PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (160641)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Relationship between Quality and Editorial Leadership of Biomedical Research Journals: A Comparative Study of Italian and UK Journals 
PLoS ONE  2008;3(7):e2512.
Background
The quality of biomedical reporting is guided by statements of several organizations. Although not all journals adhere to these guidelines, those that do demonstrate “editorial leadership” in their author community. To investigate a possible relationship between editorial leadership and journal quality, research journals from two European countries, one Anglophone and one non-Anglophone, were studied and compared. Quality was measured on a panel of bibliometric parameters while editorial leadership was evaluated from journals' instructions to authors.
Methodology/Principal Findings
The study considered all 76 Italian journals indexed in Medline and 76 randomly chosen UK journals; only journals both edited and published in these countries were studied. Compared to UK journals, Italian journals published fewer papers (median, 60 vs. 93; p = 0.006), less often had online archives (43 vs. 74; p<0.001) and had lower median values of impact factor (1.2 vs. 2.7, p<0.001) and SCImago journal rank (0.09 vs. 0.25, p<0.001). Regarding editorial leadership, Italian journals less frequently required manuscripts to specify competing interests (p<0.001), authors' contributions (p = 0.005), funding (p<0.001), informed consent (p<0.001), ethics committee review (p<0.001). No Italian journal adhered to COPE or the CONSORT and QUOROM statements nor required clinical trial registration, while these characteristics were observed in 15%–43% of UK journals (p<0.001). At multiple regression, editorial leadership predicted 37.1%–49.9% of the variance in journal quality defined by citation statistics (p<0.0001); confounding variables inherent to a cross-cultural comparison had a relatively small contribution, explaining an additional 6.2%–13.8% of the variance.
Conclusions/Significance
Journals from Italy scored worse for quality and editorial leadership than did their UK counterparts. Editorial leadership predicted quality for the entire set of journals. Greater appreciation of international initiatives to improve biomedical reporting may help low-quality journals achieve higher status.
doi:10.1371/journal.pone.0002512
PMCID: PMC2438474  PMID: 18596938
2.  Association of Human Herpesvirus-6B with Mesial Temporal Lobe Epilepsy 
PLoS Medicine  2007;4(5):e180.
Background
Human herpesvirus-6 (HHV-6) is a β-herpesvirus with 90% seroprevalence that infects and establishes latency in the central nervous system. Two HHV-6 variants are known: HHV-6A and HHV-6B. Active infection or reactivation of HHV-6 in the brain is associated with neurological disorders, including epilepsy, encephalitis, and multiple sclerosis. In a preliminary study, we found HHV-6B DNA in resected brain tissue from patients with mesial temporal lobe epilepsy (MTLE) and have localized viral antigen to glial fibrillary acidic protein (GFAP)–positive glia in the same brain sections. We sought, first, to determine the extent of HHV-6 infection in brain material resected from MTLE and non-MTLE patients; and second, to establish in vitro primary astrocyte cultures from freshly resected brain material and determine expression of glutamate transporters.
Methods and Findings
HHV-6B infection in astrocytes and brain specimens was investigated in resected brain material from MTLE and non-MTLE patients using PCR and immunofluorescence. HHV-6B viral DNA was detected by TaqMan PCR in brain resections from 11 of 16 (69%) additional patients with MTLE and from zero of seven (0%) additional patients without MTLE. All brain regions that tested positive by HHV-6B variant-specific TaqMan PCR were positive for viral DNA by nested PCR. Primary astrocytes were isolated and cultured from seven epilepsy brain resections and astrocyte purity was defined by GFAP reactivity. HHV-6 gp116/54/64 antigen was detected in primary cultured GFAP-positive astrocytes from resected tissue that was HHV-6 DNA positive—the first demonstration of an ex vivo HHV-6–infected astrocyte culture isolated from HHV-6–positive brain material. Previous work has shown that MTLE is related to glutamate transporter dysfunction. We infected astrocyte cultures in vitro with HHV-6 and found a marked decrease in glutamate transporter EAAT-2 expression.
Conclusions
Overall, we have now detected HHV-6B in 15 of 24 patients with mesial temporal sclerosis/MTLE, in contrast to zero of 14 with other syndromes. Our results suggest a potential etiology and pathogenic mechanism for MTLE.
Steve Jacobson and colleagues report finding human herpesvirus-6B DNA in brain resections from 11 of 16 patients with mesial temporal lobe epilepsy, strengthening the evidence for a role for this virus in this condition.
Editors' Summary
Background.
Epilepsy is a common brain disorder caused by a sudden, excessive electrical discharge in a cluster of neurons—the cells that transmit electrical messages between the body and the brain. Its symptoms depend on which part of the brain is affected by this electrical firestorm and how far the disturbance spreads. When only part of the brain is affected (a partial seizure or fit), patients may see or smell strange things, recall forgotten memories, or have part of their body jerk uncontrollably. When the electrical disturbance spreads across the whole brain (a generalized seizure), there may be loss of consciousness and/or the whole body may become rigid or jerk. Epilepsy is usually controlled with anti-epileptic drugs or, in very severe focal cases, surgery to the area of the brain where the seizure starts. Although head injuries or brain tumors can trigger epilepsy, the cause of most cases of epilepsy is unknown.
Why Was This Study Done?
Knowing what causes epilepsy might lead to better treatments for it. One possibility is that infections trigger epilepsy. The researchers in this study asked whether infections with human herpesvirus 6B (HHV-6B) are associated with a common type of epilepsy called mesial temporal lobe epilepsy (MTLE). Patients with MTLE often have extensive scarring in the hippocampus, a brain region responsible for memory that lies deep within a bigger region called the temporal lobe. Hippocampal scarring and MTLE are associated with a history of fever-induced fits, and HHV-6B infection can cause such fits in young children. Most people become infected with HHV-6B (or the closely related HHV-6A) early in life. The virus then remains latent for years within the brain and elsewhere. Given these facts and a previous investigation that showed that brain tissue from several patients with MTLE contained HHV-6B, the researchers reasoned that it was worth investigating HHV-6B as a cause of MTLE.
What Did the Researchers Do and Find?
The researchers first looked for HHV-6B DNA in brain tissue surgically removed from patients with MTLE or another type of epilepsy. Tissue from 11 of 16 patients with MTLE (but from 0 of 7 control patients) contained HHV-6B DNA. When the researchers grew astrocytes (a type of brain cell) from some of these samples, only those from HHV-6B DNA-positive samples from patients with MTLE expressed an HHV-6-specific protein. Next, the researchers investigated in detail a patient with MTLE who had four sequential operations to control his epilepsy. This patient's hippocampus, which was removed in his first operation, contained a higher level of HHV-6B DNA than the tissues removed in later operations. After the fourth operation (which removed half of his brain and cured his epilepsy), astrocytes grown from the temporal lobe and the frontal/parietal lobe (a brain region next to the temporal lobe) but not the frontal and occipital lobes contained HHV-6B DNA and expressed a viral protein. The researchers also measured the production by these various astrocytes of a substance that moves glutamate (an amino acid that also acts as a neurotransmitter) across cell membranes—MTLE has been associated with a glutamate transporter deficiency. Consistent with this, astrocytes from the patient's temporal lobe made no glutamate transporter mRNA (mRNA is an essential precursor for protein to be produced). Finally, infection of astrocytes isolated from a patient without MTLE with HHV-6B greatly reduced expression of glutamate transporter in these astrocytes.
What Do These Findings Mean?
These findings, together with those from the previous study, reveal that nearly two-thirds of patients with MTLE (but no patients with other forms of epilepsy) have an active HHV-6B infection in the brain region where their epilepsy originates. Overall, they provide strong support for the idea that HHV-6B infections might cause MTLE, particularly given the results obtained from the patient whose condition only improved after multiple brain operations had removed all the virally infected material. Furthermore, the demonstration that HHV-6B infection reduces glutamate transporter expression in astrocytes suggests that HHV-6B infection might cause astrocyte dysfunction. This dysfunction could lead to injury of the sensitive neurons in the hippocampus and trigger MTLE. Additional patients now need to be studied both to confirm the association between HHV-6B infection and MTLE and to discover exactly how this virus triggers epilepsy.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040180.
