PMCC PMCC

Conseils de recherche
Les critères de recherche

Avancée
Résultats 1-25 (2219)
 

Notices sélectionnées (0)
Aucune

Sélectionner un filtre

Revues
plus »
Année de publication
plus »
1.  Mechanical stress in Arabidopsis leaves orients microtubules in a 'continuous’ supracellular pattern 
BMC Plant Biology  2013;13:163.
Background
Cortical microtubules form a dynamic network and continuously undergo shrinking (catastrophe), pausing and rebuilding (rescue). The advantage of such a dynamic system is that it may mediate appropriate responses in a short time span. Microtubules are known to play a pivotal role in determining the orientation of the cellulose microfibril deposition in the plant cell wall. The latter is a solid exoskeleton surrounding the protoplast. It forms the physical framework that interconnects most cells and has to bear the tensile stresses within the tissue. Here we describe the effect of externally applied pressure on microtubule organization in growing Arabidopsis leaves.
Results
Confocal microscopy examination of transgenic plants bearing GFP-tagged TUA6 proteins led to the observation that application of an additional mechanical pressure on growing Arabidopsis leaves triggers an excessive bundling of microtubules within the individual cell. Besides, the microtubules seem to align in neighboring cells, creating a 'continuous’ supracellular pattern. This effect occurs within 3 hours after applied external force and is age-dependent, whereby only cells of leaves up to 19 days after sowing (DAS) are susceptible to the applied pressure.
Conclusions
Upon externally applied pressure on developing Arabidopsis leaves, microtubules bundle and rearrange to form seemingly continuous supracellular patterns. As microtubules guide the cellulose synthase complexes, this observed reorganisation pattern probably affects the cellulose deposition, contributing to the reinforcement of the cell wall in a particular position to cope with the extra-applied pressure. The age-effect is reasonable, since younger cells, which are actively shaping their cell walls, are more vulnerable to altered mechanical stresses while in leaves older than 19 DAS, the walls are more robust and therefore can sustain the applied forces.
doi:10.1186/1471-2229-13-163
PMCID: PMC3853881  PMID: 24138025
Arabidopsis thaliana; Cell development; Leaf; Mechanical stress; Microtubules
2.  PMRD: a curated database for genes and mutants involved in plant male reproduction 
BMC Plant Biology  2012;12:215.
Background
Male reproduction is an essential biological event in the plant life cycle separating the diploid sporophyte and haploid gametophyte generations, which involves expression of approximately 20,000 genes. The control of male reproduction is also of economic importance for plant breeding and hybrid seed production. With the advent of forward and reverse genetics and genomic technologies, a large number of male reproduction-related genes have been identified. Thus it is extremely challenging for individual researchers to systematically collect, and continually update, all the available information on genes and mutants related to plant male reproduction. The aim of this study is to manually curate such gene and mutant information and provide a web-accessible resource to facilitate the effective study of plant male reproduction.
Description
Plant Male Reproduction Database (PMRD) is a comprehensive resource for browsing and retrieving knowledge on genes and mutants related to plant male reproduction. It is based upon literature and biological databases and includes 506 male sterile genes and 484 mutants with defects of male reproduction from a variety of plant species. Based on Gene Ontology (GO) annotations and literature, information relating to a further 3697 male reproduction related genes were systematically collected and included, and using in text curation, gene expression and phenotypic information were captured from the literature. PMRD provides a web interface which allows users to easily access the curated annotations and genomic information, including full names, symbols, locations, sequences, expression patterns, functions of genes, mutant phenotypes, male sterile categories, and corresponding publications. PMRD also provides mini tools to search and browse expression patterns of genes in microarray datasets, run BLAST searches, convert gene ID and generate gene networks. In addition, a Mediawiki engine and a forum have been integrated within the database, allowing users to share their knowledge, make comments and discuss topics.
Conclusion
PMRD provides an integrated link between genetic studies and the rapidly growing genomic information. As such this database provides a global view of plant male reproduction and thus aids advances in this important area.
doi:10.1186/1471-2229-12-215
PMCID: PMC3607949  PMID: 23153247
Plant male reproduction; Database; Gene; Mutant; Pollen; Anther
3.  Comparative genomic analysis of 1047 completely sequenced cDNAs from an Arabidopsis-related model halophyte, Thellungiella halophila 
BMC Plant Biology  2010;10:261.
Background
Thellungiella halophila (also known as T. salsuginea) is a model halophyte with a small size, short life cycle, and small genome. Thellungiella genes exhibit a high degree of sequence identity with Arabidopsis genes (90% at the cDNA level). We previously generated a full-length enriched cDNA library of T. halophila from various tissues and from whole plants treated with salinity, chilling, freezing stress, or ABA. We determined the DNA sequences of 20 000 cDNAs at both the 5'- and 3' ends, and identified 9569 distinct genes.
