PMCC PMCC

Conseils de recherche
Les critères de recherche

Avancée
Résultats 1-25 (57)
 

Notices sélectionnées (0)
Aucune

Sélectionner un filtre

Revues
Année de publication
Type de document
1.  The deterrent effect of bird song in territory defense 
Behavioral Ecology  2008;20(1):200-206.
Using the responses of territory owners to playback to infer the territorial function of acoustic signals is common practice. However, difficulties with interpreting the results of such experiments have obscured our understanding of territorial signalling. For instance, a stronger response to playback is often interpreted as more aggressive, but there is no consensus as to whether this should be in response to the least or most threatening simulated intruder. Rather than following a gradual increase or decrease, the relationship between signal intensity and response strength may instead describe a peaked curve. We manipulated banded wren (Thryophilus pleurostictus) songs to simulate low-, median-, and high-performance singers and used these songs as stimuli in playback experiments. Banded wrens were less likely to approach the high-performance stimulus compared with the low- and median-performance stimuli. However, the birds that did approach the high-performance stimulus sang more than those that approached the low-performance stimulus. In addition, birds were more likely to match the songs when exposed to the median- and high-performance stimuli compared with the low-performance stimuli, and song matching predicted approach behavior. These results are in accordance with theoretical models of aggressive encounters in which low-performance opponents are challenged without further assessment. Median- and high-performance opponents, however, may require further assessment, and the latter may be perceived as too intimidating for approach.
doi:10.1093/beheco/arn135
PMCID: PMC2662740  PMID: 19337589
assessment; playback; sexual selection; song; territory defense
2.  Courtship attention in sagebrush lizards varies with male identity and female reproductive state 
Behavioral Ecology  2008;19(6):1326-1332.
Previous experiments suggest that males spend more time with the more receptive of 2 novel females or the one with the higher fitness potential. However, males often court individual females repeatedly over a season; for example, male lizards sequentially visit familiar females as they patrol territorial boundaries. It may benefit males to vary display intensity as they move between multiple females. In this study, we explored the factors influencing amount of male courtship to familiar females in the sagebrush lizard, Sceloporus graciosus. We tested whether males vary the amount of courtship exhibited due to individual differences among males, female reproductive state, or female fitness potential. Each male was allowed to interact separately, but repeatedly, with 2 females until both females laid eggs. Male courtship behavior with each of the 2 females was assayed at an intermediate point, after 3 weeks of interaction. We found that individual differences among males were considerable. The number of male courtship displays was also positively correlated with female latency to lay eggs, with males displaying more often toward females with eggs that had not yet been fertilized. Courtship behavior was not well predicted by the number of eggs laid or by female width, both measures of female quality. Thus, male S. graciosus appear to alter courtship intensity more in response to signals of female reproductive state than in response to variation in potential female fitness.
doi:10.1093/beheco/arn072
PMCID: PMC2583109  PMID: 19458780
courtship; male choice; mate choice; reproductive state; Sceloporus graciosus; sexual selection
3.  The deterrent effect of bird song in territory defense 
Using the responses of territory owners to playback to infer the territorial function of acoustic signals is common practice. However, difficulties with interpreting the results of such experiments have obscured our understanding of territorial signaling. For instance, a stronger response to playback is often interpreted as more aggressive, but there is no consensus as to whether this should be in response to the least or most threatening simulated intruder. Rather than following a gradual increase or decrease, the relationship between signal intensity and response strength may instead describe a peaked curve. We manipulated banded wren (Thryophilus pleurostictus) songs to simulate low, median and high performance singers and used these songs as stimuli in playback experiments. Banded wrens were less likely to approach the high performance stimulus compared to the low and median performance stimuli. However, the birds that did approach the high performance stimulus sang more than those that approached the low performance stimulus. In addition, birds were more likely to match the songs when exposed to the median and high performance stimuli compared to the low performance stimuli and song matching predicted approach behavior. These results are in accordance with theoretical models of aggressive encounters in which low performance opponents are challenged without further assessment. Median and high performance opponents however, may require further assessment and the latter may be perceived as too intimidating for approach.
doi:10.1093/beheco/arn135
PMCID: PMC2662740  PMID: 19337589
playback; song; territory defense; sexual selection; assessment
4.  Courtship attention in sagebrush lizards varies with male identity and female reproductive state 
Previous experiments suggest that males spend more time with the more receptive of two novel females or the one with the higher fitness potential. However, males often court individual females repeatedly over a season; for example, male lizards sequentially visit familiar females as they patrol territorial boundaries. It may benefit males to vary display intensity as they move between multiple females. In this study, we explored the factors influencing amount of male courtship to familiar females in the Sagebrush lizard, Sceloporus graciosus. We tested whether males vary the amount of courtship exhibited due to individual differences among males, female reproductive state, or female fitness potential. Each male was allowed to interact separately, but repeatedly, with two females until both females laid eggs. Male courtship behavior with each of the two females was assayed at an intermediate point, after three weeks of interaction. We found that individual differences among males were considerable. The number of male courtship displays was also positively correlated with female latency to lay eggs, with males displaying more often towards females with eggs that had not yet been fertilized. Courtship behavior was not well predicted by the number of eggs laid or by female width, both measures of female quality. Thus, male S. graciosus appear to alter courtship intensity more in response to signals of female reproductive state than in response to variation in potential female fitness.
doi:10.1093/beheco/arn072
PMCID: PMC2583109  PMID: 19458780
Sceloporus graciosus; male choice; mate choice; sexual selection; reproductive state; courtship
5.  Flight calls signal group and individual identity but not kinship in a cooperatively breeding bird 
Behavioral Ecology  2013;24(6):1279-1285.
