Search tips
Search criteria

Results 1-25 (4884)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Structural analysis of bacteriophage T4 DNA replication: a review in the Virology Journal series on bacteriophage T4 and its relatives 
Virology Journal  2010;7:359.
The bacteriophage T4 encodes 10 proteins, known collectively as the replisome, that are responsible for the replication of the phage genome. The replisomal proteins can be subdivided into three activities; the replicase, responsible for duplicating DNA, the primosomal proteins, responsible for unwinding and Okazaki fragment initiation, and the Okazaki repair proteins. The replicase includes the gp43 DNA polymerase, the gp45 processivity clamp, the gp44/62 clamp loader complex, and the gp32 single-stranded DNA binding protein. The primosomal proteins include the gp41 hexameric helicase, the gp61 primase, and the gp59 helicase loading protein. The RNaseH, a 5' to 3' exonuclease and T4 DNA ligase comprise the activities necessary for Okazaki repair. The T4 provides a model system for DNA replication. As a consequence, significant effort has been put forth to solve the crystallographic structures of these replisomal proteins. In this review, we discuss the structures that are available and provide comparison to related proteins when the T4 structures are unavailable. Three of the ten full-length T4 replisomal proteins have been determined; the gp59 helicase loading protein, the RNase H, and the gp45 processivity clamp. The core of T4 gp32 and two proteins from the T4 related phage RB69, the gp43 polymerase and the gp45 clamp are also solved. The T4 gp44/62 clamp loader has not been crystallized but a comparison to the E. coli gamma complex is provided. The structures of T4 gp41 helicase, gp61 primase, and T4 DNA ligase are unknown, structures from bacteriophage T7 proteins are discussed instead. To better understand the functionality of T4 DNA replication, in depth structural analysis will require complexes between proteins and DNA substrates. A DNA primer template bound by gp43 polymerase, a fork DNA substrate bound by RNase H, gp43 polymerase bound to gp32 protein, and RNase H bound to gp32 have been crystallographically determined. The preparation and crystallization of complexes is a significant challenge. We discuss alternate approaches, such as small angle X-ray and neutron scattering to generate molecular envelopes for modeling macromolecular assemblies.
PMCID: PMC3012046  PMID: 21129204
2.  Initiation of bacteriophage T4 DNA replication and replication fork dynamics: a review in the Virology Journal series on bacteriophage T4 and its relatives 
Virology Journal  2010;7:358.
Bacteriophage T4 initiates DNA replication from specialized structures that form in its genome. Immediately after infection, RNA-DNA hybrids (R-loops) occur on (at least some) replication origins, with the annealed RNA serving as a primer for leading-strand synthesis in one direction. As the infection progresses, replication initiation becomes dependent on recombination proteins in a process called recombination-dependent replication (RDR). RDR occurs when the replication machinery is assembled onto D-loop recombination intermediates, and in this case, the invading 3' DNA end is used as a primer for leading strand synthesis. Over the last 15 years, these two modes of T4 DNA replication initiation have been studied in vivo using a variety of approaches, including replication of plasmids with segments of the T4 genome, analysis of replication intermediates by two-dimensional gel electrophoresis, and genomic approaches that measure DNA copy number as the infection progresses. In addition, biochemical approaches have reconstituted replication from origin R-loop structures and have clarified some detailed roles of both replication and recombination proteins in the process of RDR and related pathways. We will also discuss the parallels between T4 DNA replication modes and similar events in cellular and eukaryotic organelle DNA replication, and close with some current questions of interest concerning the mechanisms of replication, recombination and repair in phage T4.
PMCID: PMC3016281  PMID: 21129203
3.  Robert A. Weisberg (1937–2011): a Bacteriophage Pioneer▿ 
Journal of Virology  2011;85(24):12839.
With the untimely, sudden passing of Robert Weisberg on 1 September 2011, the bacteriophage community lost a shining light. Bob had a remarkable career and served his profession exceptionally well. He was an editor of the Journal of Virology (1983 to 1988) and the Journal of Bacteriology (1985 to 1995) and worked tirelessly to advance bacteriophage biology. He was my mentor when I was a Staff Fellow at the NIH in the mid-1970s. His long-time collaborator and colleague, Max Gottesman, has prepared a tribute to this stellar virologist.