MedlinePlus encyclopedia page on epilepsy (in English and Spanish)
World Health Organization fact sheet on epilepsy (in English, French, Spanish, Russian, Arabic, and Chinese)
US National Institute for Neurological Disorders and Stroke epilepsy information page (in English and Spanish)
UK National Health Service Direct information for patients on epilepsy (in several languages)
Neuroscience for kids, an educational Web site prepared by Eric Chudler (University of Washington, Seattle, Washington, United States), who also has a site that includes information on epilepsy and a list of links to epilepsy organizations (mainly in English but some sections in other languages as well)
A short scientific article on human herpes virus 6 in the journal Emerging Infectious Diseases
doi:10.1371/journal.pmed.0040180
PMCID: PMC1880851  PMID: 17535102
3.  Using text mining to link journal articles to neuroanatomical databases 
The Journal of comparative neurology  2012;520(8):10.1002/cne.23012.
The electronic linking of neuroscience information, including data embedded in the primary literature, would permit powerful queries and analyses driven by structured databases. This task would be facilitated by automated procedures which can identify biological concepts in journals. Here we apply an approach for automatically mapping formal identifiers of neuroanatomical regions to text found in journal abstracts, and apply it to a large body of abstracts from the Journal of Comparative Neurology (JCN). The analyses yield over one hundred thousand brain region mentions which we map to 8,225 brain region concepts in multiple organisms. Based on the analysis of a manually annotated corpus, we estimate mentions are mapped at 95% precision and 63% recall. Our results provide insights into the patterns of publication on brain regions and species of study in the Journal, but also point to important challenges in the standardization of neuroanatomical nomenclatures. We find that many terms in the formal terminologies never appear in a JCN abstract, while conversely, many terms authors use are not reflected in the terminologies. To improve the terminologies we deposited 136 unrecognized brain regions into the Neuroscience Lexicon (NeuroLex). The training data, terminologies, normalizations, evaluations and annotated journal abstracts are freely available at http://www.chibi.ubc.ca/WhiteText/.
doi:10.1002/cne.23012
PMCID: PMC3812935  PMID: 22120205
neuroinformatics; brain mapping; homology; brain reference system; brain atlases
5.  Peer assessment of journal quality in clinical neurology 
Objective: To explore journal quality as perceived by clinicians and researchers in clinical neurology.
Methods: A survey was conducted from August 2003 to January 2004. Ratings for 41 selected clinical neurology journals were obtained from 254 members of the World Federation of Neurology (1,500 solicited; response rate 17%). Participants provided demographic information and rated each journal on a 5-point Likert scale. Average ratings for all journals were compared with the ISI's journal impact factors. Ratings for each journal were also compared across geographic regions and respondent publication productivity.
Results: The top 5 journals were rated much more highly than the others, with mean ratings greater than 4. Mean journal ratings were highly correlated with journal impact factors (r = 0.67). Most of the top 10 journal ratings were consistent across the subgroups of geographic regions and journal paper productivity. However, significant differences among the different geographical regions and respondent productivity groups were also found for a few journals.
Conclusions: The results provide valuable insight on how neurological experts perceive journals in clinical neurology. These results will likely aid researchers and clinicians in identifying potentially desirable research outlets and indicate journal status for editors. Likewise, biomedical librarians may use these results for serials collection development.
PMCID: PMC1773051  PMID: 17252069
6.  Integrative Approach to Quality Assessment of Medical Journals Using Impact Factor, Eigenfactor, and Article Influence Scores 
PLoS ONE  2010;5(4):e10204.
Background
Impact factor (IF) is a commonly used surrogate for assessing the scientific quality of journals and articles. There is growing discontent in the medical community with the use of this quality assessment tool because of its many inherent limitations. To help address such concerns, Eigenfactor (ES) and Article Influence scores (AIS) have been devised to assess scientific impact of journals. The principal aim was to compare the temporal trends in IF, ES, and AIS on the rank order of leading medical journals over time.
Methods
The 2001 to 2008 IF, ES, AIS, and number of citable items (CI) of 35 leading medical journals were collected from the Institute of Scientific Information (ISI) and the http://www.eigenfactor.org databases. The journals were ranked based on the published 2008 ES, AIS, and IF scores. Temporal score trends and variations were analyzed.
Results
In general, the AIS and IF values provided similar rank orders. Using ES values resulted in large changes in the rank orders with higher ranking being assigned to journals that publish a large volume of articles. Since 2001, the IF and AIS of most journals increased significantly; however the ES increased in only 51% of the journals in the analysis. Conversely, 26% of journals experienced a downward trend in their ES, while the rest experienced no significant changes (23%). This discordance between temporal trends in IF and ES was largely driven by temporal changes in the number of CI published by the journals.
Conclusion
The rank order of medical journals changes depending on whether IF, AIS or ES is used. All of these metrics are sensitive to the number of citable items published by journals. Consumers should thus consider all of these metrics rather than just IF alone in assessing the influence and importance of medical journals in their respective disciplines.
doi:10.1371/journal.pone.0010204
PMCID: PMC2855371  PMID: 20419115
7.  The Role of Abcb5 Alleles in Susceptibility to Haloperidol-Induced Toxicity in Mice and Humans 
PLoS Medicine  2015;12(2):e1001782.
Background
We know very little about the genetic factors affecting susceptibility to drug-induced central nervous system (CNS) toxicities, and this has limited our ability to optimally utilize existing drugs or to develop new drugs for CNS disorders. For example, haloperidol is a potent dopamine antagonist that is used to treat psychotic disorders, but 50% of treated patients develop characteristic extrapyramidal symptoms caused by haloperidol-induced toxicity (HIT), which limits its clinical utility. We do not have any information about the genetic factors affecting this drug-induced toxicity. HIT in humans is directly mirrored in a murine genetic model, where inbred mouse strains are differentially susceptible to HIT. Therefore, we genetically analyzed this murine model and performed a translational human genetic association study.
Methods and Findings
A whole genome SNP database and computational genetic mapping were used to analyze the murine genetic model of HIT. Guided by the mouse genetic analysis, we demonstrate that genetic variation within an ABC-drug efflux transporter (Abcb5) affected susceptibility to HIT. In situ hybridization results reveal that Abcb5 is expressed in brain capillaries, and by cerebellar Purkinje cells. We also analyzed chromosome substitution strains, imaged haloperidol abundance in brain tissue sections and directly measured haloperidol (and its metabolite) levels in brain, and characterized Abcb5 knockout mice. Our results demonstrate that Abcb5 is part of the blood-brain barrier; it affects susceptibility to HIT by altering the brain concentration of haloperidol. Moreover, a genetic association study in a haloperidol-treated human cohort indicates that human ABCB5 alleles had a time-dependent effect on susceptibility to individual and combined measures of HIT. Abcb5 alleles are pharmacogenetic factors that affect susceptibility to HIT, but it is likely that additional pharmacogenetic susceptibility factors will be discovered.
Conclusions
ABCB5 alleles alter susceptibility to HIT in mouse and humans. This discovery leads to a new model that (at least in part) explains inter-individual differences in susceptibility to a drug-induced CNS toxicity.
Gary Peltz and colleagues examine the role of ABCB5 alleles in haloperidol-induced toxicity in a murine genetic model and humans treated with haloperidol.