Lay Summary
Ants are models of conflict, generally working together but at the same time competing over individual fitness. We show that ant larvae compete by cannibalizing eggs, which increases their survival. Male larvae are particularly selfish, and eat eggs three times more often than females. Larvae also discriminate between sibling and alien eggs, which suggests that they can react to chemical recognition cues. Remarkably, ant larvae thus possess the power to act in social conflict.
In many complex societies, intricate communication and recognition systems may evolve to help support both direct and indirect benefits of group membership. In cooperatively breeding species where groups typically comprise relatives, both learned and innate vocal signals may serve as reliable cues for kin recognition. Here, we investigated vocal communication in the plural cooperatively breeding superb starling, Lamprotornis superbus, where flight calls—short, stereotyped vocalizations used when approaching conspecifics—may communicate kin relationships, group membership, and/or individual identity. We found that flight calls were most similar within individual repertoires but were also more similar within groups than within the larger population. Although starlings responded differently to playback of calls from their own versus other neighboring and distant social groups, call similarity was uncorrelated with genetic relatedness. Additionally, immigrant females showed similar patterns to birds born in the study population. Together, these results suggest that flight calls are learned signals that reflect social association but may also carry a signal of individuality. Flight calls, therefore, provide a reliable recognition mechanism for groups and may also be used to recognize individuals. In complex societies comprising related and unrelated individuals, signaling individuality and group association, rather than kinship, may be a route to cooperation.
doi:10.1093/beheco/art062
PMCID: PMC3796708  PMID: 24137044
cooperative breeding; flight call; individual recognition; kin recognition; Lamprotornis superbus; vocal communication.
6.  The role of beginner’s luck in learning to prefer risky patches by socially foraging house sparrows 
Behavioral Ecology  2013;24(6):1398-1406.
Lay summary
Experiments with foraging house sparrows show that chance events during learning can explain contrasting individual preferences for safe versus risky alternatives, even when the expected benefit of the risky alternativeis 8-fold higher than that of the safe one. However, in social groups, learning to prefer the safe but less rewarding alternative mayoccasionally be compensated by scrounging on the food findings of individuals that havelearned to prefer the high risk-high reward option.
Although there has been extensive research on the evolution of individual decision making under risk (when facing variable outcomes), little is known on how the evolution of such decision-making mechanisms has been shaped by social learning and exploitation. We presented socially foraging house sparrows with a choice between scattered feeding wells in which millet seeds were hidden under 2 types of colored sand: green sand offering ~80 seeds with a probability of 0.1 (high risk–high reward) and yellow sand offering 1 seed with certainty (low risk–low reward). Although the expected benefit of choosing variable wells was 8 times higher than that of choosing constant wells, only some sparrows developed a preference for variable wells, whereas others developed a significant preference for constant wells. We found that this dichotomy could be explained by stochastic individual differences in sampling success during foraging, rather than by social foraging strategies (active searching vs. joining others). Moreover, preference for variable or constant wells was related to the sparrows’ success during searching, rather than during joining others or when picking exposed seeds (i.e., they learn when actively searching in the sand). Finally, although for many sparrows learning resulted in an apparently maladaptive risk aversion, group living still allowed them to enjoy profitable variable wells by occasionally joining variable-preferring sparrows.
doi:10.1093/beheco/art079
PMCID: PMC3796710  PMID: 24137046
decision making; producer; risk sensitivity; scrounger; social foraging; social learning.
7.  Predator and prey activity levels jointly influence the outcome of long-term foraging bouts 
Behavioral Ecology  2013;24(5):1205-1210.
Lay summary
Animals exhibit “behavioral types” (akin to human personalities) where individuals differ consistently on traits like activity which may influence the predators it encounters and the prey it captures. Here we demonstrate that active jumping spiders are more likely to encounter and consume inactive crickets and vice versa. This presents a potential explanation for the persistence of behavioral types in natural populations, as behavioral variation in one trophic level maintains variation in the associated level.