PMCID: PMC3233159
4.  Effect of lysogeny on transfection and transfection enhancement in Bacillus subtilis. 
Journal of Bacteriology  1975;121(1):305-312.
Strains of Bacillus subtilis 168 lysogenic for bacteriophage phi105 transfer with deoxyribonucleic acid (DNA) isolated from bacteriophage SPO2 at a higher efficiency than non-lysogenic strains. This enhancement of transfection was not the result of recombination between bacteriophages SPO2 and phi105. Superinfection marker rescue increased transfection with DNA from bacteriophage phi105 occurred simultaneously with the addition of the transfecting DNA. Again, this enhancement of transfection was not the result of recombination but rather a protection of the transfecting DNA by the superinfecting bacteriophage. The ability of the superinfecting bacteriophage to protect the transfecting DNA from inactivation was maximal when the bacteria were just becoming competent. Bacteriophage phi1 cannot replicate after the transfection of competent bacteria lacking a functional DNA replication system, whereas bacteriophage phi1 was able to replicate after infection of competent bacteria grown under comparable conditions. These observations support the hypothesis that GAPase and an inducible repair system play an important role in the development of competence.
PMCID: PMC285644  PMID: 803953
5.  Thymineless bacteriophage induction in Staphylococcus aureus. I. High-frequency transduction with lysates containing a bacteriophage related to bacteriophage phi 11. 
Journal of Virology  1975;16(6):1357-1366.
A thymine-requiring mutant of Staphylococcus aureus, strain 8325 (PI258)thy, undergoes prophage induction and lysis after thymine starvation. Four different phages were isolated from the lysate in low titers, among which was a phage designated phi 14, which differs from phage phi 11 in its immunity locus. The thymineless induced lysates of strain 8325(PI258)thy transduce the penicillinase plasmid at high frequency (10(-1), whereas transduction of chromosomal markers is inefficient. A plasmic-cured derivative of strain 8325(PI258)thy is also lysed by thymine starvation and be used for high-frequency transduction of other plasmids. Reconstitution of a strain of S. aureus that responds to thymine starvation was only partially successful, but this system can effectively be used to transduce plasmids or plasmid derivatives.
PMCID: PMC355743  PMID: 127846
7.  Thinking about microcolonies as phage targets 
Bacteriophage  2012;2(3):200-204.
Phage targets for adsorption can include: (1) individual bacteria; (2) bacterial cellular arrangements such as streptococci; (3) microcolonies consisting of bacterial clones as can make up bacterial lawns and biofilms; and (4) bacterial biofilms themselves. While much effort has gone into considering category 1, and some into category 4, substantially less has been put into the question of how bacterial association into clonal arrangements or microcolonies might affect phage-bacterial interactions. Recently I have been exploring just this issue—within a single-authored monograph published in 2011 and a theoretical article published in 2012 as part of a special issue of the journal, Viruses. For this commentary, I have been invited to summarize my thinking on how bacterial association into either cellular arrangements or microcolonies might affect their susceptibility to phages along with related issues of bacterial resistance to phages and phage propagation in the context of both plaques and biofilms.
PMCID: PMC3530530  PMID: 23275871
bacteriophages; biofilm; cellular arrangement; lysis inhibition; microcolony; phage; phage ecology; plaque formation; T-even phages
8.  Nanoscale bacteriophage biosensors beyond phage display 
Bacteriophages are traditionally used for the development of phage display technology. Recently, their nanosized dimensions and ease with which genetic modifications can be made to their structure and function have put them in the spotlight towards their use in a variety of biosensors. In particular, the expression of any protein or peptide on the extraluminal surface of bacteriophages is possible by genetically engineering the genome. In addition, the relatively short replication time of bacteriophages offers researchers the ability to generate mass quantities of any given bacteriophage-based biosensor. Coupled with the emergence of various biomarkers in the clinic as a means to determine pathophysiological states, the development of current and novel technologies for their detection and quantification is imperative. In this review, we categorize bacteriophages by their morphology into M13-based filamentous bacteriophages and T4- or T7-based icosahedral bacteriophages, and examine how such advantages are utilized across a variety of biosensors. In essence, we take a comprehensive approach towards recent trends in bacteriophage-based biosensor applications and discuss their outlook with regards to the field of biotechnology.
PMCID: PMC3797607  PMID: 24143096
biosensing; M13 bacteriophage; T4 bacteriophage; bacterial detection; Escherichia coli; SPR sensor
9.  Propagating the missing bacteriophages: a large bacteriophage in a new class 
Virology Journal  2007;4:21.