Results
Here, we completely sequenced 1047 Thellungiella full-length cDNAs representing abiotic-stress-related genes, transcription factor genes, and protein phosphatase 2C genes. The predicted coding sequences, 5'-UTRs, and 3'-UTRs were compared with those of orthologous genes from Arabidopsis for length, sequence similarity, and structure. The 5'-UTR sequences of Thellungiella and Arabidopsis orthologs shared a significant level of similarity, although the motifs were rearranged. While examining the stress-related Thellungiella coding sequences, we found a short splicing variant of T. halophila salt overly sensitive 1 (ThSOS1), designated ThSOS1S. ThSOS1S contains the transmembrane domain of ThSOS1 but lacks the C-terminal hydrophilic region. The expression level of ThSOS1S under normal growth conditions was higher than that of ThSOS1. We also compared the expression levels of Na+-transport-system genes between Thellungiella and Arabidopsis by using full-length cDNAs from each species as probes. Several genes that play essential roles in Na+ excretion, compartmentation, and diffusion (SOS1, SOS2, NHX1, and HKT1) were expressed at higher levels in Thellungiella than in Arabidopsis.
Conclusions
The full-length cDNA sequences obtained in this study will be essential for the ongoing annotation of the Thellungiella genome, especially for further improvement of gene prediction. Moreover, they will enable us to find splicing variants such as ThSOS1S (AB562331).
doi:10.1186/1471-2229-10-261
PMCID: PMC3017837  PMID: 21106055
4.  Generation and analysis of expressed sequence tags from NaCl-treated Glycine soja 
BMC Plant Biology  2006;6:4.
Background
Salinization causes negative effects on plant productivity and poses an increasingly serious threat to the sustainability of agriculture. Wild soybean (Glycine soja) can survive in highly saline conditions, therefore provides an ideal candidate plant system for salt tolerance gene mining.
Results
As a first step towards the characterization of genes that contribute to combating salinity stress, we constructed a full-length cDNA library of Glycine soja (50109) leaf treated with 150 mM NaCl, using the SMART technology. Random expressed sequence tag (EST) sequencing of 2,219 clones produced 2,003 cleaned ESTs for gene expression analysis. The average read length of cleaned ESTs was 454 bp, with an average GC content of 40%. These ESTs were assembled using the PHRAP program to generate 375 contigs and 696 singlets. The resulting unigenes were categorized according to the Gene Ontology (GO) hierarchy. The potential roles of gene products associated with stress related ESTs were discussed. We compared the EST sequences of Glycine soja to that of Glycine max by using the blastn algorithm. Most expressed sequences from wild soybean exhibited similarity with soybean. All our EST data are available on the Internet (GenBank_Accn: DT082443~DT084445).
Conclusion
The Glycine soja ESTs will be used to mine salt tolerance gene, whose full-length cDNAs will be obtained easily from the full-length cDNA library. Comparison of Glycine soja ESTs with those of Glycine max revealed the potential to investigate the wild soybean's expression profile using the soybean's gene chip. This will provide opportunities to understand the genetic mechanisms underlying stress response of plants.
doi:10.1186/1471-2229-6-4
PMCID: PMC1388217  PMID: 16504061
5.  Identification of conserved drought-adaptive genes using a cross-species meta-analysis approach 
BMC Plant Biology  2015;15:111.
Background
Drought is the major environmental stress threatening crop-plant productivity worldwide. Identification of new genes and metabolic pathways involved in plant adaptation to progressive drought stress at the reproductive stage is of great interest for agricultural research.
Results
We developed a novel Cross-Species meta-Analysis of progressive Drought stress at the reproductive stage (CSA:Drought) to identify key drought adaptive genes and mechanisms and to test their evolutionary conservation. Empirically defined filtering criteria were used to facilitate a robust integration of 17 deposited microarray experiments (148 arrays) of Arabidopsis, rice, wheat and barley. By prioritizing consistency over intensity, our approach was able to identify 225 differentially expressed genes shared across studies and taxa. Gene ontology enrichment and pathway analyses classified the shared genes into functional categories involved predominantly in metabolic processes (e.g. amino acid and carbohydrate metabolism), regulatory function (e.g. protein degradation and transcription) and response to stimulus. We further investigated drought related cis-acting elements in the shared gene promoters, and the evolutionary conservation of shared genes. The universal nature of the identified drought-adaptive genes was further validated in a fifth species, Brachypodium distachyon that was not included in the meta-analysis. qPCR analysis of 27, randomly selected, shared orthologs showed similar expression pattern as was found by the CSA:Drought.In accordance, morpho-physiological characterization of progressive drought stress, in B. distachyon, highlighted the key role of osmotic adjustment as evolutionary conserved drought-adaptive mechanism.
Conclusions
Our CSA:Drought strategy highlights major drought-adaptive genes and metabolic pathways that were only partially, if at all, reported in the original studies included in the meta-analysis. These genes include a group of unclassified genes that could be involved in novel drought adaptation mechanisms. The identified shared genes can provide a useful resource for subsequent research to better understand the mechanisms involved in drought adaptation across-species and can serve as a potential set of molecular biomarkers for progressive drought experiments.
