PMCC PMCC

Conseils de recherche
Les critères de recherche

Avancée
Résultats 1-25 (179)
 

Notices sélectionnées (0)
Aucune

Sélectionner un filtre

Revues
Année de publication
1.  A controlled trial of Partners in Dementia Care: veteran outcomes after six and twelve months 
Introduction
“Partners in Dementia Care” (PDC) tested the effectiveness of a care-coordination program integrating healthcare and community services and supporting veterans with dementia and their caregivers. Delivered via partnerships between Veterans Affairs medical centers and Alzheimer’s Association chapters, PDC targeted both patients and caregivers, distinguishing it from many non-pharmacological interventions. Hypotheses posited PDC would improve five veteran self-reported outcomes: 1) unmet need, 2) embarrassment about memory problems, 3) isolation, 4) relationship strain and 5) depression. Greater impact was expected for more impaired veterans. A unique feature was self-reported research data collected from veterans with dementia.
Methods and Findings
Five matched communities were study sites. Two randomly selected sites received PDC for 12 months; comparison sites received usual care. Three structured telephone interviews were completed every 6 months with veterans who could participate.
Results
Of 508 consenting veterans, 333 (65.6%) completed baseline interviews. Among those who completed baseline interviews, 263 (79.0%) completed 6-month follow-ups and 194 (58.3%) completed 12-month follow-ups. Regression analyses showed PDC veterans had significantly less adverse outcomes than those receiving usual care, particularly for more impaired veterans after 6 months, including reduced relationship strain (B = −0.09; p = 0.05), depression (B = −0.10; p = 0.03), and unmet need (B = −0.28; p = 0.02; and B = −0.52; p = 0.08). PDC veterans also had less embarrassment about memory problems (B = −0.24; p = 0.08). At 12 months, more impaired veterans had further reductions in unmet need (B = −0.96; p < 0.01) and embarrassment (B = −0.05; p = 0.02). Limitations included use of matched comparison sites rather than within-site randomization and lack of consideration for variation within the PDC group in amounts and types of assistance provided.
Conclusions
Partnerships between community and health organizations have the potential to meet the dementia-related needs and improve the psychosocial functioning of persons with dementia.
Trial Registry
NCT00291161
doi:10.1186/alzrt242
PMCID: PMC3978714
2.  Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition 
Introduction
Tau pathology is associated with a number of age-related neurodegenerative disorders. Few treatments have been demonstrated to diminish the impact of tau pathology in mouse models and none are yet effective in humans. Histone deacetylase 6 (HDAC6) is an enzyme that removes acetyl groups from cytoplasmic proteins, rather than nuclear histones. Its substrates include tubulin, heat shock protein 90 and cortactin. Tubastatin A is a selective inhibitor of HDAC6. Modification of tau pathology by specific inhibition of HDAC6 presents a potential therapeutic approach in tauopathy.
Methods
We treated rTg4510 mouse models of tau deposition and non-transgenic mice with tubastatin (25 mg/kg) or saline (0.9%) from 5 to 7 months of age. Cognitive behavior analysis, histology and biochemical analysis were applied to access the effect of tubastatin on memory, tau pathology and neurodegeneration (hippocampal volume).
Results
We present data showing that tubastatin restored memory function in rTg4510 mice and reversed a hyperactivity phenotype. We further found that tubastatin reduced the levels of total tau, both histologically and by western analysis. Reduction in total tau levels was positively correlated with memory improvement in these mice. However, there was no impact on phosphorylated forms of tau, either by histology or western analysis, nor was there an impact on silver positive inclusions histologically.
Conclusion
Potential mechanisms by which HDAC6 inhibitors might benefit the rTg4510 mouse include stabilization of microtubules secondary to increased tubulin acetylation, increased degradation of tau secondary to increased acetylation of HSP90 or both. These data support the use of HDAC6 inhibitors as potential therapeutic agents against tau pathology.
doi:10.1186/alzrt241
PMCID: PMC3978441  PMID: 24576665
3.  Assessing THK523 selectivity for tau deposits in Alzheimer’s disease and non–Alzheimer’s disease tauopathies 
Introduction
The introduction of tau imaging agents such as 18F-THK523 offers new hope for the in vivo assessment of tau deposition in tauopathies such as Alzheimer’s disease (AD), where preliminary 18F-THK523-PET studies have demonstrated significantly higher cortical retention of 18F-THK523 in AD compared to age-matched healthy individuals. In addition to AD, tau imaging with PET may also be of value in assessing non-AD tauopathies, such as corticobasal degeneration (CBD), progressive supranuclear palsy (PSP) and Pick’s disease (PiD).