The number of successful propagations/isolations of soil-borne bacteriophages is small in comparison to the number of bacteriophages observed by microscopy (great plaque count anomaly). As one resolution of the great plaque count anomaly, we use propagation in ultra-dilute agarose gels to isolate a Bacillus thuringiensis bacteriophage with a large head (95 nm in diameter), tail (486 × 26 nm), corkscrew-like tail fibers (187 × 10 nm) and genome (221 Kb) that cannot be detected by the usual procedures of microbiology. This new bacteriophage, called 0305φ8-36 (first number is month/year of isolation; remaining two numbers identify the host and bacteriophage), has a high dependence of plaque size on the concentration of a supporting agarose gel. Bacteriophage 0305φ8-36 does not propagate in the traditional gels used for bacteriophage plaque formation and also does not produce visible lysis of liquid cultures. Bacteriophage 0305φ8-36 aggregates and, during de novo isolation from the environment, is likely to be invisible to procedures of physical detection that use either filtration or centrifugal pelleting to remove bacteria. Bacteriophage 0305φ8-36 is in a new genomic class, based on genes for both structural components and DNA packaging ATPase. Thus, knowledge of environmental virus diversity is expanded with prospect of greater future expansion.
PMCID: PMC1817643  PMID: 17324288
Staphylococcus bacteriophage 81 is capable of in vivo interaction with Staphylococcus aureus, Type 80/81. This is immediately made evident by increased levels of bacteriophage and concomitant survival of 81 per cent infected mice. The reaction is dependent upon the use of active, type-specific bacteriophage. The maximal protective effect is observed at a bacteriophage to bacteria ratio of 1:2 and decreased quantities of bacteriophage result in decreased protection. Time and sequence of administration are also determining factors. It is evident that bacteriophage administered intravenously is capable of interaction with the infecting bacterial cell at the site of infection. In vivo produced bacteriophage is apparently eliminated or otherwise rendered nondetectable fairly rapidly, occurring within a period of 5 to 10 days. However, it appears that host defense mechanisms are stimulated in the process and actively play a protective role against subsequent challenge inocula administered up to 3 weeks later.
PMCID: PMC2137576  PMID: 13969657
11.  Bacteriophage resistance in Bacillus subtilis 168, W23, and interstrain transformants. 
Journal of Bacteriology  1976;125(3):1120-1126.
Strains of Bacillus subtilis 168 deficient in glucosylated teichoic acid vary in their resistance to bacteriophage infection. Although glucosylated teichoic acid is important for bacteriophage attachment, the results demonstrate that alternate receptor sites exist. Non-glucosylated cell wall mutants could be assigned to specific classes (gtaA, gtaB, gtaC) by their pattern of resistance to three closely related bacteriophages (phi25, phie, SP82). In addition to glucosylation, the type of teichoic acid was also important for bacteriophage attachment. B. subtilis strains 168 and W23 have different teichoic acids in their cell walls and have varied susceptibilities to bacteriophage infection. Transfer of bacteriophage resistance from strain W23 into a derivative of strain 168 was accomplished. The resistant bacteria obtained were imparied in their ability to adsorb bacteriophage and in their capacity to be transfected by bacteriophage deoxyribonucleic acid.
PMCID: PMC236191  PMID: 815237
12.  Two bacteriophages which utilize a new Escherichia coli major outer membrane protein as part of their receptor. 
Journal of Bacteriology  1978;135(1):164-170.
Escherichia coli strain JF694 contains a new major outer membrane protein which we have called protein E (J. Foulds, and T. Chai, J. Bacteriol. 133:1478-1483). Two new bacteriophages, TC45 and TC23, were isolated that require the presence of protein E in the outer membrane of host cells for growth. Both of these bacteriophages have a morphology similar to T-even bacteriophages but are distinct in properties such as plaque morphology, buoyant density, and burst size. Although strain JF694, containing protein E, adsorbs bacteriophage TC45 efficiently, cells killed with heat or chloroform are unable to inactivate this bacteriophage. Purified protein E either in the presence or absence of additional probable cofactors such as lipopolysaccharide was also unable to inactivate bacteriophage TC45. Both bacteriophages probably use protein E as at least part of their receptor but require, in addition, other outer membrane components or a specific orientation or organization of this protein in the outer membrane.