Electronic supplementary material
The online version of this article (doi:10.1186/s12870-015-0493-6) contains supplementary material, which is available to authorized users.
doi:10.1186/s12870-015-0493-6
PMCID: PMC4417316  PMID: 25935420
Brachypodium distachyon; Cross-species meta-analysis; Drought stress; Evolutionary conservation; Microarray; Osmotic adjustment
6.  Repetitive sequence analysis and karyotyping reveals centromere-associated DNA sequences in radish (Raphanus sativus L.) 
BMC Plant Biology  2015;15:105.
Background
Radish (Raphanus sativus L., 2n = 2x = 18) is a major root vegetable crop especially in eastern Asia. Radish root contains various nutritions which play an important role in strengthening immunity. Repetitive elements are primary components of the genomic sequence and the most important factors in genome size variations in higher eukaryotes. To date, studies about repetitive elements of radish are still limited. To better understand genome structure of radish, we undertook a study to evaluate the proportion of repetitive elements and their distribution in radish.
Results
We conducted genome-wide characterization of repetitive elements in radish with low coverage genome sequencing followed by similarity-based cluster analysis. Results showed that about 31% of the genome was composed of repetitive sequences. Satellite repeats were the most dominating elements of the genome. The distribution pattern of three satellite repeat sequences (CL1, CL25, and CL43) on radish chromosomes was characterized using fluorescence in situ hybridization (FISH). CL1 was predominantly located at the centromeric region of all chromosomes, CL25 located at the subtelomeric region, and CL43 was a telomeric satellite. FISH signals of two satellite repeats, CL1 and CL25, together with 5S rDNA and 45S rDNA, provide useful cytogenetic markers to identify each individual somatic metaphase chromosome. The centromere-specific histone H3 (CENH3) has been used as a marker to identify centromere DNA sequences. One putative CENH3 (RsCENH3) was characterized and cloned from radish. Its deduced amino acid sequence shares high similarities to those of the CENH3s in Brassica species. An antibody against B. rapa CENH3, specifically stained radish centromeres. Immunostaining and chromatin immunoprecipitation (ChIP) tests with anti-BrCENH3 antibody demonstrated that both the centromere-specific retrotransposon (CR-Radish) and satellite repeat (CL1) are directly associated with RsCENH3 in radish.
Conclusions
Proportions of repetitive elements in radish were estimated and satellite repeats were the most dominating elements. Fine karyotyping analysis was established which allow us to easily identify each individual somatic metaphase chromosome. Immunofluorescence- and ChIP-based assays demonstrated the functional significance of satellite and centromere-specific retrotransposon at centromeres. Our study provides a valuable basis for future genomic studies in radish.
Electronic supplementary material
The online version of this article (doi:10.1186/s12870-015-0480-y) contains supplementary material, which is available to authorized users.
doi:10.1186/s12870-015-0480-y
PMCID: PMC4417506  PMID: 25928652
Radish; Repetitive DNA; Satellite; Karyotyping; CENH3; Centromere
7.  PASmiR: a literature-curated database for miRNA molecular regulation in plant response to abiotic stress 
BMC Plant Biology  2013;13:33.
Background
Over 200 published studies of more than 30 plant species have reported a role for miRNAs in regulating responses to abiotic stresses. However, data from these individual reports has not been collected into a single database. The lack of a curated database of stress-related miRNAs limits research in this field, and thus a cohesive database system should necessarily be constructed for data deposit and further application.
Description
PASmiR, a literature-curated and web-accessible database, was developed to provide detailed, searchable descriptions of miRNA molecular regulation in different plant abiotic stresses. PASmiR currently includes data from ~200 published studies, representing 1038 regulatory relationships between 682 miRNAs and 35 abiotic stresses in 33 plant species. PASmiR’s interface allows users to retrieve miRNA-stress regulatory entries by keyword search using plant species, abiotic stress, and miRNA identifier. Each entry upon keyword query contains detailed regulation information for a specific miRNA, including species name, miRNA identifier, stress name, miRNA expression pattern, detection method for miRNA expression, a reference literature, and target gene(s) of the miRNA extracted from the corresponding reference or miRBase. Users can also contribute novel regulatory entries by using a web-based submission page. The PASmiR database is freely accessible from the two URLs of http://hi.ustc.edu.cn:8080/PASmiR, and http://pcsb.ahau.edu.cn:8080/PASmiR.
Conclusion
The PASmiR database provides a solid platform for collection, standardization, and searching of miRNA-abiotic stress regulation data in plants. As such this database will be a comprehensive repository for miRNA regulatory mechanisms involved in plant response to abiotic stresses for the plant stress physiology community.
doi:10.1186/1471-2229-13-33
PMCID: PMC3599438  PMID: 23448274
8.  Root waving and skewing - unexpectedly in micro-g 
BMC Plant Biology  2012;12:231.