Methods
To further investigate the ability of THK523 to recognize tau lesions, we undertook immunohistochemical and fluorescence studies in serial brain sections taken from individuals with AD (n = 3), CBD (n = 2), PSP (n = 1), PiD (n = 2) and Parkinson’s disease (PD; n = 2). In addition to the neuropathological analysis, one PSP patient had undergone a 18F-THK523 PET scan 5 months before death.
Results
Although THK523 labelled tau-containing lesions such as neurofibrillary tangles and neuropil threads in the hippocampus and frontal regions of AD brains, it failed to label tau-containing lesions in non-AD tauopathies. Furthermore, though THK523 faintly labelled dense-cored amyloid-β plaques in the AD frontal cortex, it failed to label α-synuclein-containing Lewy bodies in PD brain sections.
Conclusion
The results of this study suggest that 18F-THK523 selectively binds to paired helical filament tau in AD brains but does not bind to tau lesions in non-AD tauopathies, or to α-synuclein in PD brains.
doi:10.1186/alzrt240
PMCID: PMC3979096  PMID: 24572336
4.  Cognitive training and cognitive rehabilitation for persons with mild to moderate dementia of the Alzheimer's or vascular type: a review 
Cognitive impairments, and particularly memory deficits, are a defining feature of the early stages of Alzheimer's disease and vascular dementia. Interventions that target these cognitive deficits and the associated difficulties with activities of daily living are the subject of ever-growing interest. Cognitive training and cognitive rehabilitation are specific forms of non-pharmacological intervention to address cognitive and non-cognitive outcomes. The present review is an abridged version of a Cochrane Review and aims to systematically evaluate the evidence for these forms of intervention in people with mild Alzheimer's disease or vascular dementia. Randomized controlled trials (RCTs), published in English, comparing cognitive rehabilitation or cognitive training interventions with control conditions and reporting relevant outcomes for the person with dementia or the family caregiver (or both), were considered for inclusion. Eleven RCTs reporting cognitive training interventions were included in the review. A large number of measures were used in the different studies, and meta-analysis could be conducted for several primary and secondary outcomes of interest. Several outcomes were not measured in any of the studies. Overall estimates of the treatment effect were calculated by using a fixed-effects model, and statistical heterogeneity was measured by using a standard chi-squared statistic. One RCT of cognitive rehabilitation was identified, allowing the examination of effect sizes, but no meta-analysis could be conducted. Cognitive training was not associated with positive or negative effects in relation to any of the reported outcomes. The overall quality of the trials was low to moderate. The single RCT of cognitive rehabilitation found promising results in relation to some patient and caregiver outcomes and was generally of high quality. The available evidence regarding cognitive training remains limited, and the quality of the evidence needs to improve. However, there is still no indication of any significant benefits from cognitive training. Trial reports indicate that some gains resulting from intervention may not be captured adequately by available standardized outcome measures. The results of the single RCT of cognitive rehabilitation show promise but are preliminary in nature. Further well-designed studies of cognitive training and cognitive rehabilitation are required to provide more definitive evidence. Researchers should describe and classify their interventions appropriately by using the available terminology.
doi:10.1186/alzrt189
PMCID: PMC3979126  PMID: 23924584
5.  Early-onset dementias: diagnostic and etiological considerations 
Alzheimer's Research & Therapy  2013;5(Suppl 1):S7.
This paper summarizes the body of literature about early-onset dementia (EOD) that led to recommendations from the Fourth Canadian Consensus Conference on the Diagnosis and Treatment of Dementia. A broader differential diagnosis is required for EOD compared with late-onset dementia. Delays in diagnosis are common, and the social impact of EOD requires special care teams. The etiologies underlying EOD syndromes should take into account family history and comorbid diseases, such as cerebrovascular risk factors, that may influence the clinical presentation and age at onset. For example, although many EODs are more likely to have Mendelian genetic and/or metabolic causes, the presence of comorbidities may drive the individual at risk for late-onset dementia to manifest the symptoms at an earlier age, which contributes further to the observed heterogeneity and may confound diagnostic investigation. A personalized medicine approach to diagnosis should therefore be considered depending on the age at onset, clinical presentation, and comorbidities. Genetic counseling and testing as well as specialized biochemical screening are often required, especially in those under the age of 40 and in those with a family history of autosomal dominant or recessive disease. Novel treatments in the drug development pipeline for EOD, such as genetic forms of Alzheimer's disease, should target the specific pathogenic cascade implicated by the mutation or biochemical defect.