PMCID: PMC224798  PMID: 97266
13.  Temperate Bacteriophages Affect Pulsed-Field Gel Electrophoresis Patterns of Campylobacter jejuni▿  
Journal of Clinical Microbiology  2006;45(2):386-391.
The recently sequenced genome of Campylobacter jejuni RM1221 revealed the presence of three integrated bacteriophage-like elements. In this study, genes from the first element, a Mu-like bacteriophage, were amplified by PCR and used to probe pulsed-field gels of clinical C. jejuni strains obtained from a waterborne outbreak (Ontario, Canada, 2000). These highly similar strains differed only by their pulsed-field gel electrophoresis (PFGE) patterns due to an apparent insertion or deletion of a 40-kb fragment. Bacteriophage probes hybridized to these different bands in Southern blot analysis, indicating that homologues of bacteriophage genes were present in the outbreak strains. Investigation of the bacteriophage insertion sites in these isolates suggested that bacteriophage acquisition, loss, or transposition was responsible for the PFGE pattern variation. The bacteriophage gene sequences were similar, but not identical, in the outbreak strains and RM1221, indicating that differences may exist between the bacteriophages.
PMCID: PMC1829001  PMID: 17135440
14.  Novel Bacteriophages Containing a Genome of Another Bacteriophage within Their Genomes 
PLoS ONE  2012;7(7):e40683.
A novel bacteriophage infecting Staphylococus pasteuri was isolated during a screen for phages in Antarctic soils. The phage named SpaA1 is morphologically similar to phages of the family Siphoviridae. The 42,784 bp genome of SpaA1 is a linear, double-stranded DNA molecule with 3′ protruding cohesive ends. The SpaA1 genome encompasses 63 predicted protein-coding genes which cluster within three regions of the genome, each of apparently different origin, in a mosaic pattern. In two of these regions, the gene sets resemble those in prophages of Bacillus thuringiensis kurstaki str. T03a001 (genes involved in DNA replication/transcription, cell entry and exit) and B. cereus AH676 (additional regulatory and recombination genes), respectively. The third region represents an almost complete genome (except for the short terminal segments) of a distinct bacteriophage, MZTP02. Nearly the same gene module was identified in prophages of B. thuringiensis serovar monterrey BGSC 4AJ1 and B. cereus Rock4-2. These findings suggest that MZTP02 can be shuttled between genomes of other bacteriophages and prophages, leading to the formation of chimeric genomes. The presence of a complete phage genome in the genome of other phages apparently has not been described previously and might represent a ‘fast track’ route of virus evolution and horizontal gene transfer. Another phage (BceA1) nearly identical in sequence to SpaA1, and also including the almost complete MZTP02 genome within its own genome, was isolated from a bacterium of the B. cereus/B. thuringiensis group. Remarkably, both SpaA1 and BceA1 phages can infect B. cereus and B. thuringiensis, but only one of them, SpaA1, can infect S. pasteuri. This finding is best compatible with a scenario in which MZTP02 was originally contained in BceA1 infecting Bacillus spp, the common hosts for these two phages, followed by emergence of SpaA1 infecting S. pasteuri.
PMCID: PMC3398947  PMID: 22815791
15.  Bacteriophages: The viruses for all seasons of molecular biology 
Virology Journal  2005;2:19.
Bacteriophage research continues to break new ground in our understanding of the basic molecular mechanisms of gene action and biological structure. The abundance of bacteriophages in nature and the diversity of their genomes are two reasons why phage research brims with excitement. The pages of Virology Journal will reflect the excitement of the "New Phage Biology."
PMCID: PMC1079957  PMID: 15769295
16.  Rapid isolation and identification of bacteriophage T4-encoded modifications of Escherichia coli RNA polymerase: a generic method to study bacteriophage/host interactions 
Journal of proteome research  2008;7(3):1244-1250.
Bacteriophages are bacterial viruses that infect bacterial cells and they have developed ingenious mechanisms to modify the bacterial RNA polymerase. Using a rapid, specific, single-step immunoisolation procedure to purify Escherichia coli RNA polymerase from bacteriophage T4 infected cells; we have identified bacteriophage T4-dependent modifications of the host RNA polymerase. We suggest that this methodology is applicable for the identification of bacteriophage-dependent alterations of the host synthesis machinery.