Gravity has major effects on both the form and overall length of root growth. Numerous papers have documented these effects (over 300 publications in the last 5 years), the most well-studied being gravitropism, which is a growth re-orientation directed by gravity toward the earth’s center. Less studied effects of gravity are undulations due to the regular periodic change in the direction root tips grow, called waving, and the slanted angle of growth roots exhibit when they are growing along a nearly-vertical surface, called skewing. Although diverse studies have led to the conclusion that a gravity stimulus is needed for plant roots to show waving and skewing, the novel results just published by Paul et al. (2012) reveal that this conclusion is not correct. In studies carried out in microgravity on the International Space Station, the authors used a new imaging system to collect digital photographs of plants every six hours during 15 days of spaceflight. The imaging system allowed them to observe how roots grew when their orientation was directed not by gravity but by overhead LED lights, which roots grew away from because they are negatively phototropic. Surprisingly, the authors observed both skewing and waving in spaceflight plants, thus demonstrating that both growth phenomena were gravity independent. Touch responses and differential auxin transport would be common features of root waving and skewing at 1-g and micro-g, and the novel results of Paul et al. will focus the attention of cell and molecular biologists more on these features as they try to decipher the signaling pathways that regulate root skewing and waving.
doi:10.1186/1471-2229-12-231
PMCID: PMC3533921  PMID: 23217095
Arabidopsis; Auxin; Cytoskeleton; Extracellular ATP; International space station; Roots
9.  Arabidopsis Gene Family Profiler (aGFP) – user-oriented transcriptomic database with easy-to-use graphic interface 
BMC Plant Biology  2007;7:39.
Background
Microarray technologies now belong to the standard functional genomics toolbox and have undergone massive development leading to increased genome coverage, accuracy and reliability. The number of experiments exploiting microarray technology has markedly increased in recent years. In parallel with the rapid accumulation of transcriptomic data, on-line analysis tools are being introduced to simplify their use. Global statistical data analysis methods contribute to the development of overall concepts about gene expression patterns and to query and compose working hypotheses. More recently, these applications are being supplemented with more specialized products offering visualization and specific data mining tools. We present a curated gene family-oriented gene expression database, Arabidopsis Gene Family Profiler (aGFP; ), which gives the user access to a large collection of normalised Affymetrix ATH1 microarray datasets. The database currently contains NASC Array and AtGenExpress transcriptomic datasets for various tissues at different developmental stages of wild type plants gathered from nearly 350 gene chips.
Results
The Arabidopsis GFP database has been designed as an easy-to-use tool for users needing an easily accessible resource for expression data of single genes, pre-defined gene families or custom gene sets, with the further possibility of keyword search. Arabidopsis Gene Family Profiler presents a user-friendly web interface using both graphic and text output. Data are stored at the MySQL server and individual queries are created in PHP script. The most distinguishable features of Arabidopsis Gene Family Profiler database are: 1) the presentation of normalized datasets (Affymetrix MAS algorithm and calculation of model-based gene-expression values based on the Perfect Match-only model); 2) the choice between two different normalization algorithms (Affymetrix MAS4 or MAS5 algorithms); 3) an intuitive interface; 4) an interactive "virtual plant" visualizing the spatial and developmental expression profiles of both gene families and individual genes.
Conclusion
Arabidopsis GFP gives users the possibility to analyze current Arabidopsis developmental transcriptomic data starting with simple global queries that can be expanded and further refined to visualize comparative and highly selective gene expression profiles.
doi:10.1186/1471-2229-7-39
PMCID: PMC1963329  PMID: 17645793
10.  A fully automatable enzymatic method for DNA extraction from plant tissues 
BMC Plant Biology  2005;5:23.
Background
DNA extraction from plant tissues, unlike DNA isolation from mammalian tissues, remains difficult due to the presence of a rigid cell wall around the plant cells. Currently used methods inevitably require a laborious mechanical grinding step, necessary to disrupt the cell wall for the release of DNA.
Results
Using a cocktail of different carbohydrases, a method was developed that enables a complete digestion of the plant cell walls and subsequent DNA release. Optimized conditions for the digestion reaction minimize DNA shearing and digestion, and maximize DNA release from the plant cell. The method gave good results in 125 of the 156 tested species.
Conclusion
In combination with conventional DNA isolation techniques, the new enzymatic method allows to obtain high-yield, high-molecular weight DNA, which can be used for many applications, including genome characterization by AFLP, RAPD and SSR. Automation of the protocol (from leaf disks to DNA) is possible with existing workstations.
doi:10.1186/1471-2229-5-23
PMCID: PMC1298311  PMID: 16269076
11.  Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment 
BMC Plant Biology  2002;2:5.
Background
Dehydrins are known as Group II late embryogenesis abundant proteins. Their high hydrophilicity and thermostability suggest that they may be structure stabilizers with detergent and chaperone-like properties. They are localised in the nucleus, cytoplasm, and plasma membrane. We have recently found putative dehydrins in the mitochondria of some cereals in response to cold. It is not known whether dehydrin-like proteins accumulate in plant mitochondria in response to stimuli other than cold stress.