Consistent interindividual differences in behavior (i.e., “behavioral types”) may be a key factor in determining the outcome of species interactions. Studies that simultaneously account for the behavioral types of individuals in multiple interacting species, such as predator–prey systems, may be particularly strong predictors of ecological outcomes. Here, we test the predator–prey locomotor crossover hypothesis, which predicts that active predators are more likely to encounter and consume prey with the opposing locomotor tendency. We test this hypothesis using intraspecific behavioral variation in both a predator and prey species as predictors of foraging outcomes. We use the old field jumping spider, Phidippus clarus (Araneae, Salticidae), and the house cricket, Acheta domesticus (Orthoptera, Gryllidae), as a model predator–prey system in laboratory mesocosm trials. Stable individual differences in locomotor tendencies were identified in both P. clarus and A. domesticus, and the outcome of foraging bouts depended neither on the average activity level of the predator nor on the average activity level of prey. Instead, an interaction between the activity level of spiders and crickets predicted spider foraging success and prey survivorship. Consistent with the locomotor crossover hypothesis, predators exhibiting higher activity levels consumed more prey when in an environment containing low-activity prey items and vice versa. This study highlights 1) the importance of intraspecific variation in determining the outcome of predator–prey interactions and 2) that acknowledging behavioral variation in only a single species may be insufficient to characterize the performance consequences of intraspecific trait variants.
doi:10.1093/beheco/art052
PMCID: PMC3739417  PMID: 23935257
behavioral syndrome; foraging mode; intraspecific variation; personality; predator–prey interaction.
8.  Socially mediated polyandry: a new benefit of communal nesting in mammals 
Behavioral Ecology  2014;25(6):1467-1473.
In many species, females have evolved behavioral strategies to reduce the risk of infanticide. For instance, polyandry can create paternity confusion that inhibits males from killing offspring they could have sired. Here, the authors propose that females could socially obtain the same benefits by nesting communally. Singly sired litters could be perceived as a large multiply sired litter once pooled together in a single nest. Long-term data from a wild house mouse population showed that monandrous litters (singly sired) were more common in communal than in solitary nests and 85% of them were raised with litters sired by different males hence becoming effectively polyandrous (multiply sired). These socially polyandrous litters had significantly higher offspring survival than genetically or socially monandrous litters and reached a similar survival to that of multiply sired litters raised in solitary or communal nests. Furthermore, the number of sires within nests significantly improved offspring survival whereas the number of mothers did not. These results suggest that the survival benefits associated with communal nesting are driven by polyandry and not communal defense. This socially mediated polyandry was as efficient as multiple paternity in preventing infanticide, and may also occur in other infanticidal and polytocous species where the caring parent exhibits social behavior.
Lay Summary
Communal nesting allows social females to avoid infanticide in much the same way as multiple mating: through paternity confusion. Litters sired by a single male can be perceived as a large multiply-sired litter once pooled together in a communal nest. This socially mediated polyandry was as efficient as multiple paternity in preventing infanticide. The number of mothers in communal nests did not explain offspring survival hence rejecting the communal defense hypothesis.
doi:10.1093/beheco/aru143
PMCID: PMC4235584  PMID: 25419087
cooperation; mammals; maternal care; maternal defense; multiple mating; Mus musculus domesticus.
9.  Behavioral responses of wolves to roads: scale-dependent ambivalence 
Behavioral Ecology  2014;25(6):1353-1364.
Throughout their recent recovery in several industrialized countries, large carnivores have had to cope with a changed landscape dominated by human infrastructure. Population growth depends on the ability of individuals to adapt to these changes by making use of new habitat features and at the same time to avoid increased risks of mortality associated with human infrastructure. We analyzed the summer movements of 19 GPS-collared resident wolves (Canis lupus L.) from 14 territories in Scandinavia in relation to roads. We used resource and step selection functions, including >12000 field-checked GPS-positions and 315 kill sites. Wolves displayed ambivalent responses to roads depending on the spatial scale, road type, time of day, behavioral state, and reproductive status. At the site scale (approximately 0.1 km2), they selected for roads when traveling, nearly doubling their travel speed. Breeding wolves moved the fastest. At the patch scale (10 km2), house density rather than road density was a significant negative predictor of wolf patch selection. At the home range scale (approximately 1000 km2), breeding wolves increased gravel road use with increasing road availability, although at a lower rate than expected. Wolves have adapted to use roads for ease of travel, but at the same time developed a cryptic behavior to avoid human encounters. This behavioral plasticity may have been important in allowing the successful recovery of wolf populations in industrialized countries. However, we emphasize the role of roads as a potential cause of increased human-caused mortality.
Lay Summary
We studied how wolves in Scandinavia respond to roads built to ease human travel but degrading habitat quality for many wildlife species. Wolves responded with ambivalence: They both selected and avoided roads, all depending on the spatial and temporal scale and their behavioral status. To understand the multi-scale effects of human infrastructure on animal behavior is important with regard to the recent come-back of many wildlife species to now industrialized countries.
doi:10.1093/beheco/aru134
PMCID: PMC4235582  PMID: 25419085
Canis lupus; functional response; movement; resource selection; road; step selection function; travel speed.
10.  Thrips domiciles protect larvae from desiccation in an arid environment 
Behavioral Ecology  2014;25(6):1338-1346.