PMCID: PMC2612130  PMID: 18271525
Escherichia coli; bacteriophage; RNA polymerase; bacteriophage infection; immunoisolation; MALDI MS
17.  Genome Dynamics of Campylobacter jejuni in Response to Bacteriophage Predation 
PLoS Pathogens  2007;3(8):e119.
Campylobacter jejuni is a leading cause of food-borne illness. Although a natural reservoir of the pathogen is domestic poultry, the degree of genomic diversity exhibited by the species limits the application of epidemiological methods to trace specific infection sources. Bacteriophage predation is a common burden placed upon C. jejuni populations in the avian gut, and we show that amongst C. jejuni that survive bacteriophage predation in broiler chickens are bacteriophage-resistant types that display clear evidence of genomic rearrangements. These rearrangements were identified as intra-genomic inversions between Mu-like prophage DNA sequences to invert genomic segments up to 590 kb in size, the equivalent of one-third of the genome. The resulting strains exhibit three clear phenotypes: resistance to infection by virulent bacteriophage, inefficient colonisation of the broiler chicken intestine, and the production of infectious bacteriophage CampMu. These genotypes were recovered from chickens in the presence of virulent bacteriophage but not in vitro. Reintroduction of these strains into chickens in the absence of bacteriophage results in further genomic rearrangements at the same locations, leading to reversion to bacteriophage sensitivity and colonisation proficiency. These findings indicate a previously unsuspected method by which C. jejuni can generate genomic diversity associated with selective phenotypes. Genomic instability of C. jejuni in the avian gut has been adopted as a mechanism to temporarily survive bacteriophage predation and subsequent competition for resources, and would suggest that C. jejuni exists in vivo as families of related meta-genomes generated to survive local environmental pressures.
Author Summary
Campylobacter jejuni is the major cause of bacterial food-borne illness worldwide. Predation of C. jejuni by virulent bacteriophage offers the prospect of controlling bacterial populations at source in poultry. We report that in chickens, bacteriophage resistance is infrequent because the mutants that escape bacteriophage are not proficient in poultry colonisation but readily revert back to colonisation-proficient phage-sensitive types. Bacteriophage resistance is generated by reversible genomic scale inversions, leading to the activation of an unrelated bacteriophage integrated into the bacterial genome. These data not only suggest that bacteriophage therapy of C. jejuni would remain a sustainable measure to reduce poultry contamination but also demonstrate how bacterial genomes can evolve under the strong and widespread pressure of bacteriophage predation in the environment.
PMCID: PMC1950947  PMID: 17722979
18.  The complete genome sequence of EC1-UPM, a novel N4-like bacteriophage that infects Escherichia coli O78:K80 
Virology Journal  2013;10:308.
Bacteriophage EC1-UPM is an N4-like bacteriophage which specifically infects Escherichia coli O78:K80, an avian pathogenic strain that causes colibacillosis in poultry. The complete genome sequence of bacteriophage EC1-UPM was analysed and compared with other closely related N4-like phage groups to assess their genetic similarities and differences.
Bacteriophage EC1-UPM displays a very similar codon usage profile with its host and does not contain any tRNA gene. Comparative genomics analysis reveals close resemblance of bacteriophage EC1-UPM to three N4-like bacteriophages namely vB_EcoP_G7C, IME11 and KBNP21 with a total of 44 protein coding genes shared at 70% identity threshold. The genomic region coding for the tail fiber protein was found to be unique in bacteriophage EC1-UPM. Further annotation of the tail fiber protein using HHpred, a highly sensitive homology detection tool, reveals the presence of protein structure homologous to various polysaccharide processing proteins in its C-terminus. Leveraging on the availability of multiple N4-like bacteriophage genome sequences, the core genes of N4-like bacteriophages were identified and used to perform a multilocus phylogenetic analysis which enabled the construction of a phylogenetic tree with higher confidence than phylogenetic trees based on single genes.
We report for the first time the complete genome sequence of a N4-like bacteriophage which is lytic against avian pathogenic Escherichia coli O78:K80. A novel 928 amino acid residues tail fiber protein was identified in EC1-UPM which may be useful to further the understanding of phage-host specificity. Multilocus phylogenetic analysis using core genes of sequenced N4-like phages showed that the evolutionary relationship correlated well with the pattern of host specificity.