Results
We have found five putative dehydrins in the mitochondria of winter wheat, rye and maize seedlings. Two of these polypeptides had the same molecular masses in all three species (63 and 52 kD) and were thermostable. Drought, freezing, cold, and exogenous ABA treatment led to higher accumulation of dehydrin-like protein (dlp) 63 kD in the rye and wheat mitochondria. Protein 52 kD was induced by cold adaptation and ABA. Some accumulation of these proteins in the maize mitochondria was found after cold exposition only. The other three proteins appeared to be heat-sensitive and were either slightly induced or not induced at all by all treatments used.
Conclusions
We have found that, not only cold, but also drought, freezing and exogenous ABA treatment result in accumulation of the thermostable dehydrins in plant mitochondria. Most cryotolerant species such as wheat and rye accumulate more heat-stable dehydrins than cryosensitive species such as maize. It has been supposed that their function is to stabilize proteins in the membrane or in the matrix. Heat-sensitive putative dehydrins probably are not involved in the stress reaction and adaptation of plants.
doi:10.1186/1471-2229-2-5
PMCID: PMC116594  PMID: 12057012
12.  Diffraction evidence for the structure of cellulose microfibrils in bamboo, a model for grass and cereal celluloses 
BMC Plant Biology  2015;15:153.
Background
Cellulose from grasses and cereals makes up much of the potential raw material for biofuel production. It is not clear if cellulose microfibrils from grasses and cereals differ in structure from those of other plants. The structures of the highly oriented cellulose microfibrils in the cell walls of the internodes of the bamboo Pseudosasa amabilis are reported. Strong orientation facilitated the use of a range of scattering techniques.
Results
Small-angle neutron scattering provided evidence of extensive aggregation by hydrogen bonding through the hydrophilic edges of the sheets of chains. The microfibrils had a mean centre-to-centre distance of 3.0 nm in the dry state, expanding on hydration. The expansion on hydration suggests that this distance between centres was through the hydrophilic faces of adjacent microfibrils. However in the other direction, perpendicular to the sheets of chains, the mean, disorder-corrected Scherrer dimension from wide-angle X-ray scattering was 3.8 nm. It is possible that this dimension is increased by twinning (crystallographic coalescence) of thinner microfibrils over part of their length, through the hydrophobic faces. The wide-angle scattering data also showed that the microfibrils had a relatively large intersheet d-spacing and small monoclinic angle, features normally considered characteristic of primary-wall cellulose.
Conclusions
Bamboo microfibrils have features found in both primary-wall and secondary-wall cellulose, but are crystallographically coalescent to a greater extent than is common in celluloses from other plants. The extensive aggregation and local coalescence of the microfibrils are likely to have parallels in other grass and cereal species and to influence the accessibility of cellulose to degradative enzymes during conversion to liquid biofuels
doi:10.1186/s12870-015-0538-x
PMCID: PMC4477487  PMID: 26099632
WAXS; WANS; SANS; Crystallinity; Aggregation; Cellulase
13.  Costs and benefits of reticulate leaf venation 
BMC Plant Biology  2014;14:234.
Background
Recent theoretical and empirical work has identified redundancy as one of the benefits of the reticulate form in the evolution of leaf vein networks. However, we know little about the costs of redundancy or how those costs depend on vein network geometry or topology. Here, we examined both costs and benefits to redundancy in 339 individual reticulate leaf networks comprising over 3.5 million vein segments. We compared levels of costs and benefits within reticulate networks to those within analogous networks without loops known as Maximum Spanning Trees (MSTs).
Results
We show that network robustness to varying degrees of simulated damage is positively correlated with structural indices of redundancy. We further show that leaf vein networks are topologically, geometrically and functionally more redundant than are MSTs. However, increased redundancy comes with minor costs in terms of increases in material allocation or decreases in conductance. We also show that full networks do not markedly decrease the distance to non-vein tissue in comparison to MSTs.
Conclusions
These results suggest the evolutionary transition to the reticulate type of networks found in modern Angiosperm flora involved a relatively minor increase in material and conductance costs with significant benefits in terms of network redundancy.
Electronic supplementary material
The online version of this article (doi:10.1186/s12870-014-0234-2) contains supplementary material, which is available to authorized users.
doi:10.1186/s12870-014-0234-2
PMCID: PMC4177576  PMID: 25234042
Leaf veins; Networks; Redundancy; Meshedness; Reticulate veins; Network robustness
14.  Multiphoton imaging to identify grana, stroma thylakoid, and starch inside an intact leaf 
BMC Plant Biology  2014;14:175.
Background
Grana and starch are major functional structures for photosynthesis and energy storage of plant, respectively. Both exhibit highly ordered molecular structures and appear as micrometer-sized granules inside chloroplasts. In order to distinguish grana and starch, we used multiphoton microscopy, with simultaneous acquisition of two-photon fluorescence (2PF) and second harmonic generation (SHG) signals. SHG is sensitive to crystallized structures while 2PF selectively reveals the distribution of chlorophyll.