Desiccation is a particular risk for small animals in arid environments. In response, many organisms “construct niches,” favorable microenvironments where they spend part or all of their life cycle. Some maintain such environments for their offspring via parental care. Insect eggs are often protected from desiccation by parentally derived gels, casings, or cocoons, but active parental protection of offspring from desiccation has never been demonstrated. Most free-living thrips (Thysanoptera) alleviate water loss via thigmotaxis (crevice seeking). In arid Australia, Acacia thrips (Phlaeothripidae) construct many kinds of niche. Some thrips induce galls; others, like Dunatothrips aneurae, live and breed within “domiciles” made from loosely glued phyllodes. The function of domiciles is unknown; like other constructed niches, they may 1) create favorable microenvironments, 2) facilitate feeding, 3) protect from enemies, or a combination. To test the first 2 alternatives experimentally, field-collected domiciles were destroyed or left intact. Seven-day survival of feeding and nonfeeding larval stages was monitored at high (70–80%) or low (8–10%, approximately ambient) humidity. Regardless of humidity, most individuals survived in intact domiciles, whereas for destroyed domiciles, survival depended on humidity, suggesting parents construct and maintain domiciles to prevent offspring desiccating. Feeding and nonfeeding larvae had similar survival patterns, suggesting the domicile’s role is not nutritional. Outside domiciles, survival at “high” humidity was intermediate, suggesting very high humidity requirements, or energetic costs of wandering outside domiciles. D. aneurae commonly cofound domiciles; cofoundresses may benefit both from shared nestbuilding costs, and from “deferred byproduct mutualism,” that is, backup parental care in case of mortality.
Lay Summary
Tiny Acacia thrips build communal “domiciles” in arid Australia. Here I show that domiciles prevent desiccation, ensuring offspring survival—a novel kind of parental care in insects. We suspect many insect parents perform this function for offspring, but it has never been demonstrated experimentally. If larvae require parental care, this suggests one reason thrips are sometimes communal: if a female dies, her nestmates can ensure her offspring survive.
doi:10.1093/beheco/aru128
PMCID: PMC4235581  PMID: 25419084
cooperative breeding; humidity; moisture; nestbuilding; niche construction; parental investment; sociality; water balance.
11.  Wall lizards display conspicuous signals to conspecifics and reduce detection by avian predators 
Behavioral Ecology  2014;25(6):1325-1337.
Visual signals are often under conflicting selection to be hidden from predators while being conspicuous to mates and rivals. Here, we investigated whether 3 different island populations of Aegean wall lizards (Podarcis erhardii) with variable coloration among diverse island habitats exhibit simultaneous camouflage and sexual signals. We examined whether signals appear better tuned to conspecific vision as opposed to that of avian predators, and whether background-matching camouflage and sexual signals are partitioned to specific body regions. This could facilitate both covert sexual signaling and camouflage according to the viewing perspectives of predators and conspecifics. We found that lizards typically appeared twice as conspicuous to conspecifics than to avian predators against the same visual background, largely due to lizards’ enhanced sensitivity to ultraviolet, suggesting that P. erhardii signals are tuned to conspecific vision to reduce detection by predators. Males were more conspicuous than females to both predators and conspecifics. In 2 populations, male backs were relatively more camouflaged to predators compared to signaling flanks, whereas in females, exposed and concealed surfaces were camouflaged to predators and generally did not differ in background matching. These findings indicate that lizard coloration evolves under the competing demands of natural and sexual selection to promote signals that are visible to conspecifics while being less perceptible to avian predators. They also elucidate how interactions between natural and sexual selection influence signal detectability and partitioning to different body regions, highlighting the importance of considering receiver vision, viewing perspectives, and signaling environments in studies of signal evolution.
Lay Summary
Lizards and their predators see the world differently, allowing lizards (Podarcis erhardii) to display bright sexual signals that are less visible to hunting birds. Males are more conspicuous than females, but reduce their visibility to predators by having camouflaged backs and restricting brighter signals to their sides, which makes them less visible to birds hunting from above while still being highly visible to mates and rivals on the ground.
doi:10.1093/beheco/aru126
PMCID: PMC4235580  PMID: 25419083
camouflage; color variation; communication; signal partitioning; trade-offs; vision.
12.  Resource redistribution in polydomous ant nest networks: local or global? 
Behavioral Ecology  2014;25(5):1183-1191.
Lay Summary
Wood ants nests share resources with neighboring nests, not the whole colony. A single ant colony can either live all in one nest, or split into several separate, but communicating, nests. How and why ant colonies do this is unknown. By treating these separated colonies as networks we show that wood ants exchange food locally, with neighboring nests, without a colony-level plan.
An important problem facing organisms in a heterogeneous environment is how to redistribute resources to where they are required. This is particularly complex in social insect societies as resources have to be moved both from the environment into the nest and between individuals within the nest. Polydomous ant colonies are split between multiple spatially separated, but socially connected, nests. Whether, and how, resources are redistributed between nests in polydomous colonies is unknown. We analyzed the nest networks of the facultatively polydomous wood ant Formica lugubris. Our results indicate that resource redistribution in polydomous F. lugubris colonies is organized at the local level between neighboring nests and not at the colony level. We found that internest trails connecting nests that differed more in their amount of foraging were stronger than trails between nests with more equal foraging activity. This indicates that resources are being exchanged directly from nests with a foraging excess to nests that require resources. In contrast, we found no significant relationships between nest properties, such as size and amount of foraging, and network measures such as centrality and connectedness. This indicates an absence of a colony-level resource exchange. This is a clear example of a complex behavior emerging as a result of local interactions between parts of a system.
doi:10.1093/beheco/aru108
PMCID: PMC4160112  PMID: 25214755
Formica lugubris; levels of selection; network analysis; polydomy; self-organization; wood ants.
