 10-7 to 9 × 10-4), was found for cell growth inhibition following 72-hour treatment at each carboplatin concentration (10, 20, 40 and 80 μM) and IC50 (concentration for 50 per cent cell growth inhibition). Linkage analysis revealed 11 regions with logarithm of odds (LOD) scores greater than 1.5. The highest LOD score on chromosome 11 (LOD = 3.36, p = 4.2 × 10-5) encompasses 65 genes within the 1 LOD confidence interval for the carboplatin IC50. We further analysed the IC50 phenotype with a linkage-directed association analysis using 71 unrelated HapMap and Perlegen cell lines and identified 18 single nucleotide polymorphisms within eight genes that were significantly associated with the carboplatin IC50 (p < 3.6 × 10-5; false discovery rate < 5 per cent). Next, we performed linear regression on the baseline expression and carboplatin IC50 values of the eight associated genes, which identified the most significant correlation between CD44 expression and IC50 (r2 = 0.20; p = 6 × 10-4). The quantitative real-time polymerase chain reaction further confirmed a statistically significant difference in CD44 expression levels between carboplatin-resistant and -sensitive cell lines (p = 5.9 × 10-3). Knockdown of CD44 expression through small interfering RNA resulted in increased cellular sensitivity to carboplatin (p < 0.01). Our whole-genome approach using molecular experiments identified CD44 as being important in conferring cellular resistance to carboplatin.
doi:10.1186/1479-7364-3-2-128
PMCID: PMC2683878  PMID: 19164090
CD44; carboplatin; CEPH; HapMap; expression; linkage
19.  Identification of genomic regions contributing to etoposide-induced cytotoxicity 
Human genetics  2008;125(2):173-180.
Etoposide is routinely used in combination based chemotherapy for testicular cancer and small-cell lung cancer; however, myelosuppression, therapy-related leukemia and neurotoxicity limit its utility. To determine the genetic contribution to cellular sensitivity to etoposide, we evaluated cell growth inhibition in Centre d’ Etude du Polymorphisme Humain lymphoblastoid cell lines from 24 multi-generational pedigrees (321 samples) following treatment with 0.02–2.5 µM etoposide for 72 h. Heritability analysis showed that genetic variation contributes significantly to the cytotoxic phenotypes (h2 = 0.17–0.25, P = 4.9 × 10−5−7.3 × 10−3). Whole genome linkage scans uncovered 8 regions with peak LOD scores ranging from 1.57 to 2.55, with the most significant signals being found on chromosome 5 (LOD = 2.55) and chromosome 6 (LOD = 2.52). Linkage-directed association was performed on a subset of HapMap samples within the pedigrees to find 22 SNPs significantly associated with etoposide cytotoxicity at one or more treatment concentrations. UVRAG, a DNA repair gene, SEMA5A, SLC7A6 and PRMT7 are implicated from these unbiased studies. Our findings suggest that susceptibility to etoposide-induced cytotoxicity is heritable and using an integrated genomics approach we identified both genomic regions and SNPs associated with the cytotoxic phenotypes.
doi:10.1007/s00439-008-0607-4
PMCID: PMC2714550  PMID: 19089452
20.  Cosmopolitan linkage disequilibrium maps 
Human Genomics  2005;2(1):20-27.
Linkage maps have been invaluable for the positional cloning of many genes involved in severe human diseases. Standard genetic linkage maps have been constructed for this purpose from the Centre d'Etude du Polymorphisme Humain and other panels, and have been widely used. Now that attention has shifted towards identifying genes predisposing to common disorders using linkage disequilibrium (LD) and maps of single nucleotide polymorphisms (SNPs), it is of interest to consider a standard LD map which is somewhat analogous to the corresponding map for linkage. We have constructed and evaluated a cosmopolitan LD map by combining samples from a small number of populations using published data from a 10-megabase region on chromosome 20. In support of a pilot study, which examined a number of small genomic regions with a lower density of markers, we have found that a cosmopolitan map, which serves all populations when appropriately scaled, recovers 91 to 95 per cent of the information within population-specific maps. Recombination hot spots appear to have a dominant role in shaping patterns of LD. The success of the cosmopolitan map might be attributed to the co-localisation of hot spots in all populations. Although there must be finer scale differences between populations due to other processes (mutation, drift, selection), the results suggest that a whole-genome standard LD map would indeed be a useful resource for disease gene mapping.
doi:10.1186/1479-7364-2-1-20
PMCID: PMC3525119  PMID: 15814065
linkage disequilibrium; single nucleotide polymorphism; genetic map; map integration
21.  Comparison of multipoint linkage analyses for quantitative traits in the CEPH data: parametric LOD scores, variance components LOD scores, and Bayes factors 
BMC Proceedings  2007;1(Suppl 1):S93.