Result
Three distinct microstructures with different contrasts were observed, i.e. “SHG dominates”, “2PF dominates”, and “SHG collocated with 2PF”. It is known that starch and grana both emit SHG due to their highly crystallized structures, and no autofluorescence is emitted from starch, so the “SHG dominates” contrast should correspond to starch. The contrast of “SHG collocated with 2PF” is assigned to be grana, which exhibit crystallized structure with autofluorescent chlorophyll. The “2PF dominates” contrast should correspond to stroma thylakoid, which is a non-packed membrane structure with chrolophyll. The contrast assignment is further supported by fluorescence lifetime measurement.
Conclusion
We have demonstrated a straightforward and noninvasive method to identify the distribution of grana and starch within an intact leaf. By merging the 2PF and SHG images, grana, starch and stroma thylakoid can be visually distinguished. This approach can be extended to the observation of 3D grana distribution and their dynamics in living plants.
doi:10.1186/1471-2229-14-175
PMCID: PMC4104400  PMID: 24969621
Grana; Starch; Two-photon fluorescence; Second harmonic generation
15.  Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells 
BMC Plant Biology  2013;13:226.
Background
In plants, a complex cell wall protects cells and defines their shape. Cellulose fibrils form a multilayered network inside the cell-wall matrix that plays a direct role in controlling cell expansion. Resolving the structure of this network will allow us to comprehend the relationship of cellulose fibril orientation and growth.
The fluorescent dye Pontamine Fast Scarlet 4BS (PFS) was shown to stain cellulose with high specificity and could be used to visualize cellulose bundles in cell walls of Arabidopsis root epidermal cells with confocal microscopy. The resolution limit of confocal microscopy of some 200 nm in xy and 550 nm in z for green light, restricts the direct visualization of cellulose to relatively large bundles, whereas the structure of cellulose microfibrils with their diameter below 10 nm remains unresolved. Over the last decade, several so-called super-resolution microscopy approaches have been developed; in this paper we explore the potential of such approaches for the direct visualization of cellulose.
Results
To ensure optimal imaging we determined the spectral properties of PFS-stained tissue. PFS was found not to affect cell viability in the onion bulb scale epidermis. We present the first super-resolution images of cellulose bundles in the plant cell wall produced by direct stochastic optical reconstruction microscopy (dSTORM) in combination with total internal reflection fluorescence (TIRF) microscopy. Since TIRF limits observation to the cell surface, we tested as alternatives 3D-structured illumination microscopy (3D-SIM) and confocal microscopy, combined with image deconvolution. Both methods offer lower resolution than STORM, but enable 3D imaging. While 3D-SIM produced strong artifacts, deconvolution gave good results. The resolution was improved over conventional confocal microscopy and the approach could be used to demonstrate differences in fibril orientation in different layers of the cell wall as well as particular cellulose fortifications around plasmodesmata.
Conclusions
Super-resolution light microscopy of PFS-stained cellulose fibrils is possible and the increased resolution over conventional approaches makes it a valuable tool for the investigation of the cell-wall structure. This is one step in method developments that will close the gap to more invasive techniques, such as atomic force and electron microscopy.
doi:10.1186/1471-2229-13-226
PMCID: PMC3942175  PMID: 24373117
Fluorescent dye; Cell wall; Cellulose; STORM; Structured illumination; Super-resolution microscopy; TIRF; Deconvolution
16.  First whole genome based microsatellite DNA marker database of tomato for mapping and variety identification 
BMC Plant Biology  2013;13:197.
Background
The cultivated tomato is second most consumed vegetable of the world and is an important part of a diverse and balanced diet as a rich source of vitamins, minerals, phenolic antioxidants and antioxidant lycopene having anti-cancer properties. To reap benefit of genomics of the domestic tomato (Solanum lycopersicum L.) unravelled by Tomato Genome Consortium (The Tomato Genome Consortium, 2012), the bulk mining of its markers in totality is imperative and critically required. The solgenomics has limited number of microsatellite DNA markers (2867) pertaining to solanaceae family. As these markers are of linkage map having relative distance, the choice of selected markers based on absolute distance as of physical map is missing. Only limited microsatellite markers with limitations are reported for variety identification thus there is a need for more markers supplementing DUS test and also for traceability of product in global market.
Description
We present here the first whole genome based microsatellite DNA marker database of tomato, TomSatDB (Tomato MicroSatellite Database) with more than 1.4 million markers mined in-silico, using MIcroSAtellite (MISA) tool. To cater the customized needs of wet lab, features with a novelty of an automated primer designing tool is added. TomSatDB (http://cabindb.iasri.res.in/tomsatdb), a user-friendly and freely accessible tool offers chromosome wise as well as location wise search of primers. It is an online relational database based on “three-tier architecture” that catalogues information of microsatellites in MySQL and user-friendly interface developed using PHP (Hypertext Pre Processor).
Conclusion
Besides abiotic stress, tomato is known to have biotic stress due to its susceptibility over 200 diseases caused by pathogenic fungi, bacteria, viruses and nematodes. These markers are expected to pave the way of germplasm management over abiotic and biotic stress as well as improvement through molecular breeding, leading to increased tomato productivity in India as well as other parts of the world. In era of IPR the new variety can be identified based on allelic variation among varieties supplementing DUS test and product traceability.
doi:10.1186/1471-2229-13-197
PMCID: PMC3881501
Markers; Microsatellite; MISA; Primer; Tomato; Variety identification
17.  Spliceosomal introns in the 5′ untranslated region of plant BTL RING-H2 ubiquitin ligases are evolutionary conserved and required for gene expression 
BMC Plant Biology  2013;13:179.
