PMCC PMCC

Conseils de recherche
Les critères de recherche

Avancée
Résultats 1-25 (82)
 

Notices sélectionnées (0)
Aucune

Sélectionner un filtre

Revues
Année de publication
1.  Determination of Chlorophenoxy Acid Methyl Esters and Other Chlorinated Herbicides by GC High-resolution QTOFMS and Soft lonization 
Gas chromatography with quadrupole time-of-flight mass spectrometry (GC-QTOFMS) and soft ionization generated by a rare-gas plasma is described here for the determination of various chlorophenoxy acid methyl esters and a few chlorinated herbicides. This plasma-based, wavelength-selectable ionization source, which can use Xe, Kr, Ar, Ne, or He as the plasma gas, enables ionization of GC-amenable compounds with ionization energies below 8.4, 10, 11.6, 16.5, or 22.4 eV, respectively. The advantages of soft ionization include enhanced molecular ions, reduced fragmentation, and reduced background noise as compared to electron ionization. In the study presented here for two plasma gases, we demonstrate that Kr plasma, which is softer than Ar plasma, yields molecular ions with a relative intensity >60% for 11 of the 16 test compounds. When using this “tunable” plasma to ionize the analytes, there is the possibility for selective ionization and less fragmentation, which may lead to increased sensitivity and may help structure elucidation, especially when using high-resolution mass spectrometry that generates accurate masses within a few parts per million (ppm) mass errors. Data generated with the Ar plasma and real matrices such as a peppermint extract, a plum extract, and an orange peel extract, spiked with 16 test compounds, indicate that the test compounds can be detected at 1–10 pg/μL of extract, and compounds such as menthone, limonene, eucalyptol, pinene, caryophylene, and other C15H24 isomers, which are present in the peppermint and the orange peel extracts at ppm to percent levels, do not appear to interfere with the determination of the chlorophenoxy acid methyl esters or the chlorinated herbicides, although there were matrix effects when the test compounds were spiked at 1–10 pg/μL of extract.
doi:10.4137/ACI.S21901
PMCID: PMC4325682
GC high-resolution QTOFMS; soft ionization; chlorophenoxy acid methyl ester; chlorinated herbicide; peppermint extract; orange peel extract
2.  A Study of Method Development, Validation, and Forced Degradation for Simultaneous Quantification of Paracetamol and Ibuprofen in Pharmaceutical Dosage Form by RP-HPLC Method 
A rapid and stability-indicating reversed phase high-performance liquid chromatography (RP-HPLC) method was developed for simultaneous quantification of paracetamol and ibuprofen in their combined dosage form especially to get some more advantages over other methods already developed for this combination. The method was validated according to United States Pharmacopeia (USP) guideline with respect to accuracy, precision, specificity, linearity, solution stability, robustness, sensitivity, and system suitability. Forced degradation study was validated according to International Conference on Harmonisation (ICH). For this, an isocratic condition of mobile phase comprising phosphate buffer (pH 6.8) and acetonitrile in a ratio of 65:35, v/v at a flow rate of 0.7 mL/minute over RP C18 (octadecylsilane (ODS), 150 × 4.6 mm, 5 μm, Phenomenex Inc.) column at ambient temperature was maintained. The method showed excellent linear response with correlation coefficient (R2) values of 0.999 and 1.0 for paracetamol and ibuprofen respectively, which were within the limit of correlation coefficient (R2 > 0.995). The percent recoveries for two drugs were found within the acceptance limit of (97.0–103.0%). Intra-and inter-day precision studies of the new method were less than the maximum allowable limit percentage of relative standard deviation (%RSD) ≤ 2.0. Forced degradation of the drug product was carried out as per the ICH guidelines with a view to establishing the stability-indicating property of this method and providing useful information about the degradation pathways, degradation products, and how the quality of a drug substance and drug product changes with time under the influence of various stressing conditions. The degradation of ibuprofen was within the limit (5–20%, according to the guideline of ICH), while paracetamol showed <20% degradation in oxidation and basic condition.