doi:10.1186/alzrt197
PMCID: PMC3936399  PMID: 24565469
6.  Epidemiology of neurodegeneration in American-style professional football players 
The purpose of this article is to review the history of head injuries in relation to American-style football play, summarize recent research that has linked football head injuries to neurodegeneration, and provide a discussion of the next steps for refining the examination of neurodegeneration in football players. For most of the history of football, the focus of media reports and scientific studies on football-related head injuries was on the acute or short-term effects of serious, traumatic head injuries. Beginning about 10 years ago, a growing concern developed among neurologists and researchers about the long-term effects that playing professional football has on the neurologic health of the players. Autopsy-based studies identified a pathologically distinct neurodegenerative disorder, chronic traumatic encephalopathy, among athletes who were known to have experienced concussive and subconcussive blows to the head during their playing careers. Football players have been well represented in these autopsy findings. A mortality study of a large cohort of retired professional football players found a significantly increased risk of death from neurodegeneration. Further analysis found that non-line players were at higher risk than line players, possibly because of an increased risk of concussion. Although the results of the studies reviewed do not establish a cause effect relationship between football-related head injury and neurodegenerative disorders, a growing body of research supports the hypothesis that professional football players are at an increased risk of neurodegeneration. Significant progress has been made in the last few years on detecting and defining the pathology of neurodegenerative diseases. However, less progress has been made on other factors related to the progression of those diseases in football players. This review identifies three areas for further research: (a) quantification of exposure - a consensus is needed on the use of clinically practical measurements of blows to the head among football players; (b) genetic susceptibility factors - a more rigorous set of unbiased epidemiological and clinical studies is needed before any causal relationships can be drawn between suspected genetic factors, head injury, and neurodegeneration; and (c) earlier detection and prevention of neurodegenerative diseases.
doi:10.1186/alzrt188
PMCID: PMC3978683  PMID: 23876143
7.  Evidence for impaired amyloid β clearance in Alzheimer's disease 
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by the accumulation of extracellular plaques and intracellular tangles. Recent studies support the hypothesis that the accumulation of amyloid beta (Aβ) peptide within the brain arises from an imbalance of the production and clearance of Aβ. In rare genetic forms of AD, this imbalance is often caused by increased production of Aβ. However, recent evidence indicates that, in the majority of cases of AD, Aβ clearance is impaired. Apolipoprotein E (ApoE), the dominant cholesterol and lipid carrier in the brain, is critical for Aβ catabolism. The isoform of ApoE and its degree of lipidation critically regulate the efficiency of Aβ clearance. Studies in preclinical models of AD have demonstrated that coordinately increasing levels of ApoE and its lipid transporter, ABCA1, increases the clearance of Aβ, suggesting that this pathway may be a potential therapeutic target for AD.
doi:10.1186/alzrt187
PMCID: PMC3978761  PMID: 23849219
9.  Photobiomodulation with near infrared light mitigates Alzheimer’s disease-related pathology in cerebral cortex – evidence from two transgenic mouse models 
Introduction
Previous work has demonstrated the efficacy of irradiating tissue with red to infrared light in mitigating cerebral pathology and degeneration in animal models of stroke, traumatic brain injury, parkinsonism and Alzheimer’s disease (AD). Using mouse models, we explored the neuroprotective effect of near infrared light (NIr) treatment, delivered at an age when substantial pathology is already present in the cerebral cortex.
Methods
We studied two mouse models with AD-related pathologies: the K369I tau transgenic model (K3), engineered to develop neurofibrillary tangles, and the APPswe/PSEN1dE9 transgenic model (APP/PS1), engineered to develop amyloid plaques. Mice were treated with NIr 20 times over a four-week period and histochemistry was used to quantify AD-related pathological hallmarks and other markers of cell damage in the neocortex and hippocampus.
Results
In the K3 mice, NIr treatment was associated with a reduction in hyperphosphorylated tau, neurofibrillary tangles and oxidative stress markers (4-hydroxynonenal and 8-hydroxy-2′-deoxyguanosine) to near wildtype levels in the neocortex and hippocampus, and with a restoration of expression of the mitochondrial marker cytochrome c oxidase in surviving neurons. In the APP/PS1 mice, NIr treatment was associated with a reduction in the size and number of amyloid-β plaques in the neocortex and hippocampus.
