PMCC PMCC

Search tips
Search criteria

Advanced

Important Notice

PubMed Central Canada to be taken offline in February 2018

On February 23, 2018, PubMed Central Canada (PMC Canada) will be taken offline permanently. No author manuscripts will be deleted, and the approximately 2,900 manuscripts authored by Canadian Institutes of Health Research (CIHR)-funded researchers currently in the archive will be copied to the National Research Council’s (NRC) Digital Repository over the coming months. These manuscripts along with all other content will also remain publicly searchable on PubMed Central (US) and Europe PubMed Central, meaning such manuscripts will continue to be compliant with the Tri-Agency Open Access Policy on Publications.

Read more

Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  “A comparison between sugar consumption and ethanol production in wort by immobilized Saccharomyces Cerevisiae, Saccharomyces Ludwigii and Saccharomyces Rouxii on Brewer’S Spent Grain” 
Brazilian Journal of Microbiology  2011;42(2):605-615.
The immobilization of Saccharomyces cerevisiae DSM 70424, Saccharomyces ludwigii DSM 3447 and Saccharomyces rouxii DSM 2531 on brewer’s spent grain and then ethanol production and sugar consumption of these immobilized yeasts were investigated. The aim of this study was to investigate the abilities of these three immobilized yeasts for producing alcohol for brewing at two temperatures (7 and 12 °C) using two different sugar levels (one at original level supplied in the brewery and one with 2.5% (w/v), added glucose to the wort).
Increasing both parameters resulted in higher alcohol production by all the yeasts studied. At 7 °C and with original wort density the ethanol content at the end of fermentation was 2.7% (v/v) for S. cerevisiae, 1.7% for S. ludwigii and 2.0% for S. rouxii. After the addition of 2.5% (w/v) glucose at the same temperature (7 °C), the alcohol production was increased to 4.1, 2.8 and 4.1%, respectively. Similar improvements were observed when the fermentation was carried out at 12 °C with/without the addition of glucose to the wort. However, temperature indicated greater influence on S. ludwigii than did on S. rouxii and S. cerevisiae. The immobilization as carried out in this study impacted both S. ludwigii and S. rouxii in a way that they could consume maltose under certain conditions.
doi:10.1590/S1517-838220110002000025
PMCID: PMC3769836  PMID: 24031672
Brewer’s spent grain; Fermentation; Immobilization; Saccharomyces cerevisiae; Saccharomyces ludwigii; Saccharomyces rouxii
2.  Antibacterial properties and chemical characterization of the essential oils from summer savory extracted by microwave-assisted hydrodistillation 
Brazilian Journal of Microbiology  2011;42(4):1453-1462.
Antibacterial properties and chemical characterization of the essential oils from summer savory (Satureja hortensis) extracted by microwave-assisted hydrodistillation (MAHD) were compared with those of the essential oils extracted using the traditional hydrodistillation (HD) method. While MAHD at 660 W required half as much time as HD needed, similar antibacterial efficacies were found from the essential oils obtained by the two extraction methods on two food pathogens (Staphylococcus aureus, a gram positive bacterium, and Escherchia coli, a gram negative bacterium). Also, as it was the case with the essential oils extracted by HD, that of MAHD indicated greater influence on S. aureus than on E. coli. The compositions of the extracted essential oils were also studied using GC-MS analysis. The same components with negligible differences in their quantities were found in the extracted essential oils using the two methods outlined above. Overall, to reduce the extraction time, MAHD can be applied at higher microwave levels without any compromise in the antibacterial properties of the essential oils extracted.
doi:10.1590/S1517-838220110004000031
PMCID: PMC3768744  PMID: 24031778
Carvacrol; Flavor and fragrance; Medicinal plant/herb; Pathogens; Scanning electron microscopy (SEM); Summer savory
3.  Canthaxanthin biosynthesis by Dietzia natronolimnaea HS-1: effects of inoculation and aeration rate 
Brazilian Journal of Microbiology  2014;45(2):447-456.
The interest in production of natural colorants by microbial fermentation has been currently increased. The effects of D-glucose concentration (3.18–36.82 g/L), inoculum size (12.5 × 109–49.5 × 109 cfu cells/mL) and air-flow rate (1.95–12.05 L/L min) on the biomass, total carotenoid and canthaxanthin (CTX) accumulation of Dietzia natronolimnaea HS-1 in a batch bioreactor was scrutinized using a response surface methodology-central composite rotatable design (RSM-CCRD). Second-order polynomial models with high R2 values ranging from 0.978 to 0.990 were developed for the studied responses using multiple linear regression analysis. The models showed the maximum cumulative amounts of biomass (7.85 g/L), total carotenoid (5.48 mg/L) and CTX (4.99 mg/L) could be achieved at 23.38 g/L of D-glucose, 31.2 × 109 cfu cells/mL of inoculation intensity and air-flow rate of 7.85 L/L min. The predicted values for optimum conditions were in good agreement with experimental data.
PMCID: PMC4166268  PMID: 25242927
Dietzia; microbial canthaxanthin; batch bioreactor; response surface methodology; modeling

Results 1-3 (3)