doi:10.4137/ACI.S18651
PMCID: PMC4237153  PMID: 25452691
RP-HPLC; stability-indicating; paracetamol; ibuprofen
3.  A Continuous Flow System for the Measurement of Ambient Nitrogen Oxides [NO + NO2] Using Rhodamine B Hydrazide as a Chemosensor 
A new chemosensor has been used to monitor atmospheric nitrogen oxides [NO + NO2] at parts per billion (ppb) level. It is based on the catalytic reaction of nitrogen oxides with rhodamine B hydrazide (RBH) to produce a colored compound through the hydrolysis of the amide bond of the molecule. A simple colorimeter has been used to monitor atmospheric nitrogen dioxide at ppb level. The air samples were purged through a sampling cuvette containing RBH solution using peristaltic pump. The proposed method has been successfully applied to monitor the ambient nitrogen dioxide levels at traffic junction points within the city limits and the results obtained are compared with the standard Griess-Ilosvay method.
doi:10.4137/ACI.S16890
PMCID: PMC4149333  PMID: 25210422
rhodamine B hydrazide; ambient nitrogen oxides [NO + NO2]; amide bond; flow injection analysis; colorimeter
4.  Preliminary Development of a Fiber Optic Sensor for Measuring Bilirubin 
Preliminary development of a fiber optic bilirubin sensor is described, where an unclad sensing portion is used to provide evanescent wave interaction of the transmitted light with the chemical environment. By using a wavelength corresponding to a bilirubin absorption peak, the Beer–Lambert Law can be used to relate the concentration of bilirubin surrounding the sensing portion to the amount of absorbed light. Initial testing in vitro suggests that the sensor response is consistent with the results of bulk absorption measurements as well as the Beer–Lambert Law. In addition, it is found that conjugated and unconjugated bilirubin have different peak absorption wavelengths, so that two optical frequencies may potentially be used to measure both types of bilirubin. Future development of this device could provide a means of real-time, point-of-care monitoring of intravenous bilirubin in critical care neonates with hyperbilirubinemia.
doi:10.4137/ACI.S14711
PMCID: PMC4085104  PMID: 25057239
fiber optic sensor; bilirubin; point-of-care technology
6.  Determination of Xanthine in the Presence of Hypoxanthine by Adsorptive Stripping Voltammetry at the Mercury Film Electrode 
A stripping method for the determination of xanthine in the presence of hypoxanthine at the submicromolar concentration levels is described. The method is based on controlled adsorptive accumulation at the thin-film mercury electrode followed by a fast linear scan voltammetric measurement of the surface species. Optimum experimental conditions were found to be the use of 1.0 × 10−3 mol L−1 NaOH solution as supporting electrolyte, an accumulation potential of 0.00 V for xanthine and −0.50 V for hypoxanthine–copper, and a linear scan rate of 200 mV second−1. The response of xanthine is linear over the concentration ranges of 20–140 ppb. For an accumulation time of 30 minutes, the detection limit was found to be 36 ppt (2.3 × 10−10 mol L−1). Adequate conditions for measuring the xanthine in the presence of hypoxanthine, copper and other metals, uric acid, and other nitrogenated bases were also investigated. The utility of the method is demonstrated by the presence of xanthine associated with hypoxanthine, uric acid, nitrogenated bases, ATP, and ssDNA.
doi:10.4137/ACI.S14712
PMCID: PMC4055419  PMID: 24940040
xanthine determination; hypoxanthine; copper; ATP; ssDNA; mercury electrode; stripping voltammetry
7.  Kinetic Study of the Alkaline Degradation of Oseltamivir Phosphate and Valacyclovir Hydrochloride using Validated Stability Indicating HPLC 
Aqueous alkaline degradation was performed for oseltamivir phosphate (OP) and valacyclovir hydrochloride (VA). Isocratic stability indicating the use of high-performance liquid chromatography (HPLC) was presented for each drug in the presence of its degradation product. The separations were performed using the Nucleosil ODS column and a mobile phase consisting of phosphate buffer (pH = 7), acetonitrile, and methanol 50:25:25 (v/v/v) for OP. For VA separation, a Nucleosil CN column using phosphate buffer (pH = 7) and methanol 85:15 (v/v) was used as a mobile phase. Ultraviolet detection at 210 nm and 254 nm was used for OP and VA, respectively. The method showed high sensitivity concerning linearity, accuracy, and precision over the range 1–250 μg mL−1 for both drugs. The proposed method was used to determine the drug in its pharmaceutical formulation and to investigate the degradation kinetics of each drug’s alkaline-stressed samples. The reactions were found to follow a first-order reaction. The activation energy could also be estimated. International Conference on Harmonisation guidelines were adopted for method validation.