Conclusions
Our results, in two transgenic mouse models, suggest that NIr may have potential as an effective, minimally-invasive intervention for mitigating, and even reversing, progressive cerebral degenerations.
doi:10.1186/alzrt232
PMCID: PMC3978916  PMID: 24387311
10.  Dementia in the oldest old: a multi-factorial and growing public health issue 
The population of oldest old, or people aged 85 and older, is growing rapidly. A better understanding of dementia in this population is thus of increasing national and global importance. In this review, we describe the major epidemiological studies, prevalence, clinical presentation, neuropathological and imaging features, risk factors, and treatment of dementia in the oldest old. Prevalence estimates for dementia among those aged 85+ ranges from 18 to 38%. The most common clinical syndromes are Alzheimer's dementia, vascular dementia, and mixed dementia from multiple etiologies. The rate of progression appears to be slower than in the younger old. Single neuropathological entities such as Alzheimer's dementia and Lewy body pathology appear to have declining relevance to cognitive decline, while mixed pathology with Alzheimer's disease, vascular disease (especially cortical microinfarcts), and hippocampal sclerosis appear to have increasing relevance. Neuroimaging data are sparse. Risk factors for dementia in the oldest old include a low level of education, poor mid-life general health, low level of physical activity, depression, and delirium, whereas apolipoprotein E genotype, late-life hypertension, hyperlipidemia, and elevated peripheral inflammatory markers appear to have less relevance. Treatment approaches require further study, but the oldest old may be more prone to negative side effects compared with younger patients and targeted therapies may be less efficacious since single pathologies are less frequent. We also highlight the limitations and challenges of research in this area, including the difficulty of defining functional decline, a necessary component for a dementia diagnosis, the lack of normative neuropsychological data, and other shortcomings inherent in existing diagnostic criteria. In summary, our understanding of dementia in the oldest old has advanced dramatically in recent years, but more research is needed, particularly among varied racial, ethnic, and socioeconomic groups, and with respect to biomarkers such as neuroimaging, modifiable risk factors, and therapy.
doi:10.1186/alzrt181
PMCID: PMC3706944  PMID: 23809176
11.  Multiplex biomarkers in blood 
Advances in the field of blood biomarker discovery will help in identifying Alzheimer's disease in its preclinical stage, allowing treatment to be initiated before irreversible damage occurs. This review discusses some recent past and current approaches being taken by researchers in the field. Individual blood biomarkers have been unsuccessful in defining the disease pathology, progression and thus diagnosis. This directs to the need for discovering a multiplex panel of blood biomarkers as a promising approach with high sensitivity and specificity for early diagnosis. However, it is a great challenge to standardize a worldwide blood biomarker panel due to the innate differences in the population tested, nature of the samples and methods utilised in different studies across the globe. We highlight several issues that result in the lack of reproducibility in this field of research currently faced by researchers. Several important measures are summarized towards the end of the review that can be taken to minimize the variability among various centres.
doi:10.1186/alzrt185
PMCID: PMC3707019  PMID: 23795953
12.  Rivastigmine in moderately severe-to-severe Alzheimer’s disease: Severe Impairment Battery factor analysis 
Introduction
The Severe Impairment Battery (SIB) is validated for assessing cognition in patients with severe dementia. The current analysis aimed to further investigate the cognitive efficacy of rivastigmine capsules, as assessed by SIB factor scores, in patients with moderately severe-to-severe Alzheimer’s disease (AD).
Methods
This was a retrospective analysis of a 26-week, multicenter, randomized, double-blind, placebo-controlled study of oral rivastigmine conducted in Spain. Previously reported outcome measures included the full SIB. Current analyses examined calculated scores and effect sizes for the change from baseline at Week 26 on: newly defined SIB subscales (derived by a factor analysis of the 40 SIB items, using the PROC FACTOR function (SAS)); previously defined memory, language and praxis subscales (derived by previous analysis of the nine SIB domains); and the individual SIB items. Treatment differences were assessed.
Results
SIB data were provided by 104 rivastigmine-treated patients and 106 patients receiving placebo (Intent-To-Treat Last Observation Carried Forward population). Significantly less decline was observed on the previously defined memory and language subscales, and the newly defined working memory/memory subscale in rivastigmine-treated patients (all P < 0.05 versus placebo). Calculation of effect sizes demonstrated numerically greater efficacy of rivastigmine versus placebo on each of the subscales, and a broad range of SIB items; greatest effect sizes were observed on SIB items assessing the current month (effect size = 0.30) and digit span series (effect size = 0.33).