13.  Social and ecological factors influencing offspring survival in wild macaques 
Behavioral Ecology  2014;25(5):1164-1172.
Lay summary
Better to live in a big group if you want your offspring to survive! Using a multivariate approach, we show how the interplay of ecological and social factors influences fetus and infant survival in wild crested macaques. Offspring are more likely to survive in bigger groups, but seasonality also influences their survival. Fetus survival is higher for higher ranking mothers, whereas the main determinant of infants’ death is an alpha-male takeover by an immigrant male.
Premature loss of offspring decreases direct fitness of parents. In gregarious mammals, both ecological and social variables impact offspring survival and may interact with each other in this regard. Although a number of studies have investigated factors influencing offspring loss in mammals, we still know very little on how different factors interact with one another. We therefore investigated fetal and infant mortality in 3 large groups of wild crested macaques (Macaca nigra) over a period of up to 5 years by including potential social causes such as maternal dominance rank, male immigration, between group encounters, and ecological conditions such as rainfall in a multivariate survival analysis using Cox proportional hazards model. Infant but not fetal survival was most impaired after a recent takeover of the alpha-male position by an immigrant male. Furthermore, infant survival probability increased when there was an increase in number of group adult females and rainfall. Fetal survival probability also increased with an increase of these 2 factors, but more in high-ranking than low-ranking females. Fetal survival, unlike that of infants, was also improved by an increase of intergroup encounter rates. Our study thus stresses the importance of survival analyses using a multivariate approach and encompassing more than a single offspring stage to investigate the determinants of female direct fitness. We further provide evidence for fitness costs and benefits of group living, possibly deriving from high pressures of both within- and between-group competition, in a wild primate population.
doi:10.1093/beheco/aru099
PMCID: PMC4160111  PMID: 25214754
between-group encounters; female reproductive success; Macaca nigra; offspring loss; proportional hazards model; socioecology.
14.  Foraging for carotenoids: do colorful male hihi target carotenoid-rich foods in the wild? 
Behavioral Ecology  2014;25(5):1048-1057.
Lay Summary
Birds that color their feathers with dietary carotenoid pigments are expected to seek out these pigments when they are molting. We show that molting male hihi, who express carotenoid-based plumage, seek out naturally occurring foods that are rich in carotenoid pigments. Female hihi, who do not express carotenoid-based plumage, do not seek out carotenoid-rich foods. This lends strength to the idea that carotenoid-based plumage reveals an individual’s foraging ability.
Dietary access to carotenoids is expected to determine the strength of carotenoid-based signal expression and potentially to maintain signal honesty. Species that display carotenoid-based yellow, orange, or red plumage are therefore expected to forage selectively for carotenoid-rich foods when they are depositing these pigments during molt, but whether they actually do so is unknown. We set out to address this in the hihi (Notiomystis cincta), a New Zealand passerine where males, but not females, display yellow carotenoid-based plumage. We measured circulating carotenoid concentrations in male and female hihi during breeding and molt, determined the nutritional content of common foods in the hihi diet, and conducted feeding observations of male and female hihi during molt. We found that although male and female hihi do not differ significantly in plasma carotenoid concentration, male hihi have a greater proportion of carotenoid-rich foods in their diet than do females. This is a consequence of a greater fruit and lower invertebrate intake than females and an avoidance of low-carotenoid content fruit. By combining behavioral observations with quantification of circulating carotenoids, we present evidence that colorful birds forage to maximize carotenoid intake, a conclusion we would not have drawn had we examined plasma carotenoids alone.
doi:10.1093/beheco/aru076
PMCID: PMC4160110  PMID: 25214753
carotenoids; foraging; hihi; nutrition; plumage.
15.  Sequential male mate choice under sperm competition risk 
Behavioral Ecology  2014;25(3):660-667.
Lay Summary
New research shows that male house mice can be coy too. Male eagerness to mate is a central tenet of sexual selection theory, based on the expectation that male reproductive success is limited mainly by access to females. Here, we show that where sperm supplies are limited, males too can display considerable restraint in mating, targeting reproductive effort toward particular females.