doi:10.4137/ACI.S13878
PMCID: PMC4051789  PMID: 24932100
oseltamivir phosphate; valacyclovir hydrochloride; degradation kinetic; stability indicating high-performance liquid chromatography
8.  Spectrophotometric and Spectrofluorimetric Studies on Azilsartan Medoxomil and Chlorthalidone to Be Utilized in Their Determination in Pharmaceuticals 
The recently approved angiotensin II receptor blocker, azilsartan medoxomil (AZL), was determined spectrophotometrically and spectrofluorimetrically in its combination with chlorthalidone (CLT) in their combined dosage form. The UV-spectrophotometric technique depends on simultaneous measurement of the first derivative spectra for AZL and CLT at 286 and 257 nm, respectively, in methanol. The spectrofluorimetric technique depends on measurement of the fourth derivative of the synchronous spectra intensities of AZL in presence of CLT at 298 nm in methanol. The effects of different solvents on spectrophotometric and spectrofluorimetric responses were studied. For, the spectrofluorimetric study, the effect of pH and micelle-assisted fluorescence enhancement were also studied. Linearity, accuracy, and precision were found to be satisfactory over the concentration ranges of 8–50 μg mL−1 and 2–20 μg mL−1 for AZL and CLT, respectively, in the spectrophotometric method as well as 0.01–0.08 μg mL−1 for AZL in the spectrofluorimetric method. The methods were successfully applied for the determination of the studied drugs in their co-formulated tablets. The developed methods are inexpensive and simple for the quality control and routine analysis of the cited drugs in bulk and in pharmaceuticals.
doi:10.4137/ACI.S13768
PMCID: PMC4022702  PMID: 24855334
spectrophotometry; spectrofluorimetry; derivative; synchronous; azilsartam medoxomil; chlorthalidone; pharmaceuticals
9.  A UPLC–MS Method for the Determination of Ofloxacin Concentrations in Aqueous Humor 
A rapid, simple, and specific method based on ultra performance liquid chromatography (UPLC) with mass spectrometry detection has been developed for quantitative analysis of ofloxacin in human aqueous humor using tobramycin as internal standard (IS). Chromatographic separation was achieved on a Waters Acquity UPLC BEH C18 Shield column (150 × 2.1 mm, 1.7 μm) eluted with 95:5 water: acetonitrile (v/v) containing 0.1% formic acid and a flow rate of 0.3 mL/minute. The total analysis time was three minutes with ofloxacin eluting at 1.67 ± 0.03 minutes. The linearity of the method ranged from 0.1 to 8 μg/mL with r2 = 0.998. The method was validated according to FDA guidelines with respect to linearity, accuracy, precision, specificity, and stability. The limits of detection and quantification were 0.03 and 0.10 μg/mL, respectively. The developed method was successfully applied to the analysis of samples that have been obtained from patients.