We performed multipoint linkage analyses with multiple programs and models for several gene expression traits in the Centre d'Etude du Polymorphisme Humain families. All analyses provided consistent results for both peak location and shape. Variance-components (VC) analysis gave wider peaks and Bayes factors gave fewer peaks. Among programs from the MORGAN package, lm_multiple performed better than lm_markers, resulting in less Markov-chain Monte Carlo (MCMC) variability between runs, and the program lm_twoqtl provided higher LOD scores by also including either a polygenic component or an additional quantitative trait locus.
PMCID: PMC2367516  PMID: 18466597
22.  Allele-Specific Chromatin Immunoprecipitation Studies Show Genetic Influence on Chromatin State in Human Genome 
PLoS Genetics  2007;3(5):e81.
Several recent studies have shown a genetic influence on gene expression variation, including variation between the two chromosomes within an individual and variation between individuals at the population level. We hypothesized that genetic inheritance may also affect variation in chromatin states. To test this hypothesis, we analyzed chromatin states in 12 lymphoblastoid cells derived from two Centre d'Etude du Polymorphisme Humain families using an allele-specific chromatin immunoprecipitation (ChIP-on-chip) assay with Affymetrix 10K SNP chip. We performed the allele-specific ChIP-on-chip assays for the 12 lymphoblastoid cells using antibodies targeting at RNA polymerase II and five post-translation modified forms of the histone H3 protein. The use of multiple cell lines from the Centre d'Etude du Polymorphisme Humain families allowed us to evaluate variation of chromatin states across pedigrees. These studies demonstrated that chromatin state clustered by family. Our results support the idea that genetic inheritance can determine the epigenetic state of the chromatin as shown previously in model organisms. To our knowledge, this is the first demonstration in humans that genetics may be an important factor that influences global chromatin state mediated by histone modification, the hallmark of the epigenetic phenomena.
Author Summary
Human health and disease are determined by an interaction between genetic background and environmental exposures. Both normal development and disease are mediated by epigenetic regulation of gene expression. The epigenetic regulation causes heritable changes in gene expression, which is not associated with DNA sequence changes. Instead, it is mediated by chemical modification of DNA such as DNA methylation or by protein modifications such as histone acetylation and methylation. Although much has been known about epigenetic inheritance during development, little is known about the influence of the genetic background on epigenetic processes such as histone modifications. In this report the authors studied five histone modifications on a genome-wide level in cells from different families. Global epigenetic states, as measured by these histone modifications, showed a similar pattern for cells derived from the same family. This study demonstrates that genetic inheritance may be an important factor influencing global chromatin states mediated by histone modifications in humans. These observations illustrate the importance of integrating genetic and epigenetic information into studies of human health and complex diseases.
doi:10.1371/journal.pgen.0030081
PMCID: PMC1868950  PMID: 17511522
23.  Allele-Specific Chromatin Immunoprecipitation Studies Show Genetic Influence on Chromatin State in Human Genome 
PLoS Genetics  2007;3(5):e81.
Several recent studies have shown a genetic influence on gene expression variation, including variation between the two chromosomes within an individual and variation between individuals at the population level. We hypothesized that genetic inheritance may also affect variation in chromatin states. To test this hypothesis, we analyzed chromatin states in 12 lymphoblastoid cells derived from two Centre d'Etude du Polymorphisme Humain families using an allele-specific chromatin immunoprecipitation (ChIP-on-chip) assay with Affymetrix 10K SNP chip. We performed the allele-specific ChIP-on-chip assays for the 12 lymphoblastoid cells using antibodies targeting at RNA polymerase II and five post-translation modified forms of the histone H3 protein. The use of multiple cell lines from the Centre d'Etude du Polymorphisme Humain families allowed us to evaluate variation of chromatin states across pedigrees. These studies demonstrated that chromatin state clustered by family. Our results support the idea that genetic inheritance can determine the epigenetic state of the chromatin as shown previously in model organisms. To our knowledge, this is the first demonstration in humans that genetics may be an important factor that influences global chromatin state mediated by histone modification, the hallmark of the epigenetic phenomena.