Background
Introns located close to the 5′ end of a gene or in the 5′ untranslated region often exert positive effects on gene expression. This effect, known as intron-mediated enhancement (IME), has been observed in diverse eukaryotic organisms, including plants. The sequences involved in IME seem to be spread across the intron and function in an additive manner. The IMEter algorithm was developed to predict plant introns that may enhance gene expression. We have identified several plant members of the BTL class of E3s, which may have orthologs across eukaryotes, that contain a 5′UTR intron. The RING finger E3 ligases are key enzymes of the ubiquitination system that mediate the transfer of ubiquitin to substrates.
Results
In this study, we retrieved BTL sequences from several angiosperm species and found that 5′UTR introns showing a strong IMEter score were predicted, suggesting that they may be conserved by lineage. Promoter-GUS fusion lines were used to confirm the IME effect of these 5′UTR introns on gene expression. IMEter scores of BTLs were compared with the 5′UTR introns of two gene families MHX and polyubiquitin genes.
Conclusions
Analysis performed in two Arabidopsis BTL E3 ligases genes indicated that the 5′UTR introns were essential for gene expression in all the tissues tested. Comparison of the average 5′UTR intron size on three gene families in ten angiosperm species suggests that a prevalent size for a 5′UTR intron is in the range of 600 nucleotides, and that the overall IMEter score within a gene family is preserved across several angiosperms. Our results indicated that gene expression dependent on a 5′UTR intron is an efficient regulatory mechanism in BTL E3 ligases that has been preserved throughout plant evolution.
doi:10.1186/1471-2229-13-179
PMCID: PMC4225707  PMID: 24228887
5′-UTR intron; IMEter score; Ubiquitin ligases; Intron-mediated enhancement; MHX; Polyubiquitin genes
21.  Characterization and structural analysis of wild type and a non-abscission mutant at the development funiculus (Def) locus in Pisum sativum L 
BMC Plant Biology  2009;9:76.
Background
In pea seeds (Pisum sativum L.), the Def locus defines an abscission event where the seed separates from the funicle through the intervening hilum region at maturity. A spontaneous mutation at this locus results in the seed failing to abscise from the funicle as occurs in wild type peas. In this work, structural differences between wild type peas that developed a distinct abscission zone (AZ) between the funicle and the seed coat and non-abscission def mutant were characterized.
Results
A clear abscission event was observed in wild type pea seeds that were associated with a distinct double palisade layers at the junction between the seed coat and funicle. Generally, mature seeds fully developed an AZ, which was not present in young wild type seeds. The AZ was formed exactly below the counter palisade layer. In contrast, the palisade layers at the junction of the seed coat and funicle were completely absent in the def mutant pea seeds and the cells in this region were seen to be extensions of surrounding parenchymatous cells.
Conclusion
The Def wild type developed a distinct AZ associated with palisade layer and counterpalisade layer at the junction of the seed coat and funicle while the def mutant pea seed showed non-abscission and an absence of the double palisade layers in the same region. We conclude that the presence of the double palisade layer in the hilum of the wild type pea seeds plays an important structural role in AZ formation by delimiting the specific region between the seed coat and the funicle and may play a structural role in the AZ formation and subsequent detachment of the seed from the funicle.
doi:10.1186/1471-2229-9-76
PMCID: PMC2717967  PMID: 19549315
22.  Genetic architecture of limit dextrinase inhibitor (LDI) activity in Tibetan wild barley 
BMC Plant Biology  2014;14:117.
Background
Limit dextrinase inhibitor (LDI) inhibits starch degradation in barley grains during malting because it binds with limit dextrinase (LD). There is a wide genetic variation in LDI synthesis and inactivation during barley grain development and germination. However, the genetic control of LDI activity remains little understood.
Results
In this study, association analysis was performed on 162 Tibetan wild accessions by using LDI activity, 835 Diversity Arrays Technology (DArT) markers and single nucleotide polymorphisms (SNPs) of the gene HvLDI encoding LDI. Two DArT markers, bpb-8347, bpb-0068, and 31 SNPs of HvLDI were significantly associated with LDI activity, explaining 10.0%, 6.6% and 13.4% of phenotypic variation, respectively. Bpb-8347 is located on chromosome 6H, near the locus of HvLDI, and bpb-0068 is located on 3H.
Conclusions
The current results confirmed the locus of the gene controlling LDI activity and identified a new DArT markers associated with LDI activity. The SNPs associated with LDI activity may provide a new insight into the genetic variation of LDI activity in barley grains.
doi:10.1186/1471-2229-14-117
PMCID: PMC4041910  PMID: 24885294
Limit dextrinase inhibitor (LDI); Genome-wide association study (GWAS); Single nucleotide polymorphism (SNP); Tibetan wild barley
23.  LIPS database with LIPService: a microscopic image database of intracellular structures in Arabidopsis guard cells 
BMC Plant Biology  2013;13:81.