Male eagerness to mate is a central paradigm of sexual selection theory. However, limited sperm supplies mean that male sexual restraint might sometimes be favored under promiscuous mating. Here, we demonstrate dynamic plasticity in male mating effort when females are encountered sequentially under varying sperm competition risk. Rather than showing consistent eagerness to mate, male house mice (Mus musculus domesticus) instead tailor their mating effort according to likely reproductive payoffs. They are significantly less likely to mate when sperm competition is certain and potential reproductive payoffs low, but dramatically increase investment if they do choose to mate under such circumstances. By contrast, male mice are significantly more likely to mate in situations simulating extra-territorial copulations, where future risk of competition is high but so too are potential reproductive rewards. Differential mating propensity appears to be the primary mechanism by which male house mice allocate sperm adaptively under sperm competition risk because we find no evidence for facultative adjustment of sperm numbers per ejaculate or ejaculation frequency in response to female-related cues. We conclude that sequential male mate choice under sperm competition risk could be a widespread but often unappreciated mechanism of strategic sperm allocation.
doi:10.1093/beheco/aru037
PMCID: PMC4014308  PMID: 24822023
copulatory behavior; mate choice; mating effort; sex roles; sexual conflict; sexual selection; sperm allocation; sperm competition.
16.  Virginity and the clutch size behavior of a parasitoid wasp where mothers mate their sons 
Theoretical and empirical research on the evolution of clutch size has proved to be an extremely productive area of evolutionary biology. A general prediction is that individuals should produce a smaller number of offspring when resources are more limited, such as when multiple individuals compete for the same resources for their development. However, we expect that the opposite prediction arises with virgin females of haplodiploid species, which are subject to extreme local mate competition. We test the key assumption and predictions of this theory with the parasitoid wasp Melittobia australica. Our data demonstrate that there is a trade-off between the size of the first and subsequent clutches and that virgin females adjust their production of sons according to the mating status (mated or not) of cofounding females. We also found that mated females facultatively change their offspring sex ratio in response to the mating status of cofoundresses. We discuss the potential mechanisms used to recognize the mating status and the implications of our results in the context of the extremely female-biased sex ratios observed across Melittobia species..
doi:10.1093/beheco/arq046
PMCID: PMC3947723  PMID: 24619355
clutch size; constrained female; local mate competition; Melittobia australica; reproductive strategy; sex allocation
17.  Lethal combat over limited resources: testing the importance of competitors and kin 
Although most animals employ strategies to avoid costly escalation of conflict, the limitation of critical resources may lead to extreme contests and fatal fighting. Evolutionary theories predict that the occurrence and intensity of fights can be explained by resource value and the density and relatedness of competitors. However, the interaction between these factors and their relative importance often remains unclear; moreover, few systems allow all variables to be experimentally investigated, making tests of these theoretical predictions rare. Here, we use the parasitoid wasp Melittobia to test the importance of all these factors. In contrast to predictions, variation in contested resource value (female mates) and the relatedness of competitors do not influence levels of aggression. However, as predicted, fight intensity increased with competitor density and was not influenced by the greater cost of fighting at high density. Our results suggest that in the absence of kin recognition, indirectly altruistic behavior (spite) is unlikely to evolve, and in such circumstances, the scale of competition will strongly influence the amount of kin discrimination in the form of level of aggression as observed in Melittobia species.
doi:10.1093/beheco/arq209
PMCID: PMC3947730  PMID: 24619384
fatal fighting; kin discrimination; Melittobia; relatedness; resource competition; spite
18.  Experimental evidence of impacts of an invasive parakeet on foraging behavior of native birds 
Behavioral Ecology  2014;25(3):582-590.
Lay Summary
Invasive rose-ringed parakeets caused behavioral changes in native garden birds that reduced their feeding rates. Understanding how invasive species impact native species can be complex, especially in urban environments where many other factors are also at play. We therefore used an experiment to disentangle these factors and demonstrate that parakeets are more disruptive than a dominant native competitor.
Resource competition is one potential behavioral mechanism by which invasive species can impact native species, but detecting this competition can be difficult due to the interactions that variable environmental conditions can have on species behavior. This is particularly the case in urban habitats where the disturbed environment can alter natural behavior from that in undisturbed habitats. The rose-ringed parakeet (Psittacula krameri), is an increasingly common invasive species, predominantly associated with large urban centers. Using an experimental approach, we tested the behavioral responses of native garden birds in response to the presence of a rose-ringed parakeet versus the presence of a similarly sized and dominant native bird, the great spotted woodpecker (Dendrocopos major). Parakeet presence significantly reduced feeding rates and increased vigilance among native birds compared with our control treatments. Of visits made by native birds in the presence of a parakeet, feeding was more likely to occur in sites within the parakeet range compared with sites outside, suggesting some habituation of native birds has occurred following prior exposure to parakeets but overall foraging behavior is still disrupted. The results of our study suggest that nonnative species can have complex and subtle impacts on native fauna and show that a nonnative competitor can impact native species simply through their presence near resources.
doi:10.1093/beheco/aru025
PMCID: PMC4014307  PMID: 24822022
alien; ecological impacts; foraging behavior; interspecific interference competition; parrot; ringnecked parakeet.