doi:10.4137/ACI.S13857
PMCID: PMC4022703  PMID: 24868142
UPLC; ofloxacin; mass spectrometry; aqueous humor
10.  Application of Nanofiber-packed SPE for Determination of Urinary 1-Hydroxypyrene Level Using HPLC 
It is always desirable to achieve maximum sample clean-up, extraction, and pre-concentration with the minimum possible organic solvent. The miniaturization of sample preparation devices was successfully demonstrated by packing 10 mg of 11 electrospun polymer nanofibers into pipette tip micro column and mini disc cartridges for efficient pre-concentration of 1-hydroxypyrene in urine samples. 1-hydroxypyrene is an extensively studied biomarker of the largest class of chemical carcinogens. Excretory 1-hydroxypyrene was monitored with HPLC/fluorescence detector. Important parameters influencing the percentage recovery such as fiber diameter, fiber packing amount, eluent, fiber packing format, eluent volume, surface area, porosity, and breakthrough parameters were thoroughly studied and optimized. Under optimized condition, there was a near perfect linearity of response in the range of 1–1000 μg/L with a coefficient of determination (r2) between 0.9992 and 0.9999 and precision (% RSD) ≤7.64% (n = 6) for all the analysis (10, 25, and 50 μg/L). The Limit of detection (LOD) was between 0.022 and 0.15 μg/L. When compared to the batch studies, both disc packed nanofiber sorbents and pipette tip packed sorbents exhibited evident dominance based on their efficiencies. The experimental results showed comparable absolute recoveries for the mini disc packed fibers (84% for Nylon 6) and micro columns (80% for Nylon 6), although the disc displayed slightly higher recoveries possibly due to the exposure of the analyte to a larger reacting surface. The results also showed highly comparative extraction efficiencies between the nanofibers and conventional C-18 SPE sorbent. Nevertheless, miniaturized SPE devices simplified sample preparation, reducing back pressure, time of the analysis with acceptable reliability, selectivity, detection levels, and environmental friendliness, hence promoting green chemistry.
doi:10.4137/ACI.S13560
PMCID: PMC3999818  PMID: 24812483
electrospun polymer nanofibers; 1-hydroxypyrene; sample preparation; cancer; biomarker
11.  Buprenorphine and Norbuprenorphine Determination in Mice Plasma and Brain by Gas Chromatography–Mass Spectrometry 
A gas chromatography tandem mass spectrometry method for quantification of buprenorphine (BUP) and norbuprenorphine (NBUP) in brain and plasma samples from mice was developed and validated. Analytes were extracted from the brain or plasma by solid phase extraction and quantified within 20 minutes. Calibration was achieved by linear regression with a 1/x weighting factor and d4-buprenorphine internal standard. All products were linear from 1 to 2000 ng/mL with a correlation of determination >0.99. Assay accuracy and precision of back-calculated standards were within ±10%. The lower limit of quantification for both BUP and NBUP from the brain and plasma was 1 ng/mL. This sensitive and specific method can be used for the investigation of BUP mechanism of action and clinical profile.
doi:10.4137/ACI.S13515
PMCID: PMC3956859  PMID: 24653644
buprenorphine; norbuprenorphine; gc/ms; brain; plasma; mice
12.  Synthesis and Characterization of Maillard Reaction Products of Salbutamol and Terbutaline with Lactose and Development and Validation of an LC Method for the Determination of Salbutamol and Terbutaline in the Presence of These Impurities 
Being secondary amines, both salbutamol (SLB) and terbutaline (TRB) react by Maillard reaction (MR) with lactose, which is added as an inactive ingredient in tablets. The Amadori rearrangement products were synthesized, isolated, and characterized by mass spectrometry. In addition, a simple, selective, and precise reversed-phase liquid chromatography (LC) method was developed and validated for the determination of SLB and TRB in tablets, each in the presence of its MR impurity. The chromatographic separation was performed on a Symmetry® Waters C18 column (150 mm × 4.6 mm, 5 μm) using a mobile phase consisting of 0.5% aqueous phosphoric acid to acetonitrile (90:10, v/v) at a flow rate of 0.7 mL minute−1. Quantitation was achieved using UV detection at 230 nm. Linearity, accuracy, and precision were found to be acceptable for the determination of SLB and TRB in the concentration range of 0.2–60 and 0.5–80 μg mL−1, respectively. The proposed method was successfully applied to the determination of SLB and TRB in bulk and in their tablets.