Editors' Summary
Background
The brain is the control center of the human body. This complex organ controls thoughts, memory, speech, and movement, it is the seat of intelligence, and it regulates the function of many organs. The brain comprises many different parts, all of which work together but all of which have their own special functions. For example, the forebrain is involved in intellectual activities such as thinking whereas the hindbrain controls the body’s vital functions and movements. Messages are passed between the various regions of the brain and to other parts of the body by specialized cells called neurons, which release and receive signal molecules known as neurotransmitters. Like all the organs in the body, blood vessels supply the brain with the oxygen, water, and nutrients it needs to function. Importantly, however, the brain is protected from infectious agents and other potentially dangerous substances circulating in the blood by the “blood-brain barrier,” a highly selective permeability barrier that is formed by the cells lining the fine blood vessels (capillaries) within the brain.
Why Was This Study Done?
Although drugs have been developed to treat various brain disorders, more active and less toxic drugs are needed to improve the treatment of many if not most of these conditions. Unfortunately, relatively little is known about how the blood-brain barrier regulates the entry of drugs into the brain or about the genetic factors that affect the brain’s susceptibility to drug-induced toxicities. It is not known, for example, why about half of patients given haloperidol—a drug used to treat psychotic disorders (conditions that affect how people think, feel, or behave)—develop tremors and other symptoms caused by alterations in the brain region that controls voluntary movements. Here, to improve our understanding of how drugs enter the brain and impact its function, the researchers investigate the genetic factors that affect haloperidol-induced toxicity by genetically analyzing several inbred mouse strains (every individual in an inbred mouse strain is genetically identical) with different susceptibilities to haloperidol-induced toxicity and by undertaking a human genetic association study (a study that looks for non-chance associations between specific traits and genetic variants).
What Did the Researchers Do and Find?
The researchers used a database of genetic variants called single nucleotide polymorphisms (SNPs) and a computational genetic mapping approach to show first that variations within the gene encoding Abcb5 affected susceptibility to haloperidol-induced toxicity (indicated by changes in the length of time taken by mice to move their paws when placed on an inclined wire-mesh screen) among inbred mouse strains. Abcb5 is an ATP-binding cassette transporter, a type of protein that moves molecules across cell membranes. The researchers next showed that Abcb5 is expressed in brain capillaries, which is the location of the blood-brain barrier. Abcb5 was also expressed in cerebellar Purkinje cells, which help to control motor (intentional) movements. They also measured the measured the effect of haloperidol and the haloperidol concentration in brain tissue sections in mice that were genetically engineered to make no Abcb5 (Abcb5 knockout mice). Finally, the researchers investigated whether specific alleles (alternative versions) of ABCB5 are associated with haloperidol-induced toxicity in people. Among a group of 85 patients treated with haloperidol for a psychotic illness, one specific ABCB5 allele was associated with haloperidol-induced toxicity during the first few days of treatment.
What Do These Findings Mean?
These findings indicate that Abcb5 is a component of the blood-brain barrier in mice and suggest that genetic variants in the gene encoding this protein underlie, at least in part, the differences in susceptibility to haloperidol-induced toxicity seen among inbred mice strains. Moreover, the human genetic association study indicates that a specific ABCB5 allele also affects the susceptibility of people to haloperidol-induced toxicity. The researchers note that other ABCB5 alleles or other genetic factors that affect haloperidol-induced toxicity in people might emerge if larger groups of patients were studied. However, based on their findings, the researchers propose a new model for the genetic mechanisms that underlie inter-individual and cell type-specific differences in susceptibility to haloperidol-induced brain toxicity. If confirmed in future studies, this model might facilitate the development of more effective and less toxic drugs to treat a range of brain disorders.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001782.
The US National Institute of Neurological Disorders and Stroke provides information about a wide range of brain diseases (in English and Spanish); its fact sheet “Brain Basics: Know Your Brain” is a simple introduction to the human brain; its “Blueprint Neurotherapeutics Network” was established to develop new drugs for disorders affecting the brain and other parts of the nervous system
MedlinePlus provides links to additional resources about brain diseases and their treatment (in English and Spanish)
Wikipedia provides information about haloperidol, about ATP-binding cassette transporters and about genetic association (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.1001782
PMCID: PMC4315575  PMID: 25647612
8.  Decreased Brain Volume in Adults with Childhood Lead Exposure 
PLoS Medicine  2008;5(5):e112.
Background
Although environmental lead exposure is associated with significant deficits in cognition, executive functions, social behaviors, and motor abilities, the neuroanatomical basis for these impairments remains poorly understood. In this study, we examined the relationship between childhood lead exposure and adult brain volume using magnetic resonance imaging (MRI). We also explored how volume changes correlate with historic neuropsychological assessments.
Methods and Findings
Volumetric analyses of whole brain MRI data revealed significant decreases in brain volume associated with childhood blood lead concentrations. Using conservative, minimum contiguous cluster size and statistical criteria (700 voxels, unadjusted p < 0.001), approximately 1.2% of the total gray matter was significantly and inversely associated with mean childhood blood lead concentration. The most affected regions included frontal gray matter, specifically the anterior cingulate cortex (ACC). Areas of lead-associated gray matter volume loss were much larger and more significant in men than women. We found that fine motor factor scores positively correlated with gray matter volume in the cerebellar hemispheres; adding blood lead concentrations as a variable to the model attenuated this correlation.
Conclusions
Childhood lead exposure is associated with region-specific reductions in adult gray matter volume. Affected regions include the portions of the prefrontal cortex and ACC responsible for executive functions, mood regulation, and decision-making. These neuroanatomical findings were more pronounced for males, suggesting that lead-related atrophic changes have a disparate impact across sexes. This analysis suggests that adverse cognitive and behavioral outcomes may be related to lead's effect on brain development producing persistent alterations in structure. Using a simple model, we found that blood lead concentration mediates brain volume and fine motor function.
Using magnetic resonance imaging to assess brain volumes, Kim Cecil and colleagues find that inner-city children with higher blood lead levels showed regions of decreased gray matter as adults.
Editors' Summary
Background.
Lead is a highly toxic metal that is present throughout the environment because of various human activities. In particular, for many years, large amounts of lead were used in paint, in solder for water pipes, in gasoline, and in ceramic glazes. But, as the harmful health effects of lead have become clear, its use in these and other products has been gradually phased out. Breathing air, drinking water, or eating food that contains lead can damage almost every organ in the human body. The organ that is most sensitive to lead exposure is the brain, and children's brains are particularly vulnerable because they are still developing. Children who swallow large amounts of lead can develop widespread brain damage that causes convulsions and sometimes death. Children who are repeatedly exposed to low to moderate amounts of lead (e.g., through accidentally swallowing residues of old lead paint or contaminated soil) can develop learning or behavioral problems.
Why Was This Study Done?
Lead exposure has been linked with various types of brain damage. These include problems with thinking (cognition); difficulties with organizing actions, decisions, and behaviors (executive functions); abnormal social behavior (including aggression); and difficulties in coordinating fine movements, such as picking up small objects (fine motor control). However, we know little about how lead damages the brain in this way and little about which brain regions are affected by exposure to low to moderate levels of lead during childhood. In this study, the researchers wanted to test the possibility that childhood lead exposure might lead to shrinking (“volume loss”) parts of the brain, particularly the parts that are crucial to cognition and behavior. They therefore studied the relationship between childhood lead exposure and adult brain volume. They also explored whether there is a relationship between brain volume and measures of brain functioning, such as fine motor control, memory, and learning assessed during adolescence.
What Did the Researchers Do and Find?
Between 1979 and 1984, the researchers recruited babies born in poor areas of Cincinnati, where there were many old, lead-contaminated houses, into the Cincinnati Lead Study. They measured their blood lead levels regularly from birth until they were 78 months old and calculated each child's average blood lead level over this period. They then used brain scans (known as magnetic resonance imaging, or MRI) to measure the brain volumes of the participants when they were 19–24 years old. The researchers found that exposure to lead as a child was linked with brain volume loss in adulthood, particularly in men. There was a “dose-response” effect—in other words, the greatest brain volume loss was seen in participants with the greatest lead exposure in childhood. The brain volume loss was most noticeable in a part of the brain called the prefrontal cortex—especially a region called the “anterior cingulate cortex.” When they examined the relationship between brain volume and measures of brain functioning, they found a link between brain volume and fine motor control, but not with the other measures.