Conclusions
These data suggest the observed efficacy of rivastigmine in moderately severe-to-severe AD is likely a cumulative effect across a range of tasks. Rivastigmine demonstrates broad cognitive efficacy in this patient population.
doi:10.1186/alzrt229
PMCID: PMC3978681  PMID: 24351447
13.  Modeling the course of Alzheimer's disease to improve clinical trials: symposium report 
In a symposium held at the Clinical Trials in Alzheimer's Disease conference in Monte Carlo, Monaco (29 to 31 October 2012) three different, not mutually exclusive approaches to improve and facilitate clinical trials with anti-dementia drugs were presented and discussed. All three approaches are summarized in this manuscript. Core suggestions are: stratification of trial participants at the outset of studies, using cognitive and disease-course characteristics available at baseline; creating new composite cognitive scores for optimizing responsiveness to decline in early and very early Alzheimer's disease; and replacing some of the conventional long-term placebo-controlled trials in advanced stages of drug development, using the placebo group simulation approach. Future efforts should focus on incorporating, where appropriate, the suggestions provided at the symposium into clinical trials now being planned.
doi:10.1186/alzrt183
PMCID: PMC3706927  PMID: 23767782
14.  What boxing tells us about repetitive head trauma and the brain 
Boxing and other combat sports may serve as a human model to study the effects of repetitive head trauma on brain structure and function. The initial description of what is now known as chronic traumatic encephalopathy (CTE) was reported in boxers in 1928. In the ensuing years, studies examining boxers have described the clinical features of CTE, its relationship to degree of exposure to fighting, and an array of radiologic findings. The field has been hampered by issues related to study design, lack of longitudinal follow-up, and absence of agreed-upon clinical criteria for CTE. A recently launched prospective cohort study of professional fighters, the Professional Fighters Brain Health Study, attempts to overcome some of the problems in studying fighters. Here, we review the cross-sectional results from the first year of the project.
doi:10.1186/alzrt177
PMCID: PMC3706825  PMID: 23731821
16.  Nanoparticulate flurbiprofen reduces amyloid-β42 generation in an in vitro blood–brain barrier model 
Introduction
The amyloid-β42 (Aβ42) peptide plays a crucial role in the pathogenesis of Alzheimer’s disease (AD), the most common neurodegenerative disorder affecting the elderly. Over the past years, several approaches and compounds developed for the treatment of AD have failed in clinical studies, likely in part due to their low penetration of the blood–brain barrier (BBB). Since nanotechnology-based strategies offer new possibilities for the delivery of drugs to the brain, this technique is studied intensively for the treatment of AD and other neurological disorders.
Methods
The Aβ42 lowering drug flurbiprofen was embedded in polylactide (PLA) nanoparticles by emulsification-diffusion technique and their potential as drug carriers in an in vitro BBB model was examined. First, the cytotoxic potential of the PLA-flurbiprofen nanoparticles on endothelial cells and the cellular binding and uptake by endothelial cells was studied. Furthermore, the biological activity of the nanoparticulate flurbiprofen on γ-secretase modulation as well as its in vitro release was examined. Furthermore, the protein corona of the nanoparticles was studied as well as their ability to transport flurbiprofen across an in vitro BBB model.
Results
PLA-flurbiprofen nanoparticles were endocytosed by endothelial cells and neither affected the vitality nor barrier function of the endothelial cell monolayer. The exposure of the PLA-flurbiprofen nanoparticles to human plasma occurred in a rapid protein corona formation, resulting in their decoration with bioactive proteins, including apolipoprotein E. Furthermore, luminally administered PLA-flurbiprofen nanoparticles in contrast to free flurbiprofen were able to modulate γ-secretase activity by selectively decreasing Aβ42 levels in the abluminal compartment of the BBB model.
Conclusions
In this study, we were able to show that flurbiprofen can be transported by PLA nanoparticles across an in vitro BBB model and most importantly, the transported flurbiprofen modulated γ-secretase activity by selectively decreasing Aβ42 levels. These results demonstrate that the modification of drugs via embedding in nanoparticles is a promising tool to facilitate drug delivery to the brain, which enables future development for the treatment of neurodegenerative disorders like AD.
doi:10.1186/alzrt225
PMCID: PMC3978673  PMID: 24280275
17.  The S-Connect study: results from a randomized, controlled trial of Souvenaid in mild-to-moderate Alzheimer’s disease 
Introduction
Souvenaid® containing Fortasyn® Connect is a medical food designed to support synapse synthesis in persons with Alzheimer’s disease (AD). Fortasyn Connect includes precursors (uridine monophosphate; choline; phospholipids; eicosapentaenoic acid; docosahexaenoic acid) and cofactors (vitamins E, C, B12, and B6; folic acid; selenium) for the formation of neuronal membranes. Whether Souvenaid slows cognitive decline in treated persons with mild-to-moderate AD has not been addressed.