Author Summary
Human health and disease are determined by an interaction between genetic background and environmental exposures. Both normal development and disease are mediated by epigenetic regulation of gene expression. The epigenetic regulation causes heritable changes in gene expression, which is not associated with DNA sequence changes. Instead, it is mediated by chemical modification of DNA such as DNA methylation or by protein modifications such as histone acetylation and methylation. Although much has been known about epigenetic inheritance during development, little is known about the influence of the genetic background on epigenetic processes such as histone modifications. In this report the authors studied five histone modifications on a genome-wide level in cells from different families. Global epigenetic states, as measured by these histone modifications, showed a similar pattern for cells derived from the same family. This study demonstrates that genetic inheritance may be an important factor influencing global chromatin states mediated by histone modifications in humans. These observations illustrate the importance of integrating genetic and epigenetic information into studies of human health and complex diseases.
doi:10.1371/journal.pgen.0030081
PMCID: PMC1868950  PMID: 17511522
24.  Identification of a Polymorphic Gene, BCL2A1, Encoding Two Novel Hematopoietic Lineage-specific Minor Histocompatibility Antigens 
The Journal of Experimental Medicine  2003;197(11):1489-1500.
We report the identification of two novel minor histocompatibility antigens (mHAgs), encoded by two separate single nucleotide polymorphisms on a single gene, BCL2A1, and restricted by human histocompatibility leukocyte antigen (HLA)-A*2402 (the most common HLA-A allele in Japanese) and B*4403, respectively. Two cytotoxic T lymphocyte (CTL) clones specific for these mHAgs were first isolated from two distinct recipients after hematopoietic cell transplantation. Both clones lyse only normal and malignant cells within the hematopoietic lineage. To localize the gene encoding the mHAgs, two-point linkage analysis was performed on the CTL lytic patterns of restricting HLA-transfected B lymphoblastoid cell lines obtained from Centre d'Etude du Polymorphisme Humain. Both CTL clones showed a completely identical lytic pattern for 4 pedigrees and the gene was localized within a 3.6-cM interval of 15q24.3–25.1 region that encodes at least 46 genes. Of those, only BCL2A1 has been reported to be expressed in hematopoietic cells and possess three nonsynonymous nucleotide changes. Minigene transfection and epitope reconstitution assays with synthetic peptides identified both HLA-A*2402– and B*4403-restricted mHAg epitopes to be encoded by distinct polymorphisms within BCL2A1.
doi:10.1084/jem.20021925
PMCID: PMC2193899  PMID: 12771180
minor histocompatibility antigen; hematopoietic cell transplantation; cytotoxic T lymphocyte; graft-versus-leukemia effect; linkage analysis
25.  Characterisation of SNP haplotype structure in chemokine and chemokine receptor genes using CEPH pedigrees and statistical estimation 
Human Genomics  2004;1(3):195-207.
Chemokine signals and their cell-surface receptors are important modulators of HIV-1 disease and cancer. To aid future case/control association studies, aim to further characterise the haplotype structure of variation in chemokine and chemokine receptor genes. To perform haplotype analysis in a population-based association study, haplotypes must be determined by estimation, in the absence of family information or laboratory methods to establish phase. Here, test the accuracy of estimates of haplotype frequency and linkage disequilibrium by comparing estimated haplotypes generated with the expectation maximisation (EM) algorithm to haplotypes determined from Centre d'Etude Polymorphisme Humain (CEPH) pedigree data. To do this, they have characterised haplotypes comprising alleles at 11 biallelic loci in four chemokine receptor genes (CCR3, CCR2, CCR5 and CCRL2), which span 150 kb on chromosome 3p21, and haplotyes of nine biallelic loci in six chemokine genes [MCP-1(CCL2), Eotaxin(CCL11), RANTES(CCL5), MPIF-1(CCL23), PARC(CCL18) and MIP-1α(CCL3) ] on chromosome 17q11-12. Forty multi-generation CEPH families, totalling 489 individuals, were genotyped by the TaqMan 5'-nuclease assay. Phased haplotypes and haplotypes estimated from unphased genotypes were compared in 103 grandparents who were assumed to have mated at random.
For the 3p21 single nucleotide polymorphism (SNP) data, haplotypes determined by pedigree analysis and haplotypes generated by the EM algorithm were nearly identical. Linkage disequilibrium, measured by the D' statistic, was nearly maximal across the 150 kb region, with complete disequilibrium maintained at the extremes between CCR3-Y17Y and CCRL2-1243V. D'-values calculated from estimated haplotypes on 3p21 had high concordance with pairwise comparisons between pedigree-phased chromosomes. Conversely, there was less agreement between analyses of haplotype frequencies and linkage disequilibrium using estimated haplotypes when compared with pedigree-phased haplotypes of SNPs on chromosome 17q11-12. These results suggest that, while estimations of haplotype frequency and linkage disequilibrium may be relatively simple in the 3p21 chemokine receptor cluster in population samples, the more complex environment on chromosome 17q11-12 will require a higher resolution haplotype analysis.
doi:10.1186/1479-7364-1-3-195
PMCID: PMC3525080  PMID: 15588479
chemokine; SNP; haplotype estimation; pedigree analysis; linkage disequilibrium

Results 1-25 (792153)