PMCID: PMC3853248  PMID: 24134834
Bacteriophage EC1-UPM; Tail fiber protein; Complete genome; Multilocus phylogenetic analysis
19.  Convection-enhanced delivery of M13 bacteriophage to the brain 
Journal of neurosurgery  2012;117(2):197-203.
Recent studies indicate that M13 bacteriophage, a very large nanoparticle, binds to β-amyloid and α-synuclein proteins, leading to plaque disaggregation in models of Alzheimer and Parkinson disease. To determine the feasibility, safety, and characteristics of convection-enhanced delivery (CED) of M13 bacteriophage to the brain, the authors perfused primate brains with bacteriophage.
Four nonhuman primates underwent CED of M13 bacteriophage (900 nm) to thalamic gray matter (4 infusions) and frontal white matter (3 infusions). Bacteriophage was coinfused with Gd-DTPA (1 mM), and serial MRI studies were performed during infusion. Animals were monitored for neurological deficits and were killed 3 days after infusion. Tissues were analyzed for bacteriophage distribution.
Real-time T1-weighted MRI studies of coinfused Gd-DTPA during infusion demonstrated a discrete region of perfusion in both thalamic gray and frontal white matter. An MRI-volumetric analysis revealed that the mean volume of distribution (Vd) to volume of infusion (Vi) ratio of M13 bacteriophage was 2.3 ± 0.2 in gray matter and 1.9 ± 0.3 in white matter. The mean values are expressed ± SD. Immunohistochemical analysis demonstrated mean Vd:Vi ratios of 2.9 ± 0.2 in gray matter and 2.1 ± 0.3 in white matter. The Gd-DTPA accurately tracked M13 bacteriophage distribution (the mean difference between imaging and actual bacteriophage Vd was insignificant [p > 0.05], and was −2.2% ± 9.9% in thalamic gray matter and 9.1% ± 9.5% in frontal white matter). Immunohistochemical analysis revealed evidence of additional spread from the initial delivery site in white matter (mean Vd:Vi, 16.1 ± 9.1). All animals remained neurologically intact after infusion during the observation period, and histological studies revealed no evidence of toxicity.
The CED method can be used successfully and safely to distribute M13 bacteriophage in the brain. Furthermore, additional white matter spread after infusion cessation enhances distribution of this large nanoparticle. Real-time MRI studies of coinfused Gd-DTPA (1 mM) can be used for accurate tracking of distribution during infusion of M13 bacteriophage.
PMCID: PMC3786326  PMID: 22606981
bacteriophage; brain; convection-enhanced delivery; white matter; gray matter; oncology; Macaca mulatta
20.  Bacteriophage Interference in Bacillus subtilis 168 
Journal of Virology  1974;13(4):916-921.
Strains of Bacillus subtilis lysogenic for temperate bacteriophage SPO2 inhibit the development of bacteriophage φ1. After infection by bacteriophage φ1, DNA and RNA synthesis in the lysogenic host terminates, culminating in cell death. Bacteriophage SPO2 also prevents the production of bacteriophage φ105. Mechanisms for these two types of bacteriophage interference are discussed.
PMCID: PMC355390  PMID: 4206943
21.  Inactivation of bacteriophages by protein E, a new major membrane protein isolated from an Escherichia coli mutant. 
Journal of Bacteriology  1979;137(1):226-233.
Pure protein E, obtained after diethylaminoethyl-cellulose chromatography of ethylenediaminetetraacetic acid-Triton X-100-solubilized outer membrane proteins of Escherichia coli strain JF694, inactivated bacteriophage K3. Lipopolysaccharide enhanced bacteriophage inactivation. Antibody prepared against purified protein E protected bacteriophage K3 from inactivation by protein E. Bacteriophage K3 used a major outer membrane protein, protein II*, as part of its receptor. We conclude that proteins E and II* have a common region which interacts with bacteriophage K3. Protein E also inactivated two recently described bacteriophages, TC45 and TC23, that use protein E as at least part of their receptor.
PMCID: PMC218440  PMID: 368014
22.  Cross-resistance between bacteriophages and colicins in Escherichia coli K-12. 
Journal of Bacteriology  1976;126(3):1347-1350.