Methods
In a 24-week, double-masked clinical trial at 48 clinical centers, 527 participants taking AD medications [52% women, mean age 76.7 years (Standard Deviation, SD = 8.2), and mean Mini-Mental State Examination score 19.5 (SD = 3.1, range 14–24)] were randomized 1:1 to daily, 125-mL (125 kcal), oral intake of the active product (Souvenaid) or an iso-caloric control. The primary outcome of cognition was assessed by the 11-item Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-cog). Compliance was calculated from daily diary recordings of product intake. Statistical analyses were performed using mixed models for repeated measures.
Results
Cognitive performance as assessed by ADAS-cog showed decline over time in both control and active study groups, with no significant difference between study groups (difference =0.37 points, Standard Error, SE = 0.57, p = 0.513). No group differences in adverse event rates were found and no clinically relevant differences in blood safety parameters were noted. Overall compliance was high (94.1% [active] and 94.5% [control]), which was confirmed by significant changes in blood (nutritional) biomarkers.
Conclusions
Add-on intake of Souvenaid during 24 weeks did not slow cognitive decline in persons treated for mild-to-moderate AD. Souvenaid was well tolerated in combination with standard care AD medications.
Trial registration
Dutch Trial Register number: NTR1683.
doi:10.1186/alzrt224
PMCID: PMC3978853  PMID: 24280255
18.  Alzheimer's disease risk alleles in TREM2 illuminate innate immunity in Alzheimer's disease 
Genetic studies have provided the best evidence for cause and effect relationships in Alzheimer's disease (AD). Indeed, the identification of deterministic mutations in the APP, PSEN1 and PSEN2 genes and subsequent preclinical studies linking these mutations to alterations in Aβ production and aggregation have provided pivotal support for the amyloid cascade hypothesis. In addition, genetic, pathologic and biological studies of APOE have also indicated that the genetic risk for AD associated with APOE4 can be attributed, at least in part, to its pro-amyloidogenic effect on Aβ. In recent years a number of SNPs that show unequivocal genome-wide association with AD risk have implicated novel genetic loci as modifiers of AD risk. However, the functional implications of these genetic associations are largely unknown. For almost all of these associations, the functional variants have not been identified. Very recently, two large consortiums demonstrated that rare variants in the triggering receptor expressed on myeloid cells 2 (TREM2) gene confer significant risk for AD. TREM2 is a type 1 membrane receptor protein primarily expressed on microglia in the central nervous system that has been shown to regulate phagocytosis and activation of monocytes. Previously it had been shown that homozygous loss of function mutations in TREM2 cause polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL, Nasu Hakola disease) and also a pure form of early-onset dementia. The association of TREM2 variants with AD brings innate immune signaling into the light, affirming innate immunity's role as a significant factor in AD pathogenesis.
doi:10.1186/alzrt178
PMCID: PMC3706774  PMID: 23692967
19.  Separation of cognitive domains to improve prediction of progression from mild cognitive impairment to Alzheimer's disease 
Addressing causes of heterogeneity in cognitive outcomes is becoming more critical as Alzheimer's disease (AD) research focuses on earlier disease. One of the causes of this heterogeneity may be that individuals with deficiencies in different cognitive domains may perform similarly on a neuropsychological (NP) test for very different reasons. Tatsuoka and colleagues have applied a Bayesian model in order to integrate knowledge about cognitive domains relevant to each NP test with the observed outcomes from the Alzheimer's Disease Neuroimaging Initiative (ADNI) mild cognitive impairment data. This approach resulted in better prediction of AD diagnosis than more traditional approaches.
doi:10.1186/alzrt176
PMCID: PMC3707047  PMID: 23680123
20.  Advances in blood-based protein biomarkers for Alzheimer's disease 
Alzheimer's disease (AD) is a neurodegenerative disorder that accounts for the majority of dementia cases. While research over the past decades has made advances into understanding disease pathology, definite AD diagnosis currently relies on confirmation by autopsy. The anticipated dramatic rise in affected individuals over the next decades necessitates the development of diagnostic tests applicable to living individuals, which depends on identification of disease biomarkers. Diagnostics based on blood protein biomarkers are particularly desired since these would allow for economical, rapid and non-invasive analysis of individual biomarker profiles. Research is actively ongoing in this field and has led to the identification of autoantibodies and various proteins in the blood that may represent a disease-specific blood signature of AD. This review provides an overview on the progress in the field of identification of AD-specific blood protein biomarkers.