What Do These Findings Mean?
These findings indicate that childhood lead exposure is associated with brain volume loss in adults, in specific regions of the brain. These brain regions are responsible for executive functions, regulating behavior, and fine motor control. Lead exposure has a larger effect on brain volumes in men than in women, which might help to explain the higher incidence of antisocial behaviors among men than women. Overall, these findings may explain why children and adults who have a history of lead exposure have behavioral and other problems, and support ongoing efforts to reduce childhood lead exposure in the US and other countries.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050112.
A PLoS Medicine Perspective article by David Bellinger further discusses this study and a related paper on child exposure to lead and criminal arrests in adulthood
Toxtown, an interactive site from the US National Library of Medicine, provides information on environmental health concerns including exposure to lead (in English and Spanish)
The US Environmental Protection Agency provides information on lead in paint, dust, and soil and on protecting children from lead poisoning (in English and Spanish)
Medline Plus and the US National Library of Medicine Specialized Information Services provide lists of links to information on lead and human health (in English and Spanish)
The US Centers for Disease Control and Prevention provides information about its Childhood Lead Poisoning Prevention Program
The UK Health Protection Agency also provides information about lead and its health hazards
doi:10.1371/journal.pmed.0050112
PMCID: PMC2689675  PMID: 18507499
9.  Epidemiological Pathology of Dementia: Attributable-Risks at Death in the Medical Research Council Cognitive Function and Ageing Study 
PLoS Medicine  2009;6(11):e1000180.
Researchers from the Medical Research Council Cognitive Function and Ageing Neuropathology Study carry out an analysis of brain pathologies contributing to dementia, within a cohort of elderly individuals in the UK who agreed to brain donation.
Background
Dementia drug development aims to modulate pathological processes that cause clinical syndromes. Population data (epidemiological neuropathology) will help to model and predict the potential impact of such therapies on dementia burden in older people. Presently this can only be explored through post mortem findings. We report the attributable risks (ARs) for dementia at death for common age-related degenerative and vascular pathologies, and other factors, in the MRC Cognitive Function and Ageing Study (MRC CFAS).
Methods and Findings
A multicentre, prospective, longitudinal study of older people in the UK was linked to a brain donation programme. Neuropathology of 456 consecutive brain donations assessed degenerative and vascular pathologies. Logistic regression modelling, with bootstrapping and sensitivity analyses, was used to estimate AR at death for dementia for specific pathologies and other factors. The main contributors to AR at death for dementia in MRC CFAS were age (18%), small brain (12%), neocortical neuritic plaques (8%) and neurofibrillary tangles (11%), small vessel disease (12%), multiple vascular pathologies (9%), and hippocampal atrophy (10%). Other significant factors include cerebral amyloid angiopathy (7%) and Lewy bodies (3%).
Conclusions
Such AR estimates cannot be derived from the living population; rather they estimate the relative contribution of specific pathologies to dementia at death. We found that multiple pathologies determine the overall burden of dementia. The impact of therapy targeted to a specific pathology may be profound when the dementia is relatively “pure,” but may be less impressive for the majority with mixed disease, and in terms of the population. These data justify a range of strategies, and combination therapies, to combat the degenerative and vascular determinants of cognitive decline and dementia.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Losing one's belongings and forgetting people's names is often a normal part of aging. But increasing forgetfulness can also be a sign of dementia, a group of symptoms caused by several disorders that affect the structure of the brain. The commonest form of dementia is Alzheimer disease. In this, protein clumps called plaques and neurofibrillary tangles form in the brain and cause its degeneration. Vascular dementia, in which problems with blood circulation deprive parts of the brain of oxygen, is also common. People with dementia have problems with two or more “cognitive” functions—thinking, language, memory, understanding, and judgment. As the disease progresses, they gradually lose their ability to deal with normal daily activities until they need total care, their personality often changes, and they may become agitated or aggressive. Dementia is rare before the age of 65 years but about a quarter of people over 85 years old have dementia. Because more people live to a ripe old age these days, the number of people with dementia is increasing. According to the latest estimates, about 35 million people now have dementia and by 2050, 115 million may have the disorder.
Why Was This Study Done?
There is no cure for dementia but many drugs designed to modulate specific abnormal (pathological) changes in the brain that can cause the symptoms of dementia are being developed. To assess the likely impact of these potentially expensive new therapies, experts need to know what proportion of dementia is associated with each type of brain pathology. Although some brain changes can be detected in living brains with techniques such as computed tomography brain scans, most brain changes can only be studied in brains taken from people after death (post mortem brains). In this study, which is part of the UK Medical Research Council Cognitive Function and Ageing Study (MRC CFAS), the researchers look for associations between dementia in elderly people and pathological changes in their post mortem brains and estimate the attributable-risk (AR) for dementia at death associated with specific pathological features in the brain. That is, they estimate the proportion of dementia directly attributable to each type of pathology.
What Did the Researchers Do and Find?
Nearly 20 years ago, the MRC CFAS interviewed more than 18,000 people aged 65 years or older recruited at six sites in England and Wales to determine their cognitive function and their ability to deal with daily activities. 20% of the participants, which included people with and without cognitive impairment, were then assessed in more detail and invited to donate their brains for post mortem examination. As of 2004, 456 individuals had donated their brains. The dementia status of these donors was established using data from their assessment interviews and death certificates, and from interviews with relatives and carers, and their brains were carefully examined for abnormal changes. The researchers then used statistical methods to estimate the AR for dementia at death associated with various abnormal brain changes. The main contributors to AR for dementia at death included age (18% of dementia at death was attributable to this factor), plaques (8%), and neurofibrillary tangles (11%) in a brain region called the neocortex, small blood vessel disease (12%), and multiple abnormal changes in blood vessels (9%).
What Do These Findings Mean?
These findings suggest that multiple abnormal brain changes determine the overall burden of dementia. Importantly, they also suggest that dementia is often associated with mixed pathological changes—many people with dementia had brain changes consistent with both Alzheimer disease and vascular dementia. Because people with dementia live for variable lengths of time during which the abnormal changes in their brain are likely to alter, it may be difficult to extrapolate these findings to living populations of elderly people. Furthermore, only a small percentage of the MRC CFAS participants have donated their brains so the findings of this study may not apply to the general population. Nevertheless, these findings suggest that the new therapies currently under development may do little to reduce the overall burden of dementia because most people's dementia involves multiple pathologies. Consequently, it may be necessary to develop a range of strategies and combination therapies to deal with the ongoing dementia epidemic.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000180.
The US National Institute on Aging provides information for patients and carers about forgetfulness and about Alzheimer disease (in English and Spanish)
The US National Institute of Neurological Disorders and Stroke provides information about dementia (in English and Spanish)
The UK National Health Service Choices Web site also provides detailed information for patients and their carers about dementia and about Alzheimer disease
MedlinePlus provides links to additional resources about dementia and Alzheimer disease (in English and Spanish)
More information about the UK Medical Research Council Cognitive Function and Ageing Study (MRC CFAS) is available
doi:10.1371/journal.pmed.1000180
PMCID: PMC2765638  PMID: 19901977
10.  Deep Brain Stimulation in the Media: Over-Optimistic Portrayals Call for a New Strategy Involving Journalists and Scientists in Ethical Debates 
Deep brain stimulation (DBS) is optimistically portrayed in contemporary media. This already happened with psychosurgery during the first half of the twentieth century. The tendency of popular media to hype the benefits of DBS therapies, without equally highlighting risks, fosters public expectations also due to the lack of ethical analysis in the scientific literature. Media are not expected (and often not prepared) to raise the ethical issues which remain unaddressed by the scientific community. To obtain a more objective portrayal of DBS in the media, a deeper collaboration between the science community and journalists, and particularly specialized ones, must be promoted. Access to databases and articles, directly or through science media centers, has also been proven effective in increasing the quality of reporting. This article has three main objectives. Firstly, to explore the past media coverage of leukotomy, and to examine its widespread acceptance and the neglect of ethical issues in its depiction. Secondly, to describe how current enthusiastic coverage of DBS causes excessive optimism and neglect of ethical issues in patients. Thirdly, to discuss communication models and strategies to enhance media and science responsibility.
doi:10.3389/fnint.2011.00016
PMCID: PMC3095813  PMID: 21617733
deep brain stimulation; science journalism; mass media; neurosurgery; neuroethics
11.  Current Status and Future Direction of Interventional Neuroradiology, the Official Journal of the World Federation of Interventional and Therapeutic Neuroradiology 
Interventional Neuroradiology  2009;15(3):259-265.