doi:10.4137/ACI.S13835
PMCID: PMC3948716  PMID: 24634579
salbutamol; terbutaline; reversed-phase liquid chromatography; lactose; Maillard reaction impurities; Amadori rearrangement
13.  Simultaneous Determination of Amlodipine Besylate and Atorvastatin Calcium in Binary Mixture by Spectrofluorimetry and HPLC Coupled with Fluorescence Detection 
Caduet tablets are novel prescription drug that combines amlodipine besylate (AM) with atorvastatin calcium (AT). A spectrofluorimetric and an HPLC-fluorescence detection methods were developed for simultaneous determination of both drugs in tablets. In the spectrofluorimetric method, native fluorescence of AM and AT were measured in methanol at 442 and 369 nm upon excitation at 361 and 274 nm, respectively. The emission spectrum of each drug reveals zero value at the emission wavelength of the other drug, thus allowing their simultaneous determination without interference. In the HPLC method, separation of AM and AT was achieved within 8 minutes on a C18 column using acetonitrile:phosphate buffer (0.015 M, pH 3) (45:55, v/v) as the mobile phase. Fluorescence detection was carried out using excitation wavelengths 361 and 274 nm and emission wavelengths 442 and 378 nm for AM and AT, respectively. Excellent linearity was observed. Careful validation proved advantages of the new methods: high sensitivity, accuracy, selectivity and suitability for quality control laboratories.
doi:10.4137/ACI.S12921
PMCID: PMC3825650  PMID: 24250220
Amlodipine besylate; atorvastatin calcium; native fluorescence; HPLC-fluorescence detection
14.  Development and Validation of RP-LC Method for the Determination of Cinnarizine/Piracetam and Cinnarizine/Heptaminol Acefyllinate in Presence of Cinnarizine Reported Degradation Products 
Specific stability indicating reverse-phase liquid chromatography (RP-LC) assay method (SIAM) was developed for the determination of cinnarizine (Cinn)/piracetam (Pira) and cinnarizine (Cinn)/heptaminol acefyllinate (Hept) in the presence of the reported degradation products of Cinn. A C18 column and gradient mobile phase was applied for good resolution of all peaks. The detection was achieved at 210 nm and 254 nm for Cinn/Pira and Cinn/Hept, respectively. The responses were linear over concentration ranges of 20–200, 20–1000 and 25–1000 μgmL−1 for Cinn, Pira, and Hept respectively. The proposed method was validated for linearity, accuracy, repeatability, intermediate precision, and robustness via statistical analysis of the data. The method was shown to be precise, accurate, reproducible, sensitive, and selective for the analysis of Cinn/Pira and Cinn/Hept in laboratory prepared mixtures and in pharmaceutical formulations.
doi:10.4137/ACI.S12478
PMCID: PMC3795519  PMID: 24137049
cinnarizine; piracetam; heptaminol acefyllinate; stability indicating assay method (SIAM); reverse-phase liquid chromatography (RP-LC)
15.  The Evaluation of Two Commercially Available, Portable Raman Systems 
Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) have many attributes that make them attractive for field detection of environmental contaminants, industrial process control, as well as materials detection/identification in agriculture, pharmaceuticals, law enforcement/first responders, geology, and archeology. However, portable, robust, inexpensive Raman systems are required for these applications. In this communication, the performances of two commercially available, portable Raman systems are evaluated.
doi:10.4137/ACI.S11870
PMCID: PMC3782334  PMID: 24115834
portable Raman systems; SERS; Raman spectroscopy
16.  RP-LC and TLC Densitometric Determination of Paracetamol and Pamabrom in Presence of Hazardous Impurity of Paracetamol and Application to Pharmaceuticals 
Two simple, accurate and reproducible methods were developed and validated for the simultaneous determination of paracetamol (PARA) and pamabrom (PAMB) in pure form and in tablets. The first method was based on reserved-phase high-performance liquid chromatography, on a Thermo Hypersil ODS column using methanol:0.01 M sodium hexane sulfonate:formic acid (67.5:212.5:1 v/v/v) as the mobile phase. The flow rate was 2 mL/min and the column temperature was adjusted to 35 °C. Quantification was achieved with UV detection at 277 nm over concentration range of 100–600 and 4–24 μg/mL, with mean percentage recoveries were found to be 99.90 ± 0.586 and 99.26 ± 0.901 for PARA and PAMB, respectively. The second method was based on thin-layer chromatography separation of PARA and PAMB followed by densitometric measurement of the spots at 254 nm and 277 nm for PARA and PAMB respectively. Separation was carried out on aluminum sheet of silica gel 60F254 using dichloromethane:methanol:glacial acetic acid (7.5:1:0.5 v/v/v) as the mobile phase over concentration range of 1–10 and 0.32–3.20 μg per spot, with mean percentage recovery of 100.52 ± 1.332 and 99.71 ± 1.478 for PARA and PAMB, respectively. The methods retained their accuracy in presence of up to 50% of P-aminophenol and could be successfully applied in tablets.