doi:10.1186/alzrt172
PMCID: PMC3706757  PMID: 23659521
21.  Calmodulin levels in blood cells as a potential biomarker of Alzheimer’s disease 
Introduction
The clinical features of Alzheimer’s disease (AD) overlap with a number of other dementias and conclusive diagnosis is only achieved at autopsy. Accurate in-life diagnosis requires finding biomarkers suitable for early diagnosis, as well as for discrimination from other types of dementia. Mounting evidence suggests that AD-dependent processes may also affect peripheral cells. We previously reported that calmodulin (CaM) signaling is impaired in AD lymphoblasts. Here, we address the issue as to whether the assessment of CaM levels in peripheral cells could serve as a diagnostic biomarker.
Methods
A total of 165 subjects were enrolled in the study, including 56 AD patients, 15 patients with mild cognitive impairment, 7 with frontotemporal dementia associated with progranulin mutations, 4 with dementia with Lewy bodies, 20 patients with Parkinson’s disease, 10 with amyotrophic lateral sclerosis, 5 with progressive supranuclear palsy, and 48 cognitively normal individuals. CaM levels were then analyzed in lymphoblasts, peripheral blood mononuclear cells and plasma. Receiver operating characteristic (ROC) curve analyses were employed to evaluate the diagnostic performance of CaM content in identifying AD patients.
Results
Compared with control individuals, CaM levels were significantly increased in AD cells, but not in the other neurodegenerative disorders. CaM levels differentiated AD from control with a sensitivity of 0.89 and a specificity of 0.82 and were not dependent on disease severity or age. MCI patients also showed higher levels of the protein.
Conclusions
CaM levels could be considered a peripheral biomarker for AD in its early stage and help to discriminate from other types of dementia.
doi:10.1186/alzrt219
PMCID: PMC3978675  PMID: 24499616
22.  Modeling Alzheimer's disease with non-transgenic rat models 
Alzheimer's disease (AD), for which there is no cure, is the most common form of dementia in the elderly. Despite tremendous efforts by the scientific community, the AD drug development pipeline remains extremely limited. Animal models of disease are a cornerstone of any drug development program and should be as relevant as possible to the disease, recapitulating the disease phenotype with high fidelity, to meaningfully contribute to the development of a successful therapeutic agent. Over the past two decades, transgenic models of AD based on the known genetic origins of familial AD have significantly contributed to our understanding of the molecular mechanisms involved in the onset and progression of the disease. These models were extensively used in AD drug development. The numerous reported failures of new treatments for AD in clinical trials indicate that the use of genetic models of AD may not represent the complete picture of AD in humans and that other types of animal models relevant to the sporadic form of the disease, which represents 95% of AD cases, should be developed. In this review, we will discuss the evolution of non-transgenic rat models of AD and how these models may open new avenues for drug development.
doi:10.1186/alzrt171
PMCID: PMC3706888  PMID: 23634826
23.  Targeting norepinephrine in mild cognitive impairment and Alzheimer's disease 
The Alzheimer's disease (AD) epidemic is a looming crisis, with an urgent need for new therapies to delay or prevent symptom onset and progression. There is growing awareness that clinical trials must target stage-appropriate pathophysiological mechanisms to effectively develop disease-modifying treatments. Advances in AD biomarker research have demonstrated changes in amyloid-beta (Aβ), brain metabolism and other pathophysiologies prior to the onset of memory loss, with some markers possibly changing one or two decades earlier. These findings suggest that amyloid-based therapies would optimally be targeted at the earliest clinically detectable stage (such as mild cognitive impairment (MCI)) or before. Postmortem data indicate that tau lesions in the locus coeruleus (LC), the primary source of subcortical norepinephrine (NE), may be the first identifiable pathology of AD, and recent data from basic research in animal models of AD indicate that loss of NE incites a neurotoxic proinflammatory condition, reduces Aβ clearance and negatively impacts cognition - recapitulating key aspects of AD. In addition, evidence linking NE deficiency to neuroinflammation in AD also exists. By promoting proinflammatory responses, suppressing anti-inflammatory responses and impairing Aβ degradation and clearance, LC degeneration and NE loss can be considered a triple threat to AD pathogenesis. Remarkably, restoration of NE reverses these effects and slows neurodegeneration in animal models, raising the possibility that treatments which increase NE transmission may have the potential to delay or reverse AD-related pathology. This review describes the evidence supporting a key role for noradrenergic-based therapies to slow or prevent progressive neurodegeneration in AD. Specifically, since MCI coincides with the onset of clinical symptoms and brain atrophy, and LC pathology is already present at this early stage of AD pathogenesis, MCI may offer a critical window of time to initiate novel noradrenergic-based therapies aimed at the secondary wave of events that lead to progressive neurodegeneration. Because of the widespread clinical use of drugs with a NE-based mechanism of action, there are immediate opportunities to repurpose existing medications. For example, NE transport inhibitors and NE-precursor therapies that are used for treatment of neurologic and psychiatric disorders have shown promise in animal models of AD, and are now prime candidates for early-phase clinical trials in humans.