Summary
Interventional Neuroradiology (INR) is an international journal devoted to a highly subspecialized field with international editorial board members and a representative journal through which the specialty of neurointervention has continuously evolved, especially through the efforts and passion of Professor Pierre Lasjaunias. Articles in INR are submitted by authors in many countries worldwide and are peer reviewed by international referees. Considering that interventional neuroradiology is the highly specialized field that INR pursues, the impact factor or the Eigenfactor score of INR is still very low partly because the LinkOut services, including PubMed, are not yet provided in a sufficiently open way. Ethical research standards should also be emphasized in INR.
PMCID: PMC3299371  PMID: 20465908
citation analysis, journal impact factors, journal citation reports
12.  Quality of descriptions of treatments: a review of published randomised controlled trials 
BMJ Open  2012;2(6):e001978.
Objectives
To be useable in clinical practise, treatments studied in trials must provide sufficient information to enable clinicians and researchers to replicate. We sought to assess the completeness of treatment descriptions in published randomised controlled trials (RCTs) using a checklist and to determine the extent to which peer reviewers and editors comment on the quality of reporting of treatments.
Design
A cross-sectional study.
Setting
Trials published in the BMJ, a general medical journal.
Participants
Fifty-one trials published in the BMJ were independently evaluated by two raters using a checklist. Reviewers’ and editors’ comments were also assessed for statements on treatment descriptions.
Primary and secondary outcome measures
Proportion of trials rated as replicable (primary outcome).
Results
For 57% (29/51) of the papers, published treatment descriptions were not considered sufficient to allow replication. Most poorly described aspects were the actual procedures involved including the sequencing of the technique (what happened and when) and the physical or informational materials used (eg, training materials): 53% and 43% not clear, respectively. For a third of treatments, the dose/duration of individual sessions was not clear and for a quarter the schedule (interval, frequency, duration or timing) was not clear. Although the majority of problems were not picked up by reviewers and editors, when they were detected only about two-thirds were fixed before publication.
Conclusions
Journals wanting to publish the research of use to practising healthcare professionals need to pay more attention to descriptions of treatments. Our checklist, may be useful for reviewers, and editors and could help ensure that important details of treatments are provided before papers are in the public domain.
doi:10.1136/bmjopen-2012-001978
PMCID: PMC3533061  PMID: 23180392
General Medicine (see Internal Medicine); Journalism (see Medical Journalism)
13.  Abnormal Cortical Development after Premature Birth Shown by Altered Allometric Scaling of Brain Growth 
PLoS Medicine  2006;3(8):e265.
Background
We postulated that during ontogenesis cortical surface area and cerebral volume are related by a scaling law whose exponent gives a quantitative measure of cortical development. We used this approach to investigate the hypothesis that premature termination of the intrauterine environment by preterm birth reduces cortical development in a dose-dependent manner, providing a neural substrate for functional impairment.
Methods and Findings
We analyzed 274 magnetic resonance images that recorded brain growth from 23 to 48 wk of gestation in 113 extremely preterm infants born at 22 to 29 wk of gestation, 63 of whom underwent neurodevelopmental assessment at a median age of 2 y. Cortical surface area was related to cerebral volume by a scaling law with an exponent of 1.29 (95% confidence interval, 1.25–1.33), which was proportional to later neurodevelopmental impairment. Increasing prematurity and male gender were associated with a lower scaling exponent (p < 0.0001) independent of intrauterine or postnatal somatic growth.
Conclusions
Human brain growth obeys an allometric scaling relation that is disrupted by preterm birth in a dose-dependent, sexually dimorphic fashion that directly parallels the incidence of neurodevelopmental impairments in preterm infants. This result focuses attention on brain growth and cortical development during the weeks following preterm delivery as a neural substrate for neurodevelopmental impairment after premature delivery.
Measurement of the way that the brain grows after birth in preterm infants, particularly the relation between surface area and cortical volume, may help to predict neurodevelopmental impairment.
Editors' Summary
Background.
Nowadays, many children who are born prematurely can be expected to survive. However, children who are born very prematurely have a high chance of having brain damage that leads to delayed development compared with children of the same age but who were not born prematurely. This delay continues into school age at least and is worse in boys than in girls. Although some children have large obvious areas of brain damage, shown on brain scans, most do not and the changes that cause the delay must be more subtle. One possibility is that the underlying abnormality may be due to the fact that in these children the surface of the brain grows at too slow a rate compared to the volume of the brain. It is already known that the human brain (and the brain of closely related monkeys) has a very high surface area compared to its volume and that during normal development this surface area grows much faster than the volume. This extra growth appears to be necessary for the brain to make all the connections it needs.
Why Was This Study Done?
The researchers wanted to look at how the different parts of the brain grew in very premature babies born before 30 weeks (the normal time of gestation is around 40 weeks). In particular, they wanted to see if there were changes in the rates at which the different parts of the brain grew in relation to each other (the study of the change in proportion of various parts of an organism as a consequence of growth is known as Allometrics—hence the title of the paper). They then wanted to see if the rates of brain growth were affected by a variety of factors, including the sex of the baby or how premature he or she was, and whether there was a relationship between the rate of brain growth and later delayed development.
What Did the Researchers Do and Find?
Using a specially designed magnetic resonance imaging (MRI) machine—a type of scanner that allows very detailed pictures to be taken of the brain—the authors took 274 images that recorded brain growth from 23 to 48 wk of gestation in 113 extremely premature infants born between 22 and 29 weeks of gestation. 63 of these children were then assessed to see how they were developing mentally at around 2 years of age. As expected, the researchers found that the brain surface area grew faster than the brain volume and that the rate of growth was proportional to the chances of having delayed development later—that is, the slower the rate of growth of surface area relative to volume the more likely there was to be delayed development. In addition, the more premature babies, and those that were male, were most likely to have a slower growth of the brain surface compared with the brain volume.
What Do These Findings Mean?
It seems that human brains grow during development in a particular way, which means that the surface area grows more than the volume. When babies are born prematurely this pattern of growth is disrupted, and the amount of disruption of the growth seems to predict whether there is delayed development 2 years later. The earlier the birth, the greater the disruption is; in addition, boys are affected more than girls. These results will need to be confirmed in more babies, but if they are correct then it may be possible to monitor brain growth after birth in order to predict which children might need development support later on. The research also suggests useful avenues for further work to understand the exact neuroanatomy of disability in these children.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030265.
• MedlinePlus has a page of links to information on premature babies
• The March of Dimes is a US charity that funds research on prematurity
• Action Medical Research and Wellbeing are UK charities that fund research in this area
doi:10.1371/journal.pmed.0030265
PMCID: PMC1523379  PMID: 16866579
14.  HMGB1 Mediates Endogenous TLR2 Activation and Brain Tumor Regression 
PLoS Medicine  2009;6(1):e1000010.