19.  Non-random brood mixing suggests adoption in a colonial cichlid 
Parental care of unrelated offspring is widespread but not well understood. We used 11 polymorphic microsatellite loci to investigate the relatedness of fry and parentally caring adults in a 118-nest colony of the socially and genetically monogamous cichlid fish Neolamprologus caudopunctatus in Lake Tanganyika. There was a high proportion of brood mixing, with 59% of 32 broods containing fry unrelated to both parents, and 18% of all 291 sampled fry being unrelated to the breeding pair. There was no evidence of kin selection for adoption because the genetic and foster parents were not more related than expected by chance. Parentage was assigned to 12 adopted fry from 10 broods. Distances traversed by fry varied markedly, from less than one to over 40 meters. The larger distances suggest that at least some brood mixing was instigated by parents transporting portions of their broods in their mouths, as occurs in some cichlids. Further evidence of non-random brood mixing was that foreign fry did not differ in size from their foster siblings within broods, even though they were significantly larger than fry produced by the tending pairs within the colony. These findings suggest that at least some foreign fry had dispersed non-randomly and were adopted by their foster parents. Enlarged broods are known to provide reduced per capita predation, making it potentially adaptive for breeders to adopt unrelated offspring.
doi:10.1093/beheco/ars195
PMCID: PMC3837205  PMID: 24277978
brood mixing; cichlid; parental care; adoption; parental investment; microsatellite analysis; brood farming out
20.  Size and competitive mating success in the yeast Saccharomyces cerevisiae  
Behavioral Ecology  2013;25(2):320-327.
Lay Summary
Yeast cells that are too big or too small are more likely to remain virgins. Big yeast cells are fitter than small cells when food is plentiful, but smaller cells are fitter when food is scarce. When there is a choice of different size potential mates, the best size partner for the conditions is more likely to be chosen for sex, ensuring that the resulting offspring are of a fit size.
In unicellular organisms like yeast, mating with the right partner is critical to future fitness because each individual can only mate once. Because cell size is important for viability, mating with a partner of the right size could be a significant advantage. To investigate this idea, we manipulated the size of unmated yeast cells and showed that their viability depended on environmental conditions; large cells do better on rich medium and small cells do better on poor medium. We also found that the fitness of offspring is determined by the size of their parents. Finally, we demonstrated that when a focal cell of one mating type was placed with a large and a small cell of the opposite mating type, it was more likely to mate with the cell that was closer to the optimum size for growth in a given environment. This pattern was not generated by differences in passive mating efficiency of large and small cells across environments but by competitive mating behavior, mate preference, or both. We conclude that the most likely mechanism underlying this interesting behavior is that yeast cells compete for mates by producing pheromone signals advertising their viability, and cells with the opportunity to choose prefer to mate with stronger signalers because such matings produce more viable offspring.
doi:10.1093/beheco/art117
PMCID: PMC3945744  PMID: 24616602
body size; cell size; mate choice; mating; Saccharomyces cerevisiae; sexual selection.
21.  Lethal combat and sex ratio evolution in a parasitoid wasp 
Sex allocation theory provides excellent opportunities for testing how behavior and life histories are adjusted in response to environmental variation. One of the most successful areas from this respect is Hamilton’s local mate competition theory. As predicted by theory, a large number of animal species have been shown to adjust their offspring sex ratios (proportion male) conditionally, laying less female-biased sex ratios as the number of females that lay eggs on a patch increases. However, recent studies have shown that this predicted pattern is not followed by 2 parasitoid species in the genus Melittobia, which always produce extremely female-biased sex ratios. A possible explanation for this is that males fight fatally and that males produced by the first female to lay eggs on a patch have a competitive advantage over later emerging males. This scenario would negate the advantage of later females producing a less female-biased sex ratio. Here we examine fatal fighting and sex ratio evolution in another species, Melittobia acasta. We show that females of this species also fail to adjust their offspring sex ratio in response to the number of females laying eggs on a patch. We then show that although earlier emerging males do have an advantage in winning fights, this advantage 1) can be reduced by an interaction with body size, with larger males more likely to win fights and 2) only holds for a brief period around the time at which the younger males emerge from their pupae. This suggests that lethal male combat cannot fully explain the lack of sex ratio shift observed in Melittobia species. We discuss alternative explanations.
doi:10.1093/beheco/arm034
PMCID: PMC3836406  PMID: 24273326
body size; competition; contests; local mate competition; Melittobia acasta
22.  Effects of age and experience on contest behavior in the burying beetle, Nicrophorus vespilloides  
Behavioral Ecology  2013;25(1):172-179.
Lay summary:
Aggression and likelihood of winning contests are expected to change as a male ages. We test this idea in burying beetles, a species which competes over small mammal carcasses as a breeding resource. We find that male size relative to his opponent is far more important in determining contest outcome than any effects of age or social experience.
Contest behavior forms an important part of reproductive investment. Life-history theory predicts that as individuals age and their residual reproductive value decreases, they should increase investment in contest behavior. However, other factors such as social experience may also be important in determining age-related variation in contest behavior. To understand how selection acts on contest behavior over an individual’s lifetime, it is therefore important to tease apart the effects of age per se from other factors that may vary with age. Here, we independently manipulate male age and social experience to examine their effects on male contest behavior in the burying beetle Nicrophorus vespilloides. We found that social experience, but not age, influenced male contest behavior but that these changes in behavior did not alter contest outcomes. Male size (relative to his opponent) was overwhelmingly the most important factor determining contest outcome. Our results suggest that in systems with high variation in fighting ability among males, there may be little opportunity for selection to act on factors that influence contest outcomes by altering motivation to win.
doi:10.1093/beheco/art101
PMCID: PMC3860834  PMID: 24347998
age; contest behavior; fighting; male competition; Nicrophorus vespilloides; social experience; terminal investment; winner–loser effect.