doi:10.4137/ACI.S12349
PMCID: PMC3771670  PMID: 24046511
paracetamol; pamabrom; determination; RP-LC; TLC densitometry; P-aminophenol
17.  Development of Methods for the Determination of pKa Values 
The acid dissociation constant (pKa) is among the most frequently used physicochemical parameters, and its determination is of interest to a wide range of research fields. We present a brief introduction on the conceptual development of pKa as a physical parameter and its relationship to the concept of the pH of a solution. This is followed by a general summary of the historical development and current state of the techniques of pKa determination and an attempt to develop insight into future developments. Fourteen methods of determining the acid dissociation constant are placed in context and are critically evaluated to make a fair comparison and to determine their applications in modern chemistry. Additionally, we have studied these techniques in light of present trends in science and technology and attempt to determine how these trends might affect future developments in the field.
doi:10.4137/ACI.S12304
PMCID: PMC3747999  PMID: 23997574
review; history; dissociation constant; pKa; pH
18.  Biochemical Characteristics of Organic Matter in a Guano Concretion of Late Miocene or Pliocene Age from Manchester Parish in Jamaica 
The biogeochemical fate of organic matter (OM) entering soils is an important issue that must be examined to better understand its roles in nitrogen cycling and as a natural modulator of soil-atmospheric carbon fluxes. Despite these critical roles, there are uncertainties in estimating the contribution of this feedback mechanism due in part to a lack of molecular-level information regarding the origin and labile and refractory inventories of OM in soils. In this study, we used a multi-analytical approach to determine molecular-level information for the occurrence and stabilization of OM in a bird guano concretion of the Late Miocene or Pliocene age in Jamaica. We determined the specific organic structures persisting in the concretion and the possible contribution of fossil organic matter to the OM pool in modern environments. Our results indicate that aliphatic species, presumably of a highly polymethylenic nature [(CH2)n], may significantly contribute to the stable soil-C pool. Although not as significant, proteins and carbohydrates were also enriched in the sample, further suggesting that fossil organic matter may contribute to carbon and nitrogen pools in present day soil organic matter.
doi:10.4137/ACI.S10380
PMCID: PMC3700943  PMID: 23843688
bird guano concretion; fossil organic matter; molecular-level; organic matter; soil organic matter; stabilization
19.  Evidence for the Presence of 1,3-Dimethylamylamine (1,3-DMAA) in Geranium Plant Materials 
1,3-Dimethylamylamine (1,3-DMAA) is an aliphatic amine with stimulant properties that are reportedly found naturally only in geranium plants (Pelargonium graveolens). The presence of 1,3-DMAA in geranium plants was first reported in a paper published in 1996, but some have questioned the identification of 1,3-DMAA in that study. Since then, a number of additional studies have been published, largely reporting the absence of 1,3-DMAA in geranium plants and commercial geranium oils. However, in two recent studies, 1,3-DMAA was detected in geranium plant tissues and a geranium oil sample using a simplified extraction approach on tissues and oil sourced from China. Whether or not 1,3-DMAA is found naturally in plants has significant implications as to how commercial products containing 1,3-DMAA are regulated by the US Food and Drug Administration. In this paper, differences in source materials, extraction procedures, and analytical approaches are reviewed in an attempt to rationalize the apparently conflicting evidence for the presence of 1,3-DMAA in geranium plant materials.