Background
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor that carries a 5-y survival rate of 5%. Attempts at eliciting a clinically relevant anti-GBM immune response in brain tumor patients have met with limited success, which is due to brain immune privilege, tumor immune evasion, and a paucity of dendritic cells (DCs) within the central nervous system. Herein we uncovered a novel pathway for the activation of an effective anti-GBM immune response mediated by high-mobility-group box 1 (HMGB1), an alarmin protein released from dying tumor cells, which acts as an endogenous ligand for Toll-like receptor 2 (TLR2) signaling on bone marrow-derived GBM-infiltrating DCs.
Methods and Findings
Using a combined immunotherapy/conditional cytotoxic approach that utilizes adenoviral vectors (Ad) expressing Fms-like tyrosine kinase 3 ligand (Flt3L) and thymidine kinase (TK) delivered into the tumor mass, we demonstrated that CD4+ and CD8+ T cells were required for tumor regression and immunological memory. Increased numbers of bone marrow-derived, tumor-infiltrating myeloid DCs (mDCs) were observed in response to the therapy. Infiltration of mDCs into the GBM, clonal expansion of antitumor T cells, and induction of an effective anti-GBM immune response were TLR2 dependent. We then proceeded to identify the endogenous ligand responsible for TLR2 signaling on tumor-infiltrating mDCs. We demonstrated that HMGB1 was released from dying tumor cells, in response to Ad-TK (+ gancyclovir [GCV]) treatment. Increased levels of HMGB1 were also detected in the serum of tumor-bearing Ad-Flt3L/Ad-TK (+GCV)-treated mice. Specific activation of TLR2 signaling was induced by supernatants from Ad-TK (+GCV)-treated GBM cells; this activation was blocked by glycyrrhizin (a specific HMGB1 inhibitor) or with antibodies to HMGB1. HMGB1 was also released from melanoma, small cell lung carcinoma, and glioma cells treated with radiation or temozolomide. Administration of either glycyrrhizin or anti-HMGB1 immunoglobulins to tumor-bearing Ad-Flt3L and Ad-TK treated mice, abolished therapeutic efficacy, highlighting the critical role played by HMGB1-mediated TLR2 signaling to elicit tumor regression. Therapeutic efficacy of Ad-Flt3L and Ad-TK (+GCV) treatment was demonstrated in a second glioma model and in an intracranial melanoma model with concomitant increases in the levels of circulating HMGB1.
Conclusions
Our data provide evidence for the molecular and cellular mechanisms that support the rationale for the clinical implementation of antibrain cancer immunotherapies in combination with tumor killing approaches in order to elicit effective antitumor immune responses, and thus, will impact clinical neuro-oncology practice.
Maria Castro and colleagues use cell line and transgenic mouse approaches to study the mechanisms underlying the immune response to glioblastoma multiforme.
Editors' Summary
Background.
Every year, more than 175,000 people develop a primary brain tumor (a cancer that starts in the brain rather than spreading in from elsewhere). Like all cancers, brain tumors develop when a cell acquires genetic changes that allow it to grow uncontrollably and that change other aspects of its behavior, including the proteins it makes. There are many different types of cells in the brain and, as a result, there are many different types of brain tumors. However, one in five primary brain tumors is glioblastoma multiforme (GBM; also known as grade 4 astrocytoma), a particularly aggressive cancer. With GBM, the average time from diagnosis to death is one year and only one person in 20 survives for five years after a diagnosis of GBM. Symptoms of GBM include headaches, seizures, and changes in memory, mood, or mental capacity. Treatments for GBM, which include surgery, radiotherapy, and chemotherapy, do not “cure” the tumor but they can ease these symptoms.
Why Was This Study Done?
Better treatments for GBM are badly needed, and one avenue that is being explored is immunotherapy—a treatment in which the immune system is used to fight the cancer. Because many tumors make unusual proteins, the immune system can sometimes be encouraged to recognize tumor cells as foreign invaders and kill them. Unfortunately, attempts to induce a clinically useful anti-GBM immune response have been unsuccessful, partly because the brain contains very few dendritic cells, a type of immune system cell that kick-starts effective immune responses by presenting foreign proteins to other immune system cells. Another barrier to immunotherapy for GBM is immune evasion by the tumor. Many tumors develop ways to avoid the immune response as they grow. For example, they sometimes reduce the expression of proteins that the immune system might recognize as foreign. In this study, the researchers test a new combined treatment strategy for GBM in which dendritic cells are encouraged to enter the brain and tumor cells are killed to release proteins capable of stimulating an effective antitumor immune response.
What Did the Researchers Do and Find?
The researchers first established brain tumors in mice. Then, they injected harmless viruses carrying the genes for Fms-like tyrosine kinase 3 ligand (Ftl3L; a protein that attracts dendritic cells) and for thymidine kinase (TK; cells expressing TK are killed by a drug called gancyclovir) into the tumor. Expression of both Flt3L and TK (but not of either protein alone) plus gancyclovir treatment shrank the tumors and greatly improved the survival of the mice. The researchers show that their strategy increased the migration of dendritic cells into the tumor provided they expressed an immune system protein called Toll-like receptor 2 (TLR2). TLR2 expression on the dendritic cells was also needed for an effective anti-tumor immune response and for tumor regression. TLR2 normally activates dendritic cells by binding to specific proteins on invading pathogens, so what was TLR2 binding to in the mouse tumors? The researchers reveal that TLR2 was responding to high-mobility-group box 1 (HMGB1), a protein released by the dying tumor cells by showing that treatment of the tumor-bearing mice with the HMGB1 inhibitor glycyrrhizin blocked the therapeutic effect of Flt3L/TK expression. Finally, the researchers report that other tumor cell types release HMGB1 when they are killed and that the Flt3L/TK expression strategy can also kill other tumors growing in mouse brains.
What Do These Findings Mean?
Results obtained in mouse models of human diseases do not always lead to effective treatments for human patients. Nevertheless, the findings of this study provide new insights into how an effective immune response against brain tumors might be brought about. Most importantly, they show that an effective strategy might need to both attract dendritic cells into the brain tumor and to kill tumor cells, so they release proteins that can activate the dendritic cells. That is, the authors suggest it's important to combine immunotherapies with tumor-killing strategies to provide effective treatments for primary and metastatic brain tumors
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000010.
The US National Cancer Institute provides information about brain tumors for patients and health professionals and about the the immune system and how it can be harnessed to fight cancer (in English and Spanish)
Cancer Research UK provides information on all aspects of brain tumors for patients and their caregivers
MedlinePlus provides links to further information about brain cancer, (including some links to information in Spanish)
The American Brain Tumor Association provides brain tumor resources and information
The National Brain Tumor Society provides educational and support services regarding brain tumors
doi:10.1371/journal.pmed.1000010
PMCID: PMC2621261  PMID: 19143470
15.  Brain Connectivity: A New Journal Emerges 
Brain Connectivity  2011;1(1):1-2.
doi:10.1089/brain.2011.0020
PMCID: PMC3621355  PMID: 22432950
16.  Beyond the human genome 
PMCID: PMC167182  PMID: 11590968
brain; DNA; genetics; genome, human; human genome project; journalism, medical; persuasive communication; research
17.  Norah Schuster student presentations 
PMCID: PMC1294233
George James Guthrie; military surgeon; history of hay fever; women pioneers in medicine; development of neurological examination; the journal Brain
18.  Therapies for children with cerebral palsy: A Web of Science-based literature analysis 
Neural Regeneration Research  2012;7(33):2632-2639.
OBJECTIVE:
To identify global research trends in three therapies for children with cerebral palsy.
DATA RETRIEVAL:
We performed a bibliometric analysis of studies on therapies for children with cerebral palsy from 2002 to 2011 retrieved from Web of Science.
SELECTION CRITERIA:
Inclusion criteria: (a) peer-reviewed published articles on botulinum toxin, constraint-induced movement therapy, or acupuncture for children with cerebral palsy indexed in Web of Science; (b) original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material, and news items; and (c) publication between 2002 and 2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) documents that were not published in the public domain; and (c) a number of corrected papers from the total number of articles.