Cross-resistance between bacteriophages and colicins was studied using collections of bacteriophage- and colicin-resistant mutants of Escherichia coli K-12. No new examples were found of highly specific one-to-one cross-resistance of the type suggestive of common receptors. However, several groups of mutants showed tolerance to colicins and resistance to bacteriophages. Mutants known to be very defective in lipopolysaccharides composition were found to commonly show tolerance to certain colicins in addition to their bacteriophage resistance. Another group of mutants showed varying patterns of resistance to colicins E2, E3, K, L, A, S4, N, and X and bacteriophages E4, K2, K20, K21, K29, and H+. However, many bacteriophage-resistant mutants were fully colicin sensitive, and most colicin-resistant mutants were fully sensitive to bacteriophages.
PMCID: PMC233163  PMID: 780346
23.  A Bacteriophage for Myxococcus xanthus: Isolation, Characterization and Relation of Infectivity to Host Morphogenesis1 
Journal of Bacteriology  1966;91(3):1305-1313.
Burchard, Robert P. (University of Minnesota, Minneapolis), and M. Dworkin. A bacteriophage for Myxococcus xanthus: isolation, characterization and relation of infectivity to host morphogenesis. J. Bacteriol. 91:1305–1313. 1966.—A bacteriophage (MX-1) infecting Myxococcus xanthus FBt has been isolated from cow dung. The bacteriophage particle is approximately 175 mμ long. A tail about 100 mμ in length is encased in a contractile sheath and terminates in a tail plate. The head is polyhedral with a width of about 75 mμ. The nucleic acid of the bacteriophage is deoxyribonucleic acid and has a guanine plus cytosine content of 55.5%. The bacteriophage requires 10−3m Ca++ and 10−2m monovalent cation for optimal adsorption. Grown on vegetative cells of M. xanthus FBt at 30 C in 2% Casitone medium, the bacteriophage has a latent period of 120 min and a burst size of approximately 100. Host range studies indicate that three strains of M. xanthus including a morphogenetic mutant are sensitive to the bacteriophage, whereas M. fulvus, Cytophaga, Sporocytophaga myxococcoides, and a fourth strain of M. xanthus are not. Of the two cellular forms characteristic of the Myxococcus life cycle, the bacteriophage infect only the vegetative cells; they do not adsorb to microcysts. Ability to adsorb bacteriophage is lost between 65 and 75 min after initiation of the relatively synchronous conversion of vegetative cells to microcysts. The bacteriophage does not adsorb to spheroplasts. After the appearance of visible morphogenesis and before the loss of bacteriophage receptor sites, addition of bacteriophage results in the formation of microcysts which give rise to infective centers only upon germination. The possibility that the infected microcysts are harboring intact bacteriophages has been eliminated.
PMCID: PMC316029  PMID: 5948779
24.  Robert A. Weisberg (1937–2011) ▿ 
Journal of Bacteriology  2011;193(24):6807.
Robert Weisberg died suddenly and unexpectedly on 1 September 2011. Bob was a major contributor to the study of bacteriophage lambda, and he made seminal contributions to our understanding of site-specific recombination and transcription termination. He was also an exceptional citizen of the microbial community, serving as an editor for both the Journal of Virology (1983 to 1988) and the Journal of Bacteriology (1985 to 1995). He will certainly be missed. Max Gottesman wrote the following tribute to his long-time friend and colleague.
PMCID: PMC3232861  PMID: 21984787
25.  Temperate Bacillus subtilis bacteriophage phi 3T: chromosomal attachment site and comparison with temperate bacteriophages phi 105 and SPO2. 
Journal of Virology  1977;21(2):522-529.
The temperate Bacillus subtilis bacteriophage phi 3T contains within its genome a locus, designated thyP3, that encodes for a protein with thymidylate synthetase activity. Bacteriophage phi 3T is different from the two previously characterized temperate phages, phi 105 and SPO2, in: heteroimmunity, response to bacteriophage antisera, endonuclease digestion pattern, induction in the presence of 6-(p-hydroxyphenylazo)-uracil, and effect on the lytic cycle of bacteriophage phi 1. The mean burst size of phi 3T is 56. The dose response curve with bacteriophage phi 3T DNA is linear for transfection and transformation to the Thy+ phenotype. The inserted prophage has been mapped by PBS1 transduction; it is between chromosomal markers ilvA8 and gltA in the terminus of the chromosome. Thus thyP3 maps at a site separate from, but between, the bacterial markers thyA and thyB when thyP3 is in the prophage state.
PMCID: PMC353853  PMID: 401899

Results 1-25 (4884)