doi:10.4137/ACI.S11993
PMCID: PMC3682735  PMID: 23843687
DMAA; geranium; Pelargonium graveolens; natural products
20.  Determination of the Antiretroviral Drug Acyclovir in Diluted Alkaline Electrolyte by Adsorptive Stripping Voltammetry at the Mercury Film Electrode 
This paper describes a stripping method for the determination of acyclovir at the submicromolar concentration level. This method is based on controlled adsorptive accumulation of acyclovir at thin-film mercury electrode, followed by a linear cyclic scan voltammetry measurement of the surface species. Optimal experimental conditions include a NaOH solution of 2.0 × 10−3 mol L−1 (supporting electrolyte), an accumulation potential of −0.40 V, and a scan rate of 100 mV s−1. The response of acyclovir is linear over the concentration range 0.02 to 0.12 ppm. For an accumulation time of 4 minutes, the detection limit was found to be 0.42 ppb (1.0 × 10−9 mol L−1). More convenient methods to measure the acyclovir in presence of the didanosine, efavirenz, nevirapine, nelfinavir, lamivudine, and zidovudine were also investigated. The utility of this method is demonstrated by the presence of acyclovir together with Adenosine triphosphate (ATP) or DNA.
doi:10.4137/ACI.S11608
PMCID: PMC3666987  PMID: 23761958
acyclovir determination; antiretroviral drugs; DNA; thin-film mercury electrode; stripping voltammetry
21.  Utility of Experimental Design in Pre-Column Derivatization for the Analysis of Tobramycin by HPLC—Fluorescence Detection: Application to Ophthalmic Solution and Human Plasma 
A novel, selective, and sensitive reversed phase high-performance liquid chromatography (HPLC) method coupled with fluorescence detection has been developed for the determination of tobramycin (TOB) in pure form, in ophthalmic solution and in spiked human plasma. Since TOB lacks UV absorbing chromophores and native fluorescence, pre-column derivatization of TOB was carried out using fluorescamine reagent (0.01%, 1.5 mL) and borate buffer (pH 8.5, 2 mL). Experimental design was applied for optimization of the derivatization step. The resulting highly fluorescent stable derivative was chromatographed on C18 column and eluted using methanol:water (60:40, v/v) at a flow rate of 1 mL min−1. A fluorescence detector (λex 390 and λem 480 nm) was used. The method was linear over the concentration range 20–200 ng mL−1. The structure of the fluorescent product was proposed, the method was then validated and applied for the determination of TOB in human plasma. The results were statistically compared with the reference method, revealing no significant difference.
doi:10.4137/ACI.S11612
PMCID: PMC3653852  PMID: 23700362
tobramycin; experimental design; HPLC; derivatization; fluorescamine; plasma
22.  A Rapid Stability-Indicating RP-HPLC Method for the Determination of Betaxolol Hydrochloride in Pharmaceutical Tablets 
A stability-indicating reversed-phase high performance liquid chromatography (RP-HPLC) method was developed for the determination of betaxolol hydrochloride, a drug used in the treatment of hypertension and glaucoma. The desired chromatographic separation was achieved on a Nucleosil C18, 4 μm (150 × 4.6 mm) column, using isocratic elution at a 220 nm detector wavelength. The optimized mobile phase consisted of a 0.02 M potassium dihydrogen phosphate: methanol (40:60, v/v, pH 3.0 adjusted with o- phosphoric acid) as solvent. The flow rate was 1.6 mL/min and the retention time of betaxolol hydrochloride was 1.72 min. The linearity for betaxolol hydrochloride was in the range of 25 to 200 μg/mL. Recovery for betaxolol hydrochloride was calculated as 100.01%–101.35%. The stability-indicating capability was established by forced degradation experiments and the separation of unknown degradation products. The developed RP-HPLC method was validated according to the International Conference on Harmonization (ICH) guidelines. This validated method was applied for the estimation of betaxolol hydrochloride in commercially available tablets.