23.  Biparental incubation patterns in a high-Arctic breeding shorebird: how do pairs divide their duties? 
Behavioral Ecology  2013;25(1):152-164.
Lay summary:
Parents may be in conflict over the care they provide to their offspring. To understand this conflict, an accurate description of who does what and when is necessary. We used an automated system to continuously monitor which parent incubated the eggs in an arctic breeding shorebird. Birds sat on the eggs around 11 h at a time, but females sat longer than males. In compensation, females were off-duty more when feeding was easier.
In biparental species, parents may be in conflict over how much they invest into their offspring. To understand this conflict, parental care needs to be accurately measured, something rarely done. Here, we quantitatively describe the outcome of parental conflict in terms of quality, amount, and timing of incubation throughout the 21-day incubation period in a population of semipalmated sandpipers (Calidris pusilla) breeding under continuous daylight in the high Arctic. Incubation quality, measured by egg temperature and incubation constancy, showed no marked difference between the sexes. The amount of incubation, measured as length of incubation bouts, was on average 51min longer per bout for females (11.5h) than for males (10.7h), at first glance suggesting that females invested more than males. However, this difference may have been offset by sex differences in the timing of incubation; females were more often off nest during the warmer period of the day, when foraging conditions were presumably better. Overall, the daily timing of incubation shifted over the incubation period (e.g., for female incubation from evening–night to night–morning) and over the season, but varied considerably among pairs. At one extreme, pairs shared the amount of incubation equally, but one parent always incubated during the colder part of the day; at the other extreme, pairs shifted the start of incubation bouts between days so that each parent experienced similar conditions across the incubation period. Our results highlight how the simultaneous consideration of different aspects of care across time allows sex-specific investment to be more accurately quantified.
doi:10.1093/beheco/art098
PMCID: PMC3860833  PMID: 24347997
Arctic; Calidris pusilla; continuous daylight; incubation pattern; incubation timing; negotiation; nest attendance; parental care division; semipalmated sandpiper; sexual conflict.
24.  Boldness behavior and stress physiology in a novel urban environment suggest rapid correlated evolutionary adaptation 
Behavioral Ecology  2012;23(5):960-969 .
Novel or changing environments expose animals to diverse stressors that likely require coordinated hormonal and behavioral adaptations. Predicted adaptations to urban environments include attenuated physiological responses to stressors and bolder exploratory behaviors, but few studies to date have evaluated the impact of urban life on codivergence of these hormonal and behavioral traits in natural systems. Here, we demonstrate rapid adaptive shifts in both stress physiology and correlated boldness behaviors in a songbird, the dark-eyed junco, following its colonization of a novel urban environment. We compared elevation in corticosterone (CORT) in response to handling and flight initiation distances in birds from a recently established urban population in San Diego, California to birds from a nearby wildland population in the species' ancestral montane breeding range. We also measured CORT and exploratory behavior in birds raised from early life in a captive common garden study. We found persistent population differences for both reduced CORT responses and bolder exploratory behavior in birds from the colonist population, as well as significant negative covariation between maximum CORT and exploratory behavior. Although early developmental effects cannot be ruled out, these results suggest contemporary adaptive evolution of correlated hormonal and behavioral traits associated with colonization of an urban habitat.
doi:10.1093/beheco/ars059
PMCID: PMC3431113  PMID: 22936840
adaptation; boldness; corticosterone; evolution; junco; urbanization
25.  Nest site and weather affect the personality of harvester ant colonies 
Behavioral Ecology  2012;23(5):1022-1029.
Environmental conditions and physical constraints both influence an animal's behavior. We investigate whether behavioral variation among colonies of the black harvester ant, Messor andrei, remains consistent across foraging and disturbance situations and ask whether consistent colony behavior is affected by nest site and weather. We examined variation among colonies in responsiveness to food baits and to disturbance, measured as a change in numbers of active ants, and in the speed with which colonies retrieved food and removed debris. Colonies differed consistently, across foraging and disturbance situations, in both responsiveness and speed. Increased activity in response to food was associated with a smaller decrease in response to alarm. Speed of retrieving food was correlated with speed of removing debris. In all colonies, speed was greater in dry conditions, reducing the amount of time ants spent outside the nest. While a colony occupied a certain nest site, its responsiveness was consistent in both foraging and disturbance situations, suggesting that nest structure influences colony personality.
doi:10.1093/beheco/ars066
PMCID: PMC3431114  PMID: 22936841
behavioral syndromes; collective behavior; harvester ant; Messor andrei; nest structure; personality; plasticity; social insects; temperament

Résultats 1-25 (57)