Background
Intracellular configuration is an important feature of cell status. Recent advances in microscopic imaging techniques allow us to easily obtain a large number of microscopic images of intracellular structures. In this circumstance, automated microscopic image recognition techniques are of extreme importance to future phenomics/visible screening approaches. However, there was no benchmark microscopic image dataset for intracellular organelles in a specified plant cell type. We previously established the Live Images of Plant Stomata (LIPS) database, a publicly available collection of optical-section images of various intracellular structures of plant guard cells, as a model system of environmental signal perception and transduction. Here we report recent updates to the LIPS database and the establishment of a database table, LIPService.
Description
We updated the LIPS dataset and established a new interface named LIPService to promote efficient inspection of intracellular structure configurations. Cell nuclei, microtubules, actin microfilaments, mitochondria, chloroplasts, endoplasmic reticulum, peroxisomes, endosomes, Golgi bodies, and vacuoles can be filtered using probe names or morphometric parameters such as stomatal aperture. In addition to the serial optical sectional images of the original LIPS database, new volume-rendering data for easy web browsing of three-dimensional intracellular structures have been released to allow easy inspection of their configurations or relationships with cell status/morphology. We also demonstrated the utility of the new LIPS image database for automated organelle recognition of images from another plant cell image database with image clustering analyses.
Conclusions
The updated LIPS database provides a benchmark image dataset for representative intracellular structures in Arabidopsis guard cells. The newly released LIPService allows users to inspect the relationship between organellar three-dimensional configurations and morphometrical parameters.
doi:10.1186/1471-2229-13-81
PMCID: PMC3663689  PMID: 23679342
3-D structures; Arabidopsis thaliana; Fluorescent proteins; Microscopic image; Organelle; Stomata
24.  RICD: A rice indica cDNA database resource for rice functional genomics 
BMC Plant Biology  2008;8:118.
Background
The Oryza sativa L. indica subspecies is the most widely cultivated rice. During the last few years, we have collected over 20,000 putative full-length cDNAs and over 40,000 ESTs isolated from various cDNA libraries of two indica varieties Guangluai 4 and Minghui 63. A database of the rice indica cDNAs was therefore built to provide a comprehensive web data source for searching and retrieving the indica cDNA clones.
Results
Rice Indica cDNA Database (RICD) is an online MySQL-PHP driven database with a user-friendly web interface. It allows investigators to query the cDNA clones by keyword, genome position, nucleotide or protein sequence, and putative function. It also provides a series of information, including sequences, protein domain annotations, similarity search results, SNPs and InDels information, and hyperlinks to gene annotation in both The Rice Annotation Project Database (RAP-DB) and The TIGR Rice Genome Annotation Resource, expression atlas in RiceGE and variation report in Gramene of each cDNA.
Conclusion
The online rice indica cDNA database provides cDNA resource with comprehensive information to researchers for functional analysis of indica subspecies and for comparative genomics. The RICD database is available through our website .
doi:10.1186/1471-2229-8-118
PMCID: PMC2605458  PMID: 19036133
25.  Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers 
BMC Plant Biology  2007;7:11.
Background
Beta-carotene is the main dietary precursor of vitamin A. Potato tubers contain low levels of carotenoids, composed mainly of the xanthophylls lutein (in the beta-epsilon branch) and violaxanthin (in the beta-beta branch). None of these carotenoids have provitamin A activity. We have previously shown that tuber-specific silencing of the first step in the epsilon-beta branch, LCY-e, redirects metabolic flux towards beta-beta carotenoids, increases total carotenoids up to 2.5-fold and beta-carotene up to 14-fold.
Results
In this work, we silenced the non-heme beta-carotene hydroxylases CHY1 and CHY2 in the tuber. Real Time RT-PCR measurements confirmed the tuber-specific silencing of both genes . CHY silenced tubers showed more dramatic changes in carotenoid content than LCY-e silenced tubers, with beta-carotene increasing up to 38-fold and total carotenoids up to 4.5-fold. These changes were accompanied by a decrease in the immediate product of beta-carotene hydroxylation, zeaxanthin, but not of the downstream xanthophylls, viola- and neoxanthin. Changes in endogenous gene expression were extensive and partially overlapping with those of LCY-e silenced tubers: CrtISO, LCY-b and ZEP were induced in both cases, indicating that they may respond to the balance between individual carotenoid species.
Conclusion
Together with epsilon-cyclization of lycopene, beta-carotene hydroxylation is another regulatory step in potato tuber carotenogenesis. The data are consistent with a prevalent role of CHY2, which is highly expressed in tubers, in the control of this step. Combination of different engineering strategies holds good promise for the manipulation of tuber carotenoid content.
doi:10.1186/1471-2229-7-11
PMCID: PMC1828156  PMID: 17335571

Résultats 1-25 (2219)