MAIN OUTCOME MEASURES:
(1) Number of publications on the three therapies; (2) annual publication output, distribution by journals, distribution by institution, and top-cited articles on botulinum toxin; (3) annual publication output, distribution by journal, distribution by institution, and top-cited articles on constraint-induced movement therapy; (4) annual publication, distribution by journal, distribution by institution, and top-cited articles on acupuncture.
RESULTS:
This analysis, based on Web of Science articles, identified several research trends in studies published over the past 10 years of three therapies for children with cerebral palsy. More articles on botulinum toxin for treating children with cerebral palsy were published than the articles regarding constraint-induced movement therapy or acupuncture. The numbers of publications increased over the 10-year study period. Most papers appeared in journals with a focus on neurology, such as Developmental Medicine and Child Neurology and Journal of Child Neurology. Research institutes publishing on botulinum toxin treatments for this population are mostly in the Netherlands, the United States of America, and Australia; those publishing on constraint-induced movement therapy are mostly in Australia and the United States of America; and those publishing on acupuncture are mostly in China, Sweden and the United States of America.
CONCLUSION:
Analysis of literature and research trends indicated that there was no one specific therapy to cure cerebral palsy. Further studies are still necessary.
doi:10.3969/j.issn.1673-5374.2012.33.009
PMCID: PMC4200731  PMID: 25368640
constraint-induced movement therapy; botulinum toxin; acupuncture; cerebral palsy; nerve injury; infant; children; brain; Web of Science; bibliometric; neural regeneration
19.  A randomized trial of specialist genetic assessment: psychological impact on women at different levels of familial breast cancer risk 
British Journal of Cancer  2002;86(2):233-238.
The aim was to compare the psychological impact of a multidisciplinary specialist genetics service with surgical provision in women at high risk and those at lower risk of familial breast cancer. Women (n=735) were randomized to a surgical consultation with (trial group) or without (control group) specialist genetic risk assessment and the possible offer of presymptomatic genetic testing. Participants completed questionnaires before and immediately after the consultation to assess anxiety, cancer worry, perceived risk, interest in genetic testing and satisfaction. Responses of subgroups of women stratified by clinicians as low, moderate, or high risk were analyzed. There were no significant main effects of study intervention on any outcome variable. Regardless of risk information, there was a statistically significant reduction in state anxiety (P<0.001). Reductions in cancer worry and perceived risk were significant for women at low or moderate risk (P<0.001) but not those at high risk, and satisfaction was significantly lower in the high risk group (P<0.001). In high risk women who received specialist genetic input, there was a marginally significant trend towards increased perceived risk. The effect of risk information on interest in genetic testing was not significant. Breast care specialists other than geneticists might provide assessments of breast cancer risk, reassuring women at reduced risk and targeting those at high risk for specialist genetic counselling and testing services. These findings are discussed in relation to the existing UK Calman-Hine model of service delivery in cancer genetics.
British Journal of Cancer (2002) 86, 233–238. DOI: 10.1038/sj/bjc/6600051 www.bjcancer.com
© 2002 The Cancer Research Campaign
doi:10.1038/sj.bjc.6600051
PMCID: PMC2375197  PMID: 11870512
familial breast cancer; genetic risk assessment; psychological impact; service delivery
20.  Reporting of Pediatric Palliative Care: A Systematic Review and Quantitative Analysis of Research Publications in Palliative Care Journals 
Indian Journal of Palliative Care  2011;17(3):202-209.
Context:
Pediatric palliative care clinical practice depends upon an evidence-based decision-making process which in turn is based upon current research evidence.
Aims:
This study aimed to perform a quantitative analysis of research publications in palliative care journals for reporting characteristics of articles on pediatric palliative care.
Settings and Design:
This was a systematic review of palliative care journals.
Materials and Methods:
Twelve palliative care journals were searched for articles with “paediatric” or “children” in titles of the articles published from 2006 to 2010. The reporting rates of all journals were compared. The selected articles were categorized into practice, education, research, and administration, and subsequently grouped into original and review articles. The original articles were subgrouped into qualitative and quantitative studies, and the review articles were grouped into narrative and systematic reviews. Each subgroup of original articles’ category was further classified according to study designs.
Statistical Analysis Used:
Descriptive analysis using frequencies and percentiles was done using SPSS for Windows, version 11.5.
Results:
The overall reporting rate among all journals was 2.66% (97/3634), and Journal of Hospice and Palliative Nursing (JHPN) had the highest reporting rate of 12.5% (1/8), followed by Journal of Social Work in End-of-Life and Palliative Care (JSWELPC) with a rate of 7.5% (5/66), and Journal of Palliative Care (JPC) with a rate of 5.33% (11/206).
Conclusions:
The overall reporting rate for pediatric palliative care articles in palliative care journals was very low and there were no randomized clinical trials and systematic reviews found. The study findings indicate a lack of adequate evidence base for pediatric palliative care.
doi:10.4103/0973-1075.92337
PMCID: PMC3276817  PMID: 22347775
Evidence-based pediatric palliative care; Journal reporting; Publication trend; Research
21.  Mapping the literature of addictions treatment 
Objectives:
This study analyzes and describes the literature of addictions treatment and indexing coverage for core journals in the field.
Methods:
Citations from three source journals for the years 2008 through 2010 were analyzed using the 2010 Mapping the Literature of Nursing and Allied Health Professions Project Protocol. The distribution of cited journals was analyzed by applying Bradford's Law of Scattering.
Results:
More than 40,000 citations were analyzed. Journals (2,655 unique titles) were the most frequently cited form of literature, with 10 journals providing one-third of the cited journal references. Drug and Alcohol Dependence was the most frequently cited journal. The frequency of cited addictions journals, formats cited, age of citations, and indexing coverage is identified.
Conclusions:
Addictions treatment literature is widely dispersed among multidisciplinary publications with relatively few publications providing most of the citations. Results of this study will help researchers, students, clinicians, and librarians identify the most important journals and bibliographic indexes in this field, as well as publishing opportunities.
doi:10.3163/1536-5050.101.2.005
PMCID: PMC3634373  PMID: 23646025
22.  Rising Publication Delays Inflate Journal Impact Factors 
PLoS ONE  2012;7(12):e53374.
Journal impact factors have become an important criterion to judge the quality of scientific publications over the years, influencing the evaluation of institutions and individual researchers worldwide. However, they are also subject to a number of criticisms. Here we point out that the calculation of a journal’s impact factor is mainly based on the date of publication of its articles in print form, despite the fact that most journals now make their articles available online before that date. We analyze 61 neuroscience journals and show that delays between online and print publication of articles increased steadily over the last decade. Importantly, such a practice varies widely among journals, as some of them have no delays, while for others this period is longer than a year. Using a modified impact factor based on online rather than print publication dates, we demonstrate that online-to-print delays can artificially raise a journal’s impact factor, and that this inflation is greater for longer publication lags. We also show that correcting the effect of publication delay on impact factors changes journal rankings based on this metric. We thus suggest that indexing of articles in citation databases and calculation of citation metrics should be based on the date of an article’s online appearance, rather than on that of its publication in print.
doi:10.1371/journal.pone.0053374
PMCID: PMC3534064  PMID: 23300920
23.  Time Lapses in Information Dissemination: Research Laboratory to Physician's Office 
To illustrate the extent of time lags from manuscript submission to journal publication certain “core” journals in neurology and general medicine have been surveyed. The clinical journals experience less time lag, but more of a problem with backlogs of manuscripts, than basic research journals. Most editors of the journals surveyed cited the following as the major causes for publication delay: failure of authors to follow journal requirements, slowness of editorial and referee reviews, and author revisions.
After reviewing the results of the journal survey and articles concerning information dissemination, it seems that the role of the journal is changing. Publication speed in a journal is not of vital importance to members within an “invisible college” but is important to those conducting research in fields outside of their “invisible college” contacts. Distinctions will have to be made between the archival function and the rapid dissemination function if efficient and effective modes of information dissemination are to be developed.