doi:10.4137/ACI.S11256
PMCID: PMC3603494  PMID: 23531643
betaxolol hydrochloride; method validation; forced degradation; tablet drug product; chromatography
23.  Evaluation of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Second-Generation Lignin Analysis 
Matrix-Assisted Laser Desorption/Ionization time-of-flight (MALDI-TOF) mass spectrometry is evaluated as an elucidation tool for structural features and molecular weights estimation of some extracted herbaceous lignins. Optimization of analysis conditions, using a typical organic matrix, namely α-cyano-4-hydroxycinnamic acid (CHCA), in combination with α-cyclodextrin, allows efficient ionization of poorly soluble lignin materials and suppression of matrix-related ions background. Analysis of low-mass fragments ions (m/z 100–600) in the positive ion mode offers a “fingerprint” of starting lignins that could be a fine strategy to qualitatively identify principal inter-unit linkages between phenylpropanoid units. The molecular weights of lignins are estimated using size exclusion chromatography and compared to MALDI-TOF-MS profiles. Miscanthus (Miscanthus x giganteus) and Switchgrass (Panicum Virgatum L.) lignins, recovered after a formic acid/acetic acid/water process or aqueous ammonia soaking, are selected as benchmarks for this study.
doi:10.4137/ACI.S10799
PMCID: PMC3528113  PMID: 23300342
mass spectrometry; biomass; lignin
24.  Analysis and Confirmation of 1,3-DMAA and 1,4-DMAA in Geranium Plants Using High Performance Liquid Chromatography with Tandem Mass Spectrometry at ng/g Concentrations 
1,3-Dimethylamylamine (1,3-DMAA) is a stimulant commercially sold in a variety of dietary supplements as a chemical species derived from geranium plants (Pelargonium graveolens). Whether 1,3-DMAA naturally occurs in geranium plants or other dietary ingredients, it has important regulatory and commercial ramifications. However, the analysis of 1,3-DMAA in geranium plants is not trivial due to low concentrations and a complex environmental matrix, requiring high selectivity and sensitivity. An extraction method combined with high performance liquid chromatography and tandem mass spectrometry is used to determine 1,3-DMAA and 1,4-dimethylamylamine (1,4-DMAA) concentrations in geranium plants with both external calibration and standard addition method. Samples from the Changzhou, Kunming, and Guiyang regions of China during both winter and summer were analyzed for 1,3-DMAA and 1,4-DMAA. The diastereomer ratios of the 1,3-DMAA stereoisomers of a racemic standard and the extracted plant were also quantified.
doi:10.4137/ACI.S10445
PMCID: PMC3512447  PMID: 23225994
DMAA; geranium; natural product analysis; HPLC; mass spectrometry
25.  Identification and Quantification of Dimethylamylamine in Geranium by Liquid Chromatography Tandem Mass Spectrometry 
A sensitive and reliable method of liquid chromatography–electrospray ionization/tandem mass spectrometry (LC-ESI/MS/ MS) was developed and validated for determining 1,3-dimethylamylamine (1,3-DMAA) and 1,4-dimethylamylamine (1,4-DMAA) in geranium plants (Pelargonium graveolens). The sample was extracted with 0.5 M HCl and purified by liquid-liquid partition with hexane. The parameters for reverse-phase (C18) LC and positive ESI/MS/MS were optimized. The matrix effect, specificity, linearity, precision, accuracy and reproducibility of the method were determined and evaluated. The method was linear over a range of 0.10–10.00 ng/mL examined, with R2 of 0.99 for both 1,3-DMAA and 1,4-DMAA. The recoveries from spiked concentrations between 5.00–40.00 ng/g were 85.1%–104.9% for 1,3-DMAA, with relative standard deviation (RSD) of 2.9%–11.0%, and 82.9%–101.8% for 1,4-DMAA, with RSD of 3.2%–11.7%. The instrument detection limit was 1–2 pg for both DMAAs. The quantification limit was estimated to be 1–2 ng/g for the plant sample. This method was successfully applied to the quantitative determination of 1,3- and 1,4-DMAA in both geranium plant and geranium oil.
doi:10.4137/ACI.S9969
PMCID: PMC3422085  PMID: 22915838
1,3-dimethylamylamine; 1,4-dimethylamylamine; geranium (Pelargonium graveolens); liquid chromatography-tandem mass spectrometry (LC/MS/MS)

Résultats 1-25 (82)