doi:10.1186/alzrt175
PMCID: PMC3706916  PMID: 23634965
24.  Predictors of decline in walking ability in community-dwelling Alzheimer’s disease patients: Results from the 4-years prospective REAL.FR study 
Introduction
The aim of this study was to explore the predictors of decline in walking ability in patients with Alzheimer’s disease (AD).
Methods
The prospective REseau surla maladie ALzheimer FRançais (REAL.FR) study enrolled six hundred eighty four community-dwelling AD subjects (71.20% women; mean age 77.84 Standard Deviation, SD, 6.82 years, Mini-Mental State Examination 20.02, SD 4.23). Decline in walking ability was defined as the first loss of 0.5 points or more in the walking ability item of the Activities of Daily Living scale (ADL), where higher score means greater independence, during the four-years of follow-up. Demographic characteristics, co-morbidities, and level of education were reported at baseline. Disability, caregiver burden, cognitive and nutritional status, body mass index, balance, behavioral and psychological symptoms of dementia, medication, hospitalization, institutionalization and death were reported every six months during the four years. Cox survival analyses were performed to assess the independent factors associated with decline in walking ability.
Results
The mean incident decline in walking ability was 12.76% per year (95% Confidence Interval (CI) 10.86 to 14.66). After adjustment for confounders, the risk of decline in walking ability was independently associated with older age (Relative Risk, RR = 1.05 (95% CI 1.02 to 1.08)), time from diagnosis of dementia (RR = 1.16 (1.01 to 1.33)), painful osteoarthritis (RR = 1.84 (1.19 to 2.85)), hospitalization for fracture of the lower limb (RR = 6.35 (3.02 to 13.37)), higher baseline ADL score (RR = 0.49 (0.43 to 0.56)), and the use of acetylcholinesterase inhibitors (RR = 0.52 (0.28 to 0.96)).
Conclusions
The risk of decline in walking ability is predicted by older age, increased dementia severity, poor functional score, and orthopedic factors and seems to be prevented by the use of acetylcholinesterase inhibitors medication.
doi:10.1186/alzrt216
PMCID: PMC3978928  PMID: 24517197
25.  Neuroprotective effects of donepezil against cholinergic depletion 
Introduction
Intraparenchymal injections of the immunotoxin 192-IgG-saporin into medial septum and nucleus basalis magnocellularis causes a selective depletion of basal forebrain cholinergic neurons. Thus, it represents a valid model to mimic a key component of the cognitive deficits associated with aging and dementia. Here we administered donepezil, a potent acetylcholinesterase inhibitor developed for treating Alzheimer’s disease, 15 days before 192-IgG-saporin injection, and thus we examined donepezil effects on neurodegeneration and cognitive deficits.
Methods
Caspase-3 activity and cognitive performances of lesioned rats pre-treated with donepezil or saline were analyzed and compared to the outcomes obtained in pre-treated sham-lesioned rats.
Results
Cholinergic depletion increased hippocampal and neocortical caspase-3 activity and impaired working memory, spatial discrimination, social novelty preference, and ultrasonic vocalizations, without affecting anxiety levels and fear conditioning. In lesioned animals, donepezil pre-treatment reduced hippocampal and neocortical caspase-3 activity and improved working memory and spatial discrimination performances and partially rescued ultrasonic vocalizations, without preventing social novelty alterations.
Conclusions
Present data indicate that donepezil pre-treatment exerts beneficial effects on behavioral deficits induced by cholinergic depletion, attenuating the concomitant hippocampal and neocortical neurodegeneration.
doi:10.1186/alzrt215
PMCID: PMC3978431  PMID: 24401551

Résultats 1-25 (179)