PMCID: PMC198791  PMID: 4466502
24.  Risk of Violent Crime in Individuals with Epilepsy and Traumatic Brain Injury: A 35-Year Swedish Population Study 
PLoS Medicine  2011;8(12):e1001150.
Seena Fazel and colleagues report findings from a longitudinal follow-up study in Sweden that evaluated the risks of violent crime subsequent to hospitalization for epilepsy, or traumatic brain injury. The researchers control for familial confounding with sibling controls. The analyses call into question an association between epilepsy and violent crime, although they do suggest that there may be a relationship between traumatic brain injury and violent crime.
Background
Epilepsy and traumatic brain injury are common neurological conditions, with general population prevalence estimates around 0.5% and 0.3%, respectively. Although both illnesses are associated with various adverse outcomes, and expert opinion has suggested increased criminality, links with violent behaviour remain uncertain.
Methods and Findings
We combined Swedish population registers from 1973 to 2009, and examined associations of epilepsy (n = 22,947) and traumatic brain injury (n = 22,914) with subsequent violent crime (defined as convictions for homicide, assault, robbery, arson, any sexual offense, or illegal threats or intimidation). Each case was age and gender matched with ten general population controls, and analysed using conditional logistic regression with adjustment for socio-demographic factors. In addition, we compared cases with unaffected siblings.
Among the traumatic brain injury cases, 2,011 individuals (8.8%) committed violent crime after diagnosis, which, compared with population controls (n = 229,118), corresponded to a substantially increased risk (adjusted odds ratio [aOR] = 3.3, 95% CI: 3.1–3.5); this risk was attenuated when cases were compared with unaffected siblings (aOR = 2.0, 1.8–2.3). Among individuals with epilepsy, 973 (4.2%) committed a violent offense after diagnosis, corresponding to a significantly increased odds of violent crime compared with 224,006 population controls (aOR = 1.5, 1.4–1.7). However, this association disappeared when individuals with epilepsy were compared with their unaffected siblings (aOR = 1.1, 0.9–1.2). We found heterogeneity in violence risk by age of disease onset, severity, comorbidity with substance abuse, and clinical subgroups. Case ascertainment was restricted to patient registers.
Conclusions
In this longitudinal population-based study, we found that, after adjustment for familial confounding, epilepsy was not associated with increased risk of violent crime, questioning expert opinion that has suggested a causal relationship. In contrast, although there was some attenuation in risk estimates after adjustment for familial factors and substance abuse in individuals with traumatic brain injury, we found a significantly increased risk of violent crime. The implications of these findings will vary for clinical services, the criminal justice system, and patient charities.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
News stories linking mental illness (diseases that appear primarily as abnormalities of thought, feeling or behavior) with violence frequently hit the headlines. But what about neurological conditions—disorders of the brain, spinal cord, and nerves? People with these disorders, which include dementia, Parkinson's disease, and brain tumors, often experience stigmatization and discrimination, a situation that is made worse by the media and by some experts suggesting that some neurological conditions increase the risk of violence. For example, many modern textbooks assert that epilepsy—a neurological condition that causes repeated seizures or fits—is associated with increased criminality and violence. Similarly, various case studies have linked traumatic brain injury—damage to the brain caused by a sudden blow to the head—with an increased risk of violence.
Why Was This Study Done?
Despite public and expert perceptions, very little is actually known about the relationship between epilepsy and traumatic brain injury and violence. In particular, few if any population-based, longitudinal studies have investigated whether there is an association between the onset of either of these two neurological conditions and violence at a later date. This information might make it easier to address the stigma that is associated with these conditions. Moreover, it might help scientists understand the neurobiological basis of violence, and it could help health professionals appropriately manage individuals with these two disorders. In this longitudinal study, the researchers begin to remedy the lack of hard information about links between neurological conditions and violence by investigating the risk of violent crime associated with epilepsy and with traumatic brain injury in the Swedish population.
What Did the Researchers Do and Find?
The researchers used the National Patient Register to identify all the cases of epilepsy and traumatic brain injury that occurred in Sweden between 1973 and 2009. They matched each case (nearly 23,000 for each condition) with ten members of the general population and retrieved data on all convictions for violent crime over the same period from the Crime Register. They then linked these data together using the personal identification numbers that identify Swedish residents in national registries. 4.2% of individuals with epilepsy had at least one conviction for violence after their diagnosis, but only 2.5% of the general population controls did. That is, epilepsy increased the absolute risk of a conviction for violence by 1.7%. Using a regression analysis that adjusted for age, gender, and various socio-demographic factors, the researchers calculated that the odds of individuals with epilepsy committing a violent crime were 1.5 times higher than for general population controls (an adjusted odds ratio [aOR] of 1.5). The strength of this association was reduced when further adjustment was made for substance abuse, and disappeared when individuals with epilepsy were compared with their unaffected siblings (a sibling control study). Similarly, 8.8% of individuals with traumatic brain injury were convicted of a violent crime after their diagnosis compared to only 3% of controls, giving an aOR of 3.3. Again, the strength of this association was reduced when affected individuals were compared to their unaffected siblings (aOR = 2.0) and when adjustment was made for substance abuse (aOR = 2.3).
What Do These Findings Mean?
Although some aspects of this study may have affected the accuracy of its findings, these results nevertheless challenge the idea that there are strong direct links between epilepsy and violent crime. The low absolute rate of violent crime and the lack of any association between epilepsy and violent crime in the sibling control study argue against a strong link, a potentially important finding given the stigmatization of epilepsy. For traumatic brain injury, the reduced association with violent crime in the sibling control study compared with the general population control study suggests that shared familial features may be responsible for some of the association between brain injury and violence. As with epilepsy, this finding should help patient charities who are trying to reduce the stigma associated with traumatic brain injury. Importantly, however, these findings also suggest that some groups of patients with these conditions (for example, patients with head injuries who abuse illegal drugs and alcohol) would benefit from being assessed for their risk of behaving violently and from appropriate management.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001150.
This study is further discussed in a PLoS Medicine Perspective by Jan Volavka
The US National Institute of Neurological Disorders and Stroke provides detailed information about traumatic brain injury and about epilepsy (in English and Spanish)
The UK National Health Service Choices website provides information about severe head injury, including a personal story about a head injury sustained in a motor vehicle accident, and information about epilepsy, including personal stories about living with epilepsy
Healthtalkonline has information on epilepsy, including patient perspectives
MedlinePlus provide links to further resources on traumatic brain injury and on epilepsy (available in English and Spanish)
doi:10.1371/journal.pmed.1001150
PMCID: PMC3246446  PMID: 22215988
25.  Accuracy of References in Indian Journal of Otolaryngology and Head & Neck Surgery 
This study was done to observe the accuracy of references in articles published in Indian Journal of Otolaryngology and Head & Neck Surgery. There were 63 references randomly selected from different issues of Indian Journal of Otolaryngology and Head & Neck Surgery (IJOHNS). It includes: Volume 61, Number 4, December 2009 and Volume 62, Number 1, January 2010. References were examined in details by dividing them into six elements and they were compared with the original for accuracy. References not cited from indexed journals were excluded. Statistical analysis was done by using frequency and percentage. Results show that 30.1% references in Indian Journal of Otolaryngology and Head & Neck Surgery were incorrect. Most common errors were author’s name and journal name. Author’s names were found to be incorrect in 11.1% references while journal name were found to be incorrect in 6.3%. Errors in citing the references are also found in the Indian Journal of Otolaryngology and Head & Neck Surgery. The quoted error in this study is comparable to other international literatures. The majority of errors are avoidable. So, the authors, editors and the reviewers have to check for any errors seriously before publication in the journal.
doi:10.1007/s12070-010-0048-y
PMCID: PMC3266089  PMID: 22319688
References; Accuracy; Indian Journal of Otolaryngology and Head & Neck Surgery (IJOHNS)

Results 1